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Several fields of mathematics have been closely associated to physics: this has
always been the case for the theory of differential equations. In the early twentieth
century, with the advent of general relativity and quantum mechanics, topics such as
differential and Riemannian geometry, operator algebras and functional analysis, or
group theory also developed a close relation to physics. In the past decade, mostly
through the influence of string theory, algebraic geometry also began to play a
major role in this interaction. Recent years have seen an increasing number of
results suggesting that number theory also is beginning to play an essential part on
the scene of contemporary theoretical and mathematical physics. Conversely, ideas
from physics, mostly from quantum field theory and string theory, have started to
influence work in number theory.
In describing significant occurrences of number theory in physics, we will, on the
one hand, restrict our attention to quantum physics, while, on the other hand, we
will assume a somewhat extensive definition of number theory, that will allow us
to include arithmetic algebraic geometry. The territory is vast and an extensive
treatment would go beyond the size limits imposed by the encyclopaedia. The
choice of topics represented here inevitably reflects the limited knowledge, particular
interests and bias of the author. Very useful references, collecting a lot of material
on Number Theory and Physics, are the proceedings of the Les Houches conferences
[1], [2], [3]. A “Number Theory and Physics” database is presently maintained
online by Matthew R. Watkins.
In the following, we organized the material by topics in number theory that have
so far made an appearance in physics and for each we briefly describe the relevant
context and results. This singles out many themes. We shall first discuss occur-
rences in physics of a class of functions and their special values that are of great
number theoretic importance. This includes the dilogarithm, the polylogarithms
and multiple polylogarithms, and the multiple zeta values. We also discuss the most
important symmetry groups of number theory, the Galois groups, and occurrences
in physics of some forms of Galois theory. We then discuss how techniques from
the arithmetic geometry of algebraic varieties, especially Arakelov geometry, play
a role in string theory. Finally, we discuss briefly the theory of motives and outline
its possible relation to quantum physics. From the physics point of view, it seems
that the most promising directions in which number theoretic tools have come to
play a crucial role are to be found mostly in the realm of rational conformal field
theories and of noncommutative geometry, as well as in certain aspects of string
theory.
Among the topics that are very relevant to this theme, but that I will not touch upon
in this article, there are important subjects like the theory of “arithmetic quantum
chaos”, the use of methods of random matrix theory applied to the study of zeros
of zeta functions, or mirror symmetry and its connection to modular forms. The
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interested reader can find such topics treated in other articles of this encyclopaedia
and in the references mentioned above.

1. Dilogarithm, Multiple polylogarithms, multiple zeta values

The dilogarithm is defined as

Li2(z) =
∫ 0

z

log(1− t)
t

dt =
∞∑

n=1

zn

n2
.

It satisfies the functional equation Li2(z) + Li2(1− z) = Li2(1)− log(z) log(1− z),
where Li2(1) = ζ(2), for ζ(s) the Riemann zeta function. A variant is given by
the Rogers dilogarithm L(x) = Li2(x) + 1

2 log(x) log(1 − x). For more details see
Zagier’s paper in [3].
The polylogarithms are similarly defined by the series Lik(z) =

∑
n≥1

zn

nk . In
quantum electrodynamics, there are corrections to the value of the gyromagnetic
ratio, in powers of the fine structure constant. The correction terms that are
known exactly involve special values of the zeta function like ζ(3), ζ(5) and values
of polylogarithms like Li4(1/2). The series defining the polylogarithm function
Lis(z) =

∑
n≥1

zn

ns converges absolutely for all s ∈ C and |z| < 1 and has analytic
continuation to z ∈ C r [1,∞). The Fermi–Dirac and Bose–Einstein distributions
are expressed in terms of the polylogarithm function as∫ ∞

0

xs

ex−µ ± 1
dx = −Γ(s + 1) Li1+s(±eµ).

The multiple polylogarithms are functions defined by the expressions

(1.1) Li s1,...,sr (z1, z2, . . . , zr) =
∑

n1>n2>···>nr>0

zn1
1 zn2

2 · · · znr
r

ns1
1 ns2

2 · · ·nsr
r

.

