
Mathematical Programming manuscript No.
(will be inserted by the editor)

David Applegate � Robert Bixby � Va�sek Chv�atal �William Cook?

Implementing the Dantzig-Fulkerson-Johnson

Algorithm for Large Traveling Salesman

Problems

Received: date / Revised version: date

Abstract. Dantzig, Fulkerson, and Johnson (1954) introduced the cutting-plane method
as a means of attacking the traveling salesman problem; this method has been applied
to broad classes of problems in combinatorial optimization and integer programming. In
this paper we discuss an implementation of Dantzig et al.'s method that is suitable for
TSP instances having 1,000,000 or more cities. Our aim is to use the study of the TSP
as a step towards understanding the applicability and limits of the general cutting-plane
method in large-scale applications.

1. The Cutting-Plane Method

The symmetric traveling salesman problem, or TSP for short, is this: given
a �nite number of \cities" along with the cost of travel between each pair
of them, �nd the cheapest way of visiting all of the cities and returning
to your starting point. The travel costs are symmetric in the sense that
traveling from city X to city Y costs just as much as traveling from Y to X;
the \way of visiting all of the cities" is simply the order in which the cities
are visited.

The prominence of the TSP in the combinatorial optimization literature
is to a large extent due to its success as an engine-of-discovery for techniques
that have application far beyond the narrow con�nes of the TSP itself.
Foremost among the TSP-inspired discoveries is Dantzig, Fulkerson, and
Johnson's (1954) cutting-plane method, which can be used to attack any
problem

minimize cTx subject to x 2 S (1)

such that S is a �nite subset of some Rm and such that an eÆcient algorithm
to recognize points of S is available. This method is iterative; each of its

D. Applegate: Algorithms and Optimization Department, AT&T Labs { Research,
Florham Park, NJ 07932, USA

R. Bixby: Computational and Applied Mathematics, Rice University, Houston, TX
77005, USA

V. Chv�atal: Department of Computer Science, Rutgers University, Piscataway, NJ 08854,
USA

W. Cook: Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta,
GA 30332, USA

? Supported by ONR Grant N00014-03-1-0040

2 David Applegate et al.

iterations begins with a linear programming (LP) relaxation of (1), meaning
a problem

minimize cTx subject to Ax � b (2)

such that the polyhedron P de�ned as fx : Ax � bg contains S and is
bounded. Since P is bounded, we can �nd an optimal solution x� of (2)
such that x� is an extreme point of P . If x� belongs to S, then it constitutes
an optimal solution of (1); otherwise some linear inequality is satis�ed by
all the points in S and violated by x�; such an inequality is called a cutting
plane or simply a cut . In the latter case, we �nd a nonempty family of cuts,
add them to the system Ax � b, and use the resulting tighter relaxation of
(1) in the next iteration of the procedure.

Dantzig et al. demonstrated the power of their cutting-plane method by
solving a 49-city instance of the TSP, which was an impressive size in 1954.
The TSP is a special case of (1) with m = n(n�1)=2, where n is the number
of the cities, and with S consisting of the set of the incidence vectors of all
the Hamiltonian cycles through the set V of the n cities; in this context,
Hamiltonian cycles are commonly called tours. In Dantzig et al.'s attack,
the initial P consists of all vectors x, with components subscripted by edges
of the complete graph on V , that satisfy

0 � xe � 1 for all edges e (3)

and P
(xe : v 2 e) = 2 for all cities v. (4)

(Throughout this paper, we treat the edges of a graph as two-point subsets
of its vertex-set: v 2 emeans that vertex v is an endpoint of edge e; e\Q 6= ;
means that edge e has an endpoint in set Q; e�Q 6= ;means that edge e has
an endpoint outside setQ; and so on.) All but two of their cuts have the formP
(xe : e\Q 6= ;; e�Q 6= ;) � 2 such that Q is a nonempty proper subset

of V . Dantzig et al. called such inequalities \loop constraints"; nowadays,
they are commonly referred to as subtour elimination inequalities ; we are
going to call them simply subtour inequalities . (As for the two exceptional
cuts, Dantzig et al. give ad hoc combinatorial arguments to show that
these inequalities are satis�ed by incidence vectors of all tours through the
49 cities and, in a footnote, they say \We are indebted to I. Glicksberg of
Rand for pointing out relations of this kind to us.")

The original TSP algorithm of Dantzig et al. has been extended and
improved by many researchers, led by the fundamental contributions of M.
Gr�otschel and M. Padberg; surveys of this work can be found in Gr�otschel
and Padberg (1985), Padberg and Gr�otschel (1985), J�unger et al. (1995,
1997), and Naddef (2002). The cutting-plane method is the core of nearly
all successful approaches proposed to date for obtaining provably optimal
solutions to the TSP, and it remains the only known technique for solv-
ing instances having more than several hundred cities. Beyond the TSP,
the cutting-plane method has been applied to a host of NP-hard prob-
lems (see J�unger et al. (1995)), and is an important component of modern

Title Suppressed Due to Excessive Length 3

mixed-integer-programming codes (see Marchand et al. (1999) and Bixby
et al. (2000, 2003)).

In this paper we discuss an implementation of the Dantzig et al. algo-
rithm designed for TSP instances having 1,000,000 or more cities; very large
TSP instances arise is applications such as genome-sequencing (Agarwala
et al. (2000)), but the primary aim of our work is to use the TSP as a
means of studying issues that arise in the general application of cutting-
plane algorithms for large-scale problems. Instances of this size are well
beyond the reach of current (exact) solution techniques, but even in this
case the cutting-plane method can be used to provide strong lower bounds
on the optimal tour lengths. For example, we use cutting planes to show
that the best known tour for a speci�c 1,000,000-city randomly generated
Euclidean instance is no more than 0.05% from optimality. This instance
was created by David S. Johnson in 1994, studied by Johnson and Mc-
Geoch (1997, 2002) and included in the DIMACS (2001) challenge test
set under the name \E1M.0". Its cities are points with integer coordinates
drawn uniformly from the 1,000,000 by 1,000,000 grid; the cost of an edge
is the Euclidean distance between the corresponding points, rounded to the
nearest integer.

The paper is organized as follows. In Section 2 we present separation
algorithms for subtour inequalities and in Section 3 we present simple meth-
ods for separating a further class of TSP inequalities known as \blossoms";
in these two sections we consider only methods that can be easily applied to
large problem instances. In Section 4 we discuss methods for adjusting cut-
ting planes to respond to changes in the optimal LP solution x�; again, we
consider only procedures that perform well on large instances. In Section 5
we discuss a linear-time implementation of the \local cut" technique for
generating TSP inequalities by mapping the space of variables to a space
of very low dimension. The core LP problem that needs to be solved in
each iteration of the cutting-plane algorithm is discussed in Section 6. Data
structures for storing cutting planes are treated in Section 7 and methods
for handling the n(n� 1)=2 edges are covered in Section 8. In Section 9 we
report on computational results for a variety of test instances.

The techniques developed in this paper are incorporated into the Con-
corde computer code of Applegate et al. (2003); the Concorde code is freely
available for use in research studies.

2. Subtour Inequalities

A separation algorithm for a class C of linear inequalities is an algorithm
that, given any x�, returns either an inequality in C that is violated by x�

or a failure message. Separation algorithms that return a failure message
only if all inequalities in C are satis�ed by x� are called exact ; separation
algorithms that may return a failure message even when some inequality in
C is violated by x� are called heuristic.

4 David Applegate et al.

We present below several fast heuristics for subtour separation, and
discuss briey the Padberg and Rinaldi (1990a) exact subtour separation
procedure.

2.1. The x(S; T) notation

Let V be a �nite set of cities, let E be the edge-set of the complete graph
on V , and let w be a vector indexed by E. Given disjoint subsets S; T of
V , we write w(S; T) to mean

X
(we : e 2 E; e \ S 6= ;; e \ T 6= ;):

This notation is adopted from Ford and Fulkerson (1962); using it, the
subtour inequality corresponding to S can be written as

x(S; V � S) � 2:

2.2. Parametric connectivity

Let G� denote the graph with vertices V and whose edges are all e such
that x�e > 0. If G� is disconnected, then subtour inequalities violated by x�

are readily available: the vertex-set S of any connected component of G�

satis�es x�(S; V � S) = 0.
The power of this separation heuristic is illustrated on a TSP instance

generated in the same way as David Johnson's E1M.0 (cities are points with
integer coordinates drawn uniformly from the 1,000,000 by 1,000,000 grid;
the cost of an edge is the Euclidean distance between the corresponding
points, rounded to the nearest integer) except that it has only 100,000 cities.
We repeatedly apply the heuristic until G� is connected; then we compare
the �nal lower bound to the \subtour bound" obtained by optimizing over
all subtour inequalities and also compare it to the length of the best tour
we found (using the tour-merging heuristic of Cook and Seymour (2003)).
The results

Gap to Subtour Bound Gap to Optimal
0.394% � 1.111%

demonstrate that even this simple idea leads to a respectable bound for this
geometric instance.

To improve on this connectivity heuristic, we observe that looking for
subtour inequalities violated by x� simply by listing connected components
of G� means throwing away much information about x�: all nonzero x�e ,
regardless of their actual values, are treated the same. Such lack of discrim-
ination can have its repercussions. For example, consider an x� whose G�

is disconnected and let S1; : : : ; Sk denote the vertex-sets of the connected

Title Suppressed Due to Excessive Length 5

components of G�: slight perturbations of the components of x� can make
G� connected while maintaining the conditions

0 � xe � 1 for all edges e,P
(xe : v 2 e) = 2 for all cities v,

and x�(Si; V �Si) < 2 for all i. In this example, we could have spotted the
sets S1; S2; : : : ; Sk as the vertex-sets of connected components of the graph
with edges e such that x�e > " for some �xed positive ". Pursuing this idea
further, we make " a parameter ranging from 1 down to 0 and arrive at
Algorithm 2.1.

Algorithm 2.1 Testing connected components in a parametric family.

initialize an empty list L of sets;
F = the graph with the vertex-set of G� and with no edges;
for all edges e of G� in a nonincreasing order of x�e
do if the two endpoints of e

belong to distinct connected components of F
then add edge e to F ;

S = vertex-set of the connected component of F
that contains e;

if x�(S; V � S) < 2 then add S to L end

if F consists of two connected components
then return L
end

end

end

return L;

With m standing for the number of edges of G�, each individual test
for x�(S; V � S) < 2 in Algorithm 2.1 may take time in �(m), which puts
the total running time of Algorithm 2.1 in �(mn). It is quicker to �rst
collect all the relevant S and then evaluate all the corresponding values
of x�(S; V � S). All the relevant S may be recorded in a decomposition

forest whose leaves are the n vertices of G� and whose interior nodes are
in a one-to-one correspondence with sets S for which Algorithm 2.1 tests
the inequality x�(S; V �S) < 2; each interior node w of the decomposition
forest corresponds to the set Sw of all leaves of the decomposition forest
that are descendants of w. One way of constructing the decomposition forest
is Algorithm 2.2; there, roots are nodes equal to their own parents and
Root(w) is the root of the tree that contains w.

Except for the evaluations of Root, straightforward implementations
of Algorithm 2.2 take time �(n+m logn), with the bottleneck �(m logn)
taken up by sorting these edges.

6 David Applegate et al.

Algorithm 2.2 Constructing a decomposition forest.

for all cities w do parent(w) = w end

counter = n;
for all edges e of G� in a nonincreasing order of x�e
do u; v = the two endpoints of e;

u� =Root(u), v� =Root(v);
if u� 6= v�

then get a new node w;
parent(u�)= w, parent(v�)= w, parent(w)= w;
counter = counter�1;
if counter = 2 then return array parent end

end

end

return array parent;

To implement the evaluations of Root, we may use the following triple
of operations that maintain a changing family F of disjoint sets with each
set in F named by one of its elements:

Makeset(w), with w in no set in F , adds fwg to F ;
Find(u), with u in some set in F , returns the name of this set;
Link(u; v), with u 6= v, deletes the sets named u and v from F

and adds their union to F .

