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Abstract
Managed languages improve programmer productivity with
type safety and garbage collection, which eliminate memory
errors such as dangling pointers, double frees, and buffer
overflows. However, programs may stillleakmemory if pro-
grammers forget to eliminate the last reference to an object
that will not be used again. Leaks slow programs by increas-
ing collector workload and frequency. Growing leaks crash
programs. Instead of crashing,leak pruningextends program
availability by predicting and reclaiming leaked objects at
run time. Whereas garbage collection over-approximates
live objects using reachability, leak pruning predicts dead
objects and reclaims them based on howstalethey are and
the size of stale data structures. Leak pruningpreserves
semanticsbecause it waits for heap exhaustion before re-
claiming objects and then poisons references to objects it
reclaims. If the program later tries to access these objects,
the virtual machine (VM) throws an internal error. We im-
plement leak pruning in a Java VM, show its overhead is low,
and evaluate it on 10 leaking programs. Leak pruning does
not help two programs, executes four substantial programs
1.6-35X longer, and executes four programs, including two
leaks in Eclipse, for at least 24 hours. In the worst case, leak
pruning defers fatal errors. In the best case, programs with
unbounded memory requirements execute indefinitely and
correctly in bounded memory with consistent throughput.

1. Introduction
Managed languagessuch as Java, C#, Python, and Ruby pro-
vide garbage collection and type safety, which eliminate (1)
memory corruption errors such as dangling pointers, dou-
ble frees, and buffer overflows and (2) memory leaks due
to unreachable objects. The increasing use of managed lan-
guages is due in part to these features. Unfortunately, pro-
grams may still leak objects that are reachable, but will not
be used again, because garbage collection usesreachability
to over-approximateliveness. A reachable object is not live
if the program never uses it again. Computing reachability
is relatively straightforward; collectors perform a transitive

closure over the object graph from programroots (globals,
stacks, and registers). Liveness is much harder to determine
and is in general undecidable.

Memory leaks hurt performance by consuming unneces-
sary memory resources, and they increase garbage collection
frequency and workload. Leaks occur frequently in managed
languages and a number of tools help programmers diagnose
them [8, 26, 30, 35, 39, 42]. Leaks are hard to reproduce,
find, and fix because they have no immediate symptoms [20].
For example,whena leaking Java program exhausts mem-
ory depends on the heap size, choice of garbage collector,
and nondeterministic factors not directly related to the leak.
Despite extensive in-house testing, leaks exist in production
software because they are behavior and environment sensi-
tive. Furthermore, attackers can exploit these behaviors to
launch denial-of-service attacks.

This paper introducesleak pruning, which preserves se-
mantics, usesbounded resources, and runs leaky programs
longer than before or, in some cases, indefinitely. Leak prun-
ing defers out-of-memory errors by predicting which objects
are dead and reclaiming them when the program is about to
run out of memory. As long as the program does not attempt
to access reclaimed objects, it may run indefinitely. If the
program attempts to access a reference to reclaimed mem-
ory, a leak pruning-enabled VM intercepts the access and
throws an error. This behavior preserves semantics since the
program already ran out of memory. In the worst case, leak
pruning only defers out-of-memory errors. In the best case,
it enables leaky programs with unbounded memory require-
ments to run indefinitely in bounded memory.

The key to leak pruning is accurately predicting which
reachable objects are dead. Our dynamic prediction algo-
rithm uses past access behavior by differentiatingin-useob-
jects that the program referenced recently andstaleobjects
that have not been referenced in a while. It piggybacks on the
garbage collector. While the collector traces the reachable
objects in the heap, it also identifies staledata structures,
i.e., stale subgraphs. It records the source and target classes
of the first reference and the number of stale bytes in the stale



data structure. When the VM runs out of memory, leak prun-
ing poisonsreferences to instances of the data structure type
consuming the most bytes. Poisoning invalidates and spe-
cially marks references. The collector then reclaims objects
that were only unreachable from these references. If the pro-
gram subsequently accesses a poisoned reference, the VM
throws an error.

We implement leak pruning in a high-performance Java
VM and show that it adds on average 6% to execution time
due to its software read barrier (instrumentation at every
read [7]). This overhead would drop to zero with hardware
read barriers, such as those provided by Azul [13]. Although
our implementation is for Java, the general approach is appli-
cable to any language that supports garbage collection. We
evaluate how well leak pruning tolerates leaks on 10 leaking
programs, including 2 in Eclipse. For two leaks, leak prun-
ing provides no help. It runs two programs 1.6-4.7X longer
and two leaks 21-35X longer. The remaining four leaky pro-
grams execute for at least 24 hours (then we terminate them).
When leak pruning cannot defer an out-of-memory error in-
definitely, in all cases but one it is due to growinglive mem-
ory, i.e., the program’s working set is growing because the
program continues to access leaked memory. Other leak tol-
erance approaches that preserve semantics cannot tolerate
live leaks either.

One objection to error tolerance is that it may encour-
age poor programming practices. Since modern software is
never bug free, error tolerance in general should be viewed
as a temporary measure that gives users a better experi-
ence, buys developers time to fix bugs, and provides pro-
tection against some attacks. Leak pruning may not be ap-
propriate for all programs, e.g., programs that catch out-of-
memory errors to abort speculative computation, and should
be a configuration parameter at deployment time. Most prior
leak tolerance approaches use unbounded amounts of disk
space and therefore will eventually exhaust disk space and
crash [9, 10, 18, 47]. Leak pruning can be applied after these
approaches exhaust their disk space budget or in embedded
systems without disks.

The contributions of this paper are (1) leak pruning, a
novel semantics-preserving approach for reclaiming mem-
ory instead of running out of memory, (2) an algorithm for
accurately identifying likely dead objects, and (3) an evalu-
ation of leak pruning’s effectiveness on 10 leaks: 5 bench-
marks and 5 real applications. Leak pruning’s preservation
of semantics and low overhead make it a compelling config-
uration choice for many deployed systems.

2. Related Work
Prior work tolerates memory corruption and concurrency
bugs using redundancy, randomness, checkpointing, pad-
ding, and ignoring errors, but these approaches do not help
memory leaks [4, 38, 40]. One industrial response to leaks is
restarting the application, but this mechanism reduces avail-

ability and loses application state that may not be recover-
able. The closest related work to leak pruning iscyclic mem-
ory allocation, which limits the amount of live memory pro-
duced by any allocation site [32]. Also related is leak toler-
ance using disk space [9, 10, 18, 47].Leak detectionis syner-
gistic with leak tolerance. Detection gives developers more
information on how to fix leaks. Tolerance yields a better
user experience and protection against some attacks.

