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Introduction 

This paper describes a programming language for writ- 
ing code generators. The language abbreviates repet- 
itive constructs, simplifies encoding, and assumes re- 
sponsibility for making the code generator small and 
fast. As a result, a specification for the VAX takes 126 
lines, one for the Motorola 68020 takes 156, and one for 
the MIPS R3000 takes 75. 

Each specification is compiled into a fast, monolithic 
C program that accepts dags (directed acyclic graphs) 
annotated with intermediate code, and generates, op- 
timizes, and emits code for the target machine. The 
code generators are used with a front end for ANSI C. 
The resulting compilers emit code similar to pcci’s, but 
they run about twice as fast. The compilers are in use 
by small research groups at Bell Labs and Princeton 
University and by classes at Princeton. 

The technique described here stands in sharp con- 
trast to recent methods for retargetable code genera 
tion, including the author’s: 

Most recent systems accept non-procedural machine 
descriptions and produce tables for a compile-time 
interpreter. The current system accepts a com- 
pact representation of a program and emits a hard- 
coded code generator. The current system’s specifi- 
cations have a modest procedural aspect, but they 
are smaller than the specifications required by most 
high-tech code generators. 

Most recent systems use sophisticated techniques to 
generate their tables, but the current system uses a 
preprocessor whose operation is largely transparent. 
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It’s like parsers: one can look at a recursive descent 
parser and “see” the grammar behind it, but it is 
difficult to see any meaningful patterns in an LR ta 
ble. Transparent operation is not always important, 
but it helps when things go wrong. 

Most recent systems rely on general-purpose algo- 
rithms with applications beyond just code genera- 
tion: Graham-Glanville systems [2, 8] rely on LR 
parsing, Twig and BURS systems [l, lo] rely on re- 
cent advances in pattern matching on trees [3, 9] 
and systems based on retargetable peephole optimiz- 
ers [4] rely on symbolic simulation. In contrast, the 
technique underlying the current system suits code 
generation and little else. 

This project grew out of experience with a system 
that tracked the operation of a high-tech peephole opti- 
mizer and generated a hard-coded code generator from 
the trace [7]. The current system generates similar code 
generators directly from a compact document that cap- 
tures their entropy. 

Representation 

Programs in the code generation language consist prin- 
cipally of simple rewriting rules. Some rules rewrite 
intermediate code as naive assembly code. Others 
peephole-optimize the result. 

Currently, the front end and the rule language de- 
note operators in the intermediate code by short strings 
like ADDI, which adds integers. The ADD denotes a 
generic operator, and the I denotes the type of the re- 
sult and, for most operators, the type of the operands 
as well. The current intermediate code has 43 generic 
operators, nine type suffixes, and 139 valid combina- 
tions thereof. It would be straightforward to adapt the 
rule language and compiler to a different intermediate 
code. 

The rule language denotes each target machine in- 
struction with an assembler instruction “template”. 
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For example, the display below informally represents 
several VAX instructions: 

mov{b u 1 f d} y,z 
{add sub mu1 div}{b u 1 f d}3 x,y,z 

A similar sketch might note that the operands include 
strings like rn and c(m). The rule language formal- 
izes such sketches by replacing variant portions with 
placeholders of the form %a. For example, “mov%t 
Xy,%? denotes a generic move instruction and “%f%t3 
%x , %y , Xz” denotes a generic three-operand arithmetic 
instruction. %t denotes a type suffix (b, w, f, 1, d), 
%f a binary operator (add, sub, etc), and %x, %y, and 
%z operand templates. Operand templates are repre- 
sented similarly. For example, a register operand is 
represented with the string r%n, and a displacement- 
mode operand with %c(r%n). 

The code generators accept dags annotated with in- 
termediate code. The portion of the node structure 
relevant here is 

struct node ( 
int op; 
int count; 
struct node *kids [MAXKIDSI ; 
struct symbol *syms CMAXSYMSI ; 
int ints CMAXINTSI ; 

op identifies the node’s operation; the rule language 
allows the retargeter to treat this field as a string 
like ADD1 or “mov%t %y , )/.z”, but for efficiency the 
rule compiler collects these strings in a table and 
henceforth represents them with their integer table 
index. ints CO. .MAXINTS-I] play a similar role in 
encoding values for placeholders like those for the 
VAX’s binary operators, type suffixes and operand 
templates above. count holds the node’s reference 
count. kids CO. .MAXKIDS-11 point to the dag nodes 
that develop the values used by the current node. 
syms CO. . MAXSYMS-II point to the entries in the symbol 
or constant tables that are used by the current instruc- 
tion. 

