
Learning for Semantic Parsing Using Statistical Machine
Translation Techniques

Yuk Wah Wong
Department of Computer Sciences
The University of Texas at Austin

1 University Station C0500
Austin, TX 78712-0233, USA

ywwong@cs.utexas.edu

Doctoral Dissertation Proposal

Supervising Professor: Raymond J. Mooney

Abstract

Semantic parsing is the construction of a complete, formal, symbolic meaning representation of a
sentence. While it is crucial to natural language understanding, the problem of semantic parsing has re-
ceived relatively little attention from the machine learning community. Recent work on natural language
understanding has mainly focused on shallow semantic analysis, such as word-sense disambiguation and
semantic role labeling. Semantic parsing, on the other hand, involves deep semantic analysis in which
word senses, semantic roles and other components are combined to produce useful meaning representa-
tions for a particular application domain (e.g. database query). Prior research in machine learning for
semantic parsing is mainly based on inductive logic programming or deterministic parsing, which lack
some of the robustness that characterizes statistical learning. Existing statistical approaches to semantic
parsing, however, are mostly concerned with relatively simple application domains in which a meaning
representation is no more than a single semantic frame.

In this proposal, we present a novel statistical approach to semantic parsing, WASP, which can handle
meaning representations with a nested structure. The WASP algorithm learns a semantic parser given a
set of sentences annotated with their correct meaning representations. The parsing model is based on the
synchronous context-free grammar, where each rule maps a natural-language substring to its meaning
representation. The main innovation of the algorithm is its use of state-of-the-art statistical machine
translation techniques. A statistical word alignment model is used for lexical acquisition, and the parsing
model itself can be seen as an instance of a syntax-based translation model. In initial evaluation on
several real-world data sets, we show that WASP performs favorably in terms of both accuracy and
coverage compared to existing learning methods requiring similar amount of supervision, and shows
better robustness to variations in task complexity and word order.

In future work, we intend to pursue several directions in developing accurate semantic parsers for a
variety of application domains. This will involve exploiting prior knowledge about the natural-language
syntax and the application domain. We also plan to construct a syntax-aware word-based alignment
model for lexical acquisition. Finally, we will generalize the learning algorithm to handle context-
dependent sentences and accept noisy training data.

Contents

1 Introduction 3

2 Background and Related Work 4
2.1 Semantic Parsing . 4

2.1.1 Application Domains . 4
2.1.2 Syntax-Based Approaches . 5
2.1.3 Semantic Grammars . 7
2.1.4 Other Approaches . 8

2.2 Synchronous Parsing . 9
2.3 Statistical Machine Translation . 12

2.3.1 Word-Based Alignment Models . 13
2.3.2 Phrase-Based and Syntax-Based Alignment Models 14

3 Completed Research 15
3.1 Overview . 15
3.2 Lexical Acquisition using Word Alignments . 18

3.2.1 Maintaining Parse Tree Isomorphism . 21
3.2.2 Reducing Phrasal Incoherence . 22

3.3 Parameter Estimation for the Semantic Parsing Model . 23
3.3.1 A Probabilistic SCFG Model . 23
3.3.2 A Maximum-Entropy Model . 24

3.4 Experiments . 27
3.4.1 Comparison of Semantic Parsing Algorithms . 29
3.4.2 Comparison of Lexical Learning Methods . 30
3.4.3 Comparison of Probabilistic Models . 32
3.4.4 Comparison of Natural Languages . 33

4 Proposed Research 34
4.1 Utilizing Syntactic Annotations . 34

4.1.1 Tree Transformations and Tree Patterns . 34
4.1.2 Experiments and Discussion . 35

4.2 Utilizing Additional Domain Knowledge . 36
4.2.1 Constructing a Tight MRL Grammar . 37
4.2.2 Model-Theoretic Semantic Interpretation . 39

4.3 Syntax-Aware Word-Based Alignment Models . 40
4.4 Toward More Complex Domains . 41

4.4.1 Alternative Meaning Representation Languages . 42
4.4.2 Learning from Noisy Training Data . 43

5 Conclusion 45

References 46

2

1 Introduction

Most current research in machine learning for natural language processing (NLP) has been for fairly low-
level tasks such as part-of-speech tagging, word-sense disambiguation, and syntactic parsing (Manning &
Schütze, 1999). The holy grail of natural language processing, however, is the construction of an automated
agent that is able to understand human languages, communicate with humans via natural language gener-
ation, and do useful tasks through inference. Recent work on natural language understanding has mainly
focused on shallow semantic analysis, such as semantic role labeling (Carreras & Màrquez, 2005; Koomen
et al., 2005; Toutanova et al., 2005), which is concerned with finding phrases that fill in the semantic roles of
a single predicate given a natural-language (NL) sentence. This proposal considers a more ambitious task of
semantic parsing, which is the construction of a complete, formal, symbolic, meaning representation (MR)
of a sentence. Semantic parsing has found its way in many practical applications such as natural-language
interfaces (NLI) to databases (Hendrix et al., 1978; Price, 1990; Androutsopoulos et al., 1995), question
answering (Friedland et al., 2004; Lev et al., 2004), command and control (Bellegarda & Silverman, 2003;
Simmons et al., 2003), and advice taking (Kuhlmann et al., 2004).

Prior research in semantic parsing has mainly focused on relatively simple domains such as ATIS (Air
Travel Information Service) (Price, 1990; Kuhn & De Mori, 1995; Miller et al., 1996; He & Young, 2003;
Popescu et al., 2004), in which an MR is no more than a non-recursive semantic frame. Learning methods
have been devised that can generate MRs with a more complex, nested structure, but these are mostly based
on inductive logic programming (Zelle & Mooney, 1996) or deterministic parsing (Kate et al., 2005), which
lack some of the robustness that characterizes the learning methods recently developed in statistical NLP.
Other work involves no learning at all (Androutsopoulos et al., 1995; Popescu et al., 2003), and hence
requires extensive human efforts when porting it to a new application domain.

In this proposal, we present a novel statistical approach to semantic parsing which can handle MRs
with a nested structure, based on our previous work on semantic parsing using transformation rules (Kate
et al., 2005). The algorithm learns a semantic parser given a set of NL sentences annotated with their
correct MRs. It requires no prior knowledge of the NL syntax, although it assumes that an unambiguous,
context-free grammar (CFG) of the target meaning-representation language (MRL) is available. The main
innovation of this algorithm is its integration with state-of-the-art statistical machine translation techniques.
More specifically, a statistical word alignment model (Brown et al., 1993) is used for acquiring a bilingual
lexicon consisting of NL substrings coupled with their translations in the target MRL. Complete MRs are
then formed by combining these NL substrings and their translations under a synchronous parsing frame-
work called the synchronous CFG (Aho & Ullman, 1972), which forms the basis of most existing statistical
syntax-based translation models (Yamada & Knight, 2001; Chiang, 2005). In initial evaluation on several
real-world data sets, we show that this algorithm performs favorably in terms of both accuracy and cov-
erage compared to existing learning methods requiring the same amount of supervision, and shows better
robustness to variations in task complexity and word order.

In future work, we will pursue several directions in developing better semantic parsing algorithms for a
wider variety of application domains:

1. Extending the current semantic parsing algorithm to exploit any syntactic information of input sen-
tences that is made available, as has been done for machine translation (Och et al., 2003) and semantic
role labeling (Carreras & Màrquez, 2005);

2. Utilizing additional knowledge about the application domain to help disambiguate semantic parses,
by choosing semantic interpretations that are more plausible (Schuler, 2003);

3

3. Constructing and developing word-based alignment models that are aware of the MRL syntax for
more effective lexical acquisition;

4. Extending the algorithm to handle linguistic phenomena such as anaphora and discourse;

5. Generalizing the learning algorithm to accept noisy training data, which is a prerequisite to language
learning from multi-modal sensory input (André, 2003; Gorniak & Roy, 2004).

The remainder of this proposal is organized as follows. Section 2 reviews several recently-developed
semantic parsing algorithms and their application domains, as well as prior work on synchronous parsing and
statistical machine translation. In Section 3, we describe our new semantic parsing algorithm, WASP, and
present some initial experimental results. In Section 4, we outline our proposed future research directions.

2 Background and Related Work

2.1 Semantic Parsing

Since the last decade, a number of algorithms have been developed for learning semantic parsers that map an
NL to an MRL. Given a training corpus of NL sentences annotated with their correct semantic interpretation
in a given MRL, the goal of these algorithms is to induce an accurate semantic parser that can map novel
sentences into the target MRL. In this section, we first describe the applications that have been explored,
and provide a brief overview of the semantic parsing algorithms that have been tested on these applications.

2.1.1 Application Domains

Previous research in semantic parsing has mainly focused on the following three domains. The first one is the
ATIS domain, an ARPA-sponsored benchmark for speech recognition and understanding (Price, 1990). The
ATIS corpus consists of spoken questions about air travel, their written form, and their correct translations
in the SQL database query language. The recorded subjects were engaged in a dialog with the database
system. Hence the sentences may be semantically dependent on earlier discourse (e.g. in the form of follow-
up questions), or may be semantically independent (e.g. the first question in a dialog). Existing semantic
parsers typically handle the context-dependent sentences using a hand-coded discourse module (Kuhn & De
Mori, 1995), a probabilistic discourse model (Miller et al., 1996), or ignore them altogether (He & Young,
2003; Popescu et al., 2004). The questions are relatively simple, and the task of understanding the questions
can be boiled down to slot filling of a single semantic frame (Kuhn & De Mori, 1995; Miller et al., 1996).
Below is a sample SQL query with its English gloss:

SELECT flight_id FROM flight WHERE from_airport = ’boston’
AND to_airport = ’new york’

Show me flights from Boston to New York.

The second domain is the GEOQUERY domain, where a logical query language based on Prolog is used
for querying a small database on U.S. geography. This database was originally chosen due to the availability
of a hand-built natural-language interface, GEOBASE, supplied with Turbo Prolog 2.0 (Borland Interna-
tional, 1988). The query language consists of Prolog queries augmented with several meta-predicates (Zelle
& Mooney, 1996). A functional, variable-free version of the query language was later developed by Kate

4

et al. (2005), which can be seen to have a set-theoretic interpretation (for an alternative definition, see Sec-
tion 4.4.1). For example, in the original query language, countryid(usa) is a term that refers to the
country of the U.S. In the functional query language, it refers to a singleton set that consists of the country
of the U.S. In the original query language, the binary predicate loc(X,Y) is true if a place, X, is located
in another place, Y. In the functional query language, loc_1 is a binary relation that takes a finite set of
places, X , and returns a finite set of places that X is located in. The number 1 in the name loc_1 indicates
that X corresponds to the first argument of the binary predicate loc. Similarly, loc_2 is a binary relation
that takes a finite set of places, Y , and returns a finite set of places that are located in Y . Queries in this
domain typically show a deeply nested structure, in contrast to the flat structure of an ATIS query. Below is
a sample Prolog query, its functional, variable-free form, and its English gloss:

answer(A,count(B,(city(B),loc(B,C),const(C,countryid(usa))),A))
answer(count(city(loc_2(countryid(usa)))))
How many cities are there in the US?

The same Prolog query language has also been used to build NLIs for databases of restaurants and CS-job
openings (Tang & Mooney, 2000; Popescu et al., 2003).

The third domain is the ROBOCUP domain. ROBOCUP (www.robocup.org) is an international AI
research initiative using robotic soccer as its primary domain. In the ROBOCUP Coach Competition, teams
of agents compete on a simulated soccer field and receive advice from a team coach in a formal, functional
language called CLANG. In CLANG, tactics and behaviors are expressed in terms of if-then rules. As
described in (Chen et al., 2003), its grammar consists of 37 non-terminal symbols and 133 productions.
This domain has been used in Kate et al. (2005) and Ge and Mooney (2005) for evaluating semantic parsers.
Below is a sample rule with its English gloss:

((bpos (penalty-area our))
(do (player-except our {4}) (pos (half our))))

If the ball is our penalty area, all our players except player 4 should stay in our half.

In the corpora developed for both GEOQUERY and ROBOCUP domains, all sentences are context-
independent.

2.1.2 Syntax-Based Approaches

One of the earliest approaches to statistical semantic parsing is based on the idea of extending syntac-
tic parsers with semantic labels. Miller et al. (1994) introduces a tree-structured MR that is structurally
equivalent to a full syntactic parse tree. To model meanings, some of the node labels are augmented to
reflect semantic categories. Each semantically-labeled node represents an abstract concept, with component
concepts appearing as nodes positioned below it. The resulting tree is called an augmented parse tree. Fig-
ure 1(a) shows a sample augmented parse for the sentence Show me the flights that stop in Pittsburgh in
the ATIS domain. Here the FLIGHT node represents the abstract concept of a flight, which is a structured
entity containing a stopover event, represented by the STOP nodes. The stopover event in turn contains a
CITY as its sole component, which is Pittsburgh in this case. Note the use of syntactic labels such as NP

(noun phrase) and VP (verb phrase). There are also purely syntactic nodes such as DET (determiner) and
COMP (complementizer) that do not contribute to the overall meaning of the sentence. Miller et al. (1994)
proposes a parsing model based on a probabilistic recursive transition network. The augmented parse tree

5

SHOW

/S

SHOW

/S-HEAD

Show

/PRONOUN

me

FLIGHT

/NP

/DET

the

FLIGHT

/NP-HEAD

flights

/REL-CLAUSE

/COMP

that

STOP

/VP

STOP

/VP-HEAD

stop

STOP

/PP

STOP

/PREP

in

CITY

/PROPER-NN

Pittsburgh

(a) An augmented parse tree

2
664

Air-Transportation

SHOW Flight

STOP
h

CITY Pittsburgh
i

3
775

(b) An equivalent semantic frame

Figure 1: Sample MRs in the ATIS domain taken from Miller et al. (1994, 1996)

can be converted into a non-recursive semantic frame (Figure 1(b)) using a probabilistic semantic interpreta-
tion model (Miller et al., 1996). Parameters for both models are estimated using fully-annotated augmented
parses as the training data.

Ge and Mooney (2005) presents an extension to this semantic parsing framework called SCISSOR.
It is an improvement in two respects. First, SCISSOR is based on a state-of-the-art syntactic parsing
model, Collins’s (1997) Model 2. The parsing model is lexicalized, as in most high performance syntactic
parsers (Magerman, 1995; Charniak, 2000), where each internal node in an augmented parse is annotated
with a head word and the syntactic and semantic labels of the head word’s pre-terminal. Second, for recov-
ering an MR from an augmented parse, a simple recursive procedure is devised that allows an MR to be
multiple levels deep, which is the case in both ROBOCUP and GEOQUERY domains (as opposed to Miller
et al. (1996) where output semantic frames are flat). Again, fully-annotated augmented parses are used for
training a parsing model.

The main drawback of both Miller et al. (1994, 1996) and Ge and Mooney (2005) is that they require

6

fully-annotated augmented parses for training, which often mean an excessive amount of work for annota-
tors. Zettlemoyer and Collins (2005) addresses this problem by allowing training sentences to be a simple
word sequence. Each training sentence is then coupled with its correct MR, with no extra semantic anno-
tations on each NL phrase. Their method is based on a combinatory categorial grammar (CCG). It requires
prior knowledge of syntax, which comes in the form of rules for constructing a bilingual lexicon. Each rule
consists of an input trigger and an output category, which we illustrate using an example:

Input trigger: any binary predicate p
Output category: (S\NP)/NP : λx.λy.p(y, x)

Suppose we are given a training sentence, Utah borders Idaho, and its logical form, BORDERS(UTAH, IDAHO).
Since the logical form contains a binary predicate BORDERS, the above rule is triggered, producing a lexical
item for each word in the training sentence:

Utah = (S\NP)/NP : λx.λy.BORDERS(y, x)
borders = (S\NP)/NP : λx.λy.BORDERS(y, x)

Idaho = (S\NP)/NP : λx.λy.BORDERS(y, x)

These lexical items specify that each word is of the syntactic category (S\NP)/NP, which takes an NP
(noun phrase) to the right (/NP), and then an NP to the left (\NP), forming an S (sentence) constituent. The
logical forms associated with the NPs combine with the lambda function λx.λy.BORDERS(y, x) through
function applications, giving rise to a grounded formula. Similar lexicon-generating rules are devised for
constants (e.g. UTAH and IDAHO) and other types of predicates and functions. The goal is to generate a set
of lexical items that are sufficient for parsing a training sentence correctly. Note that these rules are specific
to a particular NL and MRL pair. A change in the NL syntax or the application domain would require a new
set of lexicon-generating rules, although it should be easier for annotators to come up with a set of rules than
to produce a detailed augmented parse tree for each training sentence. Also note that the lexicon contains
many spurious lexical items, such as the one that associates Utah with BORDERS. These spurious items
are pruned from the lexicon during the parameter estimation phase, where the weights of lexical items are
estimated according to the maximum-entropy principle in an unsupervised fashion (since fully-annotated
augmented parses are not available for training).

A major innovation of these syntax-based methods is the combination of syntactic parsing and semantic
parsing as a single process. Since ambiguities arise in both the syntactic structure and the semantic inter-
pretation of phrases, the combination of syntactic and semantic parsing as a single model allows semantic
information to be used to resolve syntactic ambiguities, and syntactic information to be used to resolve
semantic ambiguities.

2.1.3 Semantic Grammars

One thing that syntax-based methods share in common is that a full syntactic parse is generated alongside
a semantic parse. Thus, a parser often constructs a more elaborate structure than needed to recover an MR
(e.g. Figure 1). One way to simplify the output structure is to remove syntactic labels and purely-syntactic
nodes, such that the induction of a parser is entirely driven by the semantic representations of training
sentences. This results in a semantic grammar (Allen, 1995), where non-terminals correspond to concepts
in an application domain as opposed to syntactic categories. Figure 2 shows a possible purely-semantic
parse equivalent to the one in Figure 1.

7

SHOW

Show me FLIGHT

the flights that STOP

stop in CITY

Pittsburgh

Figure 2: A sample semantic parse in the ATIS domain

Kate et al. (2005) presents an algorithm called SILT for inducing a semantic grammar. It is based on
transformation rules that map NL substrings to MRs. For example, a transformation rule can be formed
that maps the word Pittsburgh to an MR

[
CITY Pittsburgh

]
. Another transformation rule can be formed

that maps the substring stop in x to a slot-value pair STOP = x′, where x is any city name and x′ is
the MR representing the city. To transform the substring stop in Pittsburgh into an MR, the substring is
parsed using these transformation rules, giving the semantic parse in Figure 2. At the same time, an MR
is generated by composing STOP = x′ with

[
CITY Pittsburgh

]
, giving a grounded slot-value pair STOP =[

CITY Pittsburgh
]
. Such transformation rules are learned in a bottom-up manner, starting from constants

such as
[
CITY Pittsburgh

]
, then structured entities such as STOP = x′, up to the top-level concepts, such

as the creation of Air-Transportation frames. Fully-annotated semantic parses are not needed for training a
semantic parser, although it does require prior knowledge of the grammar of the target MRL.