Detecting leaks. Static leak detectors for C and C++ iden-
tify objects that the programmer forgot to free and are un-
reachable [11, 21]. Dynamic leak detectors for C and C++
find these objects at run time by tracking allocations, frees,
and pointer mutations [20, 28, 31] or by tracking stale-
ness [12, 37]. Managed languages reclaim unreachable ob-
jects, but reachable objects that the program will never ac-
cess again can leak. Leak detectors for managed languages
report dynamic heap growth [26, 30, 35, 39, 42] and stale ob-
jects [8]. Leak pruning uses object staleness to predict live-
ness.

Bounding memory usage. Leak pruning is most similar to
cyclic memory allocation, which seeks to bound memory us-
age by controlling the number of live objects produced by
an allocation site tom [32]. Off-line profiling determines
m, and a modified allocator uses a cyclic buffer. It assumes
each allocation site produces a bounded footprint of live ob-
jects, but some leaks do not have this property. In contrast,
leak pruning predicts liveness based on object and data struc-
ture staleness. Cyclic memory allocation may change pro-
gram semantics since the program is silently corrupted if it
uses more thanm objects, althoughfailure-oblivious com-
puting[40] often mitigates the effects.

Tolerating leaks. Plug segregates objects at allocation
time and re-maps virtual to physical pages to save physi-
cal memory in C and C++ programs, but it does not address
challenges presented by garbage collection [33].

LeakSurvivor, Panacea, andMelt tolerate leaks by trans-
ferring potentially leaked objects to disk [9, 10, 18, 47].
They reclaim virtual and physical memory and modify the
collector to avoid accessing objects moved to disk. Leak
pruning borrows Melt’s low-overhead, reference-based read
barriers. Although not designed to tolerate leaks,bookmark-
ing collectiontolerates leaks somewhat by saving physical,
not virtual, memory and tracking staleness on page granular-
ity [22].

These approaches preserve semantics since they retrieve
objects from disk if the program accesses them. Since they
retrieve objects from disk, the prediction mechanisms do
not have to be perfect, just usually right. If the systems are
too inaccurate, performance will suffer. All will eventually
exhaust disk space and crash. Leak pruning, on the other
hand, requires perfect prediction to defer a leak successfully.
Consequently, it uses a more sophisticated algorithm for
predicting dead objects (Section 7 compares leak pruning’s
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Figure 1. Reachable heap memory for theEclipseDiff

leak: An unmodified VM running the leak, a manually fixed
version, and the leak running with leak pruning.

prediction algorithm to the algorithm used by prior work).
Leak pruning is potentially less tolerant of errors becauseit
must throw an error if it makes a mistake. However, leak
pruning uses bounded resources, making it suitable when
disk space runs out or no disk is available (e.g., embedded
systems).

3. Leak Pruning
This section describes the high-level approach and seman-
tics of leak pruning. Section 4 presents the details of our
algorithm and implementation.

3.1 Motivation and Overview

Garbage collection overview.Garbage collection (GC)
usesreachability as an over-approximation ofliveness—
an object is live if the program will use it again. The VM
invokes the collector each time the program fills the heap.
A tracing collector then performs a transitive closure over
the heap starting from theroots, which include stack point-
ers, global variables, and any references in registers.1 The
collector retains objects that are transitively reachableand
reclaims all the memory used by unreachable objects. The
next collection occurs after the sum of this reachable mem-
ory plus new allocation exceeds the available heap memory.

Reachability versus liveness.Reachability often approxi-
mates liveness well. However, developers may neglect to re-
move the last reference to an object or data structure that
the program will not use again. Dead-but-reachable objects
are leaks, and a growing leak hasunboundedmemory re-
quirements. Leaks (1) slow the program down as the heap
fills by increasing the frequency and workload of garbage
collection and (2) eventually cause the program to throw an
out-of-memory error by exhausting memory resources.

Figure 1 shows the memory consumption over time mea-
sured initerations (fixed amounts of program work) for a

1 Our discussion and implementation use a tracing collector because pure
reference-counting collectors are incomplete—they cannot reclaim cycles.

growing leak in Eclipse calledEclipseDiff (Section 6 dis-
cusses this leak in detail). The graph shows reachable mem-
ory at the end of each full-heap collection. The solid line
shows that the leak causes reachable memory to grow with-
out bound until it overflows the heap. At 200 MB for this ex-
periment, the VM throws an out-of-memory error (the plot-
ted line reaches only 192 MB since the program did not com-
plete another iteration before exhausting memory).

A larger maximum heap size can help leaky programs.
Some systems, such as embedded systems, have hard up-
per bounds on maximum memory. In systems with virtual
memory and swap space, the upper bound on the maximum
heap size is effectively physical memory; exceeding physical
memory leads to thrashing during GC since the collector’s
working set is the entire heap [22, 48].

The dashed line shows reachable memory if we modify
the Eclipse source to fix the leak (as described in the bug
report, which includes a fix). Reachable memory stays fairly
constant over time, and Eclipse does not run out of memory.
The dotted line shows reachable memory with leak pruning.
When the program is about to run out of memory, leak
pruning reclaims objects that it predicts are dead. It cannot
reclaim all dead objects promptly because objects need time
to become stale. Section 6 shows that leak pruning keeps
EclipseDiff from running out of memory for over 50,000
iterations (24 hours).

Leak pruning seeks to close the gap between liveness and
reachability. When a program starts to run out of memory,
leak pruning observes program execution to predict which
reachable objects are dead and therefore will not be used
again. When the program actually runs out of memory, it
poisonsreferences to these objects and reclaims them. If the
application subsequently attempts to read a poisoned refer-
ence, the VM throws an internal error, giving the original
out-of-memory error as the cause. Since the program hasex-
ecuted beyondan out-of-memory error, throwing an internal
error does not violate semantics. The goal of leak pruning
is to defer out-of-memory errors indefinitely by eliminating
the space and time overheads due to leaks.

3.2 Triggering Leak Pruning

Figure 2 shows a high-level state diagram for leak pruning.
Leak pruning’s state is based on how close the program is
to running out of memory. Leak pruning performs most of
its work during full-heap garbage collections, and it changes
state after each full-heap GC. State changes depend on how
full the heap is at the end of GC.