In our application, members of F are the sets Sw such that parent(w)= w;
if, for each Sw in F , we maintain a pointer root from the name of Sw to
the root w of Sw, then we can evaluate Root(u) simply as root(Find(u)).
This policy is used in Algorithm 2.3.

A celebrated result of Tarjan (1975) (see also Tarjan and van Leeuwen
(1984) and Chapter 2 of Tarjan (1983)) asserts that a simple and prac-
tical implementation of these three operations runs very fast: the time it
requires to execute any sequence of k operations is in O(k�(k)) with � the
very slowly growing function commonly referred to as \the inverse of the
Ackermann function." Hence Algorithm 2.3 can be implemented so that the
total time spent on calls of Makeset, Find, and Link is in O(m�(m)).

The �nal step in the parametric connectivity procedure is to evaluate
x�(Sw; V � Sw) for all nodes w of the decomposition tree; we describe this
in Algorithm 2.4.

Harel and Tarjan (1984) and Schieber and Vishkin (1988) designed im-
plementations of the �rst for loop in Algorithm 2.4 that run in time in
O(m); a straightforward recursive implementation of the second for loop
runs in time O(n); the third for loop runs in time O(m).

Title Suppressed Due to Excessive Length 7

Algorithm 2.3 An implementation of Algorithm 2.2.

for all cities w
do parent(w) = w, root(w) = w, Makeset(w);
end

counter = n;
for all edges e of G� in a nonincreasing order of x�e
do u; v = the two endpoints of e;

u� = root(Find(u)), v� = root(Find(v));
if u� 6= v�

then get a new node w;
parent(u�)= w, parent(v�)= w, parent(w)= w;
Link(u�; v�), root(Find(u)) = w;
counter = counter�1;
if counter = 2 then return array parent end

end

end

return array parent;

Algorithm 2.4 Computing all the values of x�(Sw; V � Sw).

for all edges e of G�

do w(e) = the lowest common ancestor of two endpoints of e;
end

for all nodes w of the decomposition forest
do x�(Sw; V � Sw) = 2jSwj;
end

for all edges e of G�

do x�(Sw(e); V � Sw(e)) = x�(Sw(e); V � Sw(e))� 2x�e
end

To illustrate its power on the 100,000-city instance described earlier in
this section, we repeatedly apply Algorithm 2.1 until it returns without
�nding any cuts. The results

Gap to Subtour Bound Gap to Optimal
0.029% � 0.746%

show a nice improvement over the bounds obtained by working only with
the connected components of G�.

8 David Applegate et al.

2.3. Shrinking heuristic

Crowder and Padberg (1980) and Land (1979) developed a heuristic for
subtour inequalities that is based on the intuitive notion of shrinking a
subset of cities. Formally, shrinking a subset S of V means replacing V
with �V de�ned as (V � S) [f�g for some new vertex � (representing the
shrunk S) and replacing x with �x de�ned on the edges of the complete
graph with vertex set �V by

�xf�;tg = x(S; ftg) for all t 2 V � S

and

�xfu;vg = xfu;vg for all u; v 2 V � S:

The heuristic proceeds by examining the components of the solution
vector x� and shrinking the ends fu; vg of any edge satisfying x�fu;vg = 1.

If this process creates an edge e satisfying �x�e > 1, then the set of original
vertices S corresponding to the ends of e gives a violated subtour inequal-
ity; we record S and continue by shrinking the ends of e. We repeat this
procedure until all edges e in the remaining graph satisfy �x�e < 1.

The shrinking heuristic is a very e�ective technique for �nding violated
subtour inequalities. Combining the shrinking cuts with the parametric
connectivity heuristic, we obtain the results

Gap to Subtour Bound Gap to Optimal
0.0009% � 0.7174%

for our 100,000-city instance. The lower bound produced in this way is very
close to the optimal value over all subtour inequalities.

2.4. Subtour cuts from tour intervals

In this subsection we present another fast heuristic separation algorithm for
subtour inequalities, allowing us to take advantage of any approximation
to an optimal tour that we might have obtained by running a tour-�nding
heuristic. Our motivation for the design of this algorithm comes from the
following argument:

Since the optimal solution x� of the current LP relaxation of our TSP
instance approximates an optimal tour and since our best heuristically
generated tour x̂ approximates an optimal tour, the two vectors x�

and x̂ are likely to approximate each other at least in the sense that
x�(S; V � S) � x̂(S; V � S) for most subsets S of V . In particular, sets
S that minimize x�(S; V � S) subject to S � V; S 6= V; S 6= ; are likely
to be found among sets S that minimize x̂(S; V �S) subject to the same
constraints.

Title Suppressed Due to Excessive Length 9

This argument may be not entirely convincing, but its conclusion was con-
�rmed by our experience: in examples we have experimented with, many
of the sets S such that x�(S; V � S) < 2 and S 6= V; S 6= ; satis�ed
x̂(S; V � S) = 2.

Sets S with x̂(S; V �S) = 2 are characterized trivially: if v0v1 : : : vn�1v0
is the cyclic order on V de�ned by the tour x̂, then x̂(S; V � S) = 2 if and
only if S or V � S is one of the intervals Iit (1 � i � t � n� 1) de�ned by

Iit = fvk : i � k � tg:

Since x�(V � S; S) = x�(S; V � S) for all subsets S of V , we are led to
search for intervals I such that x�(I; V � I) < 2. We might set our goal at
�nding just one such interval or we might set it at �nding all of them. The
objective accomplished by our computer code comes between these these
two extremes: for each i = 1; 2; : : : ; n� 2, we

�nd a t that minimizes x�(Iit; V � Iit) subject to i � t � n� 1 (5)

and, in case x�(Iit; V � Iit) < 2, we record the subtour inequality violated
by x�.

We describe an algorithm that solves the sequence of problems (5) in
time that, with m standing again for the number of positive components of
x�, is in �(m logn).

We reduce each of the problems (5) to a minimum pre�x-sum problem,

given a sequence s1; s2; : : : ; sN of numbers,

�nd a t that minimizes
Pt

k=1 sk subject to 1 � t � N .

To elaborate, let us write

s(i; k) =

�
0 if 1 � k � i � n� 1,
1�
P

i�j<k x
�(fvj ; vkg) if 1 � i < k � n� 1.

If 1 � t � i, then
Pt

k=1 s(i; k) = 0; if i � t � n� 1, then

tX
k=1

s(i; k) =

tX
k=i+1

s(i; k) = (t� i)�
X

i�j<k�t

x�(fvj ; vkg);

since

x�(Iit; V � Iit) = 2jIitj � 2
X

i�j<k�t

x�(fvj ; vkg);

it follows that

tX
k=1

s(i; k) =

�
0 if t � i,
(x�(Iit; V � Iit)=2)� 1 if t � i.

10 David Applegate et al.

Hence problem (5) reduces to the problem

�nd a t that minimizes
Pt

k=1 s(i; k) subject to 1 � t � n� 1. (6)

We solve the sequence of minimum pre�x-sum problems (6) for i = n�2;
n� 3; : : : ; 1 in this order; after each decrement of i, we use the formula

s(i; k) =

8<
:
s(i+ 1; k) if k � i,
1� x�(fvi; vkg) if k = i+ 1,
s(i+ 1; k)� x�(fvi; vkg) if k > i+ 1

to update the input of (6). The resulting scheme is Algorithm 2.5.

Algorithm 2.5 Finding intervals I such that x�(I; V � I) < 2.

initialize an empty list L of intervals;
for k = 1; 2; : : : ; n� 1 do sk = 0 end
for i = n� 2; n� 3 : : : ; 1
do si+1 = 1;

for all edges fvi; vkg such that x�(fvi; vkg) > 0 and i < k
do sk = sk � x�(fvi; vkg);
end

t = a subscript that minimizes
Pt

k=1 sk subject to 1 � t � n� 1;

if
Pt

k=1 sk < 0 then add Iit to L end

end

return L;

Each of the minimum pre�x-sum problems

t = a subscript that minimizes
Pt

k=1 sk subject to 1 � t � n� 1

in Algorithm 2.5 can be solved trivially in time that is in �(n); the total
running time of the resulting implementation of Algorithm 2.5 is in �(n2).
Our implementation reduces this total to �(m logn) by making use of the
fact that each of the minimum pre�x-sum problems that has to be solved is
related to the minimum pre�x-sum problem solved in the previous iteration.

Let us set this implementation in the more general framework of the
following three operations:

Initialize(N) sets s1 = s2 = : : : = sN = 0,
Reset(k; value) sets sk = value,
Min-Prefix returns a t that

minimizes
Pt

k=1 sk subject to 1 � t � N .

We are going to describe a data structure that supports these three opera-
tions in such a way that

Title Suppressed Due to Excessive Length 11

each Initialize takes time in �(N),
each Reset takes time in �(logN),
each Min-Prefix takes time in �(logN).

This data structure is a full binary tree T (meaning, as usual, any binary
tree in which each node other than a leaf has both a left child and a right
child) with leaves u1; u2; : : : ; uN in the left-to-right order and such that
each node u of T holds a pair of numbers s(u); p(u) de�ned recursively by

{ s(uk) = p(uk) = sk
whenever uk is a leaf,

{ s(u) = s(v) + s(w), p(u) = minfp(v); s(v) + p(w)g
whenever u is a node with left child v and right child w.

For each node u of T , there are subscripts a(u) and b(u) such that a leaf
uk is a descendant of u if and only if a(u) � k � b(u); it is easy to see that

s(u) =

b(u)X
k=a(u)

sk and p(u) = min

8<
:

tX
k=a(u)

sk : a(u) � t � b(u)

9=
; ;

in particular, p(root) = minf
Pt

k=1 sk : 1 � t � Ng. These observations
suggest the implementations of Initialize, Reset, and Min-Prefix that
are spelled out in Algorithm 2.6.

To keep the running time of Reset and Min-Prefix in �(logN), it
is imperative to choose a T in Initialize so that the depth of T is in
�(logN). Our choice is the heap structure with nodes 1; 2; : : : ; 2N � 1.
There, every node i with i < N has left child 2i and right child 2i + 1;
nodes N;N + 1; : : : ; 2N � 1 are leaves in the left-to right order; the depth
of this tree is blg(2N � 1)c.

The resulting algorithm is presented as Algorithm 2.7.

We illustrated the power of Algorithm 2.5 on our 100,000-city instance.
Taking the algorithm as the only source of cutting planes, the result (3.175%
gap to the subtour bound) is worse than that obtained using just the con-
nected components of G. This is not too surprising, given the restricted
form of subtour cuts that are produced by Algorithm 2.5 (the argument
that x�(S; V � S) � x̂(S; V � S) does not hold well for the x� vectors that
appear after the addition of only subtour inequalities). If, however, we com-
bine this algorithm with the heuristics presented earlier in this section, the
results

Gap to Subtour Bound Gap to Optimal
0.0008% � 0.7173%

are a slight improvement over our previous lower bounds. Although this
improvement is rather small, the cuts generated by this procedure are par-
ticularly useful in the Concorde code, where we store inequalities based on
their representation as the union of intervals from the heuristic tour x̂ (see
Section 7).

12 David Applegate et al.

Algorithm 2.6 Three operations for solving a sequence of minimum pre�x-
sum problems.

