
A Language for Writing Code Generators

Christopher W. Fraser
AT&T Bell Laboratories

Murray Hill, NJ 07974

Introduction

This paper describes a programming language for writ-
ing code generators. The language abbreviates repet-
itive constructs, simplifies encoding, and assumes re-
sponsibility for making the code generator small and
fast. As a result, a specification for the VAX takes 126
lines, one for the Motorola 68020 takes 156, and one for
the MIPS R3000 takes 75.

Each specification is compiled into a fast, monolithic
C program that accepts dags (directed acyclic graphs)
annotated with intermediate code, and generates, op-
timizes, and emits code for the target machine. The
code generators are used with a front end for ANSI C.
The resulting compilers emit code similar to pcci’s, but
they run about twice as fast. The compilers are in use
by small research groups at Bell Labs and Princeton
University and by classes at Princeton.

The technique described here stands in sharp con-
trast to recent methods for retargetable code genera
tion, including the author’s:

Most recent systems accept non-procedural machine
descriptions and produce tables for a compile-time
interpreter. The current system accepts a com-
pact representation of a program and emits a hard-
coded code generator. The current system’s specifi-
cations have a modest procedural aspect, but they
are smaller than the specifications required by most
high-tech code generators.

Most recent systems use sophisticated techniques to
generate their tables, but the current system uses a
preprocessor whose operation is largely transparent.

For correspondence: C. W. Fraser, AT&T Bell Laboratories 2C-
464,600 Mountain Avenue, Murray Hill, NJ, 07974.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice and
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM

copyright notice and the title of the publication and its date appear, and notice is

It’s like parsers: one can look at a recursive descent
parser and “see” the grammar behind it, but it is
difficult to see any meaningful patterns in an LR ta
ble. Transparent operation is not always important,
but it helps when things go wrong.

Most recent systems rely on general-purpose algo-
rithms with applications beyond just code genera-
tion: Graham-Glanville systems [2, 8] rely on LR
parsing, Twig and BURS systems [l, lo] rely on re-
cent advances in pattern matching on trees [3, 9]
and systems based on retargetable peephole optimiz-
ers [4] rely on symbolic simulation. In contrast, the
technique underlying the current system suits code
generation and little else.

This project grew out of experience with a system
that tracked the operation of a high-tech peephole opti-
mizer and generated a hard-coded code generator from
the trace [7]. The current system generates similar code
generators directly from a compact document that cap-
tures their entropy.

Representation

Programs in the code generation language consist prin-
cipally of simple rewriting rules. Some rules rewrite
intermediate code as naive assembly code. Others
peephole-optimize the result.

Currently, the front end and the rule language de-
note operators in the intermediate code by short strings
like ADDI, which adds integers. The ADD denotes a
generic operator, and the I denotes the type of the re-
sult and, for most operators, the type of the operands
as well. The current intermediate code has 43 generic
operators, nine type suffixes, and 139 valid combina-
tions thereof. It would be straightforward to adapt the
rule language and compiler to a different intermediate
code.

The rule language denotes each target machine in-
struction with an assembler instruction “template”.

given that copying is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1989 ACM O-8979 I -306-X/89/0006/0238 $ I .50

238

cwfraser
Note
© ACM, 1989. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the ACM SIGPLAN 1989 Conference on Programming Language Design and Implementation, {0362-1340, (1989)} http://doi.acm.org/10.1145/73141.74839

For example, the display below informally represents
several VAX instructions:

mov{b u 1 f d} y,z
{add sub mu1 div}{b u 1 f d}3 x,y,z

A similar sketch might note that the operands include
strings like rn and c(m). The rule language formal-
izes such sketches by replacing variant portions with
placeholders of the form %a. For example, “mov%t
Xy,%? denotes a generic move instruction and “%f%t3
%x , %y , Xz” denotes a generic three-operand arithmetic
instruction. %t denotes a type suffix (b, w, f, 1, d),
%f a binary operator (add, sub, etc), and %x, %y, and
%z operand templates. Operand templates are repre-
sented similarly. For example, a register operand is
represented with the string r%n, and a displacement-
mode operand with %c(r%n).