Initially, leak pruning is INACTIVE and does not ob-
serve program behavior. This state has two purposes. First,it
avoids the overhead of leak pruning’s analysis when the pro-
gram is not running out of memory. Second, it collects po-
tentially better information by focusing on program behavior
that appears to be leaking. Leak pruning remainsINACTIVE

until reachable memory exceeds “expected memory use,” a
user-configurable threshold. By default our implementation



Figure 2. State diagram for leak pruning.

sets this threshold to 50% since users typically execute pro-
grams in heaps at least twice as large as maximum reachable
memory. Leak pruning is not very sensitive to the exact value
of this threshold. If set too low, leak pruning may incur some
overhead when the program is not leaking; if set too high,
it will have less time to observe program behavior before
selecting memory to reclaim.

When memory usage crosses this threshold, leak pruning
enters theOBSERVE state, in which it analyzes program ref-
erence patterns to choose pruning candidates (described in
detail in Section 4). Once leak pruning enters theOBSERVE

state, it never returns to theINACTIVE state because it con-
siders the application to be in a permanent unexpected state.

Leak pruning moves fromOBSERVE to SELECT when
the program has nearly run out of memory, which is user-
configurable and 90% by default. InSELECT, leak pruning
chooses references to prune, based on information collected
during theOBSERVE state (described in detail in Section 4).

In principle, we would like to move to thePRUNE state
only when the program has completely exhausted mem-
ory. However, executing until reachable objects fill avail-
able memory can be expensive. Because reachable memory
usually grows more slowly than the allocation rate, alloca-
tions trigger more and more collections as memory fills the
heap. Thus, we support two options: (1) leak pruning moves
to PRUNE when the heap is 100% full after collection, i.e.,
the VM is about to throw an out-of-memory error,2 or (2) it
moves to thePRUNE state immediately after finishing a col-
lection in theSELECT state. The VM has flexibility in how
it reports memory usage, since details such as object header
sizes are not visible to the application, so the second op-
tion is not necessarily a violation of program semantics. We
believe the second option is more appealing since it avoids
the VM grinding to a virtual halt before pruning can com-
mence. Users should consider the “nearly full” threshold to
be the maximum heap size and “full” to be extra headroom
to perform GCs efficiently. We use option (2) by default but
also evaluate (1). Regardless, after enteringPRUNE once,
leak pruning always entersPRUNE immediately following
SELECT since it has already exhausted memory once.

2 In this case leak pruning remains inSELECT until heap exhaustion but
does not repeat the selection process.

The PRUNE statepoisonsselected references by invali-
dating them and not traversing the objects they reference.
The collector then automatically reclaims objects that were
reachable only from the pruned references. If the collector
reclaims enough memory so that the heap is no longer nearly
full, leak pruning returns to theOBSERVE state. Otherwise,
it returns toSELECT and identifies more references to prune.

Figure 3 shows an example heap when leak pruning en-
ters thePRUNE state. Each circle is a heap object. Each ob-
ject instance has a name based on itsclass, e.g.,b1, b2, b3,
andb4 are instances of classB. The selection algorithm uses
class to select references to prune (Section 4). The figure
shows that objectsa1 ande1 are directly reachable from the
program roots (registers, stacks, and statics), and other ob-
jects are transitively reachable. Suppose leak pruning selects
three references to prune, labeledsel in the figure:b1 → c1,
b3 → c3, andb4 → c4.

3.3 Reclaiming Reachable Memory

During a full-heap collection in thePRUNE state, the col-
lector repeats its analysis, but this time poisons selectedref-
erences and reclaims all objects reachable only from these
references as shown in Figure 4. The collector reclaims ob-
jects reachableonly from pruned references since it does not
trace pruned references. The subtree rooted atc4 is not re-
claimed because it is transitively reachable from the roots
via objecte1.

Leak pruning poisons a reference by setting its second-
lowest-order bit (Section 4.4). Setting the reference tonull

is insufficient since that could change program semantics.
If the program accesses a poisoned reference, the VM in-
tercepts the access and throws an internal error with an at-
tached out-of-memory error. This behavior preserves seman-
tics since the program previously ran out of memory when it
entered thePRUNE state for the first time.

3.4 Exception and Collection Semantics

The Java VM specification says that anOutOfMemoryError

can be thrown only at program points responsible for allo-
cating resources, e.g.,new expressions or expressions that
may trigger to class initialization [27]. Program accesses
to pruned memory are at reference loads, which are not
memory-allocating expressions. The Java specification how-
ever permitsInternalError to be thrown asynchronously at



Figure 3. Example heap after theSELECT state.Refer-
ences selected for pruning are marked withsel.

Figure 4. Example heap at the end of GC inPRUNE

state.Poisoned references end in an asterisk (*).

any program point. Our implementation thus throws an
InternalError if the program accesses a pruned reference.

When the VM runs out of memory, leak pruning records
and defers the error. However, if the application can catch
and handle the out-of-memory error, then deferring the er-
ror violates semantics. Catching out-of-memory errors is un-
common since these errors are not easy to remedy. In Java,
a regulartry { ... } catch (Exception ex) { ... } will not catch
an OutOfMemoryError since it is on a different branch of
the Throwable class hierarchy. Some applications, such as
Eclipse, catch all errors in an outer loop and allow other
components to proceed, but the Eclipse leaks we evaluate
cannot do useful work after they catch out-of-memory er-
rors. Deciding whether to reclaim memory or throw an out-
of-memory error when there is a correspondingcatch block,
should be an option set by users or developers. Our imple-
mentation currently always reclaims memory when it runs
out of memory.

Leak pruning may affect object finalizers, which are cus-
tom methods that help clean up non-memory resources when
an object is collected, e.g., to close a file associated with an
object. Pruning causes objects to be collected earlier than
without pruning, so calling finalizers could change program
behavior. A strict leak pruning implementation would dis-
able finalizers for the rest of the program after it started prun-
ing, which does not technically violate the Java specification
since there is no timeliness guarantee for finalizers. Our im-

plementation currently continues to call finalizers after prun-
ing starts, which would likely be the option selected by users
and developers in order to avoid running out of non-memory
resources while tolerating memory leaks.

3.5 Helping Programmers and Users

Leak pruning provides information for leak diagnostics.
When the VM first runs out of memory, leak pruning op-
tionally reports an out-of-memory “warning.” If the pro-
gram later accesses a pruned reference, the VM throws an
InternalError whosegetCause() method returns the original
OutOfMemoryError. In verbose mode, leak pruning provides
information about the data structures chosen for pruning by
theSELECT state, as well as the reasons they were selected.

4. Algorithm and Implementation
This section describes our algorithm and implementation
for predicting which reachable objects are leaked, selecting
which references to prune, poisoning them, and detecting
attempted accesses to poisoned references. Leak pruning
first identifies references to data structures that are highly
stale. It prunes stale data structures based on the following
criteria: (1) no instance of the data structure was stale fora
while and then used again, and (2) the data structures contain
many bytes.