Initialize(N):
T = a full binary tree of depth in �(logN)

and with leaves u1; u2; : : : ; uN in the left-to right order;
for each node u of T do s(u) = 0, p(u) = 0 end

Reset(k; value):
s(uk) = value, p(uk) = value;
u = uk;
while u is not the root
do u = parent of u;

v = left child of u, w = right child of u;
s(u) = s(v) + s(w), p(u) = minfp(v); s(v) + p(w)g;

end

Min-Prefix:
u = the root;
while u is not a leaf
do v = left child of u, w = right child of u;

if p(u) = p(v) then u = v else u = w end

end

return the subscript t for which u = ut;

Algorithm 2.7 An eÆcient implementation of Algorithm 2.5.

initialize an empty list L of intervals;
Initialize(n� 1);
for i = n� 2; n� 3; : : : ; 1
do Reset(i+ 1; 1);

for all edges fvi; vkg such that x�(fvi; vkg) > 0 and i < k
do Reset(k; s(uk)� x�(fvi; vkg);
end

if p(root) < 0
then t =Min-Prefix;

add Iit to L;
end

end

return L;

Title Suppressed Due to Excessive Length 13

2.5. Padberg-Rinaldi exact-separation procedure

Given a vector w of nonnegative edge weights, the global minimum-cut
problem is to �nd a proper subset of vertices S � V such that w(S; V �S)
is minimized. To solve the exact separation problem for subtour inequalities,
one can let we = x�e for each edge e, �nd a global minimum cut S, and check
if x�(S; V � S) < 2. This approach was adopted as early as Hong (1972),
and it is a common ingredient in implementations of the Dantzig et al.
algorithm.

Hong (1972) found the global minimum cut in his study by solving a
series of n � 1 max-ow/min-cut problems (choose some vertex s and for
each other vertex t �nd an (s; t)-minimum cut Sst, that is, a set Sst � V
with s 2 Sst and t =2 Sst, minimizing w(Sst; V � Sst)). Padberg and Ri-
naldi (1990a) combined this approach with shrinking techniques (general-
izing the procedure described above in Subsection 2.3) to obtain a method
suitable for large TSP instances (in Padberg and Rinaldi (1991), their ap-
proach is used on examples having up to 2,392 cities).

We adopt the Padberg-Rinaldi approach in our code, using an imple-
mentation of Goldberg's (1985) algorithm to solve the (s; t)-minimum cut
problems that arise. The e�ectiveness of the Padberg-Rinaldi shrinking
rules together with the good practical performance of Goldberg's algorithm
allows us to apply the separation algorithm to very large instances (we have
carried out tests on up to 3,000,000 cities). On our 100,000-city instance,
the exact subtour separation algorithm produced the result

Gap to Optimal
� 0.7166%.

It is important to note that a single run of the Padberg-Rinaldi algo-
rithm can produce a large collection of violated subtour inequalities, rather
than just the single inequality determined by the global minimum cut. This
is crucial for large-scale instances where subtour heuristics usually fail be-
fore the subtour bound is reached. This point is discussed by Levine (1999)
in his study combining Concorde with Karger and Stein's (1996) random-
contraction algorithm for global minimum cuts.

Further computational studies of global minimum cut algorithms can be
found in Chekuri et al. (1997) and in J�unger et al. (2000). A conclusion of
these studies is that the Padberg-Rinaldi shrinking method is an important
pre-processing tool, even if the full procedure is not adopted.

We remark that Fleischer (1999) describes a fast algorithm for building
a cactus representation of all minimum cuts and a practical implementation
of her method is described in Wenger (2002), together with computational
results for instances with up to 18,512 cities. We have not pursued this
method in our implementation.

14 David Applegate et al.

3. Fast blossoms

Let S0; S1; : : : ; Sk be subsets of V such that k is odd, S1; : : : ; Sk are pairwise
disjoint, and for each i = 1; : : : ; k we have Si \ S0 6= ; and Si � S0 6= ;.
Every incidence vector x of a tour satis�esX

(x(Si; V � Si) : i = 0; : : : ; k) � 3k + 1: (7)

Inequalities (7) are known as comb inequalities. The name comes from
Chv�atal (1973), who introduced a variant of (7) with S1; : : : ; Sk not re-
quired to be pairwise disjoint but for each i = 1; : : : ; k the subset Si is
required to S0 in exactly one city. The present version is due to Gr�otschel
and Padberg (1979a, 1979b), who have shown that it properly subsumes
the original theme; we follow them in referring to S0 as the handle of the
comb and referring to S1; : : : ; Sk as its teeth.

After subtour inequalities, combs are the most common class of inequal-
ities that have been used as cuts in TSP computations. Unlike subtours,
however, no polynomial-time exact separation algorithm is known for this
class; establishing the complexity of comb separation is an important open
problem in the TSP (it is not known to be NP -hard). Recent progress on
comb separation has been made by Letchford and Lodi (2002), giving a
polynomial-time separation algorithm for the class of combs satisfying, for
each i = 1; : : : k, either jSi \ S0j = 1 or jSi � S0j = 1. Their result gener-
alizes the Padberg and Rao (1980) exact separation algorithm for blossom
inequalities, that is, the case where jSij = 2 for each i = 1; : : : ; k. (Blossoms
were de�ned by Edmonds (1965) in connection with two-matchings. See
also Pulleyblank (1973).)

Computer codes for the TSP have relied on heuristics for comb sep-
aration, often combined with the Padberg-Rao exact algorithm for blos-
soms. Comb heuristics based on shrinking subsets of cities, followed by
application of the Padberg-Rao algorithm, are described in Padberg and
Gr�otschel (1985) and in Gr�otschel and Holland (1991; heuristics based on
the structure of the graph G1=2 having vertex-set V and edge-set fe : 0 <
x�e < 1g are described in Padberg and Hong (1980), in Padberg and Ri-
naldi (1990b), and in Naddef and Thienel (2002a). (Related separation algo-
rithms can be found in Applegate et al (1995), Fleischer and Tardos (1999),
and Letchford (2000).)

In our cutting-plane implementation for large-scale TSP instances, we
use fast and simple heuristics for blossom inequalities, relying on the tech-
niques described in the next section to extend the blossoms to more general
comb inequalities.

Padberg and Hong (1980) propose a blossom-separation algorithm that
builds the graph G1=2 (as described above), and examines the vertex-sets
V1; : : : ; Vq of the connected components of G1=2. If for some i in f1; : : : ; qg
the set of edges

T = fe : e \ Vi 6= ;; e� Vi 6= ;; x�e = 1g

Title Suppressed Due to Excessive Length 15

has odd cardinality, then the blossom inequality with handle Vi and with
teeth consisting of the sets of endpoints of T is violated by x�. We re-
fer to this technique for �nding blossoms as the odd-component heuristic.
(Variants of this method can be found in Hong (1972) and in Land (1979).)

Combining the odd-component heuristic with the subtour separation
routines described in Section 2 produces the result

Gap to Optimal
� 0.3387%

on our 100,000-city instance. To obtain this result, we ran the separation
algorithms until they returned without any violated cuts. The addition
of the blossom inequalities to the mix of cuts closed over half of the gap
between the subtour bound and the length of the best tour we know.

The odd-component heuristic for blossoms su�ers from the same prob-
lem as the connected-component heuristic for subtours we discussed in
Section 2.2, namely, small perturbations in x� can hide the odd compo-
nents that make up the handles of the blossoms. We do not have an ana-
logue of the parametric connectivity procedure in this case, but Gr�otschel
and Holland (1987) proposed a method for handling a �xed perturba-
tion " in the heuristic. Their idea is to consider as possible handles the
vertex-sets of the components of the graph G" having vertices V and edges
fe : " � x�e � 1� "g. Let Vi denote the vertex-set of such a component, and
let e1; : : : ; et be the edges in the set

fe : e \ Vi 6= ;; e� Vi 6= ;; x�e > 1� "g

in a nonincreasing order of x�e ; if t is even, then et+1 is the edge in

fe : e \ Vi 6= ;; e� Vi 6= ;; x�e < "g

with the greatest x�e and t is incremented by one; now t is odd. For each
odd integer k from 1 up to t such that

x�(Vi; V � Vi) +

kX
j=1

x�(ej ; V � ej) < 3k + 1;

Gr�otschel and Holland �nd a subtour inequality or a blossom inequality
violated by x�. If two of the edges ej intersect inside Vi, then these two edges
are removed from the collection and their intersection is deleted from Vi; if
two of the edges ej intersect outside Vi, then these two edges are removed
from the collection and their intersection is added from Vi. Eventually, the
collection consists of an odd number of disjoint edges; if there are at least
three, then they form the teeth of a violated blossom inequality; if there is
just one, then the handle alone yields a violated subtour inequality.

We have implemented a variation of the Gr�otschel-Holland heuristic,
where we consider only k = t or (if x�(et�1; V � et�1) + x�(et; V � et) < 6)

16 David Applegate et al.

k = t � 2; in choosing the value of ", we follow the recommendation of
Gr�otschel and Holland and set " = 0:3. Using this algorithm allows us to
produce the result

Gap to Optimal
� 0.3109%

for our 100,000-city instance. Here, we combined the Gr�otschel-Holland
heuristic, the odd-component heuristic, and the subtour separation heuris-
tics, running the cutting-plane procedures until no further cuts were pro-
duced.

4. Tightening and teething

Watching our implementation of the cutting-plane method run, we have
observed that optimal solutions x� of the successive LP relaxations often
react to each new cut we add by shifting the defect prohibited by the cut
to an area just beyond the cut's control. An obvious remedy is to respond
to each slight adjustment of x� with slight adjustments of our cuts. In this
section we describe two methods for making these adjustments

To describe our cut-alteration procedures, it will be convenient to in-
troduce standard notation for describing the types of cuts we consider in
our computer code.

A hypergraph is an ordered pair (V;F) such that F is a family of (not
necessarily distinct) subsets of V ; the elements of F are called the edges of
the hypergraph. Given a hypergraph (V;F) denoted H, we write

H Æ x =
X

(x(S; V � S) : S 2 F)

and we let �(H) stand for the minimum of H Æ x taken over the incidence
vectors of tours through V . Every linear inequality satis�ed by all the in-
cidence vectors of tours through V is the sum of a linear combination of
equations (4) and a hypergraph inequality,

H Æ x � t

with t � �(H).
We express all cutting planes used in our computer code as hyper-

graph inequalities. For example, if H = (V;F) is a comb with subsets
F = fS0; S1; : : : ; Skg, then �(H) = 3k + 1 and H Æ x � 3k + 1 is the
corresponding comb inequality.

4.1. Tightening an inequality

Let H be a hypergraph and let E1; E2; : : : Em be the edges of H. For each
subset I of f1; 2; : : : ;mg, we set

�(I;H) =
\
i2I

Ei �
[
i62I

Ei ;

Title Suppressed Due to Excessive Length 17

we refer to each nonempty �(I;H) as an atom of H. We write H v H0 to
signify that H and H0 are hypergraphs with the same set of vertices and
the same number of edges such that �(I;H0) 6= ; whenever �(I;H) 6= ;; it
is not diÆcult to see that

H v H0 implies �(H0) � �(H).

By tightening a hypergraph H0, we mean attempting to modify H0 in such
a way that the resulting hypergraph, H, satis�es

H0 v H and H Æ x� < H0 Æ x
�: (8)

Here, \attempting" and \modify" are the operative words: by tightening,
we do not mean �nding a solution H of (8). Rather, we mean a swift and
not necessarily exhaustive search for a solutionH of (8) such that each edge
of H is either identical with the corresponding edge of H0, or it di�ers from
it in just a few elements.

When the edges of H are E1; : : : Em and the edges of H0 are E0
1; : : : E

0
m,

we write H0 � H to signify that there is a subscript j such that Ei; E
0
i are

identical whenever i 6= j and di�er in precisely one element when i = j.
Our starting point for tightening a prescribed hypergraph H0 is the greedy
search speci�ed in Algorithm 4.1.

Algorithm 4.1 Greedy search.