2.1.4 Other Approaches

Various other learning approaches have been proposed for semantic parsing. Zelle and Mooney (1996)
presents a system called CHILL which uses induction logic programming (ILP) (Muggleton, 1992) to learn
a deterministic shift-reduce parser written in Prolog. CHILL treats parser induction as a problem of learning
rules to control the actions of a shift-reduce parser. There are three types of operators. First is the introduc-
tion of a predicate due to the appearance of a word. Second is the unification of variables that have been
previously introduced. Third is the embedding of a predicate as an argument of a previously-introduced
meta-predicate. The learning algorithm requires a semantic lexicon that provides the possible mapping from
words to predicates. Such a lexicon can be automatically acquired from a set of training sentences and their
correct MRs (Thompson & Mooney, 1999). Tang and Mooney (2001) presents an extension to CHILL called
COCKTAIL which uses multiple clause constructors. The resulting parser is shown to have better coverage
compared to the original CHILL algorithm.

He and Young (2003) introduces a semantic parser based on an extended hidden Markov model (HMM)
(Rabiner, 1989) that allows hierarchical structures to be efficiently represented while retaining the compu-
tational tractability of regular HMMs. Given a semantic parse as shown in Figure 2, the semantic infor-
mation related to any single word is stored as a vector of semantic labels starting from the pre-terminal
of the word, and ending at the root node. For example, the word stop would be described by the vector
〈STOP, FLIGHT, SHOW〉 (cf. Figure 2). Hence a complete semantic parse can be represented by a sequence
of vectors. Inference and induction follow the standard HMM algorithms (Jelinek, 1998). This method is

8

shown to be effective for parsing context-independent sentences in the ATIS domain.
Papineni et al. (1997) and Macherey et al. (2001) are two semantic parsing systems based on machine

translation algorithms, which will be introduced in Section 2.3. Both algorithms translate English questions
directly into SQL statements as if the target MRs consist of strings of tokens. Papineni et al. (1997) is based
on a discriminatively-trained, word-based translation model (Section 2.3.1), while Macherey et al. (2001) is
based on a phrase-based translation model (Section 2.3.2). Like He and Young (2003), these algorithms are
designed to handle simple SQL queries in the ATIS domain.

Kuhn and De Mori (1995) introduces a system called CHANEL that translates NL questions into SQL
queries based on classifications given by decision trees. Each decision tree decides whether to include a
particular displayed attribute or constraint in the output SQL query. Decisions are based on pattern matching
of the input. For example, a matching of the pattern “stop in” would indicate the presence of a STOP

constraint in the query. Decision trees are learned from a set of training sentences and their corresponding
SQL queries. Like Miller et al. (1996), CHANEL is designed to handle simple SQL queries that are non-
recursive.

PRECISE (Popescu et al., 2003, 2004) is a recent approach to constructing an NL interface to databases
which does not involve any learning. It introduces the notion of semantically tractable sentences, sentences
that give rise to a unique semantic interpretation given a partly manually-constructed lexicon and a set of
semantic constraints. The lexicon specifies the semantic types of a word. For example, by looking up the
lexicon, the word in is found to be an attribute token, and Pittsburgh a value token. Each semantic constraint
specifies a restriction on the types of values that an attribute can take. For example, the attribute IN can only
take a city or an airport as its value. By mapping each word in an input sentence to a set of possible lexical
items, semantic parsing is reduced to the problem of maximum flow in a graph that connects attributes and
values together according to the semantic constraints. Interestingly, Popescu et al. (2004) shows that over
90% of the context-independent ATIS questions are semantically tractable (i.e. for which correct mapping
to an SQL query is guaranteed). On the other hand, only 80% of the GEOQUERY questions are semantically
tractable, which shows that GEOQUERY is indeed a more challenging domain than ATIS.

2.2 Synchronous Parsing

In this section, we present some notions that formalize the process of semantic parsing. We first explore
semantic parsing from an abstract point of view, and then consider how the resulting parsing model relates
to semantic grammars (Section 2.1.3).

Semantic parsing can be shown as an instance of syntax-directed translations (Aho & Ullman, 1969a,
1969b, 1972), originally developed as a theory of compilers in which syntax analysis and code generation
are combined into a single phase (i.e. such that a high-level, formal programming language is translated into
machine code, another formal language). The theory is also known as synchronous parsing, a term more
commonly used in the NLP community (Wu, 1997; Melamed, 2004). According to this theory, a semantic
parser defines a translation, a set of pairs of strings in which each pair is an NL sentence coupled with its
MR. Suppose that Tn is an NL alphabet and Tm is an MRL alphabet. We define a translation from an NL
Ln ⊆ T ∗

n to an MRL Lm ⊆ T ∗
m as a relation from T ∗

n to T ∗
m. For example, in the ROBOCUP domain, Tm

would be the set {true, do, . . .}, and a translation from English into CLANG would contain the following
pair: Our player 4 should always stay in our half, ((true) (do our {4} (pos (half our)))).

There are several possible approaches to the finite specification of a potentially infinite translation. Anal-
ogous to an ordinary grammar, we can have a system which generates the pairs in a translation. Or we can
define a parser which takes a string x as input and produces (perhaps non-deterministically) all y such that
〈x, y〉 is in a translation (or y is a translation of x). While the latter is a more common way to look at

9

a semantic parser, we note that these two views are indeed identical. One formalism for defining transla-
tions is the synchronous context-free grammar (or the syntax-directed translation schema). A synchronous
context-free grammar (SCFG) is a 5-tuple:

G = 〈N , Tn, Tm,L, S〉 (1)

where N is a finite set of non-terminal symbols, Tn is a finite set of words (terminals) of the NL, Tm is a
finite set of terminals of the MRL, S is a non-terminal in N called the start symbol, and L is a finite set of
rules of the form X → 〈α, β〉, where α ∈ (N ∪ Tn)∗, β ∈ (N ∪ Tm)∗, and the non-terminals in β are a
permutation of the non-terminals in α.

Suppose that X → 〈α, β〉 is a rule. To each non-terminal in α there is an associated, identical non-
terminal in β. If each non-terminal appears only once in α or β, then the association is obvious. Otherwise,
indices are needed to indicate the association. For example, in the rule X → 〈Y 1 Y 2 , Y 2 Y 1 〉, the two
positions in Y 1 Y 2 are associated with positions 2 and 1 in Y 2 Y 1 , respectively. In this proposal, indices are
explicitly written in all cases. We define a translation form of G as follows:

1. 〈S 1 , S 1 〉 is a translation form.

2. If 〈αX i β, α′X i β
′〉 is a translation form, and if X → 〈γ, γ′〉 is a rule in L, then 〈αγβ, α′γ′β′〉 is a

translation form. The non-terminals in γ and γ′ are associated in the translation form exactly as they
are associated in the rule. The non-terminals of α and β are associated with those of α′ and β′ in the
new translation form exactly as in the old.

If the forms 〈αX i β, α′X i β
′〉 and 〈αγβ, α′γ′β′〉 are related as above, then we write 〈αX i β, α′X i β

′〉 ⇒G

〈αγβ, α′γ′β′〉. The non-terminals X i in 〈αX i β, α′X i β
′〉 are said to be rewritten by the rule X → 〈γ, γ′〉,

and we say the rule has been applied. The translation defined by G, denoted τ(G), is the set of pairs:

{〈x, y〉|〈S 1 , S 1 〉 ⇒∗
G 〈x, y〉, x ∈ T ∗

n , y ∈ T ∗
m} (2)

where ⇒∗
G is the reflexive-transitive closure of ⇒G.

We further define the input grammar of G as the 4-tuple Gn = 〈N , Tn,Ln, S〉, where Ln = {X →
α|X → 〈α, β〉 ∈ L}. Similarly, the output grammar of G is defined as the 4-tuple Gm = 〈N , Tm,Lm, S〉,
where Lm = {X → β|X → 〈α, β〉 ∈ L}. Both Gn and Gm are CFGs. We can then view synchronous
parsing as a process in which two parse trees are generated simultaneously, one based on the input grammar,
the other one based on the output grammar. Furthermore, these two parse trees are isomorphic (i.e. there
exists a one-to-one mapping from the nodes of one parse tree to another such that the two trees are identical),
since the pair of non-terminals rewritten at each step of a derivation are always associated with each other.
Alternatively, given an input string x, a semantic parser finds (if possible) some derivation of x from S using
the productions in the input grammar. Let S = α0 ⇒Gn α1 ⇒Gn . . . ⇒Gn αk = x be such a derivation.
This corresponds to the following derivation of translation forms of G: 〈α0, β0〉 ⇒G . . . ⇒G 〈αk, βk〉, such
that 〈α0, β0〉 = 〈S 1 , S 1 〉 and 〈αk, βk〉 = 〈x, y〉. The string y is then a translation of x.

We are now in the position of explaining the relationship between synchronous grammars and semantic
grammars. A semantic grammar as described in Section 2.1.3 can be seen as a synchronous grammar where
the set of non-terminals N correspond to abstract concepts in the application domain (e.g. CONDITION and
ACTION in the ROBOCUP domain), with a start symbol that corresponds to the top-level concept (e.g. RULE

for ROBOCUP). Synchronous grammar is an ideal formalism for defining a semantic grammar because it
describes the hierarchical structure of a sentence (e.g. Figure 2), and allows the sentence to be translated

10

into an MR during the same parsing process. In particular, the SILT algorithm (Kate et al., 2005) presented
in Section 2.1.3 can be described as an SCFG, where each transformation rule corresponds to an SCFG rule.
This is best illustrated using an example. Suppose that we are given an input sentence:

If our player 4 has the ball , our player 4 should shoot .

The task is to translate it into an MR in the ROBOCUP domain. This can be done by an SCFG, G =
〈N , Tn, Tm,L, S〉, where:

N = {TEAM, UNUM, ACTION, CONDITION, DIRECTIVE, RULE}
Tn = {if, our, player, 4, . . .}
Tm = {(, bowner, our, 4, . . .}
L = {RULE → 〈 if CONDITION 1 (1) DIRECTIVE 2 (1) , (CONDITION 1 DIRECTIVE 2) 〉,

CONDITION → 〈 TEAM 1 player UNUM 2 has (1) ball , (bowner TEAM 1 {UNUM 2 }) 〉,
TEAM → 〈 our , our 〉,
UNUM → 〈 4 , 4 〉,
DIRECTIVE → 〈 TEAM 1 player UNUM 2 should ACTION 3 , (do TEAM 1 {UNUM 2 } ACTION 3) 〉,
ACTION → 〈 shoot , (shoot) 〉}

S = RULE

Here each rule in L is a SILT transformation rule. The special (1) symbol is a word gap, which indicates
that at most one word can be skipped over during pattern matching of the input sentence. For now, it can
be seen as a terminal symbol in Tn which can match at most one word in the input sentence (a more precise
description will be given in Section 3.3.1). By parsing the input sentence using the input grammar of G, we
obtain the following derivation, where each translation form is a pair of NL and MR strings. This derivation
is said to be top-down, because it starts with an associated pair of start symbols. It is said to be left-most,
because at each step of the derivation, the non-terminal rewritten on the NL side is always the left-most one:

〈 RULE 1 , RULE 1 〉
⇒G 〈 if CONDITION 1 (1) DIRECTIVE 2 (1) , (CONDITION 1 DIRECTIVE 2) 〉

(by applying the 1st rule in L)

⇒G 〈 if TEAM 1 player UNUM 2 has (1) ball (1) DIRECTIVE 3 (1) ,
((bowner TEAM 1 {UNUM 2 }) DIRECTIVE 3) 〉

(by applying the 2nd rule in L)

⇒G 〈 if our player UNUM 1 has (1) ball (1) DIRECTIVE 2 (1) ,
((bowner our {UNUM 1 }) DIRECTIVE 2) 〉

(by applying the 3rd rule in L)

⇒G 〈 if our player 4 has (1) ball (1) DIRECTIVE 1 (1) ,
((bowner our {4}) DIRECTIVE 2) 〉

(by applying the 4th rule in L)

⇒G 〈 if our player 4 has (1) ball (1) TEAM 1 player UNUM 2 should ACTION 3 (1) ,
((bowner our {4}) (do TEAM 1 {TEAM 2 } ACTION 3)) 〉

(by applying the 5th rule in L)

⇒G 〈 if our player 4 has (1) ball (1) our player UNUM 1 should ACTION 2 (1) ,
((bowner our {4}) (do our {TEAM 1 } ACTION 2)) 〉

11

(by applying the 3rd rule in L)

⇒G 〈 if our player 4 has (1) ball (1) our player 4 should ACTION 1 (1) ,
((bowner our {4}) (do our {4} ACTION 1)) 〉

(by applying the 4th rule in L)

⇒G 〈 if our player 4 has (1) ball (1) our player 4 should shoot (1) ,
((bowner our {4}) (do our {4} (shoot))) 〉

(by applying the 6th rule in L)

Each step of this derivation corresponds to an application of a SILT transformation rule. This derivation
yields an NL string, if our player 4 has (1) ball (1) our player 4 should shoot (1), and an MR string,
((bowner our {4}) (do our {4} (shoot))). Since the NL string matches the input sentence
by skipping over the word the, the comma, and the period, the MR string is a translation of the input sentence.

In general, an input sentence, x, is parsed using the productions in the input grammar of G. Each parse
corresponds to a top-down derivation of translation forms of G. The MR string in the final translation form
in this derivation is then a possible translation of x. Since each parse of x corresponds to a semantic parse
tree (e.g. Figure 2), G can be seen as a semantic grammar that translates an NL sentence into an MR string.

Apart from SILT, Shieber and Schabes (1990) presents another system that applies synchronous parsing
to natural languages. It introduces the synchronous tree-adjoining grammar (STAG) as a formalism for
semantic parsing. STAG is similar to SCFG except that its underlying grammar is a tree-adjoining grammar
(TAG) (Joshi, 1985).

2.3 Statistical Machine Translation

Another line of work that will be relevant to the task of semantic parsing is machine translation, whose
main goal is to translate one natural language into another. Although this task is similar to semantic parsing,
where a natural language is translated into a formal language, and syntax-directed translation, where a formal
language is translated into another, machine translation often presents unique challenges of its own, because
of the inherent ambiguity of natural languages. Machine translation is thus a particularly challenging task,
which has inspired a large body of research. In particular, the growing availability of bilingual corpora,
where the same content is available in two languages, has stimulated interest in statistical methods for
extracting linguistically valuable information from such texts. In this section, we will review the main
components of a typical statistical machine translation system. Then we will focus on the sub-task of word
alignment, which will be the most relevant to our work.

Without loss of generality, machine translation is the task of translating a string of foreign words, f , into
a string of English words, e. Obviously, there are many acceptable translations for a given f . The choice
would depend on the context in which f appears, the level of the target audience, and so on. In statistical
machine translation, we take the view that every English sentence, e, is a possible translation of f . Every
pair of strings 〈e, f〉 is assigned a probability Pr(e|f). The task of translating the foreign string f is then to
choose the English string e� for which Pr(e|f) is the greatest. Traditionally, this task is divided into two
separate, more manageable sub-tasks:

e� = arg max
e

Pr(e) Pr(f |e) (3)

This decomposition is based on the noisy-channel paradigm. The induction of a machine translation system
thus involves the estimation of two probability distributions, namely the language model (or source model),

12

And the program has been implemented

Le programme a mis en applicationété

Figure 3: A sample word alignment, taken from Brown et al. (1993)

Pr(e), and the translation model (or channel model), Pr(f |e). These two models cooperate to produce
English translations that are well-formed and explain the foreign string well.

The latter model is also known as the alignment model, because given a pair of strings, e and f , the
model explains how words in e are translated into words in f . Figure 3 shows a sample word alignment
between an English string and a French string. It shows that the French word le is a translation of (or is
linked to) the English word the, the French phrase mis en application as a whole is a translation of the
English word implemented, and so on. Numerous statistical methods have been devised to find the best
word alignment between sentences in a bilingual corpora, and it is in this sense that machine translation
becomes relevant to the task of semantic parsing: a word alignment defines a bilingual lexicon. In Figure 3,
the meanings of the French words and phrases are expressed in English. The semantic parsing scenario is
similar, except that the meanings are expressed in a formal representation.

Therefore, alignment models will be the main focus of our discussion. In the following text, we will
review some early word-based alignment models, and then go on to discuss phrase-based alignment models
and their generalizations.

2.3.1 Word-Based Alignment Models

Brown et al. (1993) presents a series of five statistical translation models which later became known as the
IBM Models. These models are word-based because they model how each individual word in e is translated
into words in f , resulting in a 1-to-n alignment (Figure 3). Suppose that f = fJ

1 = 〈f1, . . . , fJ〉, and
e = eI

1 = 〈e1, . . . , eI〉. A word alignment, a, between f and e is defined as:

a = 〈a1, . . . , aJ〉,∀j = 1, . . . , J, 0 ≤ aj ≤ I (4)

where aj is the position of the English word that the foreign word fj is linked to. If aj = 0, then fj is not
linked to any English word. The conditional probability Pr(f |e) can then be written as follows:

Pr(f |e) =
∑
a

Pr(f ,a|e) (5)

Each IBM model gives a prescription for decomposing the conditional probability Pr(f ,a|e) such that
inference and induction are tractable. For Models 1 and 2, the conditional probability is decomposed as
follows:

Pr(f ,a|e) = Pr(J |e)
J∏

j=1

Pr(aj |aj−1
1 , f j−1

1 , J, e) Pr(fj |aj
1, f

j−1
1 , J, e) (6)

13

Using this decomposition, we obtain three different probabilities, namely a length probability Pr(J |e),
an alignment probability Pr(aj |aj−1

1 , f j−1
1 , J, e), and a translation probability Pr(fj |aj

1, f
j−1
1 , J, e). We

further assume that the length probability is independent of J and e; that the alignment probability depends
only on aj , j, I and J ; and that the translation probability depends only on fj and eaj . We can therefore
write the length probability as a constant ε, the alignment probability as Pr(aj |j, I, J), and the translation
probability as Pr(fj |eaj). Models 1 and 2 are said to zero-order because aj is independent of aj−1

1 (i.e.
the movement of each word is independent). Furthermore, Model 1 assumes a uniform distribution for the
alignment probability Pr(aj |j, I, J) = 1/(I + 1). Hence the word order in either string does not affect the
alignment probability.