MAXKIDS is a machine-specific constant. The front 
end needs at most three children per node, but target 
machines may need more. Once an intermediate code 
dag has been rewritten as assembly code, a node’s chil- 
dren are the instructions that set the registers it reads, 
After optimization, the VAX compiler uses instructions 
with up to three operands, each of which may use a 
base register and an index register, so the VAX code 
generator runs with MAXKIDS set to six. 

MAXSYMS is also machine-specific. The front end 
needs at most one symbol per node, for nodes that de- 
velop simple addresses and constant values. The VAX 

compiler, however, may need one symbol for each of its 
three operands, so the VAX code generator runs with 
MAXSYMS set to three. 

MAXINTS completes the set of machine-specific array 
sizes. The code generator may use integers internally 
to bind some placeholders. The VAX code generator 
does so for f, t, and the three operand templates, so 
it runs with UAXINTS set to five. As with the op field, 
the rule language allows the retargeter to treat these 
fields as if they were strings, but for efficiency the rule 
compiler collects these strings in a table and henceforth 
represents them with their integer table index. 

Programs in the rule language read, test, and write 
the fields of such nodes, so these fields comprise the 
“variables” of the language. By default, the rule lan- 
guage denotes op as “.“, count as %“, syms CO. .21 
as SO-S2, kids CO. .Sl as KO-K5, and ints CO. .4l as 
10-14. The retargeter may give them more mnemonic 
names by preceding the rules with the declarations 

%symnames name . . . 
%kidnames name . . . 
%intnames name . . . 

which enumerate, in order, the names to be used. For 
example, after 

Gymnames yc xc ix 
%kidnames yn xn zn yi xi zi 
%intnames ym xm zm f t 

the rules may use yc for SO, xc for Sl, etc. 

Names with a common prefix (like the four that start 
with y above) are like the target-specific structures used 
in hand-written code generators to represent multi-part 
operands. For example, in the “structure” y, “field,, m 
holds the assembler template for the addressing mode, 
c holds the constant part, and n and i point to the 
children that develop the base and index registers, re- 
spectively. The declarations above impose a machine- 
specific organization on a machine-independent struc- 
ture. Confining the machine-specific interpretation to 
the file of rules simplifies retargeting. 

To interpret an assembler template (say, to generate 
output), placeholders are replaced with the values of 
the corresponding fields. For example, if f denotes add 
and t denotes 1 then the template substring %f%t3 de- 
notes add13. If there is no corresponding field but the 
placeholder is a prefix of an intname, then the place- 
holder is replaced with the value of that field. For ex- 
ample, none of the declaration lines above defines a 
field named x, but they do define xm as an intname, so 
the value of xm replaces the placeholder %x in “%f%t3 
%x,%y,Xz”. When interpreting such a “structure” field, 
the name of the structure as a whole is used to disam- 
biguate subordinate placeholders. For example, if xm 
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holds $%c, then the xc is replaced with the value of 
xc, not yc or zc. Placeholders that denote children are 
replaced with the name of the child’s result register. 
For example, if xm holds r(/m, then the %n denotes the 
name of xn’s result register. Registers are assigned af- 
ter peephole optimization has reduced the demand for 
registers. 

Thus the rule language makes it appear as though 
the instruction add13 r6 ,r? ,r8 is represented as a 
node with the following fields: 

. = “%f%t3 %x,%y,%z” 
f = @@add@’ 
t = “1” 

xm = ly$/--” 

xn = address of node that develops r6 
ym = “r%n” 
yn = address of node that develops r7 
zm = "r%c" 

ZC = “SB1 after register allocation 

The rule compiler implements this representation by as- 
signing appropriate values to the node’s op, ints, kids 
and syms fields. For instance, if “%i%t3 %x,%y ,%z” oc- 
cupies position 722 in the table of intermediate codes 
and assembler templates, then the rule compiler im- 
plements the first line above by assigning 722 to the op 
field of the node that represents the add13. If the string 
“add” has been recoded it9 the integer 1, then the rule 
compiler implements the second line above by assigning 
1 to the node’s inta t31, which the declarations above 
allocated to hold f. 