4.1 Predicting Dead Objects

Our prediction algorithm has the following key objectives:
(1) perfect accuracy, (2) high coverage, and (3) low over-
head. If the prediction algorithm is not perfect, the program
will access a pruned object and will terminate. However, if
the prediction algorithm is not aggressive enough, it will not
prune all the leaking objects. Of course, predicting liveness
perfectly in all cases is beyond reach, but we have developed
an algorithm with high coverage and accuracy that works
well in many cases. Any prediction algorithm preserves cor-
rectness since leak pruning ensures accesses to reclaimed
memory are intercepted (Section 3).

Since leaks add space and time overhead, the prediction
algorithm should not make matters even worse. In particu-
lar, we should not add space proportional to the objects in
the heap. Our algorithm steals three available bits in object
headers and two unused lowest-order bits in object-to-object
references.

4.2 TheOBSERVE State

Tracking staleness. In the OBSERVE state, leak prun-
ing tracks each object’sstaleness, i.e., how long since the
program last used it. Our implementation maintains stal-
eness using a three-bitlogarithmic stale counterin each
object’s header (an idea borrowed from prior leak detection
work [8]). A valuek in an object’s stale counter means the
program last used the object approximately2

k collections
ago. We maintain each stale counter’s value by (1) incre-



menting object counters in each collection and (2) inserting
instrumentation to clear an object’s counter when it is used.

The collector keeps an exact count of the number of
full-heap garbage collections. Every full-heap collection i

increments an object’s stale counter if and only ifi evenly
divides2

k, wherek is the current value of the counter. In
addition, the collector sets the lowest bit of every object-to-
objectreference, which is available since objects are word-
aligned. Setting this bit allows for a quick test in application
instrumentation of whether the target object’s stale counter
has been reset since the last collection [9].

The baseline and optimizing compilers (see Section 5) in-
sert read barriers(instrumentation at every reference load,
e.g.,b = a.f) [7] that reset the referenced object’s (b) stale
counter. The instrumentation is efficient because it first
checks if the lowest bit of the reference (a.f) is cleared;
if so, it knows a read barrier previously clearedb’s stale
counter. The following pseudocode shows the read barrier:

b = a.f; // Application code

if (b & 0x1) { // Read barrier

// out-of-line cold path

t = b; // Save ref

b &= ~0x1; // Clear lowest bit

a.f = b; [iff a.f == t] // Atomic

b.staleCounter = 0x0; // Atomic

}

If a reference’s lowest bit is set, the barrier clears this bit
and also clears the referenced object’s stale counter. Thus,
the barrier condition is true at most once for each reference
after each full-heap collection, i.e., in the common case, the
barrier’s body does not execute, so we put itout-of-linein a
separate method.

The barrier stores the updated reference atomically to
avoid overwriting another thread’s write. The notation[iff

a.f == t] indicates the store occurs if and only if the ref-
erence slot has not been modified by another thread. If the
store fails, the barrier simply continues, which is a valid
serialization since another thread will have written a valid
value with its lowest bit cleared toa.f, and the current
thread can safely use the referenceb. The barrier also clears
b.staleCounter atomically to avoid losing updates to other
bits in the object header (used for locking and hashing in
many VMs). Since the barrier condition is usually false, the
atomic stores add unnoticeable overhead.

Edge table. In the OBSERVE state, leak pruning starts
maintaining anedge tableto track the staleness of heap ref-
erences based on type. For a stale edge in the heap,src →
tgt, the table records the Java class of the source and tar-
get objects:srcclass → tgtclass. Each entry summarizes an
equivalence relationship over object-to-object references:
two references are equivalent if their source and target ob-
jects each have the same class. Each edge entrysrcclass →
tgtclass records:bytesUsed (used in theSELECT state) and
maxStaleUse, which identifies edge types that are stale for
a long time, but not dead. Leak pruning only prunes ob-

Figure 5. Example heap during theSELECT state.

jects that are more stale than their entry’smaxStaleUse. We
record inmaxStaleUse the all-time maximum value oftgt’s
stale counter when a barrier accesses a referencesrcclass →
tgtclass. The read barrier executes the following code as part
of its out-of-line cold path:

if (b.staleCounter > 1)

edgeTable[a.class->b.class].maxStaleUse =

max(edgeTable[a.class->b.class].maxStaleUse,

b.staleCounter);

The update occurs only if the object’s stale counter is at
least 2, since a value of 1 is not very stale (stale only since
the last full-heap collection). We find stale objects are used
infrequently, and the edge table update occurs infrequently.

4.3 TheSELECT State

A full-heap collection inSELECT choosesone edge type
for pruning. It divides the regular transitive closure, which
marks live all reachable objects, into two phases:

1. The in-use transitive closurestarts with the roots (reg-
isters, stacks, statics) and marks live objects, except for
when it encounters a stale reference whose target object
has a stale counter at least two greater than its edge ta-
ble entry’smaxStaleUse value. We conservatively use two
greater, instead of one, since the stale counters only ap-
proximate the logarithm of staleness. These references
arecandidatesfor pruning. Instead of processing them,
we put them on acandidate queue.

2. Thestale transitive closurestarts with references in the
candidate queue; these references’ target objects are the
roots of stale data structures. It computes the bytes reach-
able from each root, i.e., the size of the stale data struc-
ture. The stale closure adds this value tobytesUsed for the
edge entry for the candidate reference.

At the end of this process, leak pruning iterates over each
entry in the edge table, finding the entry with the greatest
bytesUsed value, and it resets allbytesUsed values. This edge
type is used for pruning in thePRUNE state.



Example. Figure 5 shows the heap and an edge table for
Figures 3 and 4 duringSELECT. Each object is annotated
with the value of its stale counter. The in-use closure adds the
references markedcand to the candidate queue, but it does
not addb2 → c2 sincec2’s stale counter is less than 2. It also
does not adde1 → c4. Its stale counter must be at least 4, i.e.,
2 more than themaxStaleUse of 2 for E → C in this example.
The stale closure processes the objects reachable only from
candidate references, which are shaded gray. Objectsc4,
d7, andd8 are processed by thein-use closuresince they
are reachable from non-candidate referencee1 → c4. If we
suppose each object is 20 bytes, thenbytesUsed for B → C

is 120 bytes. This edge entry is selected for pruning since it
has the greatest value ofbytesUsed.