Both Models 1 and 2 are estimated using the Expectation-Maximization (EM) algorithm (Dempster
et al., 1977), based on a training set of English sentences coupled with their correct foreign translations. The
model parameters are first guessed, and then repeatedly updated such that the likelihood of the training set
is maximized. Models 1 and 2 have an especially simple mathematical form such that iterations of the EM
algorithm can be computed exactly. In addition, Model 1 has a unique local maximum so that the parameter
estimates do not depend on the initial guess. Although Models 1 and 2 often lead to unsatisfactory word
alignments due to the zero-order assumption, they are often used for deriving the initial parameters for
subsequent models, for which parameter estimation is much more involved.

In Models 3, 4 and 5, a foreign string is constructed by choosing for each word ei in the English string,
first the number of foreign words that will be linked to ei (or the fertility of ei), then the identity of these
foreign words, and finally the actual positions in the foreign string that these words will occupy. Due to their
complexity, we do not discuss them in detail here. There is an important point to note, however. In both
Models 4 and 5, the position of every foreign word depends on the position of the previous foreign word
that is linked to the same English word. Moreover, given a particular English word, ei, the position of the
first foreign word linked to ei depends on the average position of all foreign words linked to ei−1. Hence
these models are said to be first-order, as the movements of words are no longer independent. This allows
for better modeling of phrasal movements, such that phrases in English can be translated as a unit into the
foreign language. The tendency for phrasal translations to stay close together is called phrasal coherence, a
topic that we will revisit in Sections 3.2.2 and 4.3.

2.3.2 Phrase-Based and Syntax-Based Alignment Models

A major problem with the IBM Models is their lack of linguistic knowledge. For example, syntactic anal-
ysis would allow an alignment model to directly handle phrasal reordering, instead of simulating phrasal
movements using the first-order assumption. The utility of the IBM models as a translation model is only
demonstrated for a structurally similar language pair, English and French (Brown et al., 1993), and the per-
formance of the models is expected to degrade when the language pair has very different word order (e.g.
English and Arabic).

One approach to this problem is to introduce the concept of phrases in an alignment model. A basic
phrase-based model decomposes the translation from e to f into the following steps. First, e is segmented
into phrases ẽ1, . . . , ẽK . Then the phrases ẽk are reordered according to some distortion model. Finally,
each ẽk is translated into a foreign phrase f̃ according to a phrase translation model Pr(f̃ |ẽ). Och et al.
(1999) presents the alignment template approach in which a phrasal lexicon, {〈ẽ, f̃〉}, is extracted from word
alignments obtained in the first stage of training. These aligned phrase pairs are then generalized to form
alignment templates, based on word classes induced from the training data. Tillmann (2003) and Venugopal
et al. (2003) also extract a phrasal lexicon from word alignments, but without generalization. Marcu and
Wong (2002) learns phrasal translations as part of an EM algorithm in which the joint probability Pr(f , e)

14

is estimated.
A common weakness of the phrase-based approaches is that they fail to handle nested syntactic struc-

tures. This leads to the development of syntax-based alignment models, which can be seen as a gener-
alization of phrase-based methods to the case of hierarchical phrases. Wu (1997) introduces the inversion
transduction grammar as a tool for bilingual text analysis. It is a version of SCFG where the associated non-
terminals in a rule are either in the same order or in reverse order. Chiang (2005) is another SCFG-based
alignment model in which the number of associated pairs of non-terminals in each rule is restricted to two.
Yamada and Knight (2001, 2002) present a tree-to-string translation model which takes the syntactic parse
of an English string, e, performs node reordering, insertions and translations, and outputs a foreign string, f ,
which is the frontier of the transformed tree. This model can be shown as a regular tree transducer (Knight
& Graehl, 2005). Quirk et al. (2005) is another tree-to-string translation model that works on dependency
trees.

One thing that these syntax-based alignment models share in common is that they are all based on
variants of synchronous grammars. Synchronous grammar is an ideal formalism for defining a syntax-based
alignment model because it describes not only the hierarchical structures of a sentence and its translation, but
also the exact correspondence between their sub-parts. This leads to the observation that machine translation
can be viewed as synchronous parsing (Melamed, 2004). A major reason for adopting this view is that, since
synchronous grammars are simply a generalization of grammars originally developed for a single language,
machine translation systems can be seen as a generalization of ordinary syntactic parsers. This allows
the extensive experience that has been gained in syntactic parsing to be drawn on, expecting that similar
techniques are applicable to machine translation as well.

3 Completed Research

In this section we describe a novel approach to semantic parsing based on transformation rules, introduced
by Kate et al. (2005). Transformation rules are used for mapping substrings in an NL sentence to MRs, and
are learned using an off-the-shelf word alignment model. The learning algorithm assumes that the target
MRL has a functional, variable-free form (Section 2.1.1), and that an unambiguous CFG of the target MRL
is available. The non-terminal symbols of the MRL grammar provide convenient abstractions that enable the
construction of general, effective transformation rules. The learning algorithm requires a set of NL sentences
paired with their correct MRs as the training data, with no extra semantic annotations on any sub-parts of
a sentence. It stands in marked contrast to Miller et al. (1994, 1996) and Ge and Mooney (2005), where
fully-annotated augmented parse trees must be given. Our algorithm requires no prior knowledge of the
NL syntax, unlike Zettlemoyer and Collins (2005) where language-dependent rules for building a lexicon
must be specified. Our new approach is called WASP, short for Word Alignment-based Semantic Parsing.
We argue that WASP is robust to variations in task complexity and word order, and performs favorably
compared to existing learning algorithms that require similar amount of supervision.

3.1 Overview

WASP is based on transformation rules introduced by the SILT algorithm (Section 2.1.3). Transformation
rules are used for mapping NL substrings to MRs. Suppose that N is a finite set of non-terminal symbols of
the MRL grammar, Tn is a finite set of terminal symbols (words) of the NL, and Tm is a finite set of terminal
symbols of the MRL. Then each transformation rule is of the following form:

X → 〈p, t〉 (7)

15

where X ∈ N , p ∈ (N ∪ Tn)+, and t ∈ (N ∪ Tm)+. X is called the left-hand side (LHS) of the rule, p is
called the pattern, and t is called the template. The pair 〈p, t〉 is called the right-hand side (RHS) of the rule.
Each rule is based on a production of an MRL grammar. We illustrate this using a sample transformation
rule in the CLANG domain:

CONDITION → 〈 TEAM 1 player UNUM 2 has (1) ball , (bowner TEAM 1 {UNUM 2 }) 〉

Here CONDITION, TEAM and UNUM (uniform number) are non-terminal symbols of the CLANG gram-
mar. CONDITION is the LHS non-terminal. 〈TEAM 1 player UNUM 2 has (1) ball, (bowner TEAM 1

{UNUM 2 })〉 is the RHS. TEAM 1 player UNUM 2 has (1) ball is the pattern, and (bowner TEAM 1

{UNUM 2 }) is the template. This rule is based on the CLANG production CONDITION → (bowner
TEAM {UNUM}), where bowner is the ball owner predicate. Throughout this text, we use the italic script
for NL words, the SMALL CAPS for non-terminals, the (g) notation to denote a word gap of size g, and
the indices 1 , 2 , . . . to indicate the association between non-terminals. We also reserve the term rules for
transformation rules (and SCFG rules), the term productions for productions of an MRL grammar, and the
term non-terminals for non-terminals of an MRL grammar (as opposed to syntactic categories in an NL
grammar).

As noted in Section 2.2, a transformation rule is an SCFG rule. Moreover, a semantic parsing model
based on transformation rules is an SCFG, G. Note that the input grammar of G is a semantic grammar for
the NL, and the output grammar of G is a grammar for the MRL. In Section 2.2, we defined the relation
⇒G, which corresponds to a step in a derivation in G. For example, an application of the above rule to the
translation form:

〈 if CONDITION 1 (1) DIRECTIVE 2 (1) , (CONDITION 1 DIRECTIVE 2) 〉

would lead to the following translation form:

〈 if TEAM 1 player UNUM 2 has (1) ball (1) DIRECTIVE 3 (1) ,
((bowner TEAM 1 {UNUM 2 }) DIRECTIVE 3) 〉

as defined by the ⇒G relation. The complete MR of an NL sentence, e, is obtained by applying rules
repeatedly, starting from an associated pair of start symbols, 〈S 1 , S 1 〉, where S ∈ N (e.g. S = RULE for
CLANG). Suppose that 〈S 1 , S 1 〉 ⇒G . . . ⇒G 〈α, β〉 is a (top-down) derivation in G. If α matches e (i.e.
by skipping over words in e as specified by the word gaps in α), then β is a possible translation of e. A
sample NL sentence and its MR translation is given in Section 2.2.

Formally, the semantic parsing model of WASP is defined by a 6-tuple, G:

G = 〈N , Tn, Tm,L, S, θ〉 (8)

where N , Tn, Tm, S are defined as above, L is a lexicon which consists of a finite set of transformation
rules, and θ is a set of model parameters. This definition of G is an extension to the one in (1), by adding
θ to the 5-tuple. The model parameters, θ, are for disambiguating the meaning of a sentence when there are
multiple possible derivations for it in G. To discriminate the correct translation from the incorrect ones, we
use a probabilistic model, parameterized by θ, that takes a possible derivation, d, and returns its likelihood
to be correct. Derivations are ranked according to their likelihood to be correct as given by the probabilistic
model. The output translation, f�, for a sentence, e, is defined as:

f� = m

(
arg max

d∈D(G)|n(d)=e
Prθ(d)

)
(9)

16

Testing

Training

Lexicon L

Parsing model G

NL sentence e Meaning representation f

Training set {〈ei, fi〉}

Unambiguous MRL grammar G′

Parameter estimation

Lexical acquisition

Semantic parsing

Figure 4: Overview of the proposed semantic parsing framework, WASP

where m(d) is the MR string in the final translation form in d, n(d) is the NL string in the final translation
form in d (by the equal sign in n(d) = e, we mean that n(d) matches e), and D(G) is the set of all possible
derivations given a model G. In other words, the output MR is the yield of the most probable derivation that
yields e in the NL stream. The exact form of Prθ(d) (and θ) will be given in Section 3.3. This formulation
is chosen because f� can be efficiently computed using a dynamic-programming algorithm (Viterbi, 1967).

Since N , Tn, Tm and S are all fixed given an NL and an MRL, the learning task is to induce a lexicon, L,
and a probabilistic model, parameterized by θ, from the training data. A lexicon defines the set of derivations
that are possible, so the induction of a probabilistic model for derivations requires a lexicon in the first place.
Therefore, the learning task can be separated into the following two sub-tasks:

1. Induce a lexicon, L, which implicitly defines the set of all possible derivations, D(G).

2. Induce a probabilistic model, parameterized by θ, which ranks the derivations in D(G).

Both induction tasks require a training set, {〈e1, f1〉, 〈e2, f2〉, . . .}, where each training example 〈ei, fi〉
is an NL sentence, ei, paired with its correct MR, fi. Lexical induction also requires a CFG of the MRL,
which is assumed to be unambiguous. Since there is no lexicon to begin with, it is not possible to include
a set of correct derivations in the training data. It is unlike most recent work on syntactic parsing in which
gold-standard syntactic parses are available as the training data (Collins, 1997; Charniak, 2000; Clark &
Curran, 2003). Therefore, the induction of a probabilistic model for derivations is a form of unsupervised
learning. Figure 4 illustrates the overall semantic parsing framework of WASP.

Lexical learning will be the main focus of Section 3.2. Algorithms for inducing a probabilistic model
will be described in Section 3.3.

17

3.2 Lexical Acquisition using Word Alignments

A lexicon is a mapping from words to their meanings. In Section 2.3, we showed that word alignments can
be used for defining a mapping from words to their meanings. Using word alignment models to induce a
lexicon is not a new idea (Manning & Schütze, 1999). Indeed, attempts have been made to directly apply
machine translation systems to the problem of semantic parsing (Section 2.1.4). However, these systems
make no use of the formal grammar of an MRL, thus allocating probability mass to MR translations that
are not even syntactically well-formed. We argue that the MRL grammar can be a rich source of constraints
for semantic analysis, and should not be left unused if available. In this section, we present an algorithm for
inducing a lexicon from the training data, making sure that all MRs produced by the resulting parsing model
are syntactically well-formed.

The basic idea of the lexical induction algorithm is to train a statistical word alignment model on the
training data, and then find the most probable word alignments between the training sentences and their
corresponding MRs. A lexicon is then formed by extracting transformation rules from these word align-
ments. Let us illustrate this algorithm using an example. Suppose that we are given as the training data the
following English sentence and its meaning encoded in CLANG:

If our player 4 has the ball, our player 4 should shoot.
((bowner our {4}) (do our {4} (shoot)))

To train a word alignment model, we can feed the model with two input streams, one by lining up
the English words, and the other by lining up the MR tokens. However, treating MR tokens as words is
a bad idea for two reasons. First, not all MR tokens carry specific meanings. For example, in CLANG,
parentheses ((,)) and braces ({, }) are delimiters that do not carry any specific meanings. Such tokens
are not supposed to be aligned to any words, and inclusion of these tokens in the training data is likely to
confuse the word alignment model. Second, MR tokens may exhibit polysemy. For instance, the CLANG

predicate pt has three meanings based on the types of arguments it is given. It specifies the xy-coordinates
when its arguments are two numbers (e.g. (pt 0 0)), the current position of the ball when its argument
is the MR token ball (i.e. (pt ball)), or the current position of a player when a team and a uniform
number are given as arguments (e.g. (pt our 4)). Given a token pt, the word alignment model would
not be able to identify its exact meaning, unless its arguments are examined as well.

A simple, principled way to avoid these difficulties is to represent an MR by lining up the MRL produc-
tions used for generating it. More specifically, an MR parse tree is linearized by lining up the productions
in the order of a top-down, left-most derivation. Figure 5 shows a sample word alignment between the
above English sentence and its CLANG translation. Here the second production, CONDITION → (bowner
TEAM {UNUM}), is the one that rewrites the CONDITION non-terminal in the first production, RULE →
(CONDITION DIRECTIVE), and so on. Treating MRL productions as words allows collocations to be
treated as a single lexical unit (e.g. the tokens (, shoot, followed by)). Such collocations can be discon-
tinuous (e.g. the parentheses in (CONDITION DIRECTIVE)). It also allows the meaning of a polysemous
MR token to be disambiguated, because each possible meaning corresponds to a distinct MRL production,
which can be easily identified provided that the MRL grammar is unambiguous. In addition, it allows pro-
ductions that generate only non-terminals (e.g. X → Y Z) to be aligned to some English words. The only
productions not included in a linearized parse tree are unary productions X → Y , which often indicate a
hypernym (is-a) relationship which is not usually realized in NL. For each unary production X → Y , a
rule X → 〈Y 1 , Y 1 〉 is automatically added to the lexicon. Note that the structure of an MR parse tree is
preserved through linearization, since for each linearized MR parse there is only one possible parse tree

18

If

our

player

4

has

the

ball

,

our

player

4

should

shoot

.

RULE → (CONDITION DIRECTIVE)

CONDITION → (bowner TEAM {UNUM})

TEAM → our

UNUM → 4

DIRECTIVE → (do TEAM {UNUM} ACTION)

TEAM → our

UNUM → 4

ACTION → (shoot)

Figure 5: A sample alignment showing the correspondence between English words and CLANG productions

that corresponds to it, provided that the MRL grammar is unambiguous. The structural aspect of an MR
parse tree will play an important role during the subsequent extraction of transformation rules. Although we
choose to linearize an MR parse tree in the order of a top-down, left-most derivation, the exact order should
not concern us, as long as the linearization preserves the structural aspect of a parse tree, because a good
alignment model should be able to properly handle any differences in word order of a language pair.

Transformation rules are extracted from an alignment between NL words and MRL productions. The
rule extraction algorithm assumes an n-to-1 alignment, where each word may contribute to at most one
component of an MR. This is an assumption made by most existing semantic role labeling systems (Koomen
et al., 2005; Toutanova et al., 2005), which has been found reasonable in most cases. Transformation rules
are extracted in a bottom-up manner, which we illustrate using the alignment in Figure 5. The process starts
with productions whose RHS is all terminals. There are five of them in the figure: two instances of TEAM

→ our, two instances of UNUM → 4, and one instance of ACTION → (shoot). Each of them is linked
to exactly one word in the sentence. In this case, the extracted rules are obvious. The patterns consist of the
word to which each production is linked, and the templates are the productions’ RHS:

TEAM → 〈 our , our 〉
UNUM → 〈 4 , 4 〉
ACTION → 〈 shoot , (shoot) 〉

Next we consider the production CONDITION → (bowner TEAM {UNUM}). This production is
linked to three words in the sentence: player, has and ball. Moreover, the predicate bowner has two argu-
ments, a TEAM and a UNUM. These arguments correspond to the first instances of the productions TEAM

→ our and UNUM → 4, which are linked to the words our and 4, respectively. Here the alignment indi-
cates not only how a predicate is realized in NL, but also how a predicate-argument relationship is realized:

19

Input: A training set {〈ei, fi〉|i = 1, . . . , N}, an unambiguous CFG G′ for the MRL, a word
alignment model T , an integer K > 0.

Output: A lexicon L covering the training set.
begin

L ← ∅
for i ← 1 to N do

u ← unique parse tree of fi obtained by applying G′

r ← list of productions of G′ obtained by linearizing u in the order of a top-down, left-most
derivation
a�

1,...,K ← the K most probable word alignments between ei and r given by T

for k ← 1 to K do
C ← ∅
for j ← |r| downto 1 do

w ← list of words to which rj is linked according to a�
k

r′ ← list of productions from r that rewrite the RHS non-terminals of rj

p ← pattern obtained by assembling w and C(r′) for all r′ ∈ r′, in the order they
appear in ei, adding word gaps if necessary
t ← rhs(rj)
Add indices to non-terminals in p and t to show their association
Replace the substring of ei covered by p with lhs(rj), which is assigned to C(rj)
L ← L ∪ {lhs(rj) → 〈p, t〉}

end
Figure 6: The basic rule extraction algorithm based on word alignments

The NL substring referring to the TEAM argument (our) comes before the word player, and the substring
referring to the UNUM argument (4) comes after it. Therefore, the pattern associated with the bowner
production is TEAM player UNUM has (1) ball, where the word gap (1) is due to the unaligned word the
that comes between has and ball. By adding indices to reflect the association between non-terminals in the
pattern and the arguments of bowner, the following rule is extracted:

CONDITION → 〈 TEAM 1 player UNUM 2 has (1) ball , (bowner TEAM 1 {UNUM 2 }) 〉

Similarly, the following rules are extracted for the remaining productions:

DIRECTIVE → 〈 TEAM 1 player UNUM 2 should ACTION 3 , (do TEAM 1 {UNUM 2 } ACTION 3) 〉
RULE → 〈 if CONDITION 1 (1) DIRECTIVE 2 (1) , (CONDITION 1 DIRECTIVE 2) 〉

where the word gap (1) at the end of the last pattern is due to the unaligned period in the sentence. This
word gap is added because all words in a sentence have to be consumed by a derivation.