Code Generation Rules 

The rule language has two basic operators: “==” tests 
and “=” assigns. Most rules are short, and the opera 
tions are collected on one line. The double-column for- 
matting here requires line breaks, so indentation flags 
material normally combined with the previous line. 
The following rule generates naive code for integer ad- 
dition: 

. ==“ADDI” 

.="%f%t3 %x,%y,%z" 
f="add" 
t=q,, 

xm= "r%n" 
ym=“r:Xn” 
zm="r%c" 
yn=KO 
xn=Kl 

It verifies the presence of the ADD1 opcode and then 
rewrites the node in place by simply assigning the fields 
as outlined above. Only code generation rules use the 
Kn notation. They do so to communicate with the front 

end, which uses the first positions in kids to indicate 
each node’s children. 

Rules may be abbreviated by substituting constant 
strings for their placeholders. Thus the rule above 
would normally be expressed as 

. =d’ADDI” 
.=“addl3 r’/Jl,r%n,r%c” 
yn=KO 
xn=K 1 

The rule compiler is given a list of the valid assembler 
instruction templates and addressing strings, so it can 
dismantle the “add13 r%n,r%n,r%c” above and inter- 
nally produce the initial, expanded version of this rule. 

Comparisons involving intermediate codes may sep- 
arately test the generic operator and the type suffix, 
by testing op (not to be confused with the op field in 
dag nodes) and type. For example, the rule above is 
equivalent to 

. =“addl3 r%n, r%n, r%c” 
yn=KO 
xn=Kl 

This feature collaborates with another to offer addi- 
tional abbreviations. A line of the form 

Game old=new . . . 

defines a set of translations. For example, 

%ty C=b D=d F=f I=1 P=l S=a U=l V=l 

declares the translation of the intermediate code’s type 
suffixes (C, D, etc, for the C types char, double, etc) 
to the corresponding VAX type suffixes (b for bytes, d 
for doubles, etc). The declaration of a translation set 
does nothing by itself, but when @name appears as a 
comparand in a rule, the rule compiler automatically 
replicates the rule, once for each pair in the translation 
set. For example, in 

op==“ADD” 
type==aty 
.=“add%t3 r%n,r%n,r%c” 
t=cD1 
yn=KO 
xn=K I 

the @ty tells the rule compiler to replicate the rule eight 
times, once for each pair in the translation set ty. Each 
old value replaces the @ty and the corresponding new 
value replaces the @I. Thus the rule above generates 

op=="ADD" 

type=+C" 

-“add%t3 r%n, r%n, r%c” .- 
t=“,,” 
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yn=KO 
xn=Kl 

op&'ADD" 

type&Q" 

-"add%t3 rXn,rXn,r(/.c" .- 
t="d" 
yn=KO 
xn=Kl 

The rule compiler is given a table of the valid opcodes, 
so it can ignore invalid combinations like ADDV, which 
would add voids. 

Rules may expand multiple translation sets. The 
@digit is a positional parameter: 01 refers to the new 
component of the rule’s first translation set, 02 refers 
to the second, etc. Thus the lines 

%bin ADD=add BOR=bis BXOR=xor DIV=div 
LSH=ash MOD=mod MUL=mul SUB=sub 

%ty C=b D=d F=f I=1 P=l S=w U=l V=l 
op==@bin 

type==cDty 
.=“%f%t3 r%n,rjln,rjlc” 
f=W 
t=(D2 
yn=KO 
xn=Kl 

collaborate to enumerate 64 variations on a single rule. 
32 of them test valid intermediate opcodes. The rest 
are automatically discarded. The variations for ash 
and mod represent fictitious instructions: the real VAX 
ash opcode does not use the suffix 3, and there is no 
mod instruction at all. The actual instructions used, 
however, benefit from the same peephole optimizations 
that benefit all binary instructions, so it is convenient 
to temporarily grant ash and mod first-class citizenship. 
Later rules will map them onto real instructions just 
before output. The retargeter is free to use fictitious 
instructions so long as they are removed before code is 
emitted. 