H = H0;
repeat H0 = hypergraph that minimizes H0 Æ x�

subject to H0 v H0 and H0 � H;
if H0 Æ x� < H Æ x� then H = H0 else return H end

end

One trouble with greedy search is that it terminates as soon as it reaches
a local minimum, even though a better solution may be just around the
corner. One remedy is to continue the search even when H0 Æ x� � H Æ x�;
now the best H found so far is not necessarily the current H, and so it
has to be stored and updated; furthermore, measures that make the search
terminate have to be imposed. In our variation on this theme, the search
terminates as soon as H0 Æ x� > H Æ x� (we prefer missing a solution of (8)
to spending an inordinate amount of time in the search and letting H stray
far away from H0), but it may go on when H0 Æx� = HÆx�. We don't have
to worry about storing and updating the best H found so far (this H is our
current H), but we still have to ensure that the modi�ed search terminates.

Consider a vertex v of H and an edge Ei of H. The move (v; i) is the
replacement of Ei by Ei[fvg in case v 62 Ei and by Ei�fvg in case v 2 Ei.

18 David Applegate et al.

In this terminology, H0 � H if and only if H0 can be obtained from H by a
single move; with H� (v; i) standing for the hypergraph obtained from H
by move (v; i) and with

�(v; i) =

�
x�(fvg; Ei)� 1 if v 62 Ei;
1� x�(fvg; Ei) if v 2 Ei;

we have
(H� (v; i)) Æ x� = H Æ x� � 2�(v; i):

In each iteration of our modi�ed greedy search, we �nd a move (v; i) that
maximizes �(v; i) subject to H0 v H � (v; i). If �(v; i) > 0, then we
substitute H � (v; i) for H; if �(v; i) < 0, then we return H; if �(v; i) =
0, then we either substitute some H � (w; j) with H0 v H � (w; j) and
�(w; j) = 0 for H or return H. More precisely, we classify all the moves
(v; i) with �(v; i) = 0 into three categories by assigning to each of them a
number �(v; i) in f0; 1; 2g. If

maxf�(v; i) : H0 v H� (v; i)g = 0;

then we �nd a move (w; j) that maximizes �(w; j) subject to H0 v H �
(w; j) and �(w; j) = 0; if �(w; j) > 0, then we substitute H� (w; j) for H;
if �(w; j) = 0, then we return H.

To describe this policy in di�erent terms, let us write

(�1; �1) � (�2; �2) to mean that �1 < �2 or else �1 = �2 = 0, �1 < �2.

(Note that this � is a partial order similar to, but not identical with, the
lexicographic order on all the pairs (�;�): in �, the second component of
(�;�) is used to break ties only if the �rst component equals zero.) In each
iteration of our modi�ed greedy search, we �nd a move (v; i) that

maximizes (�(v; i); �(v; i)) subject to H0 v H� (v; i)

in the sense that no move (w; j) withH0 v H�(w; j) has (�(v; i); �(v; i)) �
(�(w; j); �(w; j)). If (0; 0) � (�(v; i); �(v; i)), then we substitute H� (v; i)
for H; if (�(v; i); �(v; i)) � (0; 0), then we return H.

The values of �(v; i) are de�ned in Algorithm 4.2.
This de�nition of �(v; i) is motivated by three objectives:

(i) to make the search terminate,
(ii) to steer the search towards

returning a hypergraph with relatively small edges,
(iii) to improve the chances of

�nding a hypergraph H with H Æ x� < H0 Æ x�.

To discuss these three items, let S denote the sequence of moves made by
the search. Each move (v; i) in S is either an add , Ei 7! Ei[fvg, or a drop,
Ei 7! Ei � fvg; each move (v; i) in S is either improving , with �(v; i) > 0,
or nonimproving , with �(v; i) = 0.

Title Suppressed Due to Excessive Length 19

Algorithm 4.2 Tightening H0.

for all vertices v and all i = 1; 2; : : : ;m
do if v 2 Ei then �(v; i) = 1 else �(v; i) = 2 end
end

H = H0;
repeat (v; i) = move that

maximizes (�(v; i); �(v; i)) subject to H0 v H � (v; i);
if (�(v; i); �(v; i)) � (0; 0)
then if �(v; i) = 1

then if �(v; i) = 0
then �(v; i) = 0;
else �(v; i) = 2;
end

else �(v; i) = 1;
end

H = H� (v; i);
else return H;
end

end

For an arbitrary but �xed choice of v and i, let S� denote the subse-
quence of S that consists of all the terms of S that equal (v; i). Trivially,
adds and drops alternate in S�; hence the de�nition of �(v; i) guarantees
that S� does not contain three consecutive nonimproving terms; since S�

contains only �nitely many improving terms, it follows that S� is �nite; in
turn, as v and i were chosen arbitrarily, it follows that S is �nite.

In S�, a nonimproving drop cannot be followed by a nonimproving add
(which has � = 0; � = 0), but a nonimproving add can be followed by a
nonimproving drop (which has � = 0; � = 1). This asymmetry pertains to
objective (ii): our search returns a hypergraph H such that, for all choices
of v and i with v 2 Ei, we have �(v; i) < 0 or else H0 6v H � (v; i).

The algorithm prefers nonimproving adds with � > 0 (these have � = 2)
to nonimproving drops with � > 0 (these have � = 1). This asymmetry
pertains to objective (iii): its role is to o�set the asymmetry introduced by
objective (ii). When no improving move is immediately available, we let
edges of H shift by nonimproving moves in the hope of eventually discov-
ering an improving move. Nonimproving adds that lead nowhere can get
undone later by nonimproving drops, after which additional nonimproving
drops may lead to a discovery of an improving move. However, nonim-
proving drops that lead nowhere cannot get undone later by nonimproving
adds, and so they may forbid a sequence of nonimproving adds leading to
a discovery of an improving move.

20 David Applegate et al.

The importance of objective (ii) comes from the facts that (a) the LP
solver works faster when its constraint matrix gets sparser and (b) cuts
de�ned by hypergraphs with relatively small edges tend to have relatively
small numbers of nonzero coeÆcients. (Part (b) of this argument could be
criticized on the grounds that a hypergraph cut is invariant under comple-
menting an edge and so, in problems with n cities, hypergraph edges of size
k are just as good as edges of size n � k. However, this criticism is just a
quibble: in hypergraphs that we use to supply cuts, edges tend to have sizes
far smaller than n=2.)

To implement the instruction

(v; i) = move that
maximizes (�(v; i); �(v; i)) subject to H0 v H � (v; i),

we maintain

{ a priority queue Q of all pairs (w; j) such that
(�(w; j); �(w; j)) � (0; 0) and H0 v H� (w; j);

to speed up the update Q after each iteration, we maintain a number of
auxiliary objects. Call vertices v and w neighbors if x�vw > 0 and write

V �(H) = fw : w belongs to or has a neighbor in an edge of Hg:

We keep track of

{ a superset V � of V �(H)

initialized as V �(H0) and updated by V
� = V �[V �(H) after each iteration;

for each w in V �, we maintain

{ the values of (�(w; j); �(w; j)) in an array of length m.

(Note that each w outside V � has (�(w; j); �(w; j)) = (�1; 2) for all j.) In
addition, we store

{ the family A of all sets I such that �(I;H0) is an atom of H0;

for each I in A, we maintain

{ a doubly linked list A(I) that holds the elements of �(I;H) \ V �

(the only I in A that may have �(I;H) 6� V � is the empty set, which labels
the exterior atom of H); for each w in V �, we de�ne I(w) = fj : w 2 Ejg
and maintain

{ a pointer a(w) to A(I(w)), with a(w) = NULL if I(w) 62 A.

Initializing all this information and updating it after each iteration is a
routine task; we will discuss its details only for the sake of clarity.

Inserting a new vertex w into V � | with �(w; j) and �(w; j) set as if
w remained outside V � | is a simple operation; for convenience, we set it
apart as function Insert(w) de�ned in Algorithm 4.3. The membership of a

Title Suppressed Due to Excessive Length 21

Algorithm 4.3 Insert(w).

V � = V � [fwg;
for j = 1; 2; : : :m do �(w; j) = �1, �(w; j) = 2 end

move (w; j) in Q may change after each change of H. Algorithm 4.4 de�nes
a function Membership(w; j), that, given a move (w; j) such that w 2 V �,
inserts (w; j) into Q or deletes it from Q as necessary. The initialization
de�ned in Algorithm 4.5 replaces the �rst four lines of Algorithm 4.2; the
update de�ned in Algorithm 4.6 replaces the line

H = H� (v; i);

of Algorithm 4.2; the current H is represented by � since

Ej = fw 2 V � : �(w; j) = 1g:

Algorithm 4.4 Membership(w; j).

if a(w) points to a list that includes only one item
then if (w; j) 2 Q then delete (w; j) from Q end

else if (�(w; j); �(w; j)) � (0; 0)
then if (w; j) 62 Q then insert (w; j) into Q end

else if (w; j) 2 Q then delete (w; j) from Q end

end

end

We apply the tightening procedure in our code in two ways. Firstly, we
scan the cuts that we currently have in our LP and try tightening each of
them in turn. Secondly, if a scan of the list of inequalities we maintain in a
pool (inequalities that have at one time been added to the LP, but may no
longer be present; see Section 6), does not produce suÆciently many cuts
then we try tightening each one that is within some �xed tolerance " of
being violated by the current x� (we use " = 0:1).

Using these separation routines in combination with the algorithms pre-
sented in Section 2 and in Section 3, we obtained the result

Gap to Optimal
� 0.1722%

for our 100,000-city instance.

22 David Applegate et al.

Algorithm 4.5 Initialization.

V � = ;;
for i = 1; 2; : : : ;m
do for all v in Ei

do if v 62 V � then Insert(v) end
�(v; i) = 1;
for all neighbors w of v
do if w 62 V � then Insert(w) end
end

end

end

A = ;;
for all v in V �

do I = fi : �(v; i) = 1g;
if I 62 A
then add I to A and initialize an empty list A(I);
end

insert v into A(I) and make a(v) point to A(I);
end

Q = ;;
for all v in V �

do for all neighbors w of v
do if w 2 V �

then for i = 1; 2; : : :m
do if �(w; i) 6= �(v; i)

then �(v; i) = �(v; i) + x�vw;
end

end

end

end

for i = 1; : : : ;m do Membership(v; i) end
end

Title Suppressed Due to Excessive Length 23

Algorithm 4.6 Update.

if a(v) 6= NULL

then A = the list that a(v) points to;
delete v from A;
if jAj = 1
then w = the unique vertex in A;

for j = 1; : : : ;m do Membership(w; j) end
end

end

I = fj : �(v; j) = 1g;
if I 2 A
then insert v into A(I) and make a(v) point to A(I);

if jA(I)j = 2
then w = the unique vertex in A(I) other than v;

for j = 1; : : : ;m do Membership(w; j) end
end

else a(v) = NULL;
end

�(v; i) = ��(v; i);
Membership(v; i);

for all neighbors w of v
do if w 62 V �

then Insert(w);
insert w into A(;) and make a(w) point to A(;);

end

if �(w; i) � �(v; i) mod 2
then �(w; i) = �(w; i)� x�vw ;
else �(w; i) = �(w; i) + x�vw ;
end

Membership(w; i);
end

24 David Applegate et al.

4.2. Teething a comb inequality

The Gr�otschel-Holland heuristic mentioned in Section 3 builds a blossom
inequality with a prescribed handle by attaching to this handle a set of
two-node teeth selected in a greedy way. Its generalization would replace
the set of two-node teeth of any comb inequality by an optimal set of two-
node teeth. Unfortunately, such a procedure would have to take care to
avoid teeth with nonempty intersection. Fortunately, if a two-node tooth
intersects another tooth in a single node, then an even stronger inequality
can be obtained by adjusting the hypergraph (or discovering a violated
subtour inequality); if a two-node tooth intersects another tooth in more
than a single node, then it must be contained in the other tooth. Concorde
exploits this relationship in an algorithm which we refer to as teething .