Figure 6 shows the basic rule extraction algorithm of WASP. This algorithm requires a word alignment
model T , which can be any off-the-shelf alignment model. In this work we choose IBM Model 5 (Brown
et al., 1993) because efficient implementations of it are publicly available (Al-Onaizan et al., 1999; Och &
Ney, 2003), and it tends to observe phrasal coherence in the restricted domains in which our semantic parser
is evaluated (Sections 2.3.1 and 3.4.4). The training set, {〈ei, fi〉}, is used for training the alignment model
T , which is in turn used for obtaining the K-best word alignments for each example in the training set.

20

REGION → (left REGION)

REGION → (penalty-area TEAM)

our

left

penalty

area TEAM → our

Figure 7: A sample English phrase and its CLANG representation, whose parse trees are not isomorphic

Transformation rules are extracted from each of these alignments. It is done in a bottom-up fashion, such
that an MR predicate is processed only after its arguments have all been processed. This order is enforced
by the backward traversal of the linearized MR parse, r. The set C stores the mapping from productions
to NL substrings, which is updated whenever a rule is extracted. Patterns are formed by assembling words
and non-terminals that correspond to previously extracted patterns. The lexicon, L, then consists of all rules
extracted from all K-best word alignments based on all training examples.

3.2.1 Maintaining Parse Tree Isomorphism

There are two cases where the algorithm outlined in Figure 6 would not extract any rules for a production r:

1. None of the descendants of r in the MR parse tree are linked to any words.

2. The pattern for r covers a word w linked to a production r′ that is not a descendant of r in the MR
parse tree. Rule extraction is forbidden because it would destroy the link between w and r′.

The first case arises when a component of an MR is not realized. For example, the concept of our team
is often assumed, because advice is given from the perspective of a team coach. When we say the goalie
should always stay in our goal area, we mean our (our) goalie, not the other team’s (opp) goalie. Hence
the term our is often not realized. The second case arises when the NL and MR parse trees fail to be isomor-
phic. Consider the word alignment between our left penalty area and its MR, (left (penalty-area
our)) (Figure 7). Extracting the rule REGION →〈TEAM 1 (1) penalty area, (penalty-area TEAM 1)〉
would destroy the link between left and REGION → (left REGION). A possible explanation for this is
that, syntactically, our modifies left penalty area (consider the coordination phrase our left penalty area
and right goal area, where our modifies both left penalty area and right goal area). But conceptually, left
modifies the concept of our penalty area by referring to its left half. Note that the NL and MR parse trees
must be isomorphic under the SCFG formalism (Section 2.2).

The NL and MR parse trees can be made isomorphic by merging nodes in the MR parse tree, com-
bining several productions into one. In machine translation terminology, productions are merged to form
a bead (Brown et al., 1991). For example, since no rules can be extracted for the production REGION →
(penalty-area TEAM), it is combined with its parent to form REGION → (left (penalty-area
TEAM)), for which the pattern TEAM left penalty area is extracted. In general, the merging process con-
tinues until a rule is extracted from the merged node. Assuming the alignment is not empty, the process is
guaranteed to end with a rule extracted.

21

our

left

penalty

area

or

our

midfield

right

REGION → (reg REGION REGION)

REGION → (left REGION)

REGION → (penalty-area TEAM)

TEAM → our

REGION → (right REGION)

REGION → (midfield TEAM)

TEAM → our

Figure 8: A moderate case of phrasal incoherence, where the link that causes it is shown as a thick line

3.2.2 Reducing Phrasal Incoherence

The effectiveness of the rule extraction algorithm described so far critically depends on whether the word
alignment model observes phrasal coherence. This means words that are linked to an MR predicate and
its arguments should stay close to each other. Moreover, these words should form a hierarchical structure
that is roughly isomorphic to the MR parse tree. Any major disruption of this hierarchical structure would
lead to long patterns and templates, a major cause of overfitting. For example, a single bad link in Fig-
ure 8 (shown as a thick line) would lead to the extraction of the rule REGION → 〈TEAM 1 left penalty
area or TEAM 2 right midfield, (reg (left (penalty-area TEAM 1)) (right (midfield
TEAM 2)))〉, which does not generalize well to other cases of region union (reg). This is not the worst
case of phrasal incoherence. In the extreme, a single bad link could cause a pattern as long as a sentence
to be extracted. Obviously, we need an alignment model that is aware of the formal syntax of the MRL,
thereby maintaining phrasal coherence and allowing generally-applicable rules to be formed. However, this
is a chicken and egg problem. To build a model that strictly observes phrasal coherence often requires
transformation rules that model the reordering of tree nodes, as in most recent work on syntax-based align-
ment models (Section 2.3.2). Our goal is to bootstrap the learning process by using a simpler, word-based
alignment model that produces an alignment that is generally coherent, and then refine it to recover any
hierarchical structure of a sentence that has been obscured by bad links.

We refine an alignment, a, by removing links that could lead to excessively long patterns and templates.
Recall that rule extraction is forbidden for a production, r, if the pattern for r covers a word linked to a
production that is outside the MR parse rooted at r. We call each such word a violation of the isomorphism
constraint between NL and MR parse trees. For each production r in a linearized MR parse tree, we count
the number of violations that would prevent a rule from being extracted for r. Then a total sum for all
productions is obtained, denoted by v(a). A simple procedure for removing bad links is to repeatedly
remove a link a ∈ a that would maximize v(a) − v(a\{a}) > 0, until v(a) cannot be further reduced. A
link stronger than a certain threshold (0.9) is never removed, so that merging of productions as in Figure 7
is still possible. The strength of a link w ↔ r is defined as the translation probability, Pr(r|w), which is
found to be highly correlated with the validity of a link. To replenish the removed links, links from a reverse
alignment, ã (obtained by treating the source language as target, and vice versa), are added to a, as long as
a remains n-to-1, and v(a) is not increased.

22

The complete lexical induction algorithm is thus the following: Learn a word alignment model, T , and
a reverse word alignment model, T̃ , using a training set, {〈ei, fi〉}. Obtain the K most probable alignments,
a�

1,...,K , and the most probable reverse alignment, ã�, for each training example using T and T̃ . Remove
bad links from each a�

k and replenish the removed links by adding links from ã�. Then extract rules from
a�

1,...,K as described in Figure 6 and Section 3.2.1.

3.3 Parameter Estimation for the Semantic Parsing Model

3.3.1 A Probabilistic SCFG Model

Now that a lexicon is acquired, the next task is to learn a probabilistic model for the semantic parser. Since
WASP is based on SCFG, an obvious, mathematically sound approach is probabilistic SCFG (PSCFG),
which is a generalization of probabilistic CFG (PCFG) (Booth & Thompson, 1973; Jelinek & Lafferty,
1991). A PSCFG defines a probability distribution over the set of paired parse trees, one for NL and one for
MRL. Each rule in a lexicon is assigned a probability of its use. Given a non-terminal, X , it is assumed that
for all rules r = X → 〈p, t〉, Prθ(r|X) is a non-negative number and that:∑

r

Prθ(r|X) = 1 (10)

In addition, a special non-terminal, Γ, is introduced. Each Γ non-terminal may be rewritten to a single
word. A word gap in a pattern is thus a shorthand for a finite number of Γ non-terminals, and the words
generated from Γ are the ones being skipped over during pattern matching. For each word w, there is a
special rule Γ → 〈w, ε〉 that writes to only the NL stream. Each special rule rw is assigned a probability
Prθ(rw|Γ). Like Prθ(r|X), Prθ(rw|Γ) is a non-negative number and:∑

w

Prθ(rw|Γ) = 1 (11)

Sentences and MRs are generated by repeatedly rewriting non-terminals using rules. The probability
of a derivation, d, is equal to the product of all rule probabilities involved, assuming that each rewriting
decision is independent:

Prθ(d) =
∏
r∈d

Prθ(r| lhs(r))fr(d) (12)

where fr(d) is the number of times a rule r is used in a derivation d. The output MR, f�, for an NL sentence
e is thus the yield of the most probable derivation that yields e in the NL stream (Equation 9):

f� = m

(
arg max

d
Prθ(d, e)

)
= m

(
arg max

d

∏
r∈d

Prθ(r| lhs(r))fr(d)

)
(13)

This is easily computed by the Viterbi algorithm (Viterbi, 1967; Jelinek, 1985). An Earley chart (Earley,
1970; Stolcke, 1995) can be used for keeping track of all possible (left-most) derivations that are consistent
with the input up to a certain point. During parameter estimation, rule probabilities are found such that the
joint likelihood of a training set {〈ei, fi〉} is maximized:

θ� = arg max
θ

∏
〈ei,fi〉

∑
d

Prθ(d, ei, fi) (14)

23

If each training example were labeled with a correct derivation, then the maximum-likelihood estimate for
rule probabilities would be the relative-frequency estimator. However, since correct derivations are not
observed, an Expectation Maximization (EM) algorithm (Dempster et al., 1977) is used instead to find rule
probabilities that locally maximize the likelihood of the training set, treating derivations as hidden variables.
The Inside-Outside algorithm (Baker, 1979; Lari & Young, 1990) is an instance of the EM algorithm that
uses the same chart as the Viterbi algorithm. The probabilities found may not be globally optimal, so the
algorithm is sensitive to initial estimates. We assume as little as possible, using the uniform distribution as
the initial estimate.

Rules with probability less than a certain threshold (e−100) are discarded. Only rules that are used in
the best parses for the training set are retained once the model converges. All other rules are discarded.
The estimation process is repeated until no more rules are discarded. This heuristic is commonly known as
Viterbi approximation, and is used to avoid erroneous parses, assuming that rules that are used in the best
parses are the most accurate ones (Zettlemoyer & Collins, 2005). To deal with unseen words w for which
special word gap rules Γ → 〈w, ε〉 are not learned, the uniform distribution Pru(rw|Γ) = 1/|Tn| is used as
a back-off model, where |Tn| is the size of the training vocabulary.

Unsupervised induction of generative models based on PCFG have been used for syntactic parsing (Pereira
& Shabes, 1992; Stolcke & Omohundro, 1994; Klein & Manning, 2004), language modeling (Baker, 1979;
Chen, 1995), and for providing evidence against the poverty of the stimulus (Clark, 2001). Use of PSCFG
for machine translation has been suggested by Melamed (2004). However, for semantic parsing, PSCFG
has a few potential problems:

1. PSCFG has a strong bias toward small parse trees (Manning & Schütze, 1999). This is because
rewritings can only reduce the overall parse probability (Equation 10). A bias toward small parse
trees means rules having long patterns and templates are favored over shorter ones, which could hurt
the model’s ability to generalize.

2. To determine the best parse, only a conditional parse probability, Pr(d|e), is required, since the
probability of observation, Pr(e), is fixed. It seems reasonable to directly estimate a conditional
probability distribution, rather than spending modeling effort on observations.

3.3.2 A Maximum-Entropy Model

This section presents a maximum-entropy model for WASP. Unlike PSCFG, a maximum-entropy model
directly defines a conditional probability distribution over paired parse trees, given the observed data. It
is also known as log-linear models (Knoke & Burke, 1980) and random fields (Geman & Geman, 1984).
Fully-supervised maximum-entropy models have been applied successfully to part-of-speech tagging (Rat-
naparkhi, 1996; Lafferty et al., 2001), syntactic parsing (Ratnaparkhi, 1999; Charniak, 2000; Clark & Cur-
ran, 2003), text classification (Taskar et al., 2002), and named entity recognition (Chieu & Ng, 2003). In
contrast, little work has been done in NLP that uses maximum-entropy models with incomplete data (Riezler
et al., 2000; Zettlemoyer & Collins, 2005). We argue that such models can be useful in semantic parsing.

A maximum-entropy model is an exponential model:

Prα(d|e) =
1

Zα(e)

∏
i

α
fi(d)
i (15)

where the conditional probability, Prα(d|e), is proportional to the product of weights αi assigned to each
feature fi. A feature represents a certain characteristic of a derivation. In this case, the features are the

24

number of times each transformation rule is used in a derivation. (Note that in PSCFG, the probability of a
derivation is also determined by the number of times each transformation rule is used.) The function Zα(e),
called a partition function, is a normalizing factor such that the conditional probabilities sum to one over all
derivations that yield e. Clearly, PSCFG is also an exponential model (cf. Equation 12). The difference is
that, in a maximum-entropy model, features may interact with each other, so the independence assumptions
(Equations 10 and 11) need not hold. A consequence is that feature weights, αi, can be any positive numbers,
whereas in PSCFG, Prθ(r| lhs(r)) must not exceed one. Since rewritings may actually increase the overall
probability of a derivation, there is no bias toward small parse trees. Moreover, smoothing can be done in
a more principled manner (Charniak, 2000). Recall that in PSCFG, a back-off model is used to deal with
unseen words generated from word gaps. In a maximum-entropy model, generation of unseen words can be
modeled using an extra feature, f∗(d), whose value is the number of all words being skipped. Additional
features that correspond to domain-specific word classes can be used for more fine-grained smoothing. The
fact that these features may interact with each other is not a concern.

Decoding of a maximum-entropy model can be done using the same algorithm as PSCFG (cf. Equa-
tion 13):

f� = m

(
arg max

d
Prα(d|e)

)
= m

(
arg max

d

∏
i

α
fi(d)
i

)
(16)

The maximum conditional likelihood criterion is used for estimating a maximum-entropy model (Berger
et al., 1996; Johnson et al., 1999). This means that the conditional likelihood of fi given ei is maximized,
instead of the joint likelihood of ei and fi as in PSCFG (cf. Equation 14). This criterion is chosen because
it is much easier to work with (calculation of the join likelihood would require summation over all possible
parses, D(G)), and it allows for a form of discriminative learning that focuses on separating good parses
from bad ones. Berger et al. (1996) also argues for this criterion from a maximum-entropy perspective. The
conditional log-likelihood of a training set is as follows:∑

〈ej ,fj〉
log Prα(fj |ej)

=
∑

〈ej ,fj〉
log

∑
d∈D(G|ej ,fj)

Prα(d|ej)

=
∑

〈ej ,fj〉

log

 ∑

d∈D(G|ej ,fj)

∏
i

α
fi(d)
i

 − log Zα(ej)

=
∑

〈ej ,fj〉

log

 ∑

d∈D(G|ej ,fj)

exp
∑

i

λifi(d)

 − log

 ∑

d∈D(G|ej)

exp
∑

i

λifi(d)

 (17)

where λi is the logarithm of αi, D(G|ej) is the set of valid derivations that yield ej , and D(G|ej , fj) is the
set of valid derivations that yield both ej and fj (hence D(G|ej , fj) ⊆ D(G|ej)). Differentiating (17) with
respect to λi gives:

∑
〈ej ,fj〉

 ∑

d∈D(G|ej ,fj)

Prα(d|ej , fj)fi(d) −
∑

d∈D(G|ej)

Prα(d|ej)fi(d)

 (18)

which is the difference between the expectations of fi(d) with respect to the distributions Prα(d|ej , fj) and
Prα(d|ej). Setting (18) to zero yields the condition for an extremum of the conditional log-likelihood with

25

respect to a single parameter, λi. However, since (18) depends on all αi (and hence all λi), the system of
equations cannot be solved coordinate-wise.

To find a set of parameters λ� that (locally) maximize the conditional log-likelihood, we use a version
of improved iterative scaling (Della Pietra et al., 1997) which has been used for estimating probabilistic
unification-based grammars (Riezler et al., 2000). The main idea is to find a new set of parameters λ + δ
given the initial parameters, λ, such that the conditional log-likelihood does not decrease. If a procedure
that maps λ to λ + δ can be found, then the procedure can be applied until a fixed point λ� is reached.

Consider the change in conditional log-likelihood from λ to λ + δ:

∆Lλ(δ) =
∑

〈ej ,fj〉
(log Prλ+δ(fj |ej) − log Prλ(fj |ej))

=
∑

〈ej ,fj〉

(
log

Zλ+δ(ej , fj)
Zλ(ej , fj)

− log
Zλ+δ(ej)
Zλ(ej)

)

=
∑

〈ej ,fj〉

log

∑
d∈D(G|ej ,fj)

Pλ(d)
Zλ(ej , fj)

Pλ+δ(d)
Pλ(d)

 − log

Zλ+δ(ej)
Zλ(ej)

where Pλ(d) is the unnormalized probability, exp
∑

i λifi(d), of a derivation d. Since Pλ(d)/Zλ(ej , fj) is
a probability distribution over all derivations d that yield ej and fj , Jensen’s inequality can be applied:

∆Lλ(δ)

≥
∑

〈ej ,fj〉

 ∑

d∈D(G|ej ,fj)

Pλ(d)
Zλ(ej , fj)

log
Pλ+δ(d)
Pλ(d)

 − log

Zλ+δ(ej)
Zλ(ej)

≥
∑

〈ej ,fj〉

 ∑

d∈D(G|ej ,fj)

Prλ(d|ej , fj)
∑

i

δifi(d)

 +

(
1 − Zλ+δ(ej)

Zλ(ej)

)

=
∑

〈ej ,fj〉

 ∑

d∈D(G|ej ,fj)

Prλ(d|ej , fj)
∑

i

δifi(d)

 + 1 −

 ∑

d∈D(G|ej)

Prλ(d|ej) exp
∑

i

δifi(d)

≥
∑

〈ej ,fj〉

 ∑

d∈D(G|ej ,fj)

Prλ(d|ej , fj)
∑

i

δifi(d)

 + 1

−

 ∑

d∈D(G|ej)

Prλ(d|ej)
∑

i

(
fi(d)
f �(d)

)
exp δif

�(d)

 (19)

The second inequality is due to − log α ≥ 1 − α, which is true for all α > 0. Then assuming f �(d) =∑
i fi(d), Jensen’s inequality is applied, yielding the lower bound in (19). We call this lower bound Aλ(δ).

Differentiating Aλ with respect to δi gives:

∑
〈ej ,fj〉

 ∑

d∈D(G|ej ,fj)

Prλ(d|ej , fj)fi(d)

 −

 ∑

d∈D(G|ej)

Prλ(d|ej)fi(d) exp δif
�(d)

 (20)

26

in which the only free parameter is δi. Thus the parameters δ� that maximize Aλ (and hence increase the
conditional log-likelihood of the training set) can be found by solving ∂Aλ/∂δi = 0 for each δi using the
Newton-Raphson method.