The code generators accept dags annotated with in-
termediate code. The portion of the node structure
relevant here is

struct node (
int op;
int count;
struct node *kids [MAXKIDSI ;
struct symbol *syms CMAXSYMSI ;
int ints CMAXINTSI ;

op identifies the node’s operation; the rule language
allows the retargeter to treat this field as a string
like ADD1 or “mov%t %y ,)/.z”, but for efficiency the
rule compiler collects these strings in a table and
henceforth represents them with their integer table
index. ints CO. .MAXINTS-I] play a similar role in
encoding values for placeholders like those for the
VAX’s binary operators, type suffixes and operand
templates above. count holds the node’s reference
count. kids CO. .MAXKIDS-11 point to the dag nodes
that develop the values used by the current node.
syms CO. . MAXSYMS-II point to the entries in the symbol
or constant tables that are used by the current instruc-
tion.

MAXKIDS is a machine-specific constant. The front
end needs at most three children per node, but target
machines may need more. Once an intermediate code
dag has been rewritten as assembly code, a node’s chil-
dren are the instructions that set the registers it reads,
After optimization, the VAX compiler uses instructions
with up to three operands, each of which may use a
base register and an index register, so the VAX code
generator runs with MAXKIDS set to six.

MAXSYMS is also machine-specific. The front end
needs at most one symbol per node, for nodes that de-
velop simple addresses and constant values. The VAX

compiler, however, may need one symbol for each of its
three operands, so the VAX code generator runs with
MAXSYMS set to three.

MAXINTS completes the set of machine-specific array
sizes. The code generator may use integers internally
to bind some placeholders. The VAX code generator
does so for f, t, and the three operand templates, so
it runs with UAXINTS set to five. As with the op field,
the rule language allows the retargeter to treat these
fields as if they were strings, but for efficiency the rule
compiler collects these strings in a table and henceforth
represents them with their integer table index.

Programs in the rule language read, test, and write
the fields of such nodes, so these fields comprise the
“variables” of the language. By default, the rule lan-
guage denotes op as “.“, count as %“, syms CO. .21
as SO-S2, kids CO. .Sl as KO-K5, and ints CO. .4l as
10-14. The retargeter may give them more mnemonic
names by preceding the rules with the declarations

%symnames name . . .
%kidnames name . . .
%intnames name . . .

which enumerate, in order, the names to be used. For
example, after

Gymnames yc xc ix
%kidnames yn xn zn yi xi zi
%intnames ym xm zm f t

the rules may use yc for SO, xc for Sl, etc.

Names with a common prefix (like the four that start
with y above) are like the target-specific structures used
in hand-written code generators to represent multi-part
operands. For example, in the “structure” y, “field,, m
holds the assembler template for the addressing mode,
c holds the constant part, and n and i point to the
children that develop the base and index registers, re-
spectively. The declarations above impose a machine-
specific organization on a machine-independent struc-
ture. Confining the machine-specific interpretation to
the file of rules simplifies retargeting.

To interpret an assembler template (say, to generate
output), placeholders are replaced with the values of
the corresponding fields. For example, if f denotes add
and t denotes 1 then the template substring %f%t3 de-
notes add13. If there is no corresponding field but the
placeholder is a prefix of an intname, then the place-
holder is replaced with the value of that field. For ex-
ample, none of the declaration lines above defines a
field named x, but they do define xm as an intname, so
the value of xm replaces the placeholder %x in “%f%t3
%x,%y,Xz”. When interpreting such a “structure” field,
the name of the structure as a whole is used to disam-
biguate subordinate placeholders. For example, if xm

239

holds $%c, then the xc is replaced with the value of
xc, not yc or zc. Placeholders that denote children are
replaced with the name of the child’s result register.
For example, if xm holds r(/m, then the %n denotes the
name of xn’s result register. Registers are assigned af-
ter peephole optimization has reduced the demand for
registers.