More precisely, we say that a tooth is big if its size is least three, and
small if its size is two; given a comb H0, we set

�(H0) = minfH Æ x� � �(H) : H is a comb such that
H and H0 have the same handle and
all big teeth of H are teeth of H0g;

teething a comb H0 means �nding either a comb H such that all big teeth
of H are teeth of H0 and

if �(H0) � 0 then H Æ x� � �(H) � �(H0)

or else a subtour inequality violated by x�.

As a preliminary step in teething, we test the input H0 for the property

x(S; V � S) � 2 whenever S is an edge of H0; (9)

if (9) fails, then we have found a subtour inequality violated by x�. The
remainder of the algorithm consists of three parts.

The �rst part involves the notion of a pseudocomb, which is just like a
comb except that its small teeth are allowed to intersect | but not to be
contained in | other teeth. More rigorously, a pseudocomb is a hypergraph
with edge-set fHg [T such that

� if T 2 T , then T \H 6= ; and T �H 6= ;,
� if T1; T2 2 T , T1 6= T2, and jT1j � 3; jT2j � 3, then T1 \ T2 = ;,
� if T1; T2 2 T and jT1j = 2; jT2j � 3, then T1 6� T2,
� jT j is odd.

Given an arbitrary hypergraph H with edge-set E , we write

�(H) =

�
3jEj � 2 if jEj is even;
3jEj � 3 if jEj is odd;

note that �(H) = �(H) whenever H is a comb. In the �rst part, we

Title Suppressed Due to Excessive Length 25

(i) �nd a pseudocomb H1 that minimizes H1 Æ x� � �(H1)
subject to the constraints that H1 and H0 have the same handle
and that all big teeth of H1 are teeth of H0.

Trivially, H1 Æ x� � �(H1) � �(H0). If H1 Æ x� � �(H1) � 0, then we give
up; else we proceed to the second part. This part involves the notion of
a generalized comb, which is just a comb without some of its teeth. More
rigorously, a generalized comb is a hypergraph with edge-set fHg[T such
that

� H 6= ; and H 6= V ,
� if T 2 T , then T \H 6= ; and T �H 6= ;,
� if T1; T2 2 T and T1 6= T2, then T1 \ T2 = ;.

In the second part,we

(ii) �nd either a generalized comb H2 such that
all teeth of H2 are teeth of H1 and
H2 Æ x� � �(H2) � H1 Æ x� � �(H1)
or else a subtour inequality violated by x�;

in the third part, we

(iii) we �nd either a comb H such that
all teeth of H are teeth of H2 and
H Æ x� � �(H) � H2 Æ x� � �(H2)
or else a subtour inequality violated by x�.

To discuss implementations of part (i), let H denote the handle of H0,
set

S = fT : jT \H j = 1; jT �H j = 1g;

and let B denote the set of big teeth of H0. In this notation, we may state
the problem of �nding H1 as

minimize
P

T2T (x
�(T; V � T)� 3)

subject to T � S [B;
T1 6� T2 whenever T1; T2 2 T ;
jT j � 1 mod 2:

(10)

Now let us write
S� = fe 2 S : x�e > 0g:

We claim that (10) has a solution T such that T � S� [B, and so the
problem of �nding H1 can be stated as

minimize
P

T2T (x
�(T; V � T)� 3)

subject to T � S� [B;
T1 6� T2 whenever T1; T2 2 T ;
jT j � 1 mod 2:

(11)

To justify this claim, note that property (9) with S = H guarantees S� 6= ;
and consider an arbitrary solution T of (10). If some T1 in S � S� belongs

26 David Applegate et al.

to T , then x(T1; V � T1) = 4 > x(T; V � T) for all T in S�; hence T must
include a set T2 other than T1; since property (9) with S = T2 guarantees
x(T2; V �T2) � 2, the removal of T1 and T2 from T yields another solution
of (10). Iterating this process, we arrive at the desired conclusion.

Concorde's way of solving problem (11) is speci�ed in Algorithm 4.7.
The initial part of this algorithm computes sets R0(i); R1(i) with i =
0; 1; 2; : : : ; k such that each Rt(i) with 1 � i � k

minimizes
P

T2T (x
�(T; V � T)� 3)

subject to T � S�;
T � Ti whenever T 2 T ;
jT j � t mod 2

and Rt(0)

minimizes
P

T2T (x
�(T; V � T)� 3)

subject to T � S�;
T 6� Ti whenever T 2 T and 1 � i � k;
jT j � t mod 2:

The i-th iteration of the last for loop computes sets R0(0); R1(0) such that
Rt(0)

minimizes
P

T2T (x
�(T; V � T)� 3)

subject to T � S� [B;
T1 6� T2 whenever T1; T2 2 T ;
T 6� Tj whenever T 2 T and i < j � k;
jT j � t mod 2:

Lemma 1. Let A;B and T1; : : : Ts be distinct sets such that

Tj � (A�B) [(B �A) and jTj \ (A�B)j = jTj \ (B �A)j = 1

whenever 1 � j � s. Then

x(A [B; V � (A [B)) + x(A \ B; V � (A \B)) �

x(A; V �A) + x(B; V �B) +

sX
j=1

x(Tj ; V � Tj)� 4s:

Proof. Observe that

X
(x�e : e � A) +

X
(x�e : e � B) +

sX
j=1

X
(x�e : e � Tj) �

X
(x�e : e � A [B) +

X
(x�e : e � A \ B):

Substituting jSj � 1
2x

�(S; V � S) for each
P
(x�e : e � S) in this inequality

yields the desired result. ut

Title Suppressed Due to Excessive Length 27

Algorithm 4.7 First part of a teething iteration.

H = the handle of H0;
T1; T2; : : : ; Tk = the big teeth of H0;
for i = 0; 1; : : : k do �0(i) = 0, �1(i) = +1, R0(i) = R1(i) = ; end
for all vertices u in H
do for all vertices v such that x�uv > 0 and v 62 H

do if u; v 2 Tj for some j then i = j else i = 0 end
P0 = R0(i), P1 = R1(i), �0 = �0(i), �1 = �1(i);
if �1 + (1� 2x�uv) < �0
then �0(i) = �1 + (1� 2x�uv), R0(i) = P1 [ffu; vgg;
end

if �0 + (1� 2x�uv) < �1
then �1(i) = �0 + (1� 2x�uv), R1(i) = P0 [ffu; vgg;
end

end

end

for i = 1; 2; : : : ; k
do if x(Ti; V � Ti)� 3 < �1(i)

then R1(i) = fTig, �1(i) = x(Ti; V � Ti)� 3
end

P0 = R0(0), P1 = R1(0), �0 = �0(0), �1 = �1(0);
if �1 + �1(i) < �0 + �0(i)
then �0(0) = �1 + �1(i), R0(0) = P1 [R1(i);
else �0(0) = �0 + �0(i), R0(0) = P0 [R0(i);
end

if �0 + �1(i) < �1 + �0(i)
then �0(0) = �0 + �1(i), R1(0) = P0 [R1(i);
else �0(0) = �1 + �0(i), R1(0) = P1 [R0(i);
end

end

H1 = hypergraph with edge-set fHg [R1(0);

Let us use Lemma 1 to show that Algorithm 4.8 maintains the following
invariant:

x�(H;V �H) +
X
T2T

x�(T; V � T) � (12)

�
H1 Æ x

� � �(H1) + 3jT j+ 1 if jT j is odd;
H1 Æ x� � �(H1) + 3jT j if jT j is even:

For this purpose, consider �rst the change of H and T made by an iteration
of the �rst for loop. Lemma 1 with A = H , B = T 0, and T1; : : : Ts the sets

28 David Applegate et al.

Algorithm 4.8 Second part of a teething iteration.

H = the handle of H1;
T = the set of all teeth of H1;
for all vertices v outside H
do if v belongs to at least two sets in T

then T 0 = largest set in T such that v 2 T 0;
if x(T 0 \H;V � (T 0 \H)) � 2
then H = H [T 0;

T = fT 2 T : T 6� Hg;
else return T 0 \H ;
end

end

end

for all vertices v in H
do if v belongs to at least two sets in T

then T 0 = largest set in T such that v 2 T 0;
if x(T 0 �H;V � (T 0 �H)) � 2
then H = H � T 0;

T = fT 2 T : T \H 6= ;g;
else return T 0 �H ;
end

end

end

H2 = the hypergraph with edge-set fHg [T ;

in T distinct from T 0 and contained in H[T 0 guarantees that the left-hand
side of (12) drops by at least 4s+2. If s is odd, then the right-hand side of
(12) drops by 3(s + 1); if s is even, then the right-hand side of (12) drops
by at most 3(s+1)+1; in either case, the right-hand side of (12) drops by
at most 4s+2. Hence all iterations of the �rst for loop maintain invariant
(12); the same argument with V �H in place of H shows that all iterations
of the second for loop maintain invariant (12).

In particular, if Algorithm 4.8 gets around to constructing H2, then

H2 Æ x
� � �(H2) � H1 Æ x

� � �(H1):

Note that (12) and the assumption H1 Æx
� � �(H1) < 0 guarantee that

Algorithm 4.8 maintains the invariant
� T 6= ;;

trivially, it maintains the invariant
� if T 2 T , then T \H 6= ; and T �H 6= ;.

The �rst for loop changes H and T so that

Title Suppressed Due to Excessive Length 29

if T1; T2 2 T and T1 6= T2, then (T1 \ T2)�H = ;;
the second for loop changes H and T so that

� if T1; T2 2 T and T1 6= T2, then T1 \ T2 = ;.
To summarize, if the algorithm gets around to constructing H2, then H2 is
a generalized comb with at least one tooth.

A practical variation on Algorithm 4.8 takes the conditions

x�(T 0 \H;V � (T 0 \H)) � 2 and x�(T 0 �H;V � (T 0 �H)) � 2

for granted: skipping the persistent tests speeds up the computations. If
the resulting hypergraph H2 satis�es

H2 Æ x
� � �(H2) � H1 Æ x

� � �(H1);

then all is well and we proceed to part (iii); else we simply give up. In the
latter case, we know that some big tooth T of H1 satis�es

x�(T \H;V � (T \H)) < 2 or x�(T �H;V � (T �H)) < 2;

the option of �nding this T now remains open, even though its appeal may
be marred by the fact that violated subtour inequalities can be spotted
reasonably fast from scratch.

Part (iii) of teething is trivial. If H2 has at most two teeth, then

H2 Æ x
� < 2(1 + jT j);

and so at least one edge S of H2 has x�(S; V � S) < 2. If the number of
teeth of H2 is at least three and odd, then we may set H = H2. If the
number of teeth of H2 is at least four and even, then we may let H be
H2 with an arbitrary tooth deleted: we have �(H) = �(H2) � 2 and (9)
guarantees that H Æ x� � H2 Æ x

� � 2; in this case, the number of distinct
cuts we obtain is the number of teeth of H2.

In our code, as a heuristic separation algorithm, we apply teething to
each comb inequality in the current LP. Adding this routine to our mix of
cuts improves the bound on our 100,000-city instance to

Gap to Optimal
� 0.1671%.

5. Local cuts

The development of the cut-�nding techniques of Section 2 and Section 3
conforms to the following paradigm:

1. describe a class C of linear inequalities that are satis�ed by the set S of
incidence vectors of all the tours through the n cities and then

2. design an eÆcient (exact or heuristic) separation algorithm for C.

30 David Applegate et al.

The cut-�nding technique of the present section deviates from this paradigm:
the kinds of cuts it �nds are unspeci�ed and unpredictable.