Calculation of the first and second partial derivatives of Aλ requires statistics that depend on all parses
in D(G|ej , fj) and D(G|ej) (see Riezler (1998) for details). Since both sets can be extremely large, it
is not feasible to enumerate all of them. Fortunately, using the same chart used for estimating a PSCFG
model, it is possible to obtain the required statistics using dynamic-programming techniques similar to the
Inside-Outside algorithm (Miyao & Tsujii, 2002; Geman & Johnson, 2002).

A Gaussian prior is used for regularizing a maximum-entropy model, resulting in an additional term −δi

in ∂Aλ/∂δi. Unlike the fully-supervised case, the conditional log-likelihood is not concave with respect to
λ, so the estimation algorithm is sensitive to initial parameters. To assume as little as possible, all λi are set
to zero initially. As described in the previous section, rules that are not used in the best parses for the training
set are discarded in order to improve precision. However, since a maximum-entropy model takes longer to
converge, rules are discarded before a fixed point is reached (every 10 iterations in our experiments).

In addition to improved iterative scaling, other optimization methods for general functions can be used
for calculating λ�. These methods include gradient ascent, conjugate gradient (Fletcher & Reeves, 1964),
and quasi-Newton methods (Byrd et al., 1994). Studies have indicated that quasi-Newton methods can
outperform traditional iterative scaling approaches in terms of convergence rate and robustness (Malouf,
2002). We plan to explore these optimization methods in future.

In summary, the WASP semantic parsing framework consists of two main components. First is a lexi-
cal acquisition component, which is based on word alignments between NL sentences and linearized MR
parses, given by an off-the-shelf word alignment model trained on a set of training examples. The extracted
transformation rules form an SCFG, for which a probabilistic model is learned to resolve parse ambiguity.
The second component of WASP is for estimating the parameters of a probabilistic model. Two parametric
models are proposed, one based on PSCFG, the other one based on maximum entropy. The probabilistic
model is trained on the same set of training examples in an unsupervised manner.

3.4 Experiments

We evaluated WASP in two domains. The first domain is ROBOCUP (Section 2.1.1). To build a corpus
for this domain, 300 pieces of coaching advice coded in CLANG were randomly selected from the log
files of the 2003 ROBOCUP Coach Competition. Each formal instruction was then manually translated into
English by one of four annotators. The second domain is GEOQUERY. To collect data for this domain,
250 English questions were gathered from an undergraduate language class who had no prior knowledge
of the database structure. These questions were then manually translated into a functional query language,
resulting in a 250-example data set. An additional 630 English questions were subsequently gathered from
an undergraduate AI class, and from users of a web interface to a CHILL prototype (Zelle & Mooney, 1996)
trained on the 250 data set. These questions together with their functional language translations and the
original data set, formed a larger 880-example data set. Queries in the 250 data set were also translated into
Spanish and Turkish, each by a native speaker of the language, and into Japanese by an English speaker
who learned Japanese as a second language. Figure 9 shows the corpus statistics. WASP has not been
evaluated in the ATIS domain, but there is evidence that ATIS is a less challeging domain than GEOQUERY

(Section 2.1.4).
Each data set was divided into 10 equal-sized subsets. Standard 10-fold cross validation was used for

estimating how well a learned parser would perform on unseen data. For each of the 10 trials, one of the
10 subsets were used as a test set, and the remaining 9 subsets were put together to form a training set. A

27

Domain ROBOCUP ← – – – – – – – GEOQUERY – – – – – – – →
MRL CLANG ← – – functional GEOQUERY language – – →

No. of non-terminals 37 ← – – – – – – – – – 13 – – – – – – – – – →
No. of productions 133 ← – – – – – – – – 137 – – – – – – – – – →

NL English English Spanish Japanese Turkish English
No. of examples 300 ← – – – – – – 250 – – – – – – → 880

Avg. MR length (tokens) 13.42 ← – – – – – – 6.20 – – – – – – → 6.47
Avg. NL sentence length 22.52 6.76 7.29 9.04 5.65 7.48
No. of unique NL tokens 337 159 157 155 216 270

Figure 9: Corpora used for evaluating semantic parsers

semantic parser was learned using the training set. The learned parser was then used for transforming NL
sentences in the test set into MRs. Transformation failed when there were NL and MRL constructs in the
test set that the learned parser did not cover. We counted the number of sentences that were completely
transformed, and the number of translations that were correct. For CLANG, a translation was correct if it
exactly matched the correct MR, up to reordering of the arguments of commutative predicates like and.
For GEOQUERY, a translation was correct if it retrieved the same answer as the correct query. These rather
stringent criteria were adopted because a slightly modified MR could mean something very different, so any
partial correctness metrics would be misleading. Using these counts, we measured the performance of the
parser in terms of precision and recall:

Precision =
No. of correct translations

No. of completely transformed sentences
(21)

Recall =
No. of correct translations
No. of sentences in test set

(22)

These statistics were averaged across all 10 trials.
For lexical learning, we used Och and Ney’s (2003) implementation of IBM Model 5, GIZA++, for

training word alignment models. IBM Models 1–4 were used for initializing the model parameters during
training.

For each domain, there was a minimal set of initial rules representing knowledge needed for the most
basic transformations. These rules were always included in a lexicon, regardless of training data. For
CLANG, the initial rules were the following:

UNUM → 〈i, i〉, for all integers i = 1, . . . , 11
NUM → 〈x, x〉, for all x ∈ �

CLANGSTR → 〈w, "w"〉, for all words w that can be a CLANG identifier (e.g. words that are
neither numbers nor reserved words)

The purpose of these initial rules was to provide a default transformation for those numbers and CLANG

identifiers that were not encountered during training. Note that the same pattern might refer to different
entities. For example, for all integers i = 1, . . . , 11, i could be either a UNUM (uniform number) or a
NUM (real number). It was up to the semantic parser to disambiguate between these two cases based on
surrounding context. Also the list of initial rules were not meant to be exhaustive. Additional rules could
be learned for those alternative expressions referring to the same entities, e.g. the term goalkeeper for the

28

Parser WASP COCKTAIL SCISSOR Zettlemoyer et al. (2005)
Precision/recall (%) for ROBOCUP 88.85/61.93 – 89.5/73.7 –

Precision/recall (%) for GEOQUERY 86.68/75.45 89.92/79.40 91.5/72.3 96.25/79.29

Figure 10: Precision and recall for various semantic parsers at the end of learning curves

uniform number 1. These initial rules could even be wrong or overly-general. It was up to the parameter
estimator to determine the contribution of these rules, which could be negative. For GEOQUERY, similar
initial rules were devised:

NUM → 〈x, x〉, for all x ∈ �
CITY → 〈τ(s), cityid(’s’,)〉, for all city names s (e.g. new york, los angeles); τ(s) is

an NL translation of s (similar rules for other types of names, e.g. rivers)

Since the geographical database was in English, τ(s) = s for English. For other languages, τ(s) could be
different. For example, New York was transcribed as Nyuu Yooku in Japanese. The systematic change in
vowels was due to various phonotactic constraints of the Japanese language. A mapping from Nyuu Yooku
to cityid(’new york’,_) was thus made an initial rule, providing a semantic parser with domain
knowledge that could not be easily learned without analyzing the phonological features of a name. Such
initial rules were constructed from a bilingual dictionary. Note that a name could be ambiguous. For
example, New York could be either a state or a city. Again, it was up to the semantic parser to disambiguate
between these two cases based on surrounding context.

3.4.1 Comparison of Semantic Parsing Algorithms

Figures 10 and 11 show the performance of WASP in the ROBOCUP and GEOQUERY domains, compared to
three other algorithms: COCKTAIL is an unsupervised shift-reduce parser based on inductive logic program-
ming (Tang & Mooney, 2001); SCISSOR is a fully-supervised combined syntactic-semantic parser based on
PCFG (Ge & Mooney, 2005); Zettlemoyer and Collins (2005) is a partially-supervised combined syntactic-
semantic parser based on combinatory categorial grammars (CCG). SCISSOR is fully-supervised because
it requires full syntactic parses with semantic labels as the training data. Zettlemoyer and Collins’s parser
is partially-supervised in the sense that while neither syntactic nor semantic parses are included in training
data, hand-built rules are required for building a CCG lexicon. These rules are specific to a particular NL
and MRL pair. Parameters of the resulting CCG model are then estimated in an unsupervised manner. Note
that while WASP, COCKTAIL and SCISSOR were evaluated by performing 10-fold cross validation using
the same splits between training and test data, Zettlemoyer and Collins (2005) used a different experimental
set-up, in which 600 GEOQUERY examples were explicitly set aside for training, 280 were used for testing,
and the experiment was repeated twice to obtain average statistics. No results on ROBOCUP were reported
in Zettlemoyer and Collins (2005).

Experimental results clearly show the advantage of extra supervision. For GEOQUERY, Zettlemoyer and
Collins’s parser has the highest precision and recall, although WASP remains competitive. For ROBOCUP,
SCISSOR maintains a 10–20% lead over WASP throughout the learning curve in terms of recall. Note that
the ROBOCUP domain is characterized by a smaller training set and longer utterances which lead to higher
ambiguity (Figure 9). Supervision is particularly useful in these situations.

While COCKTAIL is highly competitive in the GEOQUERY domain, it does much worse in ROBOCUP.
For ROBOCUP, it cannot handle training sets larger than 160 examples due to lack of memory, and its pre-

29

0

20

40

60

80

100

0 50 100 150 200 250 300

P
re

ci
si

on
 (

%
)

Number of training examples

WASP
COCKTAIL
SCISSOR

(a) Precision curves for ROBOCUP

0

20

40

60

80

100

0 50 100 150 200 250 300

R
ec

al
l (

%
)

Number of training examples

WASP
COCKTAIL
SCISSOR

(b) Recall curves for ROBOCUP

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

P
re

ci
si

on
 (

%
)

Number of training examples

WASP
COCKTAIL
SCISSOR

Zettlemoyer et al. (2005)

(c) Precision curves for GEOQUERY

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

R
ec

al
l (

%
)

Number of training examples

WASP
COCKTAIL
SCISSOR

Zettlemoyer et al. (2005)

(d) Recall curves for GEOQUERY

Figure 11: Precision and recall curves comparing various semantic parsers

cision and recall are much lower. Apparently, the difficulty lies in the length of utterances being processed.
COCKTAIL’s deterministic shift-reduce framework is able to process a sentence only from beginning to end.
So if it fails to parse the beginning of a sentence, then it will fail to parse the rest of the sentence. In contrast,
WASP takes a holistic view of a sentence, allowing a decision made later to influence those made earlier,
which proves necessary for more complex utterances.

3.4.2 Comparison of Lexical Learning Methods

Beginning with this section, we evaluate the individual components of WASP. The aim of this section is to
verify the usefulness of alignment models in lexical learning. To this end, we compare our alignment-based
rule extraction algorithm against the bottom-up search algorithm presented in Kate et al. (2005). The idea of
bottom-up search is to start with maximally-specific rules for each production r in the MRL grammar. A rule
is maximally-specific when its pattern is a complete NL sentence. A maximally-specific rule is constructed
for each positive example of r (i.e. whose MR contains an instance of r in its parse tree). These rules

30

0

20

40

60

80

100

0 50 100 150 200 250 300

P
re

ci
si

on
 (

%
)

Number of training examples

Word Alignment
Bottom-Up Search

(a) Precision curves for ROBOCUP

0

20

40

60

80

100

0 50 100 150 200 250 300

R
ec

al
l (

%
)

Number of training examples

Word Alignment
Bottom-Up Search

(b) Recall curves for ROBOCUP

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

P
re

ci
si

on
 (

%
)

Number of training examples

Word Alignment
Bottom-Up Search

(c) Precision curves for GEOQUERY

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

R
ec

al
l (

%
)

Number of training examples

Word Alignment
Bottom-Up Search

(d) Recall curves for GEOQUERY

Figure 12: Precision and recall curves comparing various lexical learning methods; maximum-entropy mod-
els are used for parameter estimation

are repeatedly generalized by taking their longest common subsequences until they start to cover too many
negative examples. A lexicon consists of all generalized rules for all productions in the MRL grammar.

A major weakness of bottom-up search is that it is a local search that ignores all productions other than
the one under consideration. It tends to produce rules that cover portions of a sentence that have other
meanings. It contrasts with an alignment model that performs a global search to find alignments that are
overall the best. To make up for this lack of global information, a lexicon is made to include as many rules
as possible, in the hope that a subset of them will cooperate with each other to produce meaningful parses.
Such a lexicon necessarily contains many irrelevant rules to be pruned away at a later stage. This proves to
be a highly demanding task. As shown in Figure 12, a lexicon produced by bottom-up search is significantly
less precise than one that is extracted from the best alignments, given the same level of recall. This indicates
that not all irrelevant rules were pruned away during parameter estimation. In fact the lexicon grew so large
in our GEOQUERY experiments that it took more than one day for the training algorithm to finish when the

31

0

20

40

60

80

100

0 50 100 150 200 250 300

P
re

ci
si

on
 (

%
)

Number of training examples

Maximum Entropy
PSCFG

(a) Precision curves for ROBOCUP

0

20

40

60

80

100

0 50 100 150 200 250 300

R
ec

al
l (

%
)

Number of training examples

Maximum Entropy
PSCFG

(b) Recall curves for ROBOCUP

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

P
re

ci
si

on
 (

%
)

Number of training examples

Maximum Entropy
PSCFG

(c) Precision curves for GEOQUERY

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

R
ec

al
l (

%
)

Number of training examples

Maximum Entropy
PSCFG

(d) Recall curves for GEOQUERY

Figure 13: Precision and recall curves comparing various probabilistic models; word alignment models are
used for lexical learning

training size was more than 300. In contrast, training took no more than 90 minutes when an alignment
model was used for lexical learning with a training size of 792. The usefulness of an alignment model thus
lies in its ability to perform efficient global search, making sure the extracted rules will cooperate to produce
complete parses.

3.4.3 Comparison of Probabilistic Models

The next component to evaluate is the probabilistic model for resolving parse ambiguity. Section 3.3 presents
two probabilistic models based on PSCFG and maximum entropy, and Section 3.3.1 predicts that PSCFG
will favor rules with longer patterns and templates, leading to lower coverage. Figure 13 supports this
prediction, showing a slight decrease in recall when a PSCFG model is used. The decrease is statistically
significant in both domains (p = 0.019 for ROBOCUP, p < 0.001 for GEOQUERY). Precision decreases by
the same amount as inferior parses rise to the top for those examples that are not covered. Rule templates

32

0

20

40

60

80

100

0 50 100 150 200 250

P
re

ci
si

on
 (

%
)

Number of training examples

English
Spanish

Japanese
Turkish

(a) Precision curves for GEOQUERY

0

20

40

60

80

100

0 50 100 150 200 250

R
ec

al
l (

%
)

Number of training examples

English
Spanish

Japanese
Turkish

(b) Recall curves for GEOQUERY

Figure 14: Precision and recall curves comparing various natural languages

are on average 15–16% longer for a PSCFG model, and patterns are 29–30% longer.
The better performance of a maximum-entropy model is also attributable to its use of discriminative

training, which directly optimizes the conditional probability of correct translations given an input sentence.
This result is consistent with recent work on discriminative training of syntactic parsing models, which
suggests that discriminative training alone can improve performance (Collins & Roark, 2004).

3.4.4 Comparison of Natural Languages

We conclude Section 3.4 by evaluating WASP in a variety of natural languages. The languages being con-
sidered are English, Spanish, Japanese and Turkish. These languages differ in terms of word order: Subject-
Verb-Object (SVO) for English and Spanish, and Subject-Object-Verb (SOV) for Japanese and Turkish.
Both English and Spanish are inflected languages, while Japanese and Turkish are agglutinative languages,
where words are formed by joining morphemes together with a high morpheme-to-word ratio. Each com-
bination of morphemes creates a different word. As a result, the Turkish GEOQUERY corpus contains 36%
more unique words than the other GEOQUERY corpora of the same size (Figure 9). On the other hand,
morphemes are separated into tokens in the Japanese corpus. So the Japanese sentences are the longest on
average in terms of tokens (24% more than Spanish, the second longest).

Figure 14 shows the performance of WASP in various languages in the GEOQUERY domain. Since the
larger vocabulary leads to less general rules, recall is the lowest in Turkish, and its precision is among the
highest. The Japanese corpus has the lowest precision, presumably due to confusion brought about by the
separated functional morphemes. There are no consistent differences between English and Spanish. More
importantly, the performance is similar for different word order. It should come as no surprise, since WASP

assumes nothing about word order. In particular, the alignment model (IBM Model 5) seems to handle
differences in word order very well. This result suggests that word order (and hence the order in which MR
parse trees are linearized) is not a major concern, at least in restricted domains such as GEOQUERY.

33

4 Proposed Research

In this section, we discuss ongoing and future research work that extends the WASP algorithm in various
ways. Section 4.1 describes how prior knowledge about the NL syntax can be exploited in WASP. Sec-
tion 4.2 turns to prior knowledge about the MRL and the application domain. Section 4.3 motivates the
use of syntax-aware word alignment models for lexical learning. Section 4.4 explores the possibility of
extending WASP to deal with various issues such as anaphora resolution and referential ambiguity.

4.1 Utilizing Syntactic Annotations

Since the meaning of a sentence clearly depends on how the words are combined, the semantic interpretation
of a sentence must depend on the NL syntax. In Section 3.1, we showed that the parsing model of WASP

is an SCFG that defines a semantic grammar for the NL stream. However, since an SCFG is induced
without relying on any prior knowledge about the NL syntax, the resulting SCFG may not be linguistically-
motivated, i.e. the NL substrings mapped by rules may not be what a linguist would call constituents.

If the NL syntax is known a priori, WASP should be made to take advantage of it, producing only parses
that are consistent with the NL syntax. One way to obtain prior knowledge about the NL syntax is through
syntactic annotations of the training set. In this section, we describe our initial work on tree transformations,
in which a semantic parser accepts the syntactic parse of a sentence, rather than the sentence itself, as input,
and transforms the syntactic parse into an MR using rules with tree patterns. Both the semantic parser and
the syntactic parser from which syntactic parses are obtained are trained on fully-annotated syntactic parses.
We will first define tree transformations, and then see if the extra syntactic annotations provide any useful
constraints to the induction of a semantic parser.

4.1.1 Tree Transformations and Tree Patterns

Tree transformation is a topic traditionally studied in the context of logic and term rewriting systems (Gécseg
& Steinby, 1997). Rounds (1970) motivates it as a mathematical model of transformational grammars (Chom-
sky, 1957). Shieber and Schabes (1990) introduces a class of tree transducers called synchronous tree-
adjoining grammars (STAG) that characterize correspondences between natural languages. Knight and
Graehl (2005) proposes using probabilistic tree transducers as a syntax-based alignment model.