4.4 ThePRUNE State

During collection inPRUNE, the collector again divides the
transitive closure into in-use and stale closures, but in the in-
use closure it prunes all references that correspond to the se-
lected edge type and whose target objects have staleness val-
ues that are at least two more than the entry’smaxStaleUse.
The collector poisons each refence in the candidate set by
setting itssecond-lowestbit. The collector does not trace the
reference’s target. Future collections see the reference is poi-
soned and do not dereference it.

4.5 Intercepting Accesses to Pruned References

In order to intercept program accesses to pruned references,
we overload the read barrier’s conditional to check the two
lowest bits:

b = a.f; // Application code

if (b & 0x3) { // Check two lowest bits

// out-of-line cold path

if (b & 0x2) { // Check if pruned

InternalError err = new InternalError();

err.initCause(avertedOOME);

throw err;

}

/* rest of read barrier */

}

The read barrier body checks for a poisoned reference by
examining the second-lowest bit. If the bit is set, the barrier
throws anInternalError. To help users and developers, it at-
taches the originalOutOfMemoryError thatwouldhave been
thrown earlier.

4.6 Garbage Collection

The implementation’s design is compatible with moving
and non-moving collectors such as copying, compacting,
and mark-sweep, all of which are in use by modern high-
performance VMs. We use a parallel, stop-the-world, gener-
ational mark-sweep collector since it has high performance
and also performs well in tight heaps [5]. This collector al-
locates objects into anursery; when the nursery fills, the
collector traces the live nursery objects and copies them into
a mark-sweepmature space. When the mature space fills,

the collector performs a full-heap collection that traverses
and marks all reachable objects and then reclaims all un-
reachable objects.

4.7 Concurrency and Thread Safety

Our implementation supports multi-threaded programs ex-
ecuting on multiple processors. Above, we discussed how
atomic stores in the read barrier preserve thread safety. The
edge table is a global structure that can be updated by mul-
tiple threads in the read barrier or during collection. We
need global synchronization only on the edge table when
adding a new edge type, which is rare. We never delete an
edge table entry. When updating an entry’s data, we could
use fine-grained synchronization to protect the particularen-
try. Since we expect conflicts to be rare, andbytesUsed and
maxStaleUse are parameters to an algorithm whose result
does not affect program correctness, we do not synchronize
their updates.

By default, the garbage collector is parallel [5]. It uses
multiple collector threads to traverse all reachable objects.
The implementation uses a shared pool from which threads
obtain local work queues to minimize synchronization and
balance load. Because many objects have multiple refer-
ences to them, the collector prevents more than one thread
from processing an object with fine-grained synchronization
on the object. We piggyback on these mechanisms to im-
plement the in-use and stale transitive closures. In the stale
closure, a single thread processes all objects reachable from
a candidate edge. The stale closure is parallel since multiple
collector threads can process the closures of distinct candi-
dates simultaneously.

5. Performance of Leak Pruning
This section measures the overhead leak pruning adds to
observe and select references for pruning.

VM configurations. We implement leak pruning in Jikes
RVM 2.9.2, a high-performance Java-in-Java virtual ma-
chine [1, 2, 24]. The DaCapo benchmark regression tests
page [15] shows that Jikes RVM performs the same as Sun
Hotspot 1.5, and between 15 to 20% worse than Sun 1.6,
JRockit, and J9 1.9, all configured for high performance.
Our performance measurements are therefore relative to an
excellent baseline. We will make our implementation pub-
licly available on the Jikes RVM Research Archive [25] in
January 2009.

By default, Jikes RVM uses two compilers. It uses a
baseline non-optimizing compiler to generate machine code
when it first loads a class. Over time, it identifies hot meth-
ods and recompiles them with increasingly more aggressive
compiler optimizations. This default execution behavior is
calledadaptivecompilation. Because Jikes RVM uses timer-
based sampling to identify hot methods, adaptive compila-
tion is nondeterministic. To achieve determinism, we usere-
play compilation [23, 34, 41], which uses profile informa-
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Figure 6. Application execution time overhead of leak pruning. Sub-bars are GC time.

tion from a previous adaptive execution to compile the same
methods identically and deterministically. It thus avoidshigh
variability due to sampling-driven compilation. For replay,
we execute the benchmarktwice in one JVM instance. The
first run compiles all methods while running the program.
The second executes only the application. This second exe-
cution is representative of steady-state application behavior.
We use this configuration to measure overheads only. We use
adaptive compilation when evaluating leaky programs.

Jikes RVM’s Memory Management Toolkit (MMTk) [5]
supports a variety of garbage collectors with most function-
ality residing in shared code. Our implementation resides al-
most exclusively in this shared code. To add support for leak
pruning to another collector requires adding a method that
specifies which space(s) contain objects that leak pruning
should track. Because the VM is written in Java, VM objects
reside in the heap. For simplicity and efficiency, we do not
prune VM objects or objects directly pointed to by roots.

Benchmarks. We measure leak pruning’s overhead on
the DaCapo benchmarks version 2006-10-MR1, a fixed-
workload version of SPECjbb2000 calledpseudojbb, and
SPECjvm98 [6, 43, 44].

Platform. Experiments execute on a dual-core 3.2 GHz
Pentium 4 system with 2 GB of main memory running Linux
2.6.20.3. Each processor has a 64-byte L1 and L2 cache line
size, a 16-KB 8-way set associative L1 data cache, a 12-
Kµops L1 instruction trace cache, and a 1-MB unified 8-way
set associative L2 on-chip cache.

Application overhead. Leak pruning adds overhead be-
cause it inserts read barriers into application code and tracks
staleness and selects references to prune during garbage col-
lection. Using replay compilation, Figure 6 shows applica-
tion and collection times without compilation. Execution
times are normalized toBase, which is unmodified Jikes
RVM. Each bar is the mean of five trials; the error bars show
the range across trials. Replay compilation keeps variability
low in all cases except forbloat; we observe this variabil-
ity in other versions, and it is unrelated to leak pruning. To
control the memory size, we fix the heap at two times the
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Figure 7. Normalized collection times for leak pruning
across heap sizes(y-axis starts at 1.0).

minimum in which each benchmark can run. The sub-bars
at the bottom are the fraction of time spent in collection.

The Barriers configuration includes only leak pruning’s
read barriers. Leak pruning does not need barriers in theIN-

ACTIVE state, so non-leaking programs would not experi-
ence this overhead. For simplicity, our implementation uses
all-the-time read barriers, but a production version of leak
pruning could trigger recompilation of all methods with read
barriers when leak pruning entered theOBSERVE state. On
average, barriers slow execution by 6%. This overhead is
comparable to barrier overheads for concurrent, incremen-
tal, and real-time collectors [3, 16, 36]. With the increasing
importance of concurrent software and the advent of trans-
actional memory hardware, future general-purpose hardware
is likely to provide read barriers with no overhead, and Azul
hardware has them already [13].