The idea is to �rst map S and x� to a space of very low dimension by
some suitable linear mapping � and then, using standard general-purpose
methods, to look for linear inequalities

aTx � b (13)

that are satis�ed by all points of �(S) and violated by �(x�): every such
inequality yields a cut,

aT�(x) � b; (14)

separating S from x�. (Boyd's (1993, 1994) variation on a theme by Crow-
der, Johnson, and Padberg (1983) can also be outlined in these terms, with
� a projection onto a small set of coordinates, but his general-purpose
method for �nding cuts in the low-dimensional space is radically di�erent
from ours.) In our implementation of this idea, � is de�ned by a partition
of V into pairwise disjoint nonempty sets V0; V1; : : : ; Vk and can be thought
of as shrinking each set Vi into a single node: formally,

� : Rn(n�1)=2 ! R(k+1)k=2

is de�ned by �(x) = x with

xij = x(Vi; Vj) whenever 0 � i < j � k:

Let us write

V = f0; 1; : : : ; kg:

With � de�ned by shrinking each set Vi into the single node i, the change of
variable from x in (13) to x in (14) is particularly easy to implement when
(13) is a hypergraph inequality: substitution from the de�nitions of xij
converts each linear function x(Q; V �Q) to the linear function x(Q; V �Q)
where Q is the set of all cities that are mapped into Q by the function that
shrinks V onto V .

Shrinking V onto V reduces each tour through V to a spanning closed
walk through V ; it reduces the incidence vector x of the tour to a vector x
such that

� each xe is a nonnegative integer,
� the graph with vertex-set V and edge-set fe : xe > 0g is connected,
�
P
(xe : v 2 e) is even whenever v 2 V ;

we will refer to the set of all the vectors x with these three properties as
tangled tours through V . This notion, but not the term, was introduced by
Cornu�ejols, Fonlupt, and Naddef (1985); they refer to the convex hull of the
set of all tangled tours through a prescribed set as the graphical traveling
salesman polytope.

For a particular choice of �, �nding a hypergraph inequality that is
satis�ed by all tangled tours through V and violated by x�| if such an

Title Suppressed Due to Excessive Length 31

Algorithm 5.1 A scheme for collecting TSP cuts.

initialize an empty list L of cuts;
for selected small integers k and

partitions of V into nonempty sets V0; V1; : : : ; Vk
do x�= the vector obtained from x� by shrinking each Vi into singleton i;

V = f0; 1; : : : ; kg;
if x� lies outside the graphical traveling salesman polytope on V
then �nd a hypergraph inequality that is

satis�ed by all tangled tours through V and violated by x�,
change its variable from x to x, and
add the resulting hypergraph inequality to L;

end

end

return L;

inequality exists at all | is relatively easy; we try many di�erent choices
of �; the resulting scheme is summarized in Algorithm 5.1.

Our computer code deviates from the scheme of Algorithm 5.1 in minor
ways. When it comes to including a new cut in L, we are more selective
than Algorithm 5.1 suggests. We accept only cuts that have integer coef-
�cients and integer right-hand sides; to produce such cuts, our variation
on the theme of Algorithm 5.1 uses integer arithmetic whenever necessary.
In addition, cuts that are violated only slightly by x� are of little use to a
cutting-plane algorithm; instead of adding such a weak cut to L, we move
on to the next choice of V0; V1; : : : ; Vk as if x� belonged to the graphical
traveling salesman polytope on V .

In certain additional cases, we may also fail to return a cut separating
x� from all tangled tours through V , even though x� lies well outside the
graphical traveling salesman polytope on V . This happens whenever compu-
tations using integer arithmetic are about to create overow and whenever
the number of iterations or recursive calls of some procedure has exceeded a
prescribed threshold. In such circumstances, we once again move on to the
next choice of V0; V1; : : : ; Vk just as if x

� belonged to the graphical traveling
salesman polytope on V .

5.1. Making choices of V0; V1; : : : ; Vk

Concorde's choices of V0; V1; : : : ; Vk in Algorithm 5.1 are guided by x� in a
way similar to that used by Christof and Reinelt (1996) in their algorithm
for �nding cuts that match templates from a prescribed large catalog. First,
it constructs once and for all an equivalence relation on V in such a way
that each equivalence class V ? of this relation satis�es

x�(V ?; V � V ?) = 2;

32 David Applegate et al.

then it makes many di�erent choices of V0; V1; : : : ; Vk in such a way that each
of V1; : : : ; Vk is one of these equivalence classes and V0 = V �(V1[: : :[Vk).

With W standing for the set of the equivalence classes on V , the �rst
stage amounts to preshrinking V ontoW ; making each of the many di�erent
choices of V0; V1; : : : ; Vk in the second stage means choosing a small subset of
W and shrinking the entire remainder of W onto a single point. In terms of
the preshrunk setW , each choice of V0; V1; : : : ; Vk in the second stage zooms
in onto a relatively small part of the problem|typically k is at most thirty
or so and jW j may run to hundreds or thousands|and e�ectively discards
the rest. For this reason, we developed the habit of referring to the cuts
produced by Algorithm 5.1 as local cuts . In terms of the original V , each of
the sets V1; : : : ; Vk could be quite large, which makes the quali�er \local"
a misnomer. Still, a crisp label for the cuts produced by Algorithm 5.1 is
convenient to have and \local cuts" seems to be as good a name as any
other that we managed to think up.

The equivalence relation is constructed by iteratively shrinking two-
point sets into a single point. At each stage of this process, we have a set
W and a mapping � : W ! 2V that de�nes a partition of V into pairwise
disjoint subsets �(w) with w 2 W . Initially, W = V and each �(w) is the
singleton fwg; as long as there are distinct elements u; v; w of W such that

x�(�(u); �(v)) = 1 and x�(�(u); �(w)) + x�(�(v); �(w)) = 1; (15)

we keep replacing �(u) by �(u)[�(v) and removing v from W ; when there
are no u; v; w with property (15), we stop. (During this process, we may
discover pairs u; v with x�(�(u); �(v)) > 1, in which case x� violates the
subtour inequality x(Q; V �Q) � 2 with Q = �(u) [�(v).)

To make the many di�erent choices of V1; : : : ; Vk, we �rst set the value
of a parameter t that nearly determines the value of k in the sense that
t� 3 � k � t. For large-scale instances we simply set t = tmax, where tmax
is a prescribed integer (at least 8). For smaller instances, we let the value
of t range between 8 and tmax. More precisely, the search always begins
with t = 8. Whenever a value of t is set, Concorde adds all the resulting
cuts produced by Algorithm 5.1 to the LP relaxation of our problem and
it solves the tightened LP relaxation; if the increase in the value of the
relaxation is not satisfactory and t < tmax, then the next iteration takes
place with t incremented by one.

For each w in W , we choose a subset C of W so that w 2 C and
t � 3 � jCj � t; the corresponding V1; : : : ; Vk are the �(v) with v 2 C.
The choice of C is guided by the graph with vertex-set W , where u and
v are adjacent if and only if x�(�(u); �(v)) > " for some prescribed zero
tolerance ": starting at w, we carry out a breadth-�rst search through this
graph, until we collect a set C of t� 3 vertices. If there are any vertices u
outside this C such that x�(�(u); �(v)) = 1 for some v in C, then we keep
adding these vertices u to C as long as jCj � t.

Title Suppressed Due to Excessive Length 33

It seems plausible that such a crude way of choosing C can be improved.
However, we found its performance satisfactory; none of the alternatives
that we tried appeared to work better.

5.2. Testing the if condition in Algorithm 5.1

Each choice of V0; V1; : : : ; Vk yields an x�, the vector obtained from x� by
shrinking each Vi into singleton i; this x� de�nes a set of tangled tours
through V = f0; 1; : : : ; kg, which we call strongly constrained ; speci�cally,
a tangled tour is strongly constrained if, and only if,

xe = 0 for all e such that x�e = 0,

xe = 1 for all e such that x�e = 1 and e � f1; 2; : : : ; kg,P
(xe : u 2 e) = 2 for all u in f1; 2; : : : ; kg.

Since every tangled tour x satis�es the inequalities

xe � 0 for all e,P
(xe : u 2 e) � 2 for all u,

x(e; V � e) � 2 for all e,

and since P
(x�e : u 2 e) = 2 for all u in f1; 2; : : : ; kg,

x� belongs to the graphical traveling salesman polytope on V (de�ned as
the convex hull of the set of all tangled tours through V) if and only if
it belongs to the convex hull of the set of all strongly constrained tangled
tours through V . Algorithm 5.2, given x�, returns either

� a vector a and a scalar b such that the inequality aTx � b is
satis�ed by all strongly constrained tangled tours through V and
violated by x�

or
� a failure message indicating that x� belongs to the convex hull of
the set of all strongly constrained tangled tours through V .

To sketch our implementation of Algorithm 5.2, let

E1=2 denote the set of all the edges e such that
e � f1; 2; : : : ; kg, x�e 6= 0, x�e 6= 1.

The signi�cance of E1=2 comes from the fact that every strongly constrained
tangled tour x satis�es

x0u = 2�
P
(xe : e � f1; 2; : : : ; kg; u 2 e) for all u in f1; 2; : : : ; kg,

xe = 0 for all e such that e � f1; 2; : : : ; kg and x�e = 0,

xe = 1 for all e such that e � f1; 2; : : : ; kg and x�e = 1,

and so the condition

34 David Applegate et al.

Algorithm 5.2 Testing the if condition in Algorithm 5.1:

if there is a strongly constrained tangled tour x through V
then make x the only specimen in a collection of

strongly constrained tangled tours through V ;
repeat if some linear inequality aTx � b is

satis�ed by all x in the collection and violated by x�

then �nd a strongly constrained tangled tour x through V
that maximizes aTx;
if aTx � b
then return a and b;
else add x to the collection;
end

else return a failure message;
end

end

else return [0; 0; : : : ; 0]T and �1;
end

some linear inequality aTx � b is
satis�ed by all x in the collection and violated by x�

in Algorithm 5.2 is equivalent to the condition

some linear inequality aTx � b with ae = 0 whenever e 62 E1=2 is
satis�ed by all x in the collection and violated by x�.

To test this condition, Concorde solves a linear programming problem. With

 (x) standing for the restriction of x
on its components indexed by elements of E1=2,

with A the matrix whose columns (x) come from specimens x in the col-
lection, and with e standing|as usual|for the vector [1; 1; : : : ; 1]T whose
number of components is determined by the context, this problem|in vari-
ables s; �; w|reads

maximize s
subject to s (x�)�A�+ w = 0;

�s + eT� = 0;
w � e;

�w � e;
� � 0:

(16)

Since its constraints can be satis�ed by setting s = 0, � = 0, w = 0, problem
(16) either has an optimal solution or else it is unbounded. In the former

Title Suppressed Due to Excessive Length 35

case, the simplex method applied to (16) �nds also an optimal solution of
its dual,

minimize eT(u+ v)
subject to aT (x�)� b = 1;

�aTA+ beT � 0;
a+ u� v = 0;

u � 0; v � 0;

(17)

this optimal solution provides a vector a and a scalar b such that the linear
inequality aT (x) � b is satis�ed by all x in the collection and violated by
x�; in fact, a and b

maximize
aT (x�)� b

kak1

subject to the constraint that aT (x) � b for all x in the collection. In the
latter case, (17) is infeasible, and so no linear inequality is satis�ed by all
x in the collection and violated by x�.

To �nd specimens x for the collection, we use a function Oracle that,
given an integer vector c, returns either a strongly constrained tangled tour
x through V that maximizes cTx or the message \infeasible" indicating that
no tangled tour through V is strongly constrained. Concorde implements
Oracle as two algorithms in tandem: if a primitive branch-and-bound
algorithm fails to solve the instance within a prescribed number of recur-
sive calls of itself, then we switch to a more sophisticated branch-and-cut
algorithm. To reconcile

� the oating-point arithmetic of the simplex method,
which �nds a and b,

with
� the integer arithmetic of Oracle,
which uses a and b,

Concorde approximates the oating-point numbers by rationals with a
small common denominator; for this purpose, it uses the continued frac-
tion method (see, for instance, Schrijver (1986)).