Our tree-based parsing model is based on a tree transducer, which is similar to an SCFG as defined
in Section 3.1, except that each pattern consists of a tree of terminal and non-terminal symbols. Recall
that the term non-terminal always refers to non-terminal symbols of an MRL grammar. In a tree pattern,
non-terminals can only be at the leaves of a tree. The following is a sample rule with a tree pattern:

RULE →
〈

S

SBAR

IN

if

CONDITION 1

, (1)DIRECTIVE 2 , (CONDITION 1 DIRECTIVE 2)

〉

Note that syntactic markers such as S and IN, like the word if, are terminal symbols. Each rewriting operation
replaces a non-terminal in the NL stream with a fragment of a syntactic parse tree. Parsing is complete

34

when all non-terminals have been rewritten, resulting in a complete syntactic parse tree. The symbol (1)
preceding the DIRECTIVE non-terminal denotes a node gap of size 1, which means that at most one node
can be skipped along the path from the node DIRECTIVE to its parent S. Since all non-terminals are at the
leaves of a pattern, the tree transducer is regular (Rounds, 1970). It is equivalent to a synchronous tree-
substitution grammar, a simplified version of STAG with substitution as the only composition operation (i.e.
no adjunction).

Word alignments are used for acquiring a tree-based lexicon. The rule extraction algorithm for tree
patterns is a straightforward extension of the one for string patterns. In addition to words that are aligned,
minimal projections of the aligned words are also included in a tree pattern. A minimal projection of a set
of words is defined as the smallest constituent whose span covers all words in the set. If there is more than
one minimal projection for a given set of words due to unary expansions, then all minimal projections are
included in a tree pattern. Node gaps are inserted when the extracted nodes are not adjacent to each other in
the original syntactic parse tree. An Earley parser similar to the one presented in Schabes and Shieber (1994)
is used for parsing given a tree-based lexicon. It is also used for estimating parameters of a probabilistic
model, which is the same as in Section 3.3.

4.1.2 Experiments and Discussion

We evaluated tree-based rules by running experiments based on standard 10-fold cross validation. Details of
the experiments were similar to Section 3.4. The only difference was that syntactic parses were needed for
both training and testing in this case. Syntactic parses were obtained using Bikel’s (2004) implementation of
Collins’ parser (Model 2) (Collins, 1997). The parser was trained using gold-standard syntactic parses of the
training sentences, along with Sections 2–21 of the Wall Street Journal (WSJ) portion of the Penn Treebank.
Gildea (2001) showed that combining two corpora in a single parsing model could improve parsing accuracy
on either corpus, and we found that by adding a few domain-specific training sentences (∼ 100) to the much
bigger WSJ corpus (∼ 40000), one could effectively bias the syntactic parser toward specific domains.
Using the trained syntactic parser, the most likely syntactic parses for both training and test sentences were
obtained. These parses were used for training and testing a semantic parser. In our experiments, we used a
maximum-entropy model as the probabilistic model.

Figure 15 shows the precision of a semantic parser at various levels of recall. Recall level is varied by
imposing a minimum threshold on the unnormalized parse probabilities given by a maximum-entropy model,
exp

∑
i λ

�
i fi(d�). In the GEOQUERY domain, precision is significantly higher for a tree-based parser when

recall is 60% or below (p = 0.032 at 60% recall). On the other hand, in the ROBOCUP domain, precision
remains the same. In both domains, a string-based parser can reach recall levels that a tree-based parser
cannot reach, and the maximum recall attainable by a tree-based parser is 6–10% lower on average (not
shown in the figure).

The reason for the low recall is twofold. First, due to the extra syntactic markers and bracketings, a tree
pattern tends to be more specific than a string pattern. Second, while a string pattern can match any substring
of a sentence, a tree pattern can only match a single constituent in a syntactic parse. Since not all substrings
of a sentence form a constituent, the span of a tree pattern is often greater than a string pattern. This in turn
causes more node merging during the rule extraction process (Section 3.2.1), leading to longer templates. In
other words, derivations need to be shorter in order to maintain isomorphism of the NL and MR (semantic)
parse trees. As a result, templates in a tree-based rule are on average 19–26% longer than in a string-based
rule, which is a sign of overfitting. Note that generalization error of the syntactic parser is not a concern
here, since there is no statistically significant difference in performance when gold-standard syntactic parses
are used for training and testing. This seems to suggest that the cause of overfitting is not the NL syntax per

35

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on
 (

%
)

Recall (%)

String-Based
Tree-Based

(a) ROBOCUP

0

20

40

60

80

100

0 20 40 60 80 100

P
re

ci
si

on
 (

%
)

Recall (%)

String-Based
Tree-Based

(b) GEOQUERY

Figure 15: Precision-recall curves comparing string- and tree-based rules

se, but a mismatch between the NL and MRL syntax. For example, in CLANG, the meaning of the phrase
player 4 has the ball in our midfield is represented by a conjunction of two conditions bowner (ball owner)
and bpos (ball position). This MR is structurally different from the syntactic parse of the phrase, where
the ball is an object of the verb has, and in our midfield is a prepositional phrase that in turn adjoins the
ball. As a result, compositional transformation of the phrase is not possible at the condition level. In the
string transformation case, however, a pattern can match non-constituents, so the non-constituent player 4
has can be transformed into a bowner condition without losing accuracy, because in CLANG a ball is the
only thing a player can possess. Such structural mismatch between NL and MRL is particularly obvious for
CLANG, because it is not designed with NL interpretation in mind. Note that this problem is not restricted to
semantic parsing alone. Wu (1997) describes how it affects bilingual segmentations of two unrelated natural
languages, Chinse and English, where a monolingually acceptable segmentation in Chinese may not agree
with the words in English, and vice versa.

These results suggest that tree patterns can easily overfit, although they do improve precision in some
cases. After all, tree transformation is not the only way to utilize syntactic information. In particular,
features extracted from syntactic parses can be incorporated into the current maximum-entropy model (or
any parametric models allowing feature overlap), assuming those features can be computed efficiently. Due
to its flexibility, it is by far the most popular approach to exploiting syntactic information for machine
translation (Och et al., 2003) and semantic role labeling (Carreras & Màrquez, 2005), and it should fit in the
current semantic parsing framework seamlessly. The task is therefore to find a set of syntactic features that
are discriminative and can be easily computed at the same time. We plan to experiment with this approach
using features based on phrase boundaries, word dependencies, verb subcategorization frames, and so on.

4.2 Utilizing Additional Domain Knowledge

An important characteristic of WASP is its use of domain knowledge for guiding inductive learning. Domain
knowledge comes in two forms:

1. A grammar of the target MRL that supplies the set of non-terminals on which generalizations are

36

based. It also defines the set of MRs that are syntactically well-formed.

2. Initial rules that provide default transformations for entities not encountered in the training data, such
as numbers and place names.

In this section, we focus our attention on the MRL grammar. An MRL grammar determines the set
of MR translations that are possible given an input sentence. For a well-designed MRL, all of these
candidate MRs naturally convey meanings that are well-defined, but some MRs may be more plausi-
ble than others. To see this, consider the loc_2 relation in the functional GEOQUERY language. It
takes a finite set of places, X , and returns a finite set of places that are located in X . For example,
the city of Austin would be in the set denoted by loc_2(stateid(’texas’)) (the set of places
located in the state of Texas), and the University of Texas at Austin would be in the set denoted by
loc_2(cityid(’austin’,’tx’)) (the set of places located in the city of Austin, Texas). Also
consider the city and state relations, which take a finite set of places, X , and returns a subset of X
that are cities and states, respectively. For example, the city of Austin would be in the set denoted by
city(loc_2(stateid(’texas’))) (the set of cities located in the state of Texas). On the other
hand, the expression state(loc_2(cityid(’austin’,’tx’))) would denote an empty set, for
there are no states located in any U.S. cities. Therefore, city(loc_2(state(’texas’))) is much
more plausible than state(loc_2(cityid(’austin’,’tx’))) in the GEOQUERY domain. Note
that in domains other than U.S. geography, state(loc_2(cityid(.))) can be equally plausible, e.g.
the state of Vatican City enclosed in the city of Rome, Italy.

Here we say an MR is not plausible if it is known that it cannot denote any actual entities in the applica-
tion domain. Otherwise, the MR is plausible. This definition of plausibility allows us to talk about states that
border Alaska, while ruling out meanings that are nonsensical, e.g. the capital of a river. Note that for cer-
tain application domains, an alternative definition of plausibility may be more suitable, e.g. ROBOCUP. For
now, we will settle with this particular definition, which will be made more precise later for the GEOQUERY

domain. It is desirable to have an MRL grammar where most syntactically well-formed MRs are plausible
with respect to the application domain. An MRL grammar with such quality is said to be tight. A tight MRL
grammar is desirable because less probability mass is allocated to MR translations that are not plausible.
The reduced perplexity comes at the risk of excluding completely legitimate MRs from the parser output,
so the exact definition of plausibility needs to be judiciously chosen for each individual application domain.
This is where additional domain knowledge comes into play. Experience shows that a tight MRL grammar
is necessary for good semantic parsing performance, and a loose (as opposed to tight) MRL grammar can
cause the parsing algorithm to break down.

4.2.1 Constructing a Tight MRL Grammar

Now the problem is how to construct a tight grammar for the MRL. We first define the notion of plausibility
for the GEOQUERY domain, then describe how it can be used for constructing a tight MRL grammar.

The notion of plausibility can be defined on a relation-to-relation basis. For example, it is found that
with respect to the GEOQUERY domain, the following relations are plausible:

a city may be located in a state;
a lake may be located in a state;

a mountain may be located in a state;
a river may be located in a state;
a city may be located in a country;

37

a lake may be located in a country . . .

while the following relations are not:

a state may not be located in a city;
a state may not be located in a lake . . .

Whether a relation is plausible or not can be determined by examining the training data. If a relation
appears in the training data, then it is assumed to be plausible. All relations in the transitive closure of
plausible relations are assumed to be plausible. Other relations are not plausible. Each of these relations
can be represented by a distinct production in an MRL grammar. A tight MRL grammar is constructed by
restricting its productions to those that represent plausible relations. For example, a tight grammar for the
functional GEOQUERY language (which is currently used in our experiments) would be as follows:

CITY → loc_2(STATE)
LAKE → loc_2(STATE)

MOUNTAIN → loc_2(STATE)
RIVER → loc_2(STATE)

CITY → loc_2(COUNTRY)
LAKE → loc_2(COUNTRY)

. . .

To see that this grammar is tight, consider state(loc_2(cityid(’austin’,’tx’))), which would
now be judged ungrammatical because STATE → loc_2(CITY) is not in the grammar. In other words,
all syntactically well-formed MRs are assumed to be plausible, and vice versa. Reasonable semantic pars-
ing performance is obtained by using this tight GEOQUERY grammar (Section 3.4.1), whereas a grammar
that abstracts all places using a single PLACE non-terminal symbol would lower the precision of a semantic
parser to about 50%.

The better precision comes at a cost, however. Now that the loc_2 relation is specialized to handle
arguments of different types, rules that are learned for one particular specialization are no longer applicable
to other specializations. For example, in English, the preposition in indicates a loc_2 relation regardless
of argument types (e.g. cities in this state, lakes in this country). But the use of specialized relations would
prevent such important generalizations from being made. Moreover, depending on the dimensionality of
relations, there may be exponentially many specialized productions, with respect to the number of special-
ized non-terminals (e.g. CITY, LAKE) being introduced (as seen above). The proliferation of productions in
the MRL grammar is bad because it increases the number of parameters that need to be estimated for both
the word alignment model and the semantic parsing model, which in turn aggravates the problem of data
sparsity.

A possible solution to this problem, which we have not implemented yet, is to group all specialized
productions into equivalence classes. For example, specialized productions for the loc_2 relation would
belong to the same equivalence class. Such equivalence classes are used in the following:

1. Parameters for an equivalence class are tied in an alignment model, i.e. forced to have the same value.

2. Rules extracted for a specialized production are adapted for use in the entire equivalence class, by sub-
stituting a non-terminal for another. For example, if a rule CITY → 〈in STATE 1 , loc_2(STATE 1)〉
is extracted, then it would be adapted to LAKE → 〈in STATE 1 , loc_2(STATE 1)〉, etc.

38

3. Parameters for rules that are adaptations of each other are tied in a semantic parsing model.

In effect, tying of parameters based on equivalence classes allows for a tight MRL grammar without in-
creasing the complexity of a semantic parsing model. It allows generalizations of rules to be made, so a
rule learned for one specialized production can be applied to other specializations in the same equivalence
class. However, since the parameter tying scheme assumes a notion of plausibility based on specializations
of relations, it is unclear whether this scheme can be carried over to other application domains.

4.2.2 Model-Theoretic Semantic Interpretation

Earlier we stated that an MR is not plausible if it is known that it cannot denote any actual entities in the
application domain. A straightforward way to check the plausibility of an MR is then to examine the set
of entities denoted by the MR. If the set is not empty, then the MR is plausible. Otherwise, the MR is not
plausible. (Note that this is not entirely true, considering states that border Alaska, which does not denote
any actual entities, but we will get back to this later.) This leads us to adopt a model-theoretic semantics
of the MRL, where the interpretation of an MR is the set of entities that it denotes relative to a world
model. In the GEOQUERY domain, the world model is the GEOQUERY database, and the model-theoretic
interpretation of an MR is the set of entities that it denotes according to the GEOQUERY database. For
example, the model-theoretic interpretation of city(loc_2(stateid(’texas’))) would be the set
of all cities located in the state of Texas according to the database, i.e. {AUSTIN, DALLAS, HOUSTON, . . .},
and the interpretation of state(loc_2(cityid(’austin’,’tx’))) would be an empty set. Given
this model-theoretic semantics, we can disambiguate the meaning of a phrase or sentence by preferring
non-empty interpretations over empty ones.

This model-theoretic semantics can be implemented by augmenting each transformation rule with a
function that computes the denotation of an MR given the denotations of its sub-parts. For example, the rule
PLACE → 〈texas, stateid(’texas’)〉 would be augmented by a constant, {TEXAS}. The rule PLACE

→ 〈in PLACE 1 , loc_2(PLACE 1)〉 would be augmented by a function from 2E to 2E (where E is the set
of entities in the world model) that maps {TEXAS} to the set of all places located in the state of Texas. The
rule PLACE → 〈cities PLACE 1 , city(PLACE 1)〉 would be augmented by a function from 2E to 2E that
maps the set of all places located in the state of Texas to the set of all cities located in the state of Texas. In
general, each rule is augmented by a function from (2E)k to 2E , where k is the number of non-terminals in
the rule template. Computation of denotations goes on until the denotation of a complete MR of a sentence
is obtained. Schuler (2003) shows how denotations can be efficiently shared among possible derivations
given an input sentence, such that the denotations of all possible derivations can be computed in polynomial
time.

The main problem with this implementation is that the computation of denotation functions can be very
costly, considering that each function evaluation amounts to a database query. This implementation can be
simplified by reducing each denotation to a set of entity types, e.g. {CITY, LAKE, MOUNTAIN, . . .}. Each
transformation rule is then augmented by a function from (2E)k to 2E , where E is the set of entity types in
the world model, and k is the number of non-terminals in the rule template. For example, the rule PLACE

→ 〈texas, stateid(’texas’)〉 would be augmented by a constant, {STATE}. The rule PLACE → 〈in
PLACE 1 , loc_2(PLACE 1)〉 would be augmented by a function from 2E to 2E that maps {STATE} to
{CITY, LAKE, MOUNTAIN, RIVER}. Evaluation of such denotation functions can be done by looking up a
simple, pre-computed table. In addition, this simplified implementation has the advantage that phrases like
states that border Alaska may have a non-empty denotation (e.g. {STATE}).

39

This model-theoretic semantics represents a divorce of syntactic well-formedness and plausibility, which
allows a loose MRL grammar to be used without increasing perplexity of the semantic parsing model.
More importantly, the set-theoretic semantic interpretations can be generalized to incorporate other types
of truth conditions (i.e. conditions under which a sentence would be true), which can be useful when
defining the notion of plausibility in other application domains. From a linguistic point of view, the model-
theoretic framework is a shift from interpretive semantics, which argues that the sole function of the semantic
component is to assign semantic interpretations to existing phrase markers (Katz & Postal, 1964). WASP as
defined so far is clearly interpretive, because the output MR is always based on the most probable parse given
an input sentence (Equation 9). By preferring certain interpretations over others based on model-theoretic
semantics, we allow meanings to directly influence the parsing process. In future work, we hope to show
that this paradigm shift indeed translates into better semantic parsing performance.

4.3 Syntax-Aware Word-Based Alignment Models

One crucial component of WASP is a word alignment model. In previous text, we explained the use of
a word alignment model in lexical learning (Section 3.2), and the need for phrasal coherence in a word
alignment (Section 3.2.2). In Section 2.3.2, we showed that to build an alignment model that strictly observes
phrasal coherence (as are most syntax-based alignment models) requires transformation rules that model the
reordering (and addition, deletion, etc.) of tree nodes. It follows that our SCFG-based parsing model
is nothing more than a word alignment model that strictly observes phrasal coherence, and returns only
syntactically well-formed MR translations when given an NL sentence as input. Since the space of all
possible transformation rules is huge, it is necessary to have a simpler, word-based alignment model for
bootstrapping the rule learning process. This is very much like the training of many phrase-based alignment
models, which requires a simpler, word-based alignment model for the acquisition of a phrasal lexicon (Och
et al., 1999; Tillmann, 2003; Venugopal et al., 2003), and the training of IBM Model 5, which requires the
simpler Models 1–4 for initialization (Brown et al., 1993).

Being a first-order word-based alignment model, IBM Model 5 generally observes phrasal coherence
(Section 2.3.1). Nevertheless, incoherent alignments do show up quite often, considering that it takes only
one bad link to destroy an entire hierarchical structure of a sentence (Figure 8). In Section 3.2.2, we pre-
sented a simple greedy algorithm for removing links that destroy phrasal coherence. Although it is shown
to be quite effective in the current domains (Section 3.4.2), it has the following shortcomings:

1. Productions whose links are removed are usually associated with some other words in a sentence. But
the link removal algorithm makes no attempt to re-establish such associations other than adding links
taken from a reverse alignment, which may not cover all cases.

2. If the link removal algorithm leaves a production with no links, then there are two possible outcomes:
(1) the extracted rule would not be lexicalized; or (2) no rule would be extracted, until node merging
causes a rule to be extracted for some production higher up in the MR parse tree. Either way the
extracted rule would not be very accurate because of the missing links.

This motivates our search for a more principled way of promoting phrasal coherence in a word alignment
model. Since phrasal coherence is defined with respect to an MRL grammar, the word alignment model
should be made to exploit the MRL syntax, and hence be syntax-aware.