By analytic continuation, the functions Li s1,...,sr (z1, z2, . . . , zr) are defined for all
complex si and for zi in the complement of the cut [1,∞) in the complex plane.
Multiple zeta values of weight k and depth r are given by the expressions

(1.2) ζ(k1, · · · , kr) =
∑

n1>n2>···>nr>0

1
nk1

1 · · ·nkr
r

,

with ki ∈ N and k1 ≥ 2. These satisfy many combinatorial identities and nontrivial
relations over Q. For an informative overview on the subject see [7]. Notice that,
in both (1.1) and (1.2), a different summation convention can also be found in the
literature.

1.1. Conformal field theories and the dilogarithm. There is a relation be-
tween the torsion elements in the algebraic K-theory group K3(C) and rational
conformally invariant quantum field theories in two dimensions (see Werner Nahm’s
article [21]). There is, in fact, a map, given by the dilogarithm, from torsion ele-
ments in the Bloch group (closely related to the algebraic K-theory) to the central
charges and scaling dimensions of the conformal field theories.
This correspondence arises by considering sums of the form

(1.3)
∑

m∈Nr

qQ(m)

(q)m
,



NUMBER THEORY IN PHYSICS 3

where (q)m = (q)m1 · · · (q)mr
, (q)mi

= (1 − q)(1 − q2) · · · (1 − qmi) and Q(m) =
mtAm/2 + bm + h has rational coefficients. Such sums are naturally obtained
from considerations involving the partition function of a bosonic rational CFT.
In particular, (1.3) can define a modular function only if all the solutions of the
equation

(1.4)
∑

j

Aij log(xj) = log(1− xi)

determine elements of finite order in an extension B̂(C) of the Bloch group, which
accounts for the fact that the logarithm is multi-valued. The Rogers dilogarithm
gives a natural group homomorphism (2πi)2L : B̂(C) → C/Z, which takes values
in Q/Z on the torsion elements. These values give the conformal dimensions of the
fields in the theory.

1.2. Feynman graphs. Multiple zeta values appear in perturbative quantum field
theory. Dirk Kreimer developed in [12] a connection between knot theory and a
class of transcendental numbers, such as multiple zeta values, obtained by quantum
field theoretic calculations as counterterms generated by corresponding Feynman
graphs. Broadhurst and Kreimer [6] identified Feynman diagrams with up to 9
loops whose corresponding counterterms give multiple zeta values up to weight 15.
Recently, Kreimer showed some deep analogies between residues of quantum fields
and variations of mixed Hodge–Tate structures associated to polylogarithms.
Testing predictions about the standard model of elementary particles, in the hope
of detecting new physics, requires developing effective computational methods han-
dling the huge number of terms involved in any such calculation, i.e. efficient algo-
rithms for the expansion of higher transcendental functions to a very high order.
The interesting fact is that abstract number theoretic objects such as multiple zeta
values and multiple polylogarithms, appear naturally in this context, cf. e.g. [19].
The explicit recursive algorithms are based on Hopf algebras and produce expan-
sions of nested finite or infinite sums involving ratios of Gamma functions and
Z–sums (Euler–Zagier sums), which naturally generalize multiple polylogarithms
and multiple zeta values. Such sums typically arise in the calculation of multi-scale
multi-loop integrals. The algorithms are designed to recursively reduce the Z-sums
involved to simpler ones with lower weight or depth.

2. Galois Theory

Given a number field K, which is an algebraic extension of Q of some degree [K :
Q] = n, there is an associated fundamental symmetry group, given by the absolute
Galois group Gal(K̄/K), where K̄ is an algebraic closure of K. Even in the case
of Q, the absolute Galois group Gal(Q̄/Q) is a very complicated object, far from
being fully understood.
One can consider an easier symmetry group, which is the abelianization of the
absolute Galois group. This corresponds to considering the field Kab, the maximal
abelian extension of K, which has the property that

Gal(Kab/K) = Gal(K̄/K)ab.

The Kronecker–Weber theorem shows that for K = Q the maximal abelian exten-
sion can be identified with the cyclotomic field (generated by all roots of unity),
Qab = Qcycl, and the Galois group is identified with Gal(Qab/Q) ∼= Ẑ∗, where
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Ẑ∗ = A∗f/Q∗
+. In general, for other number fields, one has the class field theory

isomorphism
θ : Gal(Kab/K) '→ CK/DK,

where CK = A∗K/K∗ is the group of idele classes and DK the connected component
of the identity in CK. In general, however, one does not have an explicit description
of the generators of the maximal abelian extension Kab and of the action of the
Galois group. This is the content of the explicit class field theory problem, Hilbert
12th problem. Besides the Kronecker–Weber case, a complete answer is known in
the case of imaginary quadratic fields K = Q(

√
−d), with d > 1 a positive integer.