Thus the rule language makes it appear as though
the instruction add13 r6 ,r? ,r8 is represented as a
node with the following fields:

. = “%f%t3 %x,%y,%z”
f = @@add@’
t = “1”

xm = ly$/--”

xn = address of node that develops r6
ym = “r%n”
yn = address of node that develops r7
zm = "r%c"

ZC = “SB1 after register allocation

The rule compiler implements this representation by as-
signing appropriate values to the node’s op, ints, kids
and syms fields. For instance, if “%i%t3 %x,%y ,%z” oc-
cupies position 722 in the table of intermediate codes
and assembler templates, then the rule compiler im-
plements the first line above by assigning 722 to the op
field of the node that represents the add13. If the string
“add” has been recoded it9 the integer 1, then the rule
compiler implements the second line above by assigning
1 to the node’s inta t31, which the declarations above
allocated to hold f.

Code Generation Rules

The rule language has two basic operators: “==” tests
and “=” assigns. Most rules are short, and the opera
tions are collected on one line. The double-column for-
matting here requires line breaks, so indentation flags
material normally combined with the previous line.
The following rule generates naive code for integer ad-
dition:

. ==“ADDI”

.="%f%t3 %x,%y,%z"
f="add"
t=q,,

xm= "r%n"
ym=“r:Xn”
zm="r%c"
yn=KO
xn=Kl

It verifies the presence of the ADD1 opcode and then
rewrites the node in place by simply assigning the fields
as outlined above. Only code generation rules use the
Kn notation. They do so to communicate with the front

end, which uses the first positions in kids to indicate
each node’s children.

Rules may be abbreviated by substituting constant
strings for their placeholders. Thus the rule above
would normally be expressed as

. =d’ADDI”
.=“addl3 r’/Jl,r%n,r%c”
yn=KO
xn=K 1

The rule compiler is given a list of the valid assembler
instruction templates and addressing strings, so it can
dismantle the “add13 r%n,r%n,r%c” above and inter-
nally produce the initial, expanded version of this rule.

Comparisons involving intermediate codes may sep-
arately test the generic operator and the type suffix,
by testing op (not to be confused with the op field in
dag nodes) and type. For example, the rule above is
equivalent to

. =“addl3 r%n, r%n, r%c”
yn=KO
xn=Kl

This feature collaborates with another to offer addi-
tional abbreviations. A line of the form

Game old=new . . .

defines a set of translations. For example,

%ty C=b D=d F=f I=1 P=l S=a U=l V=l

declares the translation of the intermediate code’s type
suffixes (C, D, etc, for the C types char, double, etc)
to the corresponding VAX type suffixes (b for bytes, d
for doubles, etc). The declaration of a translation set
does nothing by itself, but when @name appears as a
comparand in a rule, the rule compiler automatically
replicates the rule, once for each pair in the translation
set. For example, in

op==“ADD”
type==aty
.=“add%t3 r%n,r%n,r%c”
t=cD1
yn=KO
xn=K I

the @ty tells the rule compiler to replicate the rule eight
times, once for each pair in the translation set ty. Each
old value replaces the @ty and the corresponding new
value replaces the @I. Thus the rule above generates

op=="ADD"

type=+C"

-“add%t3 r%n, r%n, r%c” .-
t=“,,”

240

yn=KO
xn=Kl

op&'ADD"

type&Q"

-"add%t3 rXn,rXn,r(/.c" .-
t="d"
yn=KO
xn=Kl

The rule compiler is given a table of the valid opcodes,
so it can ignore invalid combinations like ADDV, which
would add voids.