Special caSes may also be handled by preceding a 
general rule with one tailored to the exceptions. For 
example, the VAX code generator implements unsigned 
division and modulus by calling the routines udiv and 
urem, so the general rule above is preceded with a spe- 
cial one for these two operations: 

.==(DIVU=udiv MODU=urem) 
(funcop(a,O, I> > 
.="~a119 $2,%c" 
yc=cDl 

This rule introduces two new syntactic forms. First, 
the notation (old=new . ..3 gives an anonymous, in-line 
translation set; it is equivalent to Qtemp, where temp is 

a translation set of the given pairs. Second, the not+ 
tion (expr) executes an arbitrary C expression. In the 
expression, a denotes a pointer to the current node. 
The particular call here removes kids CO. . 11 from the 
current node and hangs them underneath “argument” 
nodes; this is necessary because the compiler treats 
arguments not as children of the call but as separate 
nodes in the forest of dags. The remaining assignments 
rewrite the node as a call to the appropriate routine. 
Such escapes into arbitrary C are rare but provided be- 
cause it is impractical for any code generation language 
to anticipate every need. 

Naive VAX code generation requires 27 rules and 
nine translation sets. The compiler can be boot- 
strapped with just these plus perhaps ten more rules 
to correct fictitious instructions and perform the most 
crucial optimizations. Less orthogonal targets require 
a few more rules. For example, the 68020 uses differ- 
ent instruction templates for floating point and inte- 
ger arithmetic, so the 68020 rules replace ty with two 
smaller translation sets, which are used by two sepa 
rate, but similar rules. 

Optimization Rules 

It is easy to generate naive code, and it has been shown 
that thorough peephole optimization can yield good in- 
struction selection even when the original code genera- 
tor is confined to a RISC subset of the target machine 
[43. So the code generation rules are augmented with 
highly factored rules for peephole optimization. 

Optimization rules are written in the same language 
as code generation rules, though the idioms differ some- 
what. Code generation rules match intermediate code 
and yield target code, but optimization rules match tar- 
get code and yield (better) target code. Most code gen- 
eration rules examine only one node because naive code 
generation requires little contextual analysis. Most op- 
timization rules examine two nodes, and rewrite one of 
them so that it no longer needs the other. 

Consider the VAX code fragment: 

movl 4(rS),r6 
movl $l,(r6) 

If this is the only use of r6, the fragment should be 
replaced with an indirect store: 

movl $1,*4(r5) 

An important part of this optimization is the transla- 
tion of an operand template from %c (r%n> to *xc (r%n) . 
This translation uses a translation set: 

%toInd “%c”=“*Xc” “Xc (r%n) “=“*Xc (r’/J1) ” . . . 

The redundancy above may be avoided. A translation 
set’s name may be followed by a “replacement pattern”, 
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borrowed from the substitution command of the UNIX 
text editor ed. When the new half of the pair is omit- 
ted, it is derived automatically by substituting the old 
half for any ampersands in the replacement pattern. 
For instance, the declaration 

%toInd/*&/ l%cO’ %(r%n) I1 . . . 

is equivalent to the longer one above. Any new half 
overrides the replacement pattern. For example, ap- 
pending “r%n”=” (r%n>” to the set above records that 
an indirect register reference is written (r%n>, not 
*r%n. For additional abbreviation, the declaration of 
one translation set, may enumerate another. For exam- 
ple, the VAX rules include the translation set, 

%addr FOBMAL='%c(ap)" 
GLOBAL="&" 
LOCAL=%( 

which supports the translation of the intermediate 
codes that develop the addresses of simple variables. 
When enumerated in the definition of another transla- 
tion set like toInd 

%toInd/*&/ cDaddr . . . 

the rule compiler discards the old half of the addr trans- 
lations and acts as if the declaration had been 

%toInd/*&/ %(ap)” “-Xc” ‘*%c(fp)” . . . 

Thus translation sets are generally built up in stages. 
Even though an operand template like %c(fp> appears 
in several versions (eg, with and without indirection 
and indexing), it is usually possible to type it only once, 
into a basic translation set, like addr, which is then 
included as a unit into larger translation sets like toInd. 