5.3. Separating x� from all tangled tours

If x� lies outside the graphical traveling salesman polytope, then Algo-
rithm 5.2 returns a linear inequality which is satis�ed by all strongly con-
strained tangled tours through V and violated by x�. Just converting this
inequality into a hypergraph inequality which is satis�ed by all tangled tours
through V and violated by x�would be easy; we make the task more diÆcult
by requiring this hypergraph inequality to induce a facet of the graphical
traveling salesman polytope on V . Concorde does it in three phases:

{ in Phase 1, we �nd a linear inequality that
separates x� from all moderately constrained tangled tours and

36 David Applegate et al.

induces a facet of their convex hull.

{ in Phase 2, we �nd a linear inequality that
separates x� from all weakly constrained tangled tours and
induces a facet of their convex hull.

{ in Phase 3, we �nd a linear inequality that
separates x� from all tangled tours and
induces a facet of their convex hull.

Weakly constrained tangled tours are de�ned as tangled tours that satisfyP
(xe : u 2 e) = 2 for all u in f1; 2; : : : ; kg;

moderately constrained tangled tours are de�ned as weakly constrained
tangled tours that satisfy

xe = 0 for all e such that e � f1; 2; : : : ; kg and x�e = 0,
xe = 1 for all e such that e � f1; 2; : : : ; kg and x�e = 1;

note that strongly constrained tangled tours are precisely the moderately
constrained tangled tours that satisfy

x0u = 0 for all u in f1; 2; : : : ; kg such that x�0u = 0.

In Phase 1 and Phase 2, we use a function Oracle that,

given integer vectors c, `, u and a threshold t (an integer or �1),
returns either

a weakly constrained tangled tour x that maximizes cTx
subject to ` � x � u, cTx > t

or
the message \infeasible" indicating that
no weakly constrained tangled tour x satis�es
` � x � u, cTx > t.

This is the same function that is used, with a �xed `, a �xed u, and t = �1,
to �nd items x for the collection in Algorithm 5.2.

5.3.1. Phase 1. Moderately constrained tangled tours are like strongly
constrained tangled tours in that every such tangled tour x is determined
by its restriction (x) on E1=2; they are unlike strongly constrained tangled
tours in that (unless x� violates a readily available subtour inequality) the
set

f (x) : x is a moderately constrained tangled tourg

includes the 1 + jE1=2j vertices of the unit simplex, whereas the set

f (x) : x is a strongly constrained tangled tourg

does not necessarily have full dimension (and may even be empty). This
is why we choose moderately constrained tangled tours as an intermediate
stop on the way from strongly constrained tangled tours to all tangled tours.

Title Suppressed Due to Excessive Length 37

Algorithm 5.2 has produced a linear inequality aT (x) � b which is
satis�ed by all strongly constrained tangled tours and violated by x�; since
b < aT (x�) � jjajj1, the inequality

aT (x)� (jjajj1 � b)
P
(x0u : x

�
0u = 0) � b

is satis�ed by all moderately constrained tangled tours and violated by x�.
In Phase 1, we convert this inequality into a linear inequality that induces
a facet of the convex hull of the set of all moderately constrained tangled
tours and is violated by x�. We start out with an integer vector a, an integer
b, and a (possibly empty) set I such that

{ all moderately constrained tangled tours x have aTx � b,
{ aTx� > b,
{ I is an aÆnely independent set of moderately constrained tangled tours,
{ aTx = b whenever x 2 I.

Algorithm 5.3 maintains these four invariants while adding new elements
to I and adjusting a and b if necessary; when jIj reaches jE1=2j, the current
cut aTx � b induces a facet of the convex hull of all moderately constrained
tangled tours.

Algorithm 5.3 From a cut to a facet-inducing cut:

while jIj < jE1=2j
do �nd an integer vector v, an integer w, and

a moderately constrained tangled tour x0 such that
� vTx = w whenever x 2 I,
� some moderately constrained tangled tour x has vTx 6= w,

and
� either vTx� � w and vTx � w for all moderately constrained

tangled tours x,
or else aTx0 < b and vTx0 = w;

�nd an integer vector a0, an integer b0, and
a moderately constrained tangled tour x0 such that
� all moderately constrained tangled tours x have a0Tx � b0,
� equation a0Tx = b0 is a linear combination of
aTx = b and vTx = w,

� a0Tx0 = b0 and (aTx0; vTx0) 6= (b; w),
� a0Tx� > b0;

a = a0, b = b0, I = I [fx0g;
end

return a and b;

38 David Applegate et al.

In early iterations of the while loop in Algorithm 5.3, Concorde gets
its v and w by scanning the list of inequalities

xe � 0 such that e 2 E1=2;

�xe � �1 such that e 2 E1=2;

x0u � 0 such that u 2 f1; 2; : : : ; kg :

if any of any of these inequalities vTx � w happens to satisfy

vTx = w whenever x 2 I,

then it provides the v and the w for use, with an arbitrary moderately
constrained tangled tour x0, in the next iteration. If this source dries up
and yet jIj < jE1=2j, then Concorde �nds v as a nonzero solution of the
system

vTx = 0 for all x in I,

ve = 0 for all e outside E1=2,

it sets w = 0, and it lets x0 be the moderately constrained tangled tour
such that x0e = 0 for all e in E1=2.

To add new elements to I and to adjust a and b if necessary, Concorde's
implementation of Algorithm 5.3 uses a function Tilt, which, given integer
vectors a, v, integers b, w, and a moderately constrained tangled tour x0

such that

� if all moderately constrained tangled tours x have vTx � w,
then aTx0 < b and vTx0 = w,

returns a nonzero integer vector a0, an integer b0, and a moderately con-
strained tangled tour x0 such that

� all moderately constrained tangled tours x have a0Tx � b0,
� inequality a0Tx � b0 is a nonnegative linear combination of
aTx � b and vTx � w,

� a0Tx0 = b0 and (aTx0; vTx0) 6= (b; w).

In the iterations of the while loop in Algorithm 5.3 where v and w are
drawn from the list of inequalities, Concorde calls Tilt (a; b; v; w; x0) for
(a0; b0; x0); in the iterations where v is computed by solving a system of
linear equations and w = 0, Concorde computes

(a+; b+; x+) = Tilt(a; b; v; 0; x0),
(a�; b�; x�) = Tilt(a; b;�v; 0; x0)

and then it sets

a0 = a+; b0 = b+; x0 = x+ if a+Tx� � b+ � a�Tx� � b�;
a0 = a�; b0 = b�; x0 = x� otherwise:

Algorithm 5.4 implements Tilt by the Dinkelbach method of fractional
programming (see, for instance, Sect. 5.6 of Craven (1988) or Sect. 4.5 of
Stancu-Minasian (1997)).

Title Suppressed Due to Excessive Length 39

Algorithm 5.4 Tilt (a; b; v; w; x0):

x = moderately constrained tangled tour that maximizes vTx;
� = vTx� w, � = b� aTx;
if � = 0
then return (v; w; x0);
else if � = 0

then return (a; b; x);
else return Tilt (a; b; �a+ �v; �b+ �w; x);
end

end

5.3.2. Phase 2. Let us write

E0 = fe : e � f1; 2; : : : ; kg; x�e = 0g;

E1 = fe : e � f1; 2; : : : ; kg; x�e = 1g;

in this notation, a weakly constrained tangled tour x is moderately con-
strained if and only if

xe = 0 whenever e 2 E0 and xe = 1 whenever e 2 E1.

The linear inequality aTx � b constructed in Phase 1 separates x� from all
moderately constrained tangled tours and induces a facet of their convex
hull; in Phase 2, we �nd integers �e (e 2 E0[E1) such that the inequality

aTx+
P
(�exe : e 2 E0 [E1) � b+

P
(�e : e 2 E1)

separates x� from all weakly constrained tangled tours and induces a facet
of their convex hull. A way of computing the �e one by one originated in
the work of Gomory (1969) and was elaborated by Balas (1975), Hammer,
Johnson, and Peled (1975), Padberg (1973,1975), Wolsey (1975a, 1975b),
and others; it is known as sequential lifting ; its application in our context
is described in Algorithm 5.5. Both while loops in this algorithm maintain
the invariant

aTx � b induces a facet of the convex hull of
all weakly constrained tangled tours x such that
xe = 0 whenever e 2 F0 and xe = 1 whenever e 2 F1.

Concorde implements Phase 2 as a streamlined version of Algorithm 5.5,
where the problem of �nding xmax may include constraints xe = 0 with
e 62 F0[F1 and certain edges may be deleted from F0 without �nding x

max

and updating aTx � b; for details, see Sect. 4.4 of Applegate et al. (2001).

40 David Applegate et al.

Algorithm 5.5 Sequential lifting

F0 = E0 ; F1 = E1 ;
while F1 6= ;
do f = an edge in F1;

�nd a weakly constrained tangled tour xmax that
maximizes aTx subject to
xe = 0 whenever e 2 F0 [ffg,
xe = 1 whenever e 2 F1 � ffg;

replace aTx � b by aTx+ (aTxmax � b)xf � aTxmax;
delete f from F1;

end

while F0 6= ;
do f = an edge in F0;

�nd a weakly constrained tangled tour xmax that
maximizes aTx subject to
xe = 0 whenever e 2 F0 � ffg,
xf = 1;

replace aTx � b by aTx+ (b� aTxmax)xf � b;
delete f from F0;

end

5.3.3. Phase 3. Let E denote the edge-set of the complete graph with
vertex-set V . Naddef and Rinaldi (1992) call inequalitiesP

(aexe : e 2 E) � b (18)

tight triangular if ae � 0 for all e and

minfauw + awv � auv : u 6= v; u 6= w; v 6= wg = 0 for all w;

their arguments can be used to justify the following claims.

Theorem 1. If (18) is satis�ed by all weakly constrained tangled tours, if

ae � 0 for all e, and if auw + awv � auv for all choices of distinct u; v; w,
then (18) is satis�ed by all tangled tours.

Theorem 2. If a linear inequality induces a facet of the convex hull of all

weakly constrained tangled tours and if it is tight triangular, then it induces

a facet of the graphical traveling salesman polytope.

These theorems are the reason why we choose weakly constrained tangled
tours as an intermediate stop on the way from moderately constrained
tangled tours to all tangled tours.

The linear inequality aTx � b constructed in Phase 2 separates x� from
all weakly constrained tangled tours and induces a facet of their convex hull;
since Concorde substitutes in Phase 1

2�
P
(xe : e � f1; 2; : : : ; kg; u 2 e)

Title Suppressed Due to Excessive Length 41

for each x0u, we have a0u = 0 for all u; since aTx � b induces a facet of the
convex hull of all weakly constrained tangled tours, it follows that ae � 0
for all e. It is a trivial matter to construct a hypergraph H on V �f0g and
positive integers �Q(Q 2 H) such that the linear form

P
(�Q
P
(xe : e � Q) : Q 2 H)

is identically equal to aTx (Concorde does it by a greedy heuristic aiming to
minimize

P
�Q); since every weakly constrained tangled tour x and every

subset Q of V � f0g satisfy

2jQj = 2
P
(xe : e � Q) + x(Q; V �Q);

the inequality

P
(�Qx(Q; V �Q) : Q 2 H) �

P
(2�QjQj : Q 2 H)� 2b (19)

separates x� from all weakly constrained tangled tours and induces a facet
of their convex hull; Theorem 1 guarantees that (19) is satis�ed by all
tangled tours.