In this case generators are obtained by evaluating modular functions at a point τ
in the upper half plane such that K = Q(τ) and the Galois action is described ex-
plicitly through the group of automorphisms of the modular field, through Shimura
reciprocity. For a survey of the explicit class field theory problem and the case of
imaginary quadratic fields see [24].
As we mentioned above, understanding the structure of the absolute Galois group
Gal(Q̄/Q) is a fundamental question in number theory. Grothendieck described,
in his famous proposal “Esquisse d’un programme”, how to obtain an action of
Gal(Q̄/Q) on an essentially combinatorial object, the set of “dessins d’enfants”.
These are connected graphs (on a surface) such that the complement of the graph
is a union of open cells and where vertices have two different markings, with the
properties that adjacent vertices have opposite markings. Such objects arise by con-
sidering the projective line P1 minus three points. Any finite cover of P1 branched
only over {0, 1,∞} gives an algebraic curve defined over Q̄. The dessin is the in-
verse image under the covering map of the segment [0, 1] in P1. The absolute Galois
group Gal(Q̄/Q) acts on the data of the curve and the covering map, hence on the
set of dessins. A theorem of Bielyi shows that, in fact, all algebraic curves defined
over Q̄ are obtained as coverings of the projective line ramified only over the points
{0, 1,∞}. This has the effect of realizing the absolute Galois group as a subgroup
of outer automorphisms of the profinite fundamental group of the projective line
minus three points. For a general reference on the subject, see [22]. For graphs
on surfaces, including the theory of “dessins d’enfants” and many applications of
interest to physicists, see also [13].
A different type of Galois symmetry of great arithmetic significance is motivic Galois
theory. This will be discussed later in the section dedicated to motives, where we
discuss a surprising occurrence in the context of perturbative quantum field theory
and renormalization.

2.1. Quantum Statistical Mechanics and Class Field Theory. In quantum
statistical mechanics, one considers an algebra of observables, which is a unital
C∗-algebra A with a time evolution σt. States are given by linear functionals
ϕ : A → C satisfying ϕ(1) = 1 and positivity ϕ(x∗x) ≥ 0. Equilibrium states
ϕ at inverse temperature β satisfy the KMS (Kubo–Martin–Schwinger) condition,
namely, for all x, y ∈ A there exists a bounded holomorphic function Fx,y(z) on the
strip 0 < =(z) < β, which extends continuously to the boundary, such that for all
t ∈ R
(2.1) Fx,y(t) = ϕ(xσt(y)) and Fx,y(t + iβ) = ϕ(σt(y)x).

Cases of number theoretic interest arise when one considers as algebra of observ-
able the noncommutative space of commensurability classes of Q-lattices up to
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scaling, with a natural time evolution determined by the covolume, [9]. A Q-lattice
in Rn consists of a pair (Λ, φ) of a lattice Λ ⊂ Rn together with a homomor-
phism of abelian groups φ : Qn/Zn −→ QΛ/Λ. Two Q-lattices are commensurable,
(Λ1, φ1) ∼ (Λ2, φ2), iff QΛ1 = QΛ2 and φ1 = φ2 mod Λ1 + Λ2.

2.1.1. The Bost–Connes system. The quantum statistical mechanical system con-
sidered by Bost and Connes in [5] corresponds to the case of 1-dimensional Q-
lattices. The partition function of the system is the Riemann zeta function ζ(β).
The system has spontaneous symmetry breaking at β = 1, with a single KMS state
for all 0 < β ≤ 1. For β > 1 the extremal equilibrium states are parameterized by
the embeddings of Qcycl in C with a free transitive action of the idele class group
CQ/DQ = Ẑ∗. At zero temperature, the evaluation of KMS∞ states on elements
of a rational subalgebra intertwines the action of Ẑ∗ by automorphisms of (A, σt)
with the action of Gal(Qab/Q) on the values of the states. This recovers the explicit
class field theory of Q from a physical perspective.