The rule that uses this translation set is 

--“mov%t %y , (r%n>” .-- 
zn. ==“mov%t %y , %z” 
/#==I 
/ym==QtoInd 
zm=Ol 
zc=/yc 
zn=/yn 

The first condition asks if the current instruction is a 
move with an indirect target. The second asks if the 
child that prepares the target address is another move. 
In the rule language, composite variables like zn. are 
formed by concatenating simple variables like zn and 
“. “; zn denotes a child and “. ” denotes an opcode, 
so zn. denotes a child’s opcode. Simple concatenation 
would be a liability if complex composite variables were 
needed, but peephole optimizations don’t need them. 
The third condition above, /#==I, asks if the child’s 
reference count is one. Once a condition has examined 

one field of a child, the pseudo-variable “/” abbrevi- 
ates the name of that child, so after testing zn., /# is 
equivalent to zn#. This shorthand saves little space, 
but it, helps reduce errors. The last condition above, 
/ym==QtoInd, asks if the child’s source operand tem- 
plate is one of the modes that has an indirect version. 
(Many don’t, like those that already involve indirec- 
tion.) As with code generation rules, the rule compiler 
implements cDtoInd by replicating the rule once for each 
element of the translation set. 

The three assignments above are straightforward. 
The zm=@l changes the target operand template to use 
the translation of the child’s source template. The 
zc=/yc and zn=/yn hoist up the fields that are used 
by both the old and new templates; in the example 
instruction 

movl 4(r5) ,r6 

from the head of this section, the zc=/yc pulls up the 
4 and the zn=/yn pulls up the address of the child that 
develops r5. This last assignment overwrites the last 
pointer to the child, and thus effectively deletes it. 

The rule above does not change the opcode. The 
current instruction remains a move after the optimiza- 
tion. It simply uses a different target operand template, 
so the peephole optimization is implemented by chang- 
ing that template and leaving the instruction template 
alone. 

The Generated Code Generator 

Most of the rules are compiled into a monolithic routine 
called rewrite, which accepts a pointer to a dag and 
rewrites the dag in place with naive and then optimized 
target code. The retargeter may regard rewrite as a 
long if-then-else chain that implements each expanded 
rule in order, but the rule compiler makes five transfor- 
mations that arrange a much faster and much smaller 
equivalent: 

1. When adjacent rules start with the same condition, 
the rule compiler factors out the common part and 
tests it only once. The indirection rule above bene- 
fits because expanding toInd yields many copies of 
the rule, and they all share several common leading 
tests. 

2. When adjacent rules start by comparing one field 
with a series of constants, the comparisons are im- 
plemented with a C switch. The indirection rule 
benefits again because, once the rule compiler has 
stripped the common prefix from the replicated 
rules, the remaining conditions compare /ym with 
a series of constants. 

3. When adjacent cases in a switch perform the same 
action, the rule compiler arranges for them to share 
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4. 

5. 

A 

code. This transformation benefits some of the code 
generation rules above: they specify the same ac- 
tions for integer, pointer and unsigned additions, so 
these three cases label the same code. 

When transformation 3 yields a switch(x) with 
multiple case labels but only one action, the rule 
compiler replaces it with 

if (t [xl) action 

It arranges for array t to record which values of x 
require the action and which fell through the old 
switch. The rule compiler knows the range of x, 
which is generally small enough that the table can 
cover the range and eliminate the switch’s implicit 
range check, so the resulting program is faster. This 
transformation benefits rules that ask if an address- 
ing template is in a certain class, but then perform 
a common action for all members of the class. 

When all actions in a switch(x) differ by only a sin- 
gle constant in a common position, the rule compiler 
replaces it with 

if (s=t [xl) action 

where the action has been edited to use s instead of 
the constant. Note that the “=” above denotes as- 
signment, not an equality test. This transformation 
benefits the indirection rule, the replicated copies of 
which differ only by the value tested in /ym==QtoInd 
and assigned in zm=Qi, so they can be implemented 
by testing and assigning a value from a table. 

portion of the resulting rewrite appears below. 

rewrite(register struct node *a) ( 
register struct node *b; 
switch (a->op) ( 
. . . 
case 309: L309: /* ADD1 */ 
case 310: L310: /* ADDU */ 
case 311: L311: /* ADDP */ 

setreg(a, sregs) ; 
rewrite(a->kids CO1 ) ; 
rewrite(a->kids Cl1 ) ; 
a->ints [31 = 1; /* add */ 
a->intsC41 = 41; /* 1 */ 
a->ints[ll = 37; /* r%n */ 
a->ints[Ol = 37; /* r%n */ 
a->ints[21 = 43; /* r%c */ 
goto L722; /* %f%t3 %x,%y,%z */ 