Observeshows the overhead of theOBSERVE state. For
these experiments, we force theOBSERVE state all the time.
This configuration adds updating of each object’s staleness
header bits during collection and updating ofmaxStaleUse

for edge types that become stale but are used later. Simi-
larly, theSelectconfiguration represents the overhead of al-
ways being in theSELECT state: performing the stale trace,
updates tobytesUsed in the edge table, and selection of an
edge type to prune. These configurations add no noticeable
overhead since they mainly add collection overhead, which
accounts for 2% of overall execution time on average.



Leak (LOC) Leak pruning’s effect Reason
EclipseCP (2.4M) Runs>100X longer All reclaimed?
EclipseDiff (2.4M) Runs>200X longer Almost all reclaimed
ListLeak (9) Runs indefinitely All reclaimed
SwapLeak (33) Runs indefinitely All reclaimed
MySQL (75K) Runs 35X longer Most reclaimed
SPECjbb2000 (34K) Runs 4.7X longer Some reclaimed
JbbMod (34K) Runs 21X longer Most reclaimed
Mckoi (95K) Runs 1.6X longer Some reclaimed
DualLeak (55) No help None reclaimed
Delaunay (1.9K) No help Short-running

Table 1. Ten leaks and leak pruning’s effect on them.

Garbage collection overhead.Figure 7 plots the geometric
mean of normalized GC time over all the benchmarks as
a function of heap sizes ranging from 1.5 to 5 times the
minimum heap size in which each benchmark executes. The
smaller the heap size, the more often the program exhausts
memory and invokes the collector.Observe adds up to 5%
overhead to mark the lowest bit of references and update
staleness. Selecting references to prune every collections
adds 9% more, for a total of 14%.

Compilation overhead. Inserting read barriers adds com-
piler overhead by increasing the code size and thus work
for downstream optimizations. To mitigate this overhead, the
compilers insert only the conditional test and a method call
for the barrier’s body. We measure compilation time using
the first run of replay methodology. Read barriers increase
code size by 10% on average and 15% at most (forjavac). In-
serting read barriers adds 17% to compilation time on aver-
age and at most 34% (forraytrace). In practice this overhead
is negligible because compilation accounts for just 4% of
overall execution time, and long-running programs are likely
to spend an even smaller fraction of total time compiling.

6. Effectiveness of Leak Pruning
We evaluate the 10 leaks summarized in Table 1. Four are
reported leaks from open-source programs; one is a leak in
an application written by our colleagues; two are leaks in a
benchmark program; and three are third-party microbench-
marks. The table shows lines of code and leak pruning’s ef-
fect.

Leaky program executing with leak pruning fall into three
categories: four execute for at least 24 hours, four execute
longer than without leak pruning, and two do not execute any
longer. Leak pruning fails to execute programs indefinitely
when: (1) it prunes a reference that the program uses again,
or (2) some or all of a program’s heap growth is not dead.
For the five leaks leak pruning cannot execute indefinitely
other than short-runningDelaunay (MySQL, SPECjbb2000,
JbbMod, Mckoi, andDualLeak), leak pruning fails because
some or all of the program’s heap growth islive. In some
cases, the memory is live because the programmer intention-
ally accesses leaked objects, e.g.,SPECjbb2000 processes

all objects in a list including those that the programmer in-
tended to remove. In other cases, the program inadvertently
accesses objects it no longer needs due to the data structure
implementation. For example, whenMySQL causes the size
of one of its hash tables to grow, it accesses all the elements
to re-hash them.

Other leak tolerance approaches that preserve semantics
also cannot tolerate live leaks since the memory is in use [9,
10, 18, 47]. Leak pruning and Melt [9] perform about the
same on all the leaks except one,JbbMod. (Our leaks are the
same as in Melt since we obtained them from the Melt au-
thors.) Melt (and LeakSurvivor [47]) can run it until the disk
fills, while leak pruning runs it 21 times longer, presumably
because leak pruning fails to identify and prune some frac-
tion of the leak. On the other hand, leak pruning runs some
leaks indefinitely without using disk space. A best-of-both-
worlds approach could store leaks to disk and prune leaks to
avoid running out of disk space. Here we evaluate the most
challenging case: identifying and pruning leaks without us-
ing any disk space to increase the time until heap exhaustion.

We execute each program in a heap chosen to be about
twice the size needed to run the program if it did not leak.
We have evaluated leak pruning with four heap sizes for
each leak (data omitted for space) and found leak pruning’s
effectiveness is generally not sensitive to maximum heap
size, except it sometimes fails to identify and prune the
correct references in tight heaps, since it has little time to
do so.

EclipseCP. Eclipse is a popular integrated development
environment (IDE) with 2 million lines of Java source [17].
Bug report #155889 states that when the user repeatedly cuts
text, saves the file, pastes the text, and saves again, memory
leaks. We reproduce thisEclipseCP (cut-paste) leak by writ-
ing a plugin that repeatedly exercises this sequence with
about 3 MB of text. Each instance of cut-save-paste-save
is an iteration. Leak pruning primarily prunes two types of
references: org.eclipse.jface.text.DefaultUndoManager$Text-

Command → String andorg.eclipse.jface.text.DocumentEvent

→ String. The String objects point to largechar[] objects
containing the cut-paste text. Later, leak pruning selects19
additional types of edges before the 24-hour limit.

Figure 8 shows reachable memory over iterations of
EclipseCP using a logarithmic x-axis. Without leak prun-
ing, it quickly runs out of memory after 11 iterations. Leak
pruning reclaims enough reachable but dead memory to keep
it running for 1,115 iterations, when it reaches the 24-hour
limit. Average reachable memory grows very slowly, but we
do not know if (1) the growth represents edge types with
relatively smallbytesUsed values that will eventually grow
large enough to be reclaimed; (2) the growth is live, and leak
pruning will be unable to reclaim all of it; or (3) the growth
is due to object caching (common in Eclipse) that will get
flushed. Figure 9 showsEclipseCP the time spent in each
iteration. Leak pruning initially added high overhead (Old
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Figure 8. Reachable memory for EclipseCP with and
without leak pruning (logarithmic x-axis).
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Figure 9. Time per iteration for EclipseCP with and with-
out leak pruning (logarithmic x-axis).

leak pruning) because of an inefficiency in our implemen-
tation’s read barriers that impactedEclipseCP significantly.
We recently fixed this inefficiency (New leak pruning), but
with this fix, leak pruning runs out of memory onEclipseCP

before 24 hours. We will investigate for the final paper. Leak
pruning keeps performance steady in the long term and runs
over 100 times longer.