2.1.2. Noncommutative space of adele classes. The algebra A of the Bost–Connes
system is the noncommutative algebra of functions f(r, ρ), for ρ ∈ Ẑ and r ∈ Q∗

such that rρ ∈ Ẑ, with the convolution product

(2.2) f1 ∗ f2 (r, ρ) =
∑

s∈Q∗:sρ∈Ẑ

f1(rs−1, sρ)f2(s, ρ),

and the adjoint f∗(r, ρ) = f(r−1, rρ). According to the general philosophy of
Connes style noncommutative geometry, it is the algebra of coordinates of the
noncommutative space defined by the “bad quotient” GL1(Q)\(Af × {±1}) – a
noncommutative version of the zero-dimensional Shimura variety Sh(GL1, {±1}) =
GL1(Q)\(GL1(Af )× {±1}). Its “dual system” (in the sense of Connes’s duality of
type III and type II factors) is obtained by taking the crossed product by the time
evolution. It gives the algebra of coordinates of the noncommutative space defined
by the quotient A/Q∗. This is the noncommutative space of “adele classes” used
by Connes in his spectral realization of the zeros of the Riemann zeta function.

2.1.3. The GL2-system. A generalization of the Bost–Connes system was intro-
duced by Connes and Marcolli in [9]. This corresponds to the case of 2-dimensional
Q-lattices. The partition function is the product ζ(β)ζ(β − 1). The system in this
case has two phase transitions, with no KMS states for β ≤ 1. For β > 2, the
extremal KMS states are parameterized by the invertible Q-lattices, namely those
for which φ is an isomorphism. The algebra A has an arithmetic structure given by
a rational algebra of unbounded multipliers. This rational algebra contains mod-
ular functions and Hecke operators. At zero temperature, extremal KMS states
can be evaluated on these multipliers. Symmetries of (A, σt) are realized in part
by endomorphisms (as in the theory of superselection sectors) and the symmetry
group acting on low temperature KMS states is the group of automorphisms of the
modular field GL2(Af )/Q∗. For a generic set of extremal KMS∞ states, evaluation
at the rational algebra intertwines this action with the action on the values of an
embedding of the modular field as a subfield of C.
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2.1.4. The complex multiplication system. In the case of an imaginary quadratic
field K = Q(τ), an analogous construction is possible. A 1-dimensional K-lattice is
a pair (Λ, φ) of a finitely generated O-submodule Λ of C, with ΛK = K, and a ho-
momorphism of O-modules φ : K/O → KΛ/Λ. Two K-lattices are commensurable
iff KΛ1 = KΛ2 and φ1 = φ2 mod Λ1 + Λ2. Connes, Marcolli, and Ramachandran
[10] constructed a quantum statistical mechanical system describing the noncom-
mutative space of commensurability classes of 1-dimensional K-lattices up to scale.
The partition function is the Dedekind zeta function ζK(β). The system has a phase
transition at β = 1 with a unique KMS state for higher temperatures and extremal
KMS states parameterized by the invertible K-lattices at lower temperatures. There
is a rational subalgebra induced by the rational structure of the GL2-system (1-
dimensional K-lattices are also 2-dimensional Q-lattices with compatible notions
of commensurability). The symmetries of the system are given by the idele class
group A∗K,f/K∗. The action is partly realized by endomorphisms corresponding to
the possible presence of a non-trivial class group (for class number > 1). The val-
ues of extremal KMS∞ states on the rational subalgebra intertwine the action of
the idele class group with the Galois action on the values. This fully recovers the
explicit class field theory for imaginary quadratic fields.

2.2. Conformal Field Theory and the absolute Galois group. Moore and
Seiberg considered data associated to any rational conformal field theory, consisting
of matrices, obtained as monodromies of some holomorphic multivalued functions
on the relevant moduli spaces, satisfying polynomial equations. Under reasonable
hypotheses, the coefficients of the Moore–Seiberg matrices are algebraic numbers.
This allows for the presence of interesting arithmetic phenomena. Through the
Chern–Simons/Wess–Zumino–Witten correspondence, it is possible to construct
three-dimensional topological field theories from solutions to the Moore–Seiberg
equations.
On the arithmetic side, Grothendieck proposed in his “Esquisse d’un programme”
the existence of a Teichmüller tower given by the moduli spaces Mg,n of Riemann
surfaces of arbitrary genus g and number of marked points n, with maps defined by
operations such as cutting and pasting of surfaces and forgetting marked points, all
encoded in a family of fundamental groupoids. He conjectured that the whole tower
can be reconstructed from the first two levels, providing, respectively, generators
and relations. He called this a “game of Lego–Teichmüller”. He also conjectured
that the absolute Galois group acts by outer automorphisms on the profinite com-
pletion of the tower. The basic building blocks of the tower are provided by “pairs
of pants”, i.e. by projective lines minus three points.
This leads to a conjectural relation between the Moore–Seiberg equations and
this Grothendieck–Teichmüller setting, cf. [11], according to which solutions of
the Moore–Seiberg equations provide projective representations of the Teichmüller
tower, and the action of the absolute Galois group Gal(Q̄/Q) corresponds to the
action on the coefficients of the Moore–Seiberg matrices.
Rational conformal field theories are, in general, one of the most promising sources
of interactions between number theory and physics, involving interesting Galois
actions, modular forms, Brauer groups, complex multiplication. Some fundamental
work in this direction was done by authors such as Borcherds, Gannon, etc.
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3. Arithmetic algebraic geometry