Rules may expand multiple translation sets. The
@digit is a positional parameter: 01 refers to the new
component of the rule’s first translation set, 02 refers
to the second, etc. Thus the lines

%bin ADD=add BOR=bis BXOR=xor DIV=div
LSH=ash MOD=mod MUL=mul SUB=sub

%ty C=b D=d F=f I=1 P=l S=w U=l V=l
op==@bin

type==cDty
.=“%f%t3 r%n,rjln,rjlc”
f=W
t=(D2
yn=KO
xn=Kl

collaborate to enumerate 64 variations on a single rule.
32 of them test valid intermediate opcodes. The rest
are automatically discarded. The variations for ash
and mod represent fictitious instructions: the real VAX
ash opcode does not use the suffix 3, and there is no
mod instruction at all. The actual instructions used,
however, benefit from the same peephole optimizations
that benefit all binary instructions, so it is convenient
to temporarily grant ash and mod first-class citizenship.
Later rules will map them onto real instructions just
before output. The retargeter is free to use fictitious
instructions so long as they are removed before code is
emitted.

Special caSes may also be handled by preceding a
general rule with one tailored to the exceptions. For
example, the VAX code generator implements unsigned
division and modulus by calling the routines udiv and
urem, so the general rule above is preceded with a spe-
cial one for these two operations:

.==(DIVU=udiv MODU=urem)
(funcop(a,O, I> >
.="~a119 $2,%c"
yc=cDl

This rule introduces two new syntactic forms. First,
the notation (old=new . ..3 gives an anonymous, in-line
translation set; it is equivalent to Qtemp, where temp is

a translation set of the given pairs. Second, the not+
tion (expr) executes an arbitrary C expression. In the
expression, a denotes a pointer to the current node.
The particular call here removes kids CO. . 11 from the
current node and hangs them underneath “argument”
nodes; this is necessary because the compiler treats
arguments not as children of the call but as separate
nodes in the forest of dags. The remaining assignments
rewrite the node as a call to the appropriate routine.
Such escapes into arbitrary C are rare but provided be-
cause it is impractical for any code generation language
to anticipate every need.

Naive VAX code generation requires 27 rules and
nine translation sets. The compiler can be boot-
strapped with just these plus perhaps ten more rules
to correct fictitious instructions and perform the most
crucial optimizations. Less orthogonal targets require
a few more rules. For example, the 68020 uses differ-
ent instruction templates for floating point and inte-
ger arithmetic, so the 68020 rules replace ty with two
smaller translation sets, which are used by two sepa
rate, but similar rules.

Optimization Rules

It is easy to generate naive code, and it has been shown
that thorough peephole optimization can yield good in-
struction selection even when the original code genera-
tor is confined to a RISC subset of the target machine
[43. So the code generation rules are augmented with
highly factored rules for peephole optimization.

Optimization rules are written in the same language
as code generation rules, though the idioms differ some-
what. Code generation rules match intermediate code
and yield target code, but optimization rules match tar-
get code and yield (better) target code. Most code gen-
eration rules examine only one node because naive code
generation requires little contextual analysis. Most op-
timization rules examine two nodes, and rewrite one of
them so that it no longer needs the other.

Consider the VAX code fragment:

movl 4(rS),r6
movl $l,(r6)

If this is the only use of r6, the fragment should be
replaced with an indirect store:

movl $1,*4(r5)

An important part of this optimization is the transla-
tion of an operand template from %c (r%n> to *xc (r%n) .
This translation uses a translation set:

%toInd “%c”=“*Xc” “Xc (r%n) “=“*Xc (r’/J1) ” . . .