EclipseDiff. Eclipse bug #115789 performs a structural re-
cursive compare (diff ) and leaks memory in Eclipse 3.1.2.
EclipseDiff reproduces it with a plugin that repeatedly per-
forms structural diffs. The program leaks because each diff
creates an entry in a component calledNavigationHistory that
points to objects of typeResourceCompareInput. The entries
in the NavigationHistory and theResourceCompareInput are
not dead since Eclipse traverses the list and accesses them.
However, a large subtree with the diff results is rooted at
eachResourceCompareInput object and is dead. Leak prun-
ing selects and prunes several edge types with source type
ResourceCompareInput.

EclipseDiff with leak pruning should eventually exhaust
memory since some heap growth is live, but the subtree
rooted at eachResourceCompareInput is comparatively much
larger, so leak pruning turns a fast-growing leak into a very
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Figure 10. Time per iteration for EclipseDiff (logarithmic
x-axis).

slow-growing leak. We runEclipseDiff with leak pruning for
24 hours, and it does not run out of memory.

Figure 1 (page 3) shows reachable memory in the heap
with and without leak pruning for its first 2,000 iterations.
Figure 10 plots time for each iteration for all 55,780 it-
erations, using a logarithmic x-axis. Selection and pruning
during GC extend some iterations up to 2X, but long-term
throughput stays consistent.

ListLeak. ListLeak is a simple and fast-growing leak posted
on the Sun Developer Network [46] that repeatedly adds, but
does not remove, new objects to a linked list. To measure
progress, we count every megabyte of allocation as an iter-
ation. Each time leak pruning enters theSELECT state, leak
pruning correctly selects a single reference with edge type
java.util.LinkedList$Entry → java.util.LinkedList$Entry. Prun-
ing this reference disconnects the stale part of the linked list,
and the collector reclaims it.

SwapLeak. SwapLeak is also from a post on the Sun Devel-
oper Network [45]. It replaces a collection of objects with
new objects but inadvertently retains the old objects. We put
this behavior in a loop to create a growing leak. Leak prun-
ing repeatedly identifies the correct edge type to prune to
reclaim the old objects. Diagnosing this leak is challenging
since objects are kept live by invisible references from an
instance of an inner class back to its parent class instance,
but leak pruning provides an automatic fix without needing
to understand the leak.

MySQL. TheMySQL leak is a simplified version of a JDBC
application from a colleague. The application eventually ex-
hausted memory unless it acquired a new connection period-
ically. The leak, which is in the JDBC library, occurs because
SQL statements executed on a connection remain reachable
unless the connection is closed or the statements are explic-
itly closed. TheMySQL leak repeatedly creates a SQL state-
ment and executes it on a JDBC connection; we count 1,000
statements as an iteration. The application stores the state-
ment objects in a hash table. The program periodically ac-
cesses them when the hash table grows and re-hashes its el-
ements. Although the hash table and statements are live, the



statements each reference a dead data structure with many
more bytes, so leak pruning can significantly increase the
lifetime of this leaky program. It correctly selects and prunes
several types of references from statement objects, allowing
the leak to execute 35 times longer.

SPECjbb2000. SPECjbb2000 is a Java benchmark that sim-
ulates an order processing system [44]. It has a known, grow-
ing leak that manifests when the program is run for a long
time without changing warehouses. It adds but does not re-
move some orders. We count 100,000SPECjbb2000 transac-
tions as an iteration. Leak pruning cannot tolerateSPECjbb-

2000’s leak indefinitely because the program accesses orders
in the order list, keeping them live. However, leak pruning
can still reclaim some memory. This leak grows very slowly.
Leak pruning prunes 82 distinct edge types, most near the
end of the run, sometimes netting fewer than 100 bytes. For
example, leak pruning deletes character set objects in the
class libraries that the application is not using. The program
ultimately accesses a pruned reference. A production imple-
mentation of leak pruning could avoid pruning references
that do not yield many bytes since they give little benefit.

JbbMod. BecauseSPECjbb2000 has significantlive heap
growth, Tang et al. modified it so much of its heap growth
is stale [47]. We call this versionJbbMod, and leak pruning
runs it for about 10 hours before exhausting memory, exe-
cuting 20X more iterations. Since other leak tolerance ap-
proaches handle this leak until they exhaust disk [9, 47], we
believe that leak pruning fails to identify and prune some
small fraction of leaked objects, and we plan to confirm this
for the final paper.

Mckoi. Mckoi SQL Database is a database management
system written in Java [29]. We reproduce a leak reported on
aMckoi message board: if a program repeatedly opens, uses,
and closes a connection, the program leaks memory.Mckoi

does not properly dispose of a thread associated with each
connection. Our implementation currently cannot reclaim a
thread’s stack because it is a VM object, but we could modify
it to detect leaked threads and prune them and their stacks.
Without these modifications, leak pruning runsMckoi 60%
longer by reclaiming dead memory referenced by leaked
threads.

DualLeak. DualLeak is a microbenchmark leak from an
IBM developerWorks column [19]. We call itDualLeak be-
cause it has two different leaks in its 55 lines of source.
The first leak is due to an off-by-one error that inadvertently
leaves anInteger in a Vector on each iteration. The second
leak adds multipleString objects to aHashSet. Leak pruning
cannot reclaim any memory because all of the heap growth
is live. The program accesses all theIntegers in theVector on
each iteration. And when theHashSet grows, it accesses all
theStrings in order to re-hash them.

Delaunay. Delaunay is an application provided by col-
leagues that generates a triangle mesh for a set of points,

Leak Base Most stale Indiv refs Default
EclipseCP 11 10 41 ≥1,115
EclipseDiff 259 228 3,380 ≥55,780
ListLeak 110 108 Same→ ≥2,788,755
SwapLeak 5 5 11 ≥11,368
MySQL 18 35 114 634
SPECjbb2000 135 97 625 632
JbbMod 204 41 911 4,267
Mckoi 44 47 71 72
DualLeak 145 149 144 143

Table 2. Effectiveness of several selection algorithms.
Baseis unmodified Jikes RVM. The other columns are se-
lection algorithms for leak pruning.

but inadvertently causes graph components removed from
the graph to remain reachable. Unlike the other leaks,De-

launay is short-running: it generates a mesh and exits. It uses
more memory than it needs to, but not an unbounded amount
and we therefore omit it from the remainder of the results.
Leak pruning does not have enough time to observe the leak
and prune profitable references.