In this section we describe occurrences in physics of various aspects of the arithmetic
geometry of algebraic varieties.

3.1. Arithmetic Calabi-Yau. In the context of type II string theory, compact-
ified on Calabi-Yau threefolds (see the relevant articles in this encyclopaedia for
more information), Greg Moore [20] considered certain black hole solutions and a
resulting dynamical system given by a differential equation in the corresponding
moduli. The fixed points of these equations determine certain “black hole attractor
varieties”. In the case of varieties obtained from a product of elliptic curves or of
a K3 surface and an elliptic curve, the attractor equation singles out an arithmetic
property: the elliptic curves have complex multiplication. The class number of the
corresponding imaginary quadratic field counts U-duality classes of black holes with
the same area. Other results point to a relation between the arithmetic properties
of Calabi-Yau threefolds and conformal field theory. For instance, it was shown by
Schimmrigk that, in certain cases, the algebraic number field defined via the fusion
rules of a conformal field theory as the field defined by the eigenvalues of the integer
valued fusion matrices

φi ∗ φj = (Ni)k
j φk

can be recovered from the Hasse–Weil L-function of the Calabi–Yau. An interesting
case is provided by the Gepner model associated with the Fermat quintic Calabi-
Yau threefold.

3.2. Arakelov Geometry. For K a number field and OK its ring of integers, a
smooth proper algebraic curve X over K determines a smooth minimal model XOK ,
which defines an arithmetic surface XOK over Spec(OK). The closed fiber X℘ of
XOK over a prime ℘ ∈ OK is given by the reduction mod ℘.
When Spec(OK) is “compactified” by adding the archimedean primes, one can
correspondingly enlarge the group of divisors on the arithmetic surface by adding
formal real linear combinations of irreducible “closed vertical fibers at infinity”.
Such fibers are only treated as formal objects. The main idea of Arakelov geometry
is that it is sufficient to work with “infinitesimal neighborhood” Xα(C) of these
fibers, given by the Riemann surfaces obtained from the equation defining X over K
under the embeddings α : K ↪→ C that constitute the archimedean primes. Arakelov
developed a consistent intersection theory on arithmetic surfaces, by computing the
contribution of the archimedean primes to the intersection indices using hermitian
metrics on these Riemann surfaces and the Green function of the Laplacian.
A general introduction to the subject of Arakelov geometry can be found in [14].
Manin showed in [15] that these Green functions can be computed in terms of
geodesics in a hyperbolic 3-manifold that has the Riemann surface Xα(C) as its
conformal boundary at infinity.

3.2.1. The Polyakov measure. A first application to physics of methods of Arakelov
geometry was an explicit formula obtained by Beilinson and Manin [4] for the
Polyakov bosonic string measure in terms of Faltings’s height function at algebraic
points of the moduli space of curves.
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The partition function for the closed bosonic string has a perturbative expansion
Z =

∑
g≥0 Zg, with

(3.1) Zg = eβ(2−2g)

∫
Σ

e−S(x,γ) DxDγ,

written in terms of a compact Riemann surface Σ of genus g, maps x : Σ → Rd,
and metrics γ on Σ. The classical action is of the form

(3.2) S(x, γ) =
∫

Σ

d2z
√
|γ| γab∂axµ ∂bx

µ.