The redundancy above may be avoided. A translation
set’s name may be followed by a “replacement pattern”,

241

borrowed from the substitution command of the UNIX
text editor ed. When the new half of the pair is omit-
ted, it is derived automatically by substituting the old
half for any ampersands in the replacement pattern.
For instance, the declaration

%toInd/*&/ l%cO’ %(r%n) I1 . . .

is equivalent to the longer one above. Any new half
overrides the replacement pattern. For example, ap-
pending “r%n”=” (r%n>” to the set above records that
an indirect register reference is written (r%n>, not
*r%n. For additional abbreviation, the declaration of
one translation set, may enumerate another. For exam-
ple, the VAX rules include the translation set,

%addr FOBMAL='%c(ap)"
GLOBAL="&"
LOCAL=%(

which supports the translation of the intermediate
codes that develop the addresses of simple variables.
When enumerated in the definition of another transla-
tion set like toInd

%toInd/*&/ cDaddr . . .

the rule compiler discards the old half of the addr trans-
lations and acts as if the declaration had been

%toInd/*&/ %(ap)” “-Xc” ‘*%c(fp)” . . .

Thus translation sets are generally built up in stages.
Even though an operand template like %c(fp> appears
in several versions (eg, with and without indirection
and indexing), it is usually possible to type it only once,
into a basic translation set, like addr, which is then
included as a unit into larger translation sets like toInd.

The rule that uses this translation set is

--“mov%t %y , (r%n>” .--
zn. ==“mov%t %y , %z”
/#==I
/ym==QtoInd
zm=Ol
zc=/yc
zn=/yn

The first condition asks if the current instruction is a
move with an indirect target. The second asks if the
child that prepares the target address is another move.
In the rule language, composite variables like zn. are
formed by concatenating simple variables like zn and
“. “; zn denotes a child and “. ” denotes an opcode,
so zn. denotes a child’s opcode. Simple concatenation
would be a liability if complex composite variables were
needed, but peephole optimizations don’t need them.
The third condition above, /#==I, asks if the child’s
reference count is one. Once a condition has examined

one field of a child, the pseudo-variable “/” abbrevi-
ates the name of that child, so after testing zn., /# is
equivalent to zn#. This shorthand saves little space,
but it, helps reduce errors. The last condition above,
/ym==QtoInd, asks if the child’s source operand tem-
plate is one of the modes that has an indirect version.
(Many don’t, like those that already involve indirec-
tion.) As with code generation rules, the rule compiler
implements cDtoInd by replicating the rule once for each
element of the translation set.

The three assignments above are straightforward.
The zm=@l changes the target operand template to use
the translation of the child’s source template. The
zc=/yc and zn=/yn hoist up the fields that are used
by both the old and new templates; in the example
instruction

movl 4(r5) ,r6

from the head of this section, the zc=/yc pulls up the
4 and the zn=/yn pulls up the address of the child that
develops r5. This last assignment overwrites the last
pointer to the child, and thus effectively deletes it.

The rule above does not change the opcode. The
current instruction remains a move after the optimiza-
tion. It simply uses a different target operand template,
so the peephole optimization is implemented by chang-
ing that template and leaving the instruction template
alone.

The Generated Code Generator

Most of the rules are compiled into a monolithic routine
called rewrite, which accepts a pointer to a dag and
rewrites the dag in place with naive and then optimized
target code. The retargeter may regard rewrite as a
long if-then-else chain that implements each expanded
rule in order, but the rule compiler makes five transfor-
mations that arrange a much faster and much smaller
equivalent:

1. When adjacent rules start with the same condition,
the rule compiler factors out the common part and
tests it only once. The indirection rule above bene-
fits because expanding toInd yields many copies of
the rule, and they all share several common leading
tests.

2. When adjacent rules start by comparing one field
with a series of constants, the comparisons are im-
plemented with a C switch. The indirection rule
benefits again because, once the rule compiler has
stripped the common prefix from the replicated
rules, the remaining conditions compare /ym with
a series of constants.

3. When adjacent cases in a switch perform the same
action, the rule compiler arranges for them to share

242

4.

5.

A

code. This transformation benefits some of the code
generation rules above: they specify the same ac-
tions for integer, pointer and unsigned additions, so
these three cases label the same code.