One problem with the current alignment model (IBM Model 5) is that while it is trained to maximize
the likelihood of the training data, alignment quality is judged by a criterion which is quite different. Recall
that in Section 3.2.2, we introduced a function v(a) that computes the total number of violations of the

40

isomorphism constraint in an alignment a. When v(a) = 0, rules can be extracted for all aligned productions
in the linearized MR parse. When v(a) > 0, some nodes in the linearized MR prase must be merged before
rules can be extracted for them, and this is exactly the situation that we would like to avoid. In other words,
an alignment, a, is judged as good when v(a) is small, and is judged as bad when v(a) is large. Our goal is
then to find an optimal alignment, a�, for each training example such that v(a�) is minimized. This can be
done in at least two ways:

1. Optimize the parameters of an alignment model with respect to alignment quality as measured by
v(a). This is closely related to minimum classification error rate training of speech recognizers (Juang
et al., 1997), which is based on the minimization of a loss function that directly links to the evaluation
metric by which performance of a recognizer is judged, namely classification error rate. Och (2003)
uses a similar strategy for training a log-linear alignment model such that various evaluation metrics
specific to machine translation (e.g. BLEU and NIST scores) are optimized.

2. Develop an optimal decision rule with respect to a loss function that directly links to v(a), and use it
for decoding an existing alignment model. This is called the minimum Bayes risk approach. Goodman
(1996) uses this technique for finding syntactic parses that maximize labeled recall. Kumar and Byrne
(2002) uses a loss function that incorporates various syntactic features of input sentences to obtain an
optimal word alignment from a lattice of most likely alignments based on IBM Model 3. In this case,
the training of an alignment model does not involve any knowledge about syntax, while the decoding
of the resulting alignment model is syntactically-guided.

While the minimum Bayes risk approach is arguably weaker than the minimum error rate approach because
alignments having the lowest v(a) are not necessarily among the most likely ones, it tends to be more flexible
since only modification of a decoder is involved. In either case, since the training or decoding criterion is
directly associated with v(a), which is defined with respect to an MRL grammar, the resulting algorithm for
finding an optimal word alignment is syntax-aware. We intend to develop loss functions that lead to efficient
and effective training and decoding algorithms for word-based alignment models, which are specific to our
goal of promoting phrasal coherence in word alignments.

4.4 Toward More Complex Domains

We conclude Section 4 by discussing the possibility of extending WASP to application domains other than
those currently considered. So far, the application domains being considered are restricted domains with
a controlled vocabulary. Since both word alignment models and SCFGs have been successfully applied to
machine translation of newswire text and parliament proceedings (Brown et al., 1993; Och & Ney, 2003;
Yamada & Knight, 2001; Chiang, 2005), we expect that WASP should scale to larger vocabularies as well.
In particular, while CFG has been shown to be inadequate for modeling non-local phenomena in natural
languages (Shieber, 1985), leading to the development of mildly context-sensitive grammars such as tree-
adjoining grammars (TAG) (Joshi, 1985) and combinatory categorial grammars (CCG) (Steedman, 2000),
substantial mileage can be achieved by using CFG to model natural languages, including certain non-local
phenomena such as wh-movements (Collins, 1997). However, various basic assumptions that WASP makes
may hinder its ability to tackle application domains other than the ones being considered in this work. In the
following sections, we examine two of these basic assumptions, functional target MRLs and clean training
data, and see if these assumptions pose a problem at all, and if so, how WASP can be extended to eliminate
these assumptions. Note that this would constitute a future research plan for the longer term, since corpus

41

annotation (or acquistion and adaptation of existing ones) is required for the development of semantic parsers
for additional application domains.

4.4.1 Alternative Meaning Representation Languages

In this work, we assume the use of a functional language as the target MRL. Both domains on which WASP is
tested use an MRL that is variable-free, unlike most MRLs one would encounter in computational semantics
that are based on predicate logic (Zelle & Mooney, 1996; Blackburn & Bos, 2005). A natural question
to ask is how expressive these functional languages are. It turns out that these functional languages are
merely shorthand for a subset of logical languages, so the real question is whether this subset is adequate
for interpretation of natural languages.

To see how functional languages are shorthand for a subset of logical languages, consider the following
rules based on the functional GEOQUERY language:

STATE → 〈missouri, stateid(’missouri’)〉
PLACE → 〈in STATE 1 , loc_2(STATE 1)〉
RIVER → 〈rivers (2) PLACE 1 , river(PLACE 1)〉

NUM → 〈how many RIVER 1 , count(RIVER 1)〉
QUERY → 〈NUM 1 ?, answer(NUM 1)〉

(23)

These rules can be rewritten in the form of lambda functions, which generate logical forms instead of
functional forms by replacing function applications with variable assignments:

STATE → 〈missouri, λx.x = STATEID(MISSOURI)〉
PLACE → 〈in STATE, λp.λx.∃y LOC(x, y) ∧ p(y)〉
RIVER → 〈rivers (2) PLACE, λp.λx.RIVER(x) ∧ p(x)〉

NUM → 〈how many RIVER, λp.λx.∃y COUNT(y, p(y), x)〉
QUERY → 〈NUM ?, λp.∃x ANSWER(x, p(x))〉

(24)

The rules in (23) and (24) would transform the NL question How many rivers are there in Missouri? into
the following functional and logical forms, respectively:

answer(count(river(loc 2(stateid(’missouri’)))))
∃x ANSWER(x, (∃y COUNT(y, (∃z RIVER(y) ∧ LOC(y, z) ∧ z = STATEID(MISSOURI)), x)))

The functional form is equivalent to the logical form, which is in the original GEOQUERY language. In
fact, each function in the functional GEOQUERY language is defined by a lambda function that generates
the original GEOQUERY language. These lambda functions restrict the possibilities of variable binding,
such that variables will have a limited scope. For example, the scope of z in the logical form above is
restricted to the formula RIVER(y) ∧ LOC(y, z) ∧ z = STATEID(MISSOURI). While such limited scoping
of variables is prevalent in the GEOQUERY corpus, it critically fails to account for an important linguistic
phenomenon: sentences whose meanings are dependent on earlier discourse (e.g. the ATIS domain as
described in Section 2.1.1). Such context-dependent sentences will be the topic of the rest of this section.

Anaphora Resolution and Discourse Representation Structures In the context of NL interfaces, sen-
tences whose meanings are dependent on earlier discourse usually appear in the form of follow-up questions
in a dialog. A follow-up question is a question that refers back to an entity that has been mentioned earlier
in a discourse. For example, in the following dialog in the GEOQUERY domain:

42

USER: What is the capital of Texas?
SYSTEM: Austin.

USER: How many people live in the city?
SYSTEM: 656,562 as of April 1, 2000.

The second question is a follow-up question, where the phrase the city is an anaphoric expression that refers
to the capital of Texas (the antecedant), mentioned in the first question. To answer the second question, the
computer must keep a record of entities that has been mentioned so far, and resolve the anaphoric expression
based on the structure of discourse and various syntactic and semantic constraints.

Discourse Representation Theory (DRT) (Kamp & Reyle, 1993) is an approach to semantics that for-
malizes this record-keeping idea. According to DRT, each discourse has a main discourse representation
structure (DRS), which can be seen as a mental model constructed during the process of discourse com-
prehension. Each DRS consists of a set of discourse referents, which can be seen as variables, and a set of
conditions specifying the properties of the discourse referents and the way they are related to each other.
As a processor receives a sentence fragment, the processor parses it and fills in the main DRS by intro-
ducing new discourse referents and adding new conditions. For example, the phrase the capital of Texas
would cause the processor to add a new discourse referent, x. Conditions would be added to ensure that
the discourse referent is the capital of Texas. Later, when the phrase the city is processed, another discourse
referent, y, would be added. Most sigificantly, the processor would identify it with the discourse referent
for the capital of Texas introduced earlier, by adding an equality condition, y = x. The meaning of a sen-
tence fragment is therefore defined as its potential to change the mental model during a discourse, such that
subsequent anaphoric expressions can be properly resolved based on the mental model.

It turns out that the meaning of a sentence fragment itself can be expressed in a DRS, which is then
merged with the main DRS associated with a discourse to obtain an updated mental model. Similarly, the
meaning of a sentence can be expressed in a DRS, which is constructed by merging the meanings of its
sub-parts expressed in DRSs, in much the same way a logical formula is constructed through applications
of lambda functions (Blackburn & Bos, 2005). This so-called λ-DRT approach of constructing the meaning
of a sentence by combining the meanings of its sub-parts (Muskens, 1996) suggests an alternative MRL
consisting of DRSs which allows us to deal with anaphoric expressions using our SCFG-based framework.
In particular, we are interested in reducing DRSs to a variable-free, functional form. Shan (2001) proposes a
way this can be done based on the theory of variable-free semantics (Jacobson, 1999). We hope to show that
such alternative MRLs based on DRT can extend the current semantic parsing framework to the follow-up
question scenario.

4.4.2 Learning from Noisy Training Data

Currently, WASP learns only from positive examples. This means that a parallel corpus is used as the train-
ing data, where all NL sentences are assumed to be meaningful, and each sentence is paired up with an MR
that correctly conveys the meaning of the sentence. Unfortunately, such parallel corpora may not be available
for some scenarios. For example, consider the ROBOCUP commentary task, where reports of a simulated
soccer game are interpreted on the basis of visual data captured in the form of game logs (André et al., 2000).
Before learning a semantic parser that interprets soccer commentaries, abstract symbolic descriptions are ex-
tracted from the low-level visual data (Siskind, 2001; Gorniak & Roy, 2004). However, since such symbolic
descriptions cover all events happening on the entire field, and each sentence in a commentary necessarily
refers to only part of these events, we are faced with the problem of referential ambiguity, where the exact
portion of symbolic descriptions that a sentence refers to has yet to be determined. This is a case of 1-to-n

43

noise in the training data, where for each sentence, all but one candidate MR is irrelevant. Such noise can
be generalized to the n-to-n case where not all NL utterances are relevant, e.g. when a soccer commentary
diverges to a biographical sketch, irrelevant to events happening on a field.

These scenarios give rise to a non-parallel corpus (or a comparable corpus), where NL sentences and
MRs are not sentence-aligned, and only part of them are bilingual translations of the same concepts. The
task of finding correspondences between NL sentences and MRs is then a problem of sentence alignment,
treating MRs as sentences in an MRL (Brown et al., 1991; Gale & Church, 1993). Note that unlike the
word alignment task (Section 2.3), the sentence alignment task for comparable corpora does not assume a
full translation of text, as the input articles are often aligned in topics but not in content. A wide variety of
methods have been proposed for mining parallel sentences from such corpora (Manning & Schütze, 1999).
Here we focus on methods that use lexical information to guide the alignment process (Kay & Röscheisen,
1993; Chen, 1993; Zhao & Vogel, 2002; Munteanu et al., 2004; Fung & Cheung, 2004). The intuition
is that sentences that contain more words that are translations of each other tend to be parallel sentences,
and conversely, words contained in sentences that are mutual translations tend to correspond to each other.
Following Fung and Cheung’s (2004) EM-based model, WASP can be adapted to use a non-parallel training
corpus in the following manner:

1. Assuming that all bilingual sentence pairs (treating MRs as sentences) are equally likely to be mutual
translations, learn transformation rules that map NL substrings to MRs using WASP.

2. Obtain an alignment score for each bilingual sentence pair 〈e, f〉, e.g. based on the joint probability
of generating e and f .

3. Update the probability for each bilingual sentence pair to be mutual translations, using alignment
scores obtained in Step 2.

4. Learn new transformation rules based on the updated probability distribution in Step 3. Repeat Steps
2–4 until the resulting semantic parsing model converges.

The hidden variables of this EM-based algorithm are therefore the bilingual sentence pairs that are mutual
translations. This algorithm crucially depends on a semantic parsing model (and thus a word alignment
model) that is sensitive to the probability that a training example is correct (Steps 1 and 4). To our knowl-
edge, none of the existing word alignment models take this probability distribution into account. Most
current methods of sentence alignment circumvent this problem by assuming that a sentence pair is either
mutual translations or not, with no uncertainty in between (Kay & Röscheisen, 1993; Munteanu et al., 2004;
Fung & Cheung, 2004). This allows them to train word alignment models on only sentences that are deemed
parallel, a Viterbi approximation of the more general EM-based framework presented above. We conjecture
that the more general EM-based framework is more robust to variations in the degree of lexical overlap
among parallel sentences, and thus more effective in finding them in a non-parallel corpus.

Nevertheless, based on prior knowledge, better estimates of the hidden variables of the EM algorithm can
be obtained. Such prior knowledge plays an important role in most existing sentence alignment algorithms.
For example, both Kay and Röscheisen (1993) and Zhao and Vogel (2002) assume roughly similar sentence
order for the two languages under consideration, and Munteanu et al. (2004) constructs a non-parallel corpus
of Arabic and English news stories by matching their publication dates. We expect that similar constraints
can be devised for the task of semantic parsing, e.g. based on timestamps of utterances and events in the
ROBOCUP commentary domain, which is especially important given that the signal-to-noise ratio can be
very small in the MRL stream (compared to that in the NL stream).

44

In future, we plan to develop a version of WASP that accepts noisy training data. Apart from being more
realistic about the context in which language acquisition occurs (Pinker, 1995), it is also a step toward robust
natural language understanding in more complex domains, such as conversational interfaces (Zue & Glass,
2000) and multi-modal systems (André, 2003).

5 Conclusion

We presented a statistical approach to semantic parsing based on the synchronous context-free grammar. A
statistical word alignment model is used for lexical acquisition. Initial evaluation on several real-world data
sets showed that the algorithm performs favorably compared to existing learning methods, regardless of task
complexity and word order. In future work, we plan to exploit extra knowledge about the NL syntax and
the application domain. We also intend to construct a syntax-aware, word-based alignment model for better
lexical acquisition. Finally, we plan to extend the algorithm to application domains in which the meanings
of sentences may be context-dependent, and in which training data is noisy.

45

References

Aho, A. V., & Ullman, J. D. (1969a). Properties of syntax directed translations. Journal of Computer and
System Sciences, 3(3), 319–334.

Aho, A. V., & Ullman, J. D. (1969b). Syntax directed translations and the pushdown assembler. Journal of
Computer and System Sciences, 3(1), 37–56.

Aho, A. V., & Ullman, J. D. (1972). The Theory of Parsing, Translation, and Compiling. Prentice Hall,
Englewood Cliffs, NJ.

Al-Onaizan, Y., Curin, J., Jahr, M., Knight, K., Lafferty, J., Melamed, I. D., Och, F. J., Purdy, D., Smith,
N. A., & Yarowsky, D. (1999). Statistical machine translation. Tech. rep., The Center for Language
and Speech Processing, Johns Hopkins University, Baltimore, MD.

Allen, J. F. (1995). Natural Language Understanding (2nd edition). Benjamin/Cummings, Menlo Park, CA.

André, E. (2003). Natural language in multimedia/multimodal systems. In Mitkov, R. (Ed.), Handbook of
Computational Linguistics, pp. 650–669. Oxford University Press.

André, E., Binsted, K., Tanaka-Ishii, K., Luke, S., Herzog, G., & Rist, T. (2000). Three RoboCup simulation
league commentator systems. AI Magazine, 21(1), 57–66.

Androutsopoulos, I., Ritchie, G. D., & Thanisch, P. (1995). Natural language interfaces to databases: An
introduction. Journal of Natural Language Engineering, 1(1), 29–81.

Baker, J. K. (1979). Trainable grammars for speech recognition. In Speech Communication Papers for the
97th Meeting of the Acoustical Society of America, pp. 547–550, Boston, MA.

Bellegarda, J. R., & Silverman, K. E. A. (2003). Natural language spoken interface control using data-driven
semantic inference. IEEE Transactions on Speech and Audio Processing, 11(3), 267–277.

Berger, A. L., Della Pietra, S. A., & Della Pietra, V. J. (1996). A maximum entropy approach to natural
language processing. Computational Linguistics, 22(1), 39–71.

Bikel, D. M. (2004). Intricacies of Collins’ parsing model. Computational Linguistics, 30(4), 479–511.

Blackburn, P., & Bos, J. (2005). Representation and Inference for Natural Language: A First Course in
Computational Semantics. CSLI Publications, Stanford, CA.

Booth, T. L., & Thompson, R. A. (1973). Applying probability measures to abstract languages. IEEE
Transactions on Computers, 22(5), 442–450.

Borland International (1988). Turbo Prolog 2.0 Reference Guide. Borland International, Scotts Valley, CA.

Brown, P. F., Della Pietra, V. J., Della Pietra, S. A., & Mercer, R. L. (1993). The mathematics of statistical
machine translation: Parameter estimation. Computational Linguistics, 19(2), 263–312.

Brown, P. F., Lai, J. C., & Mercer, R. L. (1991). Aligning sentences in parallel corpora. In Proceedings
of the 29th Annual Meeting of the Association for Computational Linguistics (ACL-91), pp. 169–176,
Berkeley, CA.

Byrd, R. H., Nocedal, J., & Schnabel, R. B. (1994). Representations of quasi-Newton matrices and their use
in limited memory methods. Mathematical Programming, 63(2), 129–156.

Carreras, X., & Màrquez, L. (2005). Introduction to the CoNLL-2005 shared task: Semantic role labeling. In
Proceedings of the Ninth Conference on Computational Natural Language Learning (CoNLL-2005),
pp. 152–164, Ann Arbor, MI.

46

Charniak, E. (2000). A maximum-entropy-inspired parser. In Proceedings of the Meeting of the North
American Association for Computational Linguistics, pp. 132–139.

Chen, M., Foroughi, E., Heintz, F., Kapetanakis, S., Kostiadis, K., Kummeneje, J., Noda, I., Obst, O., Ri-
ley, P., Steffens, T., Wang, Y., & Yin, X. (2003). Users manual: RoboCup soccer server manual for
soccer server version 7.07 and later.. Available at http://sourceforge.net/projects/
sserver/.

Chen, S. F. (1993). Aligning sentences in bilingual corpora using lexical information. In Proceedings of the
31st Annual Meeting of the Association for Computational Linguistics (ACL-93), pp. 9–16.

Chen, S. F. (1995). Bayesian grammar induction for language modeling. In Proceedings of the 33rd Annual
Meeting of the Association for Computational Linguistics (ACL-95), pp. 228–235.

Chiang, D. (2005). A hierarchical phrase-based model for statistical machine translation. In Proceedings of
the 43nd Annual Meeting of the Association for Computational Linguistics (ACL-05), pp. 263–270,
Ann Arbor, MI.

Chieu, H. L., & Ng, H. T. (2003). Named entity recognition with a maximum entropy approach. In Pro-
ceedings of the Seventh Conference on Computational Natural Language Learning (CoNLL-2003),
pp. 160–163, Edmonton, Canada.