Using the invariance of the classical action with respect to the semidirect product
of diffeomorphisms of Σ and the conformal group, the integral is reduced (in the
critical dimension d = 26 where the conformal anomaly cancels) to a zeta regu-
larized determinant of the Laplacian for the metric on Σ and an integration over
the moduli space Mg of genus g algebraic curves. Beilinson and Manin gave an
explicit formula for the resulting Polyakov measure on Mg using results of Faltings
on Arakelov geometry of arithmetic surfaces. In particular, their argument uses es-
sentially the properties of the Faltings metrics on the invertible sheaves d(L) given
by the “multiplicative Euler characteristics” of sheaves L of relative 1-forms. For a
suitable choice of bases {φj} and {wj} of differentials and quadratic differentials,
the formula for the Polyakov measure is then of the form (up to a multiplicative
constant)

(3.3) dπg = |detB|−18(det=τ)−13 W1 ∧ W̄1 ∧ · · · ∧W3g−3 ∧ W̄3g−3,

with τ in the Siegel upper half space, Bij =
∫

ai
φj , and the Wj given by the images

of the basis wj under the Kodaira–Spencer isomorphism.

3.2.2. Holography. In the case of the elliptic curve Xq(C) = C∗/qZ, a formula of
Alvarez-Gaume, Moore, and Vafa gives the operator product expansion of the path
integral for bosonic field theory as

(3.4) g(z, 1) = log

(
|q|B2(log |z|/ log |q|)/2|1− z|

∞∏
n=1

|1− qnz| |1− qnz−1|

)
,

where B2 is the second Bernoulli polynomial. The expression (3.4) is in fact the
Arakelov Green function on Xq(C) (cf. [14]).
Using this and analogous results for higher genus Riemann surfaces, Manin and
Marcolli showed in [18] that the result of [15] on Arakelov and hyperbolic geometry
can be rephrased in terms of the AdS/CFT correspondence, or holography princi-
ple. The expression (3.4) can then be written as a combination of terms involving
geodesic lenghts in the Euclidean BTZ black hole.
In the case of higher genus curves, the Arakelov Green function on a compact
Riemann surface, which is related to the two point correlation function for bosonic
field theory, can be expressed in terms of the semiclassical limit of gravity (the
geodesic propagator) on the bulk space of Euclidean versions of asymptotically
AdS2+1 black holes introduced by Kirill Krasnov.
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4. Motives

There are several cohomology theories for algebraic varieties: de Rham, Betti,
étale cohomology. de Rham and Betti are related by the periods isomorphism
and comparison isomorphisms relate étale and Betti cohomology. In the smooth
projective case, they have the expected properties of Poincaré duality, Künneth iso-
morphisms, etc. Moreover, étale cohomology provides interesting `-adic representa-
tions of Gal(k̄/k). In order to understand what type of information, such as maps or
operations can be transferred from one to another cohomology, Grothendieck intro-
duced the idea of the existence of a “universal cohomology theory” with realization
functors to all the known cohomology theories for algebraic varieties. He called
this the theory of motives. Properties that can be transferred between different
cohomology theories are those that exist at the motivic level. A short introduction
to motives can be found in [23].
The first constructions of a category of motives proposed by Grothendieck covers
the case of smooth projective varieties. The corresponding motives form a Q-linear
abelian category of pure motives. Roughly, objects are varieties and morphisms are
correspondences given by algebraic cycles in the product, modulo a suitable equiva-
lence relation. The category also contains Tate objects generated by Q(1), which is
the inverse of the pure motive H2(P1). Grothendieck’s standard conjectures imply
that the category of pure motives is equivalent to the category of representations
RepG of a motivic Galois group, which in the case of pure motives is pro-reductive.
The subcategory of pure Tate motives has motivic Galois group the multiplicative
group Gm. The situation is more complicated for mixed motives, for which con-
structions were only very recently proposed (for instance in the work of Voevodsky).
These provide a universal cohomology theory for more general classes of algebraic
varieties. Mixed Tate motives are the subcategory generated by the Tate objects.
There is again a motivic Galois group. For mixed motives it is an extension of a
pro-reductive group by a pro-unipotent group, with the pro-reductive part coming
from pure motives and the pro-unipotent part from the presence of a weight filtra-
tion on mixed motives. The multiple zeta values appear as periods of mixed Tate
motives.