When transformation 3 yields a switch(x) with
multiple case labels but only one action, the rule
compiler replaces it with

if (t [xl) action

It arranges for array t to record which values of x
require the action and which fell through the old
switch. The rule compiler knows the range of x,
which is generally small enough that the table can
cover the range and eliminate the switch’s implicit
range check, so the resulting program is faster. This
transformation benefits rules that ask if an address-
ing template is in a certain class, but then perform
a common action for all members of the class.

When all actions in a switch(x) differ by only a sin-
gle constant in a common position, the rule compiler
replaces it with

if (s=t [xl) action

where the action has been edited to use s instead of
the constant. Note that the “=” above denotes as-
signment, not an equality test. This transformation
benefits the indirection rule, the replicated copies of
which differ only by the value tested in /ym==QtoInd
and assigned in zm=Qi, so they can be implemented
by testing and assigning a value from a table.

portion of the resulting rewrite appears below.

rewrite(register struct node *a) (
register struct node *b;
switch (a->op) (
. . .
case 309: L309: /* ADD1 */
case 310: L310: /* ADDU */
case 311: L311: /* ADDP */

setreg(a, sregs) ;
rewrite(a->kids CO1) ;
rewrite(a->kids Cl1) ;
a->ints [31 = 1; /* add */
a->intsC41 = 41; /* 1 */
a->ints[ll = 37; /* r%n */
a->ints[Ol = 37; /* r%n */
a->ints[21 = 43; /* r%c */
goto L722; /* %f%t3 %x,%y,%z */

. . .
case 720: L720: /* mov%t %y,%z */

switch (a->ints[21) (. . . 1
switch (a->ints[OI) < . . . 1
a->op = 720;
break;

. . .
1

1

When rewrite is entered, the opcode will denote inter-
mediate code unless the node has been already rewrit-
ten as the result of previous references, so the switch
usually goes to a case like the one for ADD1 above, which
was generated from the expanded rule for ADDI:

. ==“ADDI”
.=“%f?!t3 %x,%y,%z”
f=“add”
t=q,,
~=“r;/n”
yAL=“r~*l”
zm=“rl/,c”
yn=KO
xn=Kl

The first three lines are the result of two declarations
not previously shown. One states that the default regis-
ter set for integer operations is called sregs, so this case
uses the macro setreg to record this fact for the table-
driven register allocator, which runs after rewrite fin-
ishes with the dag. The other states that addition is
binary, so this case thus includes two recursive calls on
rewrite to process the node’s children.

The next five statements implement the assignments
to f, t, xm, ym, and zm. The rule’s assignments yn=KO
and xn=Ki are omitted because yn and xn already oc-
cupy KO and Kl; the layout was chosen because these
assignments were particularly common, but it may be
possible to choose such efficient layouts automatically.

The rule’s assignment to “.” is implemented by
jumping to the case that optimizes the template as-
signed. The value of a->op is read only at the head of
rewrite, so there is no need to keep it up-to-date until
the node is completely optimized and control leaves the
switch, via a break like the one shown above.

The optimization cases are typified by case 720
above, which improves move instructions. The two
subordinate switches examine the integer codes for the
operand templates assigned to zm and ym, which are
represented by the values stored in a->ints [2] and
a->ints COI, respectively. The first of these switches
includes the case that implements the indirection rule
above, which is reproduced below in a leading com-
ment:

/*
.-- --“mov%t %y , (r%n) I’

zn . ==“mov%t %y ,X2”
/#==I
/ym==@toInd
zm=@i
zc=/yc
zn=/yn

*/

243

case 20: /* tr%n) */
b= a->kids 121;
switch (b->op) (
case 720: /* mov%t %y,%z */

if (
b->count == I
&& (s=T4 [b->ints CO1 I)
1 iI

a->ints[21 = s;
a->syms C21 = b->syms CO] ;
a->kids [2l = b->kids CO1 ;
goto L720; /* mov%t %y,%z */

3
break;

. . .