Chomsky, N. (1957). Syntactic Structures. Mouton & Co., The Hague.

Clark, A. (2001). Unsupervised induction of stochastic context-free grammars using distributional cluster-
ing. In Proceedings of the Fifth Conference on Computational Natural Language Learning (CoNLL-
2001), Toulouse, France.

Clark, S., & Curran, J. R. (2003). Log-linear models for wide-coverage CCG parsing. In Proceedings of the
2003 Conference on Empirical Methods in Natural Language Processing (EMNLP-03), pp. 97–105,
Sapporo, Japan.

Collins, M., & Roark, B. (2004). Incremental parsing with the perceptron algorithm. In Proceedings of
the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04), pp. 111–118,
Barcelona, Spain.

Collins, M. J. (1997). Three generative, lexicalised models for statistical parsing. In Proceedings of the 35th
Annual Meeting of the Association for Computational Linguistics (ACL-97), pp. 16–23.

Della Pietra, S., Della Pietra, V. J., & Lafferty, J. D. (1997). Inducing features of random fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(4), 380–393.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society B, 39, 1–38.

Earley, J. (1970). An efficient context-free parsing algorithm. Communications of the Association for
Computing Machinery, 6(8), 451–455.

Fletcher, R., & Reeves, C. M. (1964). Function minimization by conjugate gradients. Computer Journal, 7,
149–154.

Friedland, N. S., Allen, P. G., Matthews, G., Witbrock, M., Baxter, D., Curtis, J., Shepard, B., Miraglia,
P., Angele, J., Staab, S., Moench, E., Oppermann, H., Wenke, D., Israel, D., Chaudhri, V., Porter, B.,
Barker, K., Fan, J., Chaw, S. Y., Yeh, P., Tecuci, D., & Clark, P. (2004). Project Halo: Towards a
digital Aristotle. AI Magazine, 25(4), 29–47.

47

Fung, P., & Cheung, P. (2004). Mining very-non-parallel corpora: Parallel sentence and lexicon extraction
via bootstrapping and EM. In Proceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing (EMNLP-04), pp. 57–63, Barcelona, Spain.

Gale, W. A., & Church, K. W. (1993). A program for aligning sentences in bilingual corpora. Computational
Linguistics, 19, 75–102.

Ge, R., & Mooney, R. J. (2005). A statistical semantic parser that integrates syntax and semantics. In
Proceedings of the Ninth Conference on Computational Natural Language Learning (CoNLL-2005),
pp. 9–16, Ann Arbor, MI.

Gécseg, F., & Steinby, M. (1997). Tree languages. In Rozenberg, G., & Salomaa, A. (Eds.), Handbook of
Formal Languages, Vol. 3, pp. 1–68. Springer Verlag, Berlin.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of
images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–742.

Geman, S., & Johnson, M. (2002). Dynamic programming for parsing and estimation of stochastic
unification-based grammars. In Proceedings of the 40th Annual Meeting of the Association for Com-
putational Linguistics (ACL-2002), pp. 279–286, Philadelphia, PA.

Gildea, D. (2001). Corpus variation and parser performance. In Proceedings of the 2001 Conference on
Empirical Methods in Natural Language Processing (EMNLP-01), Pittsburgh, PA.

Goodman, J. (1996). Parsing algorithms and metrics. In Proceedings of the 34th Annual Meeting of the
Association for Computational Linguistics (ACL-96), pp. 177–183, Santa Cruz, CA.

Gorniak, P., & Roy, D. (2004). Grounded semantic composition for visual scenes. Journal of Artificial
Intelligence Research, 21, 429–470.

He, Y., & Young, S. (2003). Hidden vector state model for hierarchical semantic parsing. In Proceedings of
the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP-03),
pp. 268–271, Hong Kong.

Hendrix, G. G., Sacerdoti, E., Sagalowicz, D., & Slocum, J. (1978). Developing a natural language interface
to complex data. ACM Transactions on Database Systems, 3(2), 105–147.

Jacobson, P. (1999). Towards a variable-free semantics. Linguistics and Philosophy, 22, 117–184.

Jelinek, F. (1985). Markov source modeling of text generation. In Skwirzinski, J. K. (Ed.), The Impact of
Processing Techniques on Communications. Dordrecht, Nijhoff.

Jelinek, F. (1998). Statistical Methods for Speech Recognition. MIT Press, Cambridge, MA.

Jelinek, F., & Lafferty, J. D. (1991). Computation of the probability of initial substring generation by
stochastic context-free grammars. Computational Linguistics, 17(3), 315–323.

Johnson, M., Geman, S., Canon, S., Chi, Z., & Riezler, S. (1999). Estimators for stochastic “unification-
based” grammars. In Proceedings of the 37th Annual Meeting of the Association for Computational
Linguistics (ACL-99), pp. 535–541, College Park, MD.

Joshi, A. K. (1985). Tree-adjoining grammars: How much context sensitivity is required to provide reason-
able structural descriptions. In Dowty, D. R., Karttunen, L., & Zwicky, A. (Eds.), Natural Language
Parsing. Cambridge University Press, New York.

Juang, B., Chou, W., & Lee, C. (1997). Minimum classification error rate methods for speech recognition.
IEEE Transactions on Speech and Audio Processing, 5(3), 257–265.

48

Kamp, H., & Reyle, U. (1993). From Discourse to Logic. Kluwer, Dordrecht.

Kate, R. J., Wong, Y. W., & Mooney, R. J. (2005). Learning to transform natural to formal languages. In
Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-2005), pp. 1062–
1068, Pittsburgh, PA.

Katz, J. J., & Postal, P. M. (1964). An Integrated Theory of Linguistic Descriptions. MIT Press, Cambridge,
MA.

Kay, M., & Röscheisen, M. (1993). Text-translation alignment. Computational Linguistics, 19(1), 121–142.

Klein, D., & Manning, C. D. (2004). Corpus-based induction of syntactic structure: Models of dependency
and constituency. In Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics (ACL-04), pp. 479–486, Barcelona, Spain.

Knight, K., & Graehl, J. (2005). An overview of probabilistic tree transducers for natural language pro-
cessing. In Proceedings of the Sixth International Conference on Intelligent Text Processing and
Computational Linguistics (CICLing-05), pp. 1–25, Mexico City, Mexico.

Knoke, D., & Burke, P. J. (1980). Log-Linear Models. Sage Publications, Inc., Newberry Park, CA.

Koomen, P., Punyakanok, V., Roth, D., & Yih, W. (2005). Generalized inference with multiple semantic
role labeling systems. In Proceedings of the Ninth Conference on Computational Natural Language
Learning (CoNLL-2005), pp. 181–184, Ann Arbor, MI.

Kuhlmann, G., Stone, P., Mooney, R., & Shavlik, J. (2004). Guiding a reinforcement learner with natural
language advice: Initial results in RoboCup soccer. In Proceedings of the AAAI-04 Workshop on
Supervisory Control of Learning and Adaptive Systems, San Jose, CA.

Kuhn, R., & De Mori, R. (1995). The application of semantic classification trees to natural language under-
standing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(5), 449–460.

Kumar, S., & Byrne, W. (2002). Minimum Bayes-risk word alignments of bilingual texts. In Proceedings
of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP-02), pp.
140–147, Philadelphia, PA.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proceedings of 18th International Conference on Machine
Learning (ICML-2001), pp. 282–289, Williamstown, MA.

Lari, K., & Young, S. J. (1990). The estimation of stochastic context-free grammars using the Inside-Outside
algorithm. Computer Speech and Language, 4, 35–56.

Lev, I., MacCartney, B., Manning, C. D., & Levy, R. (2004). Solving logic puzzles: From robust processing
to precise semantics. In In proceedings of the Second Workshop on Text Meaning and Interpretation,
ACL-04, Barcelona, Spain.

Macherey, K., Och, F. J., & Ney, H. (2001). Natural language understanding using statistical machine trans-
lation. In Proceedings of the 7th European Conference on Speech Communication and Technology
(EuroSpeech-01), pp. 2205–2208, Aalborg, Denmark.

Magerman, D. M. (1995). Statistical decision-tree models for parsing. In Proceedings of the 33rd Annual
Meeting of the Association for Computational Linguistics (ACL-95), pp. 276–283, Cambridge, MA.

Malouf, R. (2002). A comparison of algorithms for maximum entropy parameter estimation. In Proceedings
of the Sixth Conference on Computational Natural Language Learning (CoNLL-2002), pp. 49–55.

49

Manning, C. D., & Schütze, H. (1999). Foundations of Statistical Natural Language Processing. MIT Press,
Cambridge, MA.

Marcu, D., & Wong, W. (2002). A phrase-based, joint probability model for statistical machine transla-
tion. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing
(EMNLP-02), pp. 133–139, Philadelphia, PA.

Melamed, I. D. (2004). Statistical machine translation by parsing. In Proceedings of the 42nd Annual
Meeting of the Association for Computational Linguistics (ACL-04), pp. 653–660, Barcelona, Spain.

Miller, S., Bobrow, R., Ingria, R., & Schwartz, R. (1994). Hidden understanding models of natural language.
In Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics (ACL-
94), pp. 25–32.

Miller, S., Stallard, D., Bobrow, R., & Schwartz, R. (1996). A fully statistical approach to natural lan-
guage interfaces. In Proceedings of the 34th Annual Meeting of the Association for Computational
Linguistics (ACL-96), pp. 55–61, Santa Cruz, CA.

Miyao, Y., & Tsujii, J. (2002). Maximum entropy estimation for feature forests. In Proceedings of Human
Language Technology Conference (HLT-2002), San Diego, CA.

Muggleton, S. H. (Ed.). (1992). Inductive Logic Programming. Academic Press, New York, NY.

Munteanu, D. S., Fraser, A., & Marcu, D. (2004). Improved machine translation performance via parallel
sentence extraction from comparable corpora. In Proceedings of Human Language Technology Con-
ference / North American Association for Computational Linguistics Annual Meeting (HLT-NAACL-
2004), pp. 265–272, Boston, MA.

Muskens, R. (1996). Combining Montague semantics and discourse representation. Linguistics and Philos-
ophy, 19, 143–186.

Och, F. J., Tillmann, C., & Ney, H. (1999). Improved alignment models for statistical machine translation.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing and Very
Large Corpora (EMNLP/VLC-99), pp. 20–28, University of Maryland.

Och, F. J. (2003). Minimum error rate training in statistical machine translation. In Proceedings of the 41st
Annual Meeting of the Association for Computational Linguistics (ACL-03), pp. 160–167, Sapporo,
Japan.

Och, F. J., Gildea, D., Khudanpur, S., Sarkar, A., Yamada, K., Fraser, A., Kumar, S., Shen, L., Smith, D.,
Eng, K., Jain, V., Jin, Z., & Radev, D. (2003). Syntax for statistical machine translation. Tech. rep.,
The Center for Language and Speech Processing, Johns Hopkins University, Baltimore, MD.

Och, F. J., & Ney, H. (2003). A systematic comparison of various statistical alignment models. Computa-
tional Linguistics, 29(1), 19–51.

Papineni, K. A., Roukos, S., & Ward, R. T. (1997). Feature-based language understanding. In Proceedings
of the 5th European Conference on Speech Communication and Technology (EuroSpeech-97), pp.
1435–1438, Rhodes, Greece.

Pereira, F. C. N., & Shabes, Y. (1992). Inside-outside reestimation from partially bracketed corpora. In
Proceedings of the 30th Annual Meeting of the Association for Computational Linguistics (ACL-92),
pp. 128–135, Newark, Delaware.

Pinker, S. (1995). Language acquisition. In Gleitman, L. R., & Liberman, M. (Eds.), Language (2nd
edition)., Vol. 1 of An Invitation to Cognitive Science, pp. 135–182. MIT Press, Cambridge, MA.

50

Popescu, A.-M., Armanasu, A., Etzioni, O., Ko, D., & Yates, A. (2004). Modern natural language interfaces
to databases: Composing statistical parsing with semantic tractability. In Proceedings of the Twentieth
International Conference on Computational Linguistics (COLING-04), Geneva, Switzerland.

Popescu, A.-M., Etzioni, O., & Kautz, H. (2003). Towards a theory of natural language interfaces to
databases. In Proceedings of the 2003 International Conference on Intelligent User Interfaces (IUI-
2003), pp. 149–157, Miami, FL. ACM.

Price, P. J. (1990). Evaluation of spoken language systems: The ATIS domain. In Proceedings of the Third
DARPA Speech and Natural Language Workshop, pp. 91–95.

Quirk, C., Menezes, A., & Cherry (2005). Dependency treelet translation: Syntactically informed phrasal
SMT. In Proceedings of the 43nd Annual Meeting of the Association for Computational Linguistics
(ACL-05), pp. 271–279, Ann Arbor, MI.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2), 257–286.

Ratnaparkhi, A. (1996). A maximum entropy part of speech tagger. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP-96), pp. 133–141, Philadelphia, PA.

Ratnaparkhi, A. (1999). Learning to parse natural language with maximum entropy models. Machine
Learning, 34, 151–176.

Riezler, S. (1998). Probabilistic Constraint Logic Programming. Ph.D. thesis, Universität Tübingen, Ger-
many.

Riezler, S., Prescher, D., Kuhn, J., & Johnson, M. (2000). Lexicalized stochastic modeling of constraint-
based grammars using log-linear measures and EM training. In Proceedings of the 38th Annual
Meeting of the Association for Computational Linguistics (ACL-2000), pp. 480–487, Hong Kong.

Rounds, W. C. (1970). Mappings and grammars on trees. Mathematical Systems Theory, 4(3), 257–287.

Schabes, Y., & Shieber, S. M. (1994). An alternative conception of tree-adjoining derivation. Computational
Linguistics, 20(1), 91–124.

Schuler, W. (2003). Using model-theoretic semantic interpretation to guide statistical parsing and word
recognition in a spoken language interface. In Proceedings of the 41st Annual Meeting of the Associ-
ation for Computational Linguistics (ACL-03), pp. 529–536.

Shan, C. (2001). A variable-free dynamic semantics. In Proceedings of the 13th Amsterdam Colloquium,
pp. 204–209, University of Amsterdam.

Shieber, S. M. (1985). Evidence against the context-freeness of natural language. Linguistics and Philoso-
phy, 8, 333–343.

Shieber, S. M., & Schabes, Y. (1990). Synchronous tree-adjoining grammars. In Proceedings of the Thir-
teenth International Conference on Computational Linguistics, pp. 253–258, Helsinki, Finland.

Simmons, R., Goldberg, D., Goode, A., Montemerlo, M., Roy, N., Sellner, B., Urmson, C., Schultz, A.,
Abramson, M., Adams, W., Atrash, A., Bugajska, M., Coblenz, M., MacMahon, M., Perzanowski, D.,
Horswill, I., Zubek, R., Kortenkamp, D., Wolfe, B., Milam, T., & Maxwell, B. (2003). GRACE: An
autonomous robot for the AAAI robot challenge. AI Magazine, 24(2), 51–72.

Siskind, J. M. (2001). Grounding the lexical semantics of verbs in visual perception using force dynamics
and event logic. Journal of Artificial Intelligence Research, 15, 31–90.

51

Steedman, M. (2000). The Syntactic Process. MIT Press, Cambridge, MA.

Stolcke, A. (1995). An efficient probabilistic context-free parsing algorithm that computes prefix probabili-
ties. Computational Linguistics, 21(2), 165–201.

Stolcke, A., & Omohundro, S. M. (1994). Inducing probabilistic grammars by bayesian model merging. In
Carrasco, R. C., & Oncina, J. (Eds.), Grammatical Inference and Applications, pp. 106–118. Springer.

Tang, L. R., & Mooney, R. J. (2001). Using multiple clause constructors in inductive logic programming
for semantic parsing. In Proceedings of the 12th European Conference on Machine Learning, pp.
466–477, Freiburg, Germany.

Tang, L. R., & Mooney, R. J. (2000). Automated construction of database interfaces: Integrating statistical
and relational learning for semantic parsing. In Proceedings of the Joint SIGDAT Conference on
Empirical Methods in Natural Language Processing and Very Large Corpora(EMNLP/VLC-2000),
pp. 133–141, Hong Kong.

Taskar, B., Abbeel, P., & Koller, D. (2002). Discriminative probabilistic models for relational data. In
Proceedings of 18th Conference on Uncertainty in Artificial Intelligence (UAI-2002), pp. 485–492,
Edmonton, Canada.

Thompson, C. A., & Mooney, R. J. (1999). Automatic construction of semantic lexicons for learning natural
language interfaces. In Proceedings of the Sixteenth National Conference on Artificial Intelligence
(AAAI-99), pp. 487–493, Orlando, FL.

Tillmann, C. (2003). A projection extension algorithm for statistical machine translation. In Proceedings of
the 2003 Conference on Empirical Methods in Natural Language Processing (EMNLP-03), pp. 1–8,
Sapporo, Japan.

Toutanova, K., Haghighi, A., & Manning, C. D. (2005). Joint learning improves semantic role labeling. In
Proceedings of the 43nd Annual Meeting of the Association for Computational Linguistics (ACL-05),
pp. 589–596, Ann Arbor, MI.

Venugopal, A., Vogel, S., & Waibel, A. (2003). Effective phrase translation extraction from alignment
models. In Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics
(ACL-03), pp. 319–326, Sapporo, Japan.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algo-
rithm. IEEE Transactions on Information Theory, 13(2), 260–269.

Wu, D. (1997). Stochastic inversion transduction grammars and bilingual parsing of parallel corpora. Com-
putational Linguistics, 23(3), 377–403.

Yamada, K., & Knight, K. (2001). A syntax-based statistical translation model. In Proceedings of the
39th Annual Meeting of the Association for Computational Linguistics (ACL-2001), pp. 523–530,
Toulouse, France.

Yamada, K., & Knight, K. (2002). A decoder for syntax-based MT. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics (ACL-2002), pp. 303–310, Philadelphia,
PA.

Zelle, J. M., & Mooney, R. J. (1996). Learning to parse database queries using inductive logic programming.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI-96), pp. 1050–
1055, Portland, OR.

52

Zettlemoyer, L. S., & Collins, M. (2005). Learning to map sentences to logical form: Structured classifi-
cation with probabilistic categorial grammars. In Proceedings of 21th Conference on Uncertainty in
Artificial Intelligence (UAI-2005), Edinburgh, Scotland.

Zhao, B., & Vogel, S. (2002). Adaptive parallel sentences mining from web bilingual news collection. In
Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM-2002), pp. 745–750.

Zue, V. W., & Glass, J. R. (2000). Conversational interfaces: Advances and challenges. In Proceedings of
the IEEE, Vol. 88(8), pp. 1166–1180.

53