4.1. Renormalization and motivic Galois theory. A manifestation of motivic
Galois groups in physics arises in the context of the Connes–Kreimer theory of
perturbative renormalization (for an introduction to this topic see the relevant ar-
ticle in this Encyclopaedia). In fact, according to the Connes–Kreimer theory,
the BPHZ (Bogoliubov–Parasiuk–Hepp–Zimmerman) renormalization scheme with
dimensional regularization and minimal subtraction can be formulated mathemat-
ically in terms of the Birkhoff factorization

(4.1) γ (z) = γ−(z)−1 γ+(z)

of loops in a pro-unipotent Lie group G, which is the group of characters of the
Hopf algebra of Feynman graphs. Here the loop γ is defined on a small punctured
disk around the critical dimension D, γ+ is holomorphic in a neighborhood of D
and γ− is holomorphic in the complement of D in P1(C). The renormalized value
is given by γ+(D) and the counterterms by γ−(z).
In [8], Connes and Marcolli showed that the data of the Birkhoff factorization are
equivalently described in terms of solutions to a certain class of differential systems
with irregular singularities. This is obtained by writing the terms in the Birkhoff
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factorization as time ordered exponentials, and then using the fact that

Te
R b

a
α(t) dt := 1 +

∞∑
n=1

∫
a≤s1≤···≤sn≤b

α(s1) · · · α(sn) ds1 · · · dsn

is the value g(b) at b of the unique solution g(t) ∈ G with value g(a) = 1 of the
differential equation dg(t) = g(t) α(t) dt.
The type of singularities are specified by physical conditions, such as the indepen-
dence of the counterterms on the mass scale. These conditions are expressed geo-
metrically through the notion of G-valued equisingular connections on a principal
C∗-bundle B over a disk ∆, where G is the pro-unipotent Lie group of charac-
ters of the Connes–Kreimer Hopf algebra of Feynman graphs. The equisingularity
condition is the property that such a connection ω is C∗-invariant and that its
restrictions to sections of the principal bundle that agree at 0 ∈ ∆ are mutually
equivalent, in the sense that they are related by a gauge transformation by a G-
valued C∗-invariant map regular in B, hence they have the same type of (irregular)
singularity at the origin.
The classification of equivalence classes of these differential systems via the Riemann–
Hilbert correspondence and differential Galois theory yields a Galois group U∗ =
U o Gm, where U is pro-unipotent, with Lie algebra the free graded Lie algebra
with one generator e−n in each degree n ∈ N. The group U∗ is identified with the
motivic Galois group of mixed Tate motives over the cyclotomic ring Z[e2πi/N ], for
N = 3 or N = 4, localized at N .

4.2. Speculations on arithmetical physics. In a lecture written for the 25th
Arbeitstagung in Bonn, Yuri Manin presented intriguing connections between arith-
metic geometry (especially Arakelov geometry) and physics [16]. The theme is also
discussed in his “reflections on arithmetical physics” [17]. These considerations are
based on a philosophical viewpoint according to which fundamental physics might,
like adeles, have archimedean (real or complex) as well as non-archimedean (p-adic)
manifestations. Since adelic objects are more fundamental and often simpler than
their archimedean components, one can hope to use this point of view in order
to carry over some computation of physical relevance to the non-archimedean side
where one can employ number theoretic methods.

4.2.1. Adelic physics? Some of the results mentioned in the previous sections seem
to lend themselves well to this adelic interpretation. The quantum statistical me-
chanics of Q-lattices relies fundamentally on adeles and it admits generalizations
to systems associated to other algebraic varieties (Shimura varieties) that have an
adelic description and adelic groups of symmetries. The result on the Polyakov
measure also has an adelic flavor, in as it uses essentially the archimedean compo-
nent of the Faltings height function. The latter is in fact a product of contributions
from all the archimedean and non-archimedean places of the field of definition of
algebraic points in the moduli space, so that one can expect that there would be
an adelic Polyakov measure, of which one normally sees the archimedean side only.
The Freund–Witten adelic product formula for the Veneziano string amplitude fits
in the same context, with p-adic amplitudes

Bp(α, β) =
∫

Qp

|x|α−1
p |1− x|β−1

p dx
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and B∞(α, β)−1 =
∏

p Bp(α, β), cf. [25].

4.2.2. Adelic physics and motives. A similar adelic philosophy was taken up by
other authors, who proposed ways of introducing non-archimedean and adelic ge-
ometries in quantum physics. A recent survey is given in [25]. For instance, Volovich
[26] proposed space-time models based on cohomological realizations of motives,
with étale topology “interpolating” between a proposed non-Archimedean geome-
try at the Planck scale and Euclidean geometry at the macroscopic scale. In this
viewpoint, motivic L-functions appear as partition functions and actions of motivic
Galois groups govern the dynamics.
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