Merely arriving at case 20 above ensures the rule’s first
condition is met. The second is checked by fetching a
pointer to the child and switching on its opcode. The
rule compiler uses a switch because there are other rules
that combine an indirect store with other children, so
there are other cases following case 720 above. Arriv-
ing at case 720 above ensures that the rule’s second
condition is met, and the rule’s last two conditions are
tested explicitly. The assignment to s above asks if the
operand template has an indirect version and fetches
the index of that version. The other assignments im-
plement those from the rule, and the goto jumps to
the case that improves the resulting opcode. In this
instance, the rule changed an operand, not the opcode,
so control returns to the current outermost case label.

The complete optimization case for move instruc-
tions is about 300 lines, and it is one of the biggest.
Some of the switches have only two or three cases, so
the compiler implements them with condition chains.
Even so, heavy use of nested if statements means that
even this large case identifies and makes a typical peep-
hole optimization in perhaps 8 comparisons (two VAX
instructions each), 5 assignments (one each), and a
jump.

A few rules need to examine register assignments.
These rules are segregated from the others by placing
them after the directive %f inal in the file of rules. They
are compiled into a separate routine called final that
looks like rewrite, but that runs after rewrite and the
register allocator complete. The rules that correct fic-
titious instructions are also generally placed in final,
but none do more than simple one-for-one edits. For
instance, the rule

--“ash%t3 ;/x,%y,Xz” .=“ashl %x,Xy,%z” .--

corrects the over-generalization of ash instructions.
final also implements output, so the rule compiler
turns this rule into

case 722: L722: /* %f%t3 %x,%y,%z */
switch (a->ints [3] > (
case 5: /* ash */

got0 L741; /* ash1 %x,%y,%z */
. . *

case 741: L741: /* ash1 %x,%y,%z */
a->op = 741;
Q = bp;
*bp++ = ‘a’;
*bp++ = ‘s’;
*bp++ = ‘h’;
*bp++ = ‘1’;
*bp++ = ’ ’ ;

bp = emitstruct(bp, a, I>;
, . .

The first case recognizes the invalid shift and jumps
to the second case, which deposits a valid shift in
the output buffer. The rule compiler also writes the
routine emitstruct, which emits the operand pseudo-
structures x, y, and z in much the same way that final
emits instruction templates above: with a switch and
direct, deposit into the output buffer. Strings like ash1
were originally emitted using a loop, but unrolling the
loop as shown above added less than 5kb to the com-
piler and reduced compile times by 5%.

Discussion

The sample rules above demonstrate all principal fea-
tures of the rule language. The rule compiler is writ-
ten in the Icon programming language and takes about
1000 lines. The VAX specification currently takes 126
lines: 22 for translation sets, 27 for the rules that im-
plement naive code generation, 43 for rewrite’s opti-
mization rules, 16 for final’s, and the rest for various
declarations.

The rule compiler turns this specification into a
4000-line C program, which compiles into less than
17kb of code and 8kb of data. final and emitop
take about 5kb; rewrite takes about llkb. They are
compiled with about 8000 lines of machine-independent
code, mostly for the front end, and 500 lines of system-
specific emitters for data definition, function prologues,
and other items that require no instruction selection.
Almost half of the system-specific code emits symbol
tables for the debugger.

A simple experiment was run to demonstrate com-
pilation rates and code quality. The compiler was
compiled five different ways: with itself (ICC), with
the standard 4.3bsd C compiler (cc with and with-
out -O), and with the GNU C compiler (gee with
and without -0). The compile times appear below,
with the sizes of the resulting code segments. These
times include preprocessing, assembly, and linking.

244

compiler user time system time size

cc 64.9 33.5 100k
cc -0 87.1 41.9 90k

SC 63.9 37.7 104k
gee -0 100.7 48.2 83k
ICC 38.9 26.2 100k

ICC compiled the fastest. Its object code was not the
smallest, but it was quite fast. The resulting binaries
were each used five times to compile the largest front
end module, which is almost 1000 lines before prepro-
cessing and about 1600 afterwards. The mean times
appear below.

code from user time system time
cc 2.36 0.86
cc -0 2.22 0.88

WC 2.28 0.98
gee -0 1.78 0.74
ICC 1.80 0.78

Thus gee -0 produced the fastest code for lee, but it
implements many more global optimizations than ICC.
lee’s code for itself was a close second.