. . . 
case 720: L720: /* mov%t %y,%z */ 

switch (a->ints[21) ( . . . 1 
switch (a->ints[OI) < . . . 1 
a->op = 720; 
break; 

. . . 
1 

1 

When rewrite is entered, the opcode will denote inter- 
mediate code unless the node has been already rewrit- 
ten as the result of previous references, so the switch 
usually goes to a case like the one for ADD1 above, which 
was generated from the expanded rule for ADDI: 

. ==“ADDI” 
.=“%f?!t3 %x,%y,%z” 
f=“add” 
t=q,, 
~=“r;/n” 
yAL=“r~*l” 
zm=“rl/,c” 
yn=KO 
xn=Kl 

The first three lines are the result of two declarations 
not previously shown. One states that the default regis- 
ter set for integer operations is called sregs, so this case 
uses the macro setreg to record this fact for the table- 
driven register allocator, which runs after rewrite fin- 
ishes with the dag. The other states that addition is 
binary, so this case thus includes two recursive calls on 
rewrite to process the node’s children. 

The next five statements implement the assignments 
to f, t, xm, ym, and zm. The rule’s assignments yn=KO 
and xn=Ki are omitted because yn and xn already oc- 
cupy KO and Kl; the layout was chosen because these 
assignments were particularly common, but it may be 
possible to choose such efficient layouts automatically. 

The rule’s assignment to “.” is implemented by 
jumping to the case that optimizes the template as- 
signed. The value of a->op is read only at the head of 
rewrite, so there is no need to keep it up-to-date until 
the node is completely optimized and control leaves the 
switch, via a break like the one shown above. 

The optimization cases are typified by case 720 
above, which improves move instructions. The two 
subordinate switches examine the integer codes for the 
operand templates assigned to zm and ym, which are 
represented by the values stored in a->ints [2] and 
a->ints COI, respectively. The first of these switches 
includes the case that implements the indirection rule 
above, which is reproduced below in a leading com- 
ment: 

/* 
.-- --“mov%t %y , (r%n) I’ 

zn . ==“mov%t %y ,X2” 
/#==I 
/ym==@toInd 
zm=@i 
zc=/yc 
zn=/yn 

*/ 
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case 20: /* tr%n) */ 
b= a->kids 121; 
switch (b->op) ( 
case 720: /* mov%t %y,%z */ 

if ( 
b->count == I 
&& (s=T4 [b->ints CO1 I ) 
1 iI 

a->ints[21 = s; 
a->syms C21 = b->syms CO] ; 
a->kids [2l = b->kids CO1 ; 
goto L720; /* mov%t %y,%z */ 

3 
break; 

. . . 

Merely arriving at case 20 above ensures the rule’s first 
condition is met. The second is checked by fetching a 
pointer to the child and switching on its opcode. The 
rule compiler uses a switch because there are other rules 
that combine an indirect store with other children, so 
there are other cases following case 720 above. Arriv- 
ing at case 720 above ensures that the rule’s second 
condition is met, and the rule’s last two conditions are 
tested explicitly. The assignment to s above asks if the 
operand template has an indirect version and fetches 
the index of that version. The other assignments im- 
plement those from the rule, and the goto jumps to 
the case that improves the resulting opcode. In this 
instance, the rule changed an operand, not the opcode, 
so control returns to the current outermost case label. 

The complete optimization case for move instruc- 
tions is about 300 lines, and it is one of the biggest. 
Some of the switches have only two or three cases, so 
the compiler implements them with condition chains. 
Even so, heavy use of nested if statements means that 
even this large case identifies and makes a typical peep- 
hole optimization in perhaps 8 comparisons (two VAX 
instructions each), 5 assignments (one each), and a 
jump. 