7. Accuracy and Sensitivity
This section examines implementation considerations. It
shows that (1) the prediction mechanism in leak pruning
is more accurate than just staleness or ignoring data struc-
ture sizes, (2) leak pruning is effective given various mem-
ory bounds imposed by the system on the application, (3)
its space overhead is small, and (4) completely exhausting
memory before pruning can initially degrade performance
significantly.

Alternative prediction algorithms. This section evaluates
whether our algorithm’s complexity is merited, by compar-
ing it to two simpler alternatives:

Most stale. In the SELECT state, this algorithm identifies
the highest staleness level of any object. In theDELETE

state, it prunes all references to every object with this
staleness level. This is effectively the same algorithm
used by approaches that move objects to disk [9, 10, 18,
47].

Individual references. This algorithm is similar to our de-
fault, except that it elides the stale transitive closure. In
SELECT, it updates the edge table forevery reference
whose target object’s stale counter is at least 2 greater
thanmaxStaleUse. Each update simply adds the size of
the target object to the edge type’sbytesUsed value. Thus,
this algorithm identifies individual leaked references, not
leaked data structures.

Table 2 shows the effectiveness of these prediction algo-
rithms measured in iterations. For example,EclipseCP with
Indiv refs terminates after 41 iterations because the algo-
rithm selects and prunes highly staleString → char[] refer-
ences. The program later tries to use one of these references.



Live Heap size / Longevity increase Edge
Leak mem Default types
EclipseCP ˜300M 300M NH 400M 5.9X 500M >100X 1000M ? 2,203
EclipseDiff ˜84M 100M 23X 150M >2h 200M >200X 500M >2h 1,817
ListLeak <40M 25M NH 50M >2h 100M >25,000X 200M >2h 56
SwapLeak ˜64M 75M >2h 100M >2h 200M >2,200X 500M >2h 83
MySQL <40M 50M NH 100M 42X 200M 35X 500M >2h 230
SPECjbb2000 ˜50M 55M 14X 65M 3.7X 75M 4.7X 100M >4h 197
JbbMod ˜50M 55M 137X 65M 150X 75M 21X 100M >2h 209
Mckoi ˜40M 32M 2.6X 48M 2.0X 64M 1.6X 128M 1.5X 308
DualLeak <40M 32M 1.3X 48M 1.2X 64M NH 128M NH 69

Table 3. Leak pruning’s effectiveness with various maximumheap sizes.NH means “no help.”>2h (> 4h) means the
program ran past a 2-hour (4-hour) limit. The last column is entries in the edge table.

In contrast, our default algorithm prunes reference types
org.eclipse.jface.text.DefaultUndoManager$TextCommand →
String andorg.eclipse.jface.text.DocumentEvent → String, au-
tomatically reclaiming the growing, leakedStrings without
accidentally deleting other liveStrings. In general, our algo-
rithm matches or outperforms the others since (1) it consid-
ers references’ types (unlikeMost stale) and (2) it considers
data structures (unlikeIndividual references, which tries to
identify each leaked reference type).

Varying the Heap Size. This section evaluates leak prun-
ing’s effectiveness in various maximum heap sizes since its
actions are sensitive to heap fullness. Table 3 shows how
leak pruning compares to unmodified Jikes RVM for a vari-
ety of heap sizes. TheDefault column shows the heap size
we use by default for other experiments. It is based on the
non-leaked memory (Live memcolumn): 1.5-2X, with larger
sizes chosen for faster-growing leaks. Simple leaks with lit-
tle non-leaked memory likeListLeak have arbitrary default
heap sizes.

We select one heap size larger and two sizes smaller than
the default because smaller heaps stress leak pruning more:
it has less time and information to make good decisions.
We impose a 2-hour time limit since there are many experi-
ments;>2hmeans it appears leak pruning will perform sim-
ilarly to theDefaultcolumn.SPECjbb2000 needs 4 hours to
run out of memory with a 100 MB heap. Strangely, we had
trouble reproducingEclipseCP’s leak when using leak prun-
ing with a 1000M heap, but we will investigate for the fi-
nal paper. In general, leak pruning performs similarly across
heap sizes. Results vary in some cases because leak pruning
makes different decisions about what to reclaim when there
are no good candidates (the heap is full of live heap growth):
it may reclaim memory that is used soon, or it may reclaim
some part of the application or libraries that will not be used
again. For example,EclipseDiff at the lowest heap size prunes
live reference incorrectly since it does not have enough ceil-
ing room to differentiate the growing, leaked memory from
other stale memory in the heap.

Space overhead. Our implementation adds space overhead
to store information about edge types in the edge table.
For simplicity, it uses a fixed-size table with 16K slots us-
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Figure 11. Time per iteration for EclipseDiff when it
must exhaust memory prior to pruning.

ing closed hashing [14]. Each slot has four words—source
class, target class,maxStaleUse, andbytesUsed—for a total
of 256K. A production implementation could size the table
dynamically according to the number of edge types. The last
column of Table 3 shows the number of edge types used by
our implementation when it runs each leak. We simply mea-
sure the number of edge types in the edge table at the end of
the run, since we never remove an edge type from the table.
Eclipse is complex and uses a few thousand edge types; the
database and JBB leaks are real programs but less complex
and store hundreds of types; and the microbenchmark leaks
store fewer than 100 edge types.

Full heap threshold. By default, our implementation starts
pruning references when the heap is 90% full (Section 3.2).
However, the user can specify that leak pruning wait to prune
references until the heap is 100% full, i.e., when it is just
about to throw an out-of-memory error. Figure 11 shows
the throughput ofEclipseDiff for its first 600 iterations using
a 100% heap fullness threshold. The first spike, at about
125 iterations, occurs because Eclipse slows significantlyas
GCs become very frequent: each GC reclaims only a small
fraction of memory, so the next GC occurs soon after. Later
spikes are smaller because leak pruning prunes references
when the heap is only 90% full (since the program has
already exhausted memory once); some of the overhead is
due to the overhead of selecting and pruning references. The
spike is about 2.5X greater than the other spikes, which may



be a reasonable trade-off in order to run the program as long
as possible before commencing pruning.

8. Conclusion
Leak pruning is an automatic approach for bounding the
memory consumption of programs with leaks, in many
cases increasing availability significantly. It prunes refer-
ences when the program runs out of memory and intercepts
any future program accesses to these references. Leak prun-
ing adds little or no overhead when there is no leak. If mem-
ory leaks, it preserves semantics while adding overhead low
enough for production use. It improves the user experience
while buying developers time to fix bugs, making it a com-
pelling feature for production systems.
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