The first set of figures above includes preprocessing,
assembly, and linking. To isolate the performance of
the compiler, the large compiler module was prepro-
cessed and then run through cc, gee, and ICC but not
the assembler or linker:

compiler user time system time
cc 4.66 1.70

FC 4.10 1.86
ICC 1.80 0.78

The timings for cc and gee omit -0, which would make
them slower still. Different benchmarks yield differ-
ent results, but, most show that ICC compiles fast and
emits competitive code. The compiler spends about
20% of its time generating, optimizing, and emitting
code, so the speed of the front end contributes im-
portantly to the compilation rate. The front end also
performs machine-independent analysis and transfor-
mations that contribute to the quality of the emitted
code.

On-going work seeks new target machines and more
efficient instruction encodings. Also, the rules could
be simpler [5, 61. With their vpcc compiler, Davidson
and Whalley have shown that successful retargets can
be based on a few very simple rewriting rules, though
their technique currently requires compiIe-time string

matching [6]. 0 n om work seeks a code generator as -g * g
fast as rewrite from rules as simple as vpcc’s.

Acknowledgments

Dave Hanson wrote the front end and many of the
VAX-specific emitters. He also simplified the job of
the back end with countless edits to the interface and
was a constant source of constructive criticism during
the development of the rule language and its compiler.
David Gay, Eleftherios Koutsofios, Kriton Kyrimis and
Howard Trickey cheerfully isolated many bugs for us.

References

1. A. V. Aho and M. Ganapathi, Efficient Tree Pattern
Matching: An Aid to Code Generation, Conf- Ret; i&th
ACM Symp. on Prin. of Programming Languages, Jan.
1985, 334-340.

2. P. Aigrain, S. L. Graham, R. R. Henry, M. K. McKu-
sick, and E. Pelegri-Llopart, Experience with a Graham-
Glanville Code Generator, Proceedings of the SIGPLAN
‘84 Symposium on Compiler Construction, June 1984,

13-24.

3. D. R. Chase, An Improvement to Bottom-up Tree Pat-
tern Matching, Conf. Rec. 14 th ACM Symp. on Prin. of
Programming Languages, Jan. 198’7, 168-177.

4. J. W. Davidson and C. W. Fraser, Code Selection
Through Object Code Optimization, ACM Trans. Prog.
Lang. and Systems 6, 4 (Oct. 1984) 505-526.

5. J. W. Davidson and C. W. Fraser, Automatic Infer-
ence and Fast Interpretation of Peephole Optimization
Rules, Software-Practice lY Experience 17, 11 (Nov.
1987) 801-812.

6. J. W. Davidson and D. B. Wha.lley, Quick Compilers
Using Peephole Optimization, Software-Practice d Ex-
perience 19, 1 (Jan. 1989) 79-97.

7. C. W. Fraser and A. L. Wendt, Automatic Generation
of Fast Optimizing Code Generators, Proceedings of the
SIGPLAN ‘88 Symposium on Compiler Construction,
SIGPLAN Notices 23, 7 (July 1988) 79-84.

8. M. Ganapathi and C. N. Fischer, Affix Grammar Driven
Code Generation, ACM Trans. Prog. Lang. and Systems
7, 4 (Oct. 1985) 560-599.

9. C. Hoffmann and M. J. O’Donnell, Pattern matching in
trees, J. ACM 29, 1 (Jan. 1982) 68-95.

10. E. Pelegri-Llopart and S. L. Graham, Optimal Code

Generation for Expression Trees: An Application of
BURS Theory, Conf. Rec. 15th ACM Symp. on Prin.
of Programming Languages, Jan. 1988, 294-308.

245