A few rules need to examine register assignments. 
These rules are segregated from the others by placing 
them after the directive %f inal in the file of rules. They 
are compiled into a separate routine called final that 
looks like rewrite, but that runs after rewrite and the 
register allocator complete. The rules that correct fic- 
titious instructions are also generally placed in final, 
but none do more than simple one-for-one edits. For 
instance, the rule 

--“ash%t3 ;/x,%y,Xz” .=“ashl %x,Xy,%z” .-- 

corrects the over-generalization of ash instructions. 
final also implements output, so the rule compiler 
turns this rule into 

case 722: L722: /* %f%t3 %x,%y,%z */ 
switch (a->ints [3] > ( 
case 5: /* ash */ 

got0 L741; /* ash1 %x,%y,%z */ 
. . * 

case 741: L741: /* ash1 %x,%y,%z */ 
a->op = 741; 
Q = bp; 
*bp++ = ‘a’; 
*bp++ = ‘s’; 
*bp++ = ‘h’; 
*bp++ = ‘1’; 
*bp++ = ’ ’ ; 

bp = emitstruct(bp, a, I>; 
, . . 

The first case recognizes the invalid shift and jumps 
to the second case, which deposits a valid shift in 
the output buffer. The rule compiler also writes the 
routine emitstruct, which emits the operand pseudo- 
structures x, y, and z in much the same way that final 
emits instruction templates above: with a switch and 
direct, deposit into the output buffer. Strings like ash1 
were originally emitted using a loop, but unrolling the 
loop as shown above added less than 5kb to the com- 
piler and reduced compile times by 5%. 

Discussion 

The sample rules above demonstrate all principal fea- 
tures of the rule language. The rule compiler is writ- 
ten in the Icon programming language and takes about 
1000 lines. The VAX specification currently takes 126 
lines: 22 for translation sets, 27 for the rules that im- 
plement naive code generation, 43 for rewrite’s opti- 
mization rules, 16 for final’s, and the rest for various 
declarations. 

The rule compiler turns this specification into a 
4000-line C program, which compiles into less than 
17kb of code and 8kb of data. final and emitop 
take about 5kb; rewrite takes about llkb. They are 
compiled with about 8000 lines of machine-independent 
code, mostly for the front end, and 500 lines of system- 
specific emitters for data definition, function prologues, 
and other items that require no instruction selection. 
Almost half of the system-specific code emits symbol 
tables for the debugger. 

A simple experiment was run to demonstrate com- 
pilation rates and code quality. The compiler was 
compiled five different ways: with itself (ICC), with 
the standard 4.3bsd C compiler (cc with and with- 
out -O), and with the GNU C compiler (gee with 
and without -0). The compile times appear below, 
with the sizes of the resulting code segments. These 
times include preprocessing, assembly, and linking. 
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compiler user time system time size 

cc 64.9 33.5 100k 
cc -0 87.1 41.9 90k 

SC 63.9 37.7 104k 
gee -0 100.7 48.2 83k 
ICC 38.9 26.2 100k 

ICC compiled the fastest. Its object code was not the 
smallest, but it was quite fast. The resulting binaries 
were each used five times to compile the largest front 
end module, which is almost 1000 lines before prepro- 
cessing and about 1600 afterwards. The mean times 
appear below. 

code from user time system time 
cc 2.36 0.86 
cc -0 2.22 0.88 

WC 2.28 0.98 
gee -0 1.78 0.74 
ICC 1.80 0.78 

Thus gee -0 produced the fastest code for lee, but it 
implements many more global optimizations than ICC. 
lee’s code for itself was a close second. 

The first set of figures above includes preprocessing, 
assembly, and linking. To isolate the performance of 
the compiler, the large compiler module was prepro- 
cessed and then run through cc, gee, and ICC but not 
the assembler or linker: 

compiler user time system time 
cc 4.66 1.70 

FC 4.10 1.86 
ICC 1.80 0.78 

The timings for cc and gee omit -0, which would make 
them slower still. Different benchmarks yield differ- 
ent results, but, most show that ICC compiles fast and 
emits competitive code. The compiler spends about 
20% of its time generating, optimizing, and emitting 
code, so the speed of the front end contributes im- 
portantly to the compilation rate. The front end also 
performs machine-independent analysis and transfor- 
mations that contribute to the quality of the emitted 
code. 

On-going work seeks new target machines and more 
efficient instruction encodings. Also, the rules could 
be simpler [5, 61. With their vpcc compiler, Davidson 
and Whalley have shown that successful retargets can 
be based on a few very simple rewriting rules, though 
their technique currently requires compiIe-time string 

matching [6]. 0 n om work seeks a code generator as -g * g 
fast as rewrite from rules as simple as vpcc’s. 
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