Theorem 2 points out an easy way of converting (19) into a linear in-
equality that induces a facet of the graphical traveling salesman polytope
and is violated by x�:

� subtract
Pk

w=0 Æwx(fwg; V �fwg) from the left-hand side of (19) and

� subtract
Pk

w=0 2Æw from the right-hand side of (19)
with Æ0; Æ1; : : : ; Æk chosen to make the resulting inequality tight triangular;
speci�cally,

Æw = minf�(u; v; w) : u 6= v; u 6= w; v 6= wg;

where

�(u; v; w) =
P
(�Q : Q 2 H; u 2 Q; v 2 Q;w 62 Q)+P
(�Q : Q 2 H; u 62 Q; v 62 Q;w 2 Q)

for all choices of distinct points u, v, w of V . (This procedure fails to work
if and only if the left-hand side of the new, tight triangular, inequality turns
out to be 0Tx; it can be shown that this will happen if and only if (19)
is a positive multiple of the subtour inequality x(f0g; V � f0g) � 2, which
induces a facet of the graphical traveling salesman polytope.)

Concorde's pricing mechanism (see Section 8) is incompatible with neg-
ative coeÆcients in hypergraph constraints; for this reason, it settles in its
implementation of Algorithm 5.1 for adding to L the hypergraph inequal-
ity resulting when the variable x of (19) is changed to x. Still, even (19)
is often tight triangular, in which case it induces a facet of the graphical
traveling salesman polytope: the greedy heuristic used to construct H and
�Q(Q 2 H) tends to minimize the number of vertices w such that Æw > 0.

42 David Applegate et al.

5.4. Experimental �ndings on the 100,000-city Euclidean TSP

In Table 1, we report the lower bounds obtained by applying local cuts to
our 100,000-city instance. Here we let tmax vary from 8 up to 22, increasing
the parameter by 2 in each run. Note that individual runs are started from

Table 1. Local Cuts on 100,000-city TSP

tmax � Gap to Optimal
8 0.138%
10 0.126%
12 0.119%
14 0.112%
16 0.107%
18 0.103%
20 0.100%
22 0.097%

scratch (we do not pass the LP and cut pool from one run to the next, as
we do in the large-scale runs described in Section 9.3 and in Section 9.4).

6. The core LP

The LPs that need to be solved during a TSP computation contain far
too many columns to be handled directly by an LP solver. It is there-
fore necessary to combine the cutting-plane method with the dual concept
known as column generation. For background material on linear program-
ming and column generation, we refer the reader to standard reference
works by Chv�atal (1983), Schrijver (1986), Nemhauser and Wolsey (1988),
Wolsey (1998), and Vanderbei (2001).

The column generation technique is used to explicitly solve only a core

LP containing columns corresponding to a small subset of the complete set
of edges. The edges not in the core LP are handled by computing from
time to time the reduced costs that the corresponding columns would give
with respect to the current LP dual solution; if any columns have negative
reduced cost, then some subset of them can be added to the core LP. We
discuss several aspects of this procedure below (see also Section 8), together
with techniques for keeping the size of the core LPs small by deleting cutting
planes that no longer appear to be useful in solving the particular TSP
instance.

6.1. Initial edge-set

The �rst systematic use of core edge-sets is in the work of Land (1979). Her
test set of problem instances included a number of 100-city examples (so
4,950 edges), but she restricted the number of core edges to a maximum

Title Suppressed Due to Excessive Length 43

of 500. The initial edge-set she chose consisted of the union of the edges in
the best tour she found together with the 4-nearest neighbor edge-set (that
is, the 4 minimum cost edges containing each city).

Land's edge-set was also used by Gr�otschel and Holland (1991); they
ran tests with the initial set consisting of the union of the best available
tour and the k-nearest neighbor edge-set, for k 2 f0; 2; 5; 10g. J�unger et
al. (1994) carried out further tests, using k 2 f2; 5; 10; 20g. In this later
study, the conclusion was that k = 20 produced far too many columns and
slowed down their solution procedure, but the smaller values of k all led to
reasonable results.

A di�erent approach was adopted by Padberg and Rinaldi (1991), taking
advantage of the form of their tour-�nding heuristic. In their study, Padberg
and Rinaldi compute a starting tour by making k independent runs of the
heuristic algorithm of Lin and Kernighan (1973); for their initial edge-set,
they take the union of the edge-sets of the k tours. Although we do not
use repeated runs of Lin-Kernighan to obtain an initial tour, the Padberg-
Rinaldi tour-union method remains an attractive idea since it provides an
excellent sample of the edges of the complete graph (with respect to the
TSP).

In Table 2, we compare the Padberg-Rinaldi idea with the k-nearest
set on our 100,000-city instance. The tours were obtained with short runs
of the Chained Lin-Kernighan heuristic of Martin et al. (1991), using the
implementation described in Applegate et al. (2003); the short runs each
used jV j=100+ 1 iterations of the heuristic. (For k-nearest, we also include
the edges in the best available tour).

In each case, we ran the cutting-plane separation algorithms we de-
scribed in Sections 2, 3, 4, and 5 (with the local cuts' tmax set to 8), to-
gether with column generation over the edges of the complete graph on the
100,000 points. For each of the edge-sets we report the initial number of

Table 2. Initial Edge-set for 100,000-city TSP

Edge-set jEj-initial jEj-�nal CPU Time (seconds)
2-Nearest 146,481 231,484 24,682
3-Nearest 194,569 240,242 40,966
4-Nearest 246,716 270,096 26,877
5-Nearest 300,060 312,997 26,257
10 Tours 167,679 224,308 23,804
50 Tours 215,978 247,331 24,187

edges and the �nal number of edges in the core LP (after the cutting-plane
and column-generation routines terminated), as well as the total running
times on a EV67-based (667 MHz) Compaq AlphaServer ES40. We choose
the union of 10 tours in our implementation|it has the lowest CPU time
in the test and it maintains the smallest edge-set during the computations.

44 David Applegate et al.

6.2. Adding and deleting edges

The results in Table 2 indicate the growth of the cardinality of the core
edge-set as the combined cutting-plane and column generation algorithm
progresses. To help limit this growth, we are selective about the edges that
are permitted to enter the core and we also take steps to remove edges from
the core if they do not appear to be contributing to the LP solution.

When an edge is found to have negative reduced cost in our pricing
routine, it is not directly included in the core edge-set, but rather it is added
to a queue of edges that are waiting for possible inclusion in the core. The
Concorde code will at irregular intervals (determined by the increase of the
optimal value of the LP relaxation) remove the N edges from the queue
having the most negative reduced cost (we use N = 100), and add these to
the core LP. An LP solver is then used to obtain new optimal primal and
dual solutions, and the reduced costs for the remaining edges in the queue
are recomputed; any edge in the queue that has reduced cost greater than
some small negative tolerance (we use negative 0:00001) is removed from
the queue.

After an edge e is added to the LP, we monitor the corresponding com-
ponent of x� at each point when the LP solver produces a new solution. If
for L1 consecutive LP solves the value of x�e is less than some small toler-
ance "1, then we remove edge e from the core LP. (We set L1 = 200 and
"1 = 0:0001.)

6.3. Adding and deleting cuts

Like in the case for edges, when a cutting plane is found by a separation
routine, it is attached to the end of a queue of cuts that are waiting to be
added to the core LP. The Concorde code repeatedly takes the �rst cut from
the queue for processing and checks that it is violated by the current x� by
at least some small tolerance (we use 0.002). If the cut does not satisfy this
condition, then it is discarded; otherwise it is added to the core LP. (Note
that the current x� may perhaps not be the same as the vector that was
used in the separation algorithm that produced the cut.)

After k cuts have been added to the LP (we use k = 2000 in our code
for large instances) or after the cut queue becomes empty, an LP solver is
called to compute optimal primal and dual solutions for the new core LP.
If the slack variable corresponding to a newly added cut is in the optimal
LP basis, then the cut is immediately deleted from the LP. Otherwise, the
cut remains in the LP and a copy of the cut is added to a pool of cuts that
is maintained for possible later use by the separation routines. (Subtour
inequalities are not added to the pool, since an eÆcient exact separation
routine for them is available.).

Once a cut is added, after each further point where the LP solver pro-
duces new solutions, we check the dual variable corresponding to the cut.

Title Suppressed Due to Excessive Length 45

If for L2 consecutive LP solves the dual variable is less than some �xed
tolerance "2, then the cut is deleted from the LP. (We use L2 = 10 and
"2 = 0:001.) This deletion condition is weaker than the standard practice
of deleting cuts only if they are slack (that is, only if they are not satis�ed
as an equation by the current x�); for our separation routines on large TSP
instances, we found that the core LP would accumulate a great number of
cuts that were satis�ed as an equation by the current x� if we only removed
slack inequalities.

It may well happen in our computation that a cut is deleted from the LP,
but then added back again after a number of further LP solves. Although
this is obviously a waste of computing time, when working on large instances
it seems necessary to be very aggressive in attempting to keep the core LP
small (both for memory considerations and to help the LP solver|the
results in Section 9 indicate that the solution of the LP problems is the
dominant part of a TSP computation on large instances).

(Notice that the tolerances and constants we use for cuts and edges
di�er by large amounts. These values were obtained through computational
experiments, and they are dependent on the method used to solve the core
LP problems.)

7. Cut storage

The storage of cutting planes and their representation in an LP solver ac-
count for a great portion of the memory required to implement the Dantzig
et al. algorithm. In this section we discuss the methods used by Concorde
to attempt to reduce this demand for memory when solving large problem
instances.

There are three places in the computer code where we need to represent
cuts: in the LP solver, in the external LP machinery, and in the pool of
cuts. We discuss below representations for each of these components.

7.1. Cuts in the LP solver

The cutting planes we use in our implementation can all be written as

H Æ x � �(H): (20)

This is how we like to think about the cuts, but we need not be restricted to
this form when carrying out a computation. Indeed, the degree equations
(4) give us a means to dramatically alter the appearance of a cut. For
example, we can write (20) as

X
S2F

x(fe : e � Sg) � IH (21)

46 David Applegate et al.

for some constant IH. The representation (21) can further be altered by
replacing some sets S by their complements V �S. Moreover, starting with
any form, we can add or subtract multiples of degree equations to further
manipulate a cut's appearance. We make use of this freedom in selecting
the representation of the cut in the LP solver.

The most important criterion for choosing the LP representation of a cut
is the number of nonzero entries the representation adds to the constraint
matrix. The amount of memory required by the solver is proportional to
the total number of nonzeros, and, other things being equal, LP solvers are
more eÆcient in solving LPs with fewer nonzeros.

We compare four di�erent representations: (1) each cut in the form
given in (20) (the \outside" form), (2) each cut in the form given in (21)
(the \inside" form), (3) each cut in the inside form with individual sets S
complemented if it decreases the number of nonzero coeÆcients among the
columns in the core LP, and (4) individual cuts in the form (either outside,
or inside with complemented sets) that gives the least number of nonzeros.

For each of these representations we consider three di�erent algorithms
for selecting multiples of the degree equations to add or subtract from the
individual cuts to reduce the number of nonzeros among the columns in the
core LP.

In the �rst method, for each cut we simply run through the cities in
order, and subtract the corresponding degree equation from the cut if it is
advantageous to do so (that is, if it will decrease the number of nonzeros).

The second method is a greedy algorithm that, for each cut, �rst makes
a pass through all of the cities and counts the number of nonzeros that can
be saved by subtracting the corresponding degree equation. It then orders
the cities by nonincreasing values of this count and proceeds as in the �rst
method.

The third method is similar to greedy, but adjusts the counts to reect
the current status of the cut. In this algorithm, we keep two priority queues,
one containing cities whose corresponding degree equation can be advanta-
geously subtracted from the cut and another containing cities whose degree
equation can be advantageously added to the cut. Both priority queues are
keyed by the number of nonzeros that the operations save, that is, cities
that save more nonzeros have priority over cities that save fewer nonzeros.
At each step of the algorithm, we select the cuts having the maximum key
and either subtract or add the corresponding equation. We then update the
keys appropriately, possibly inserting new cities into the queues. The algo-
rithm terminates when both queues are empty. (Notice that this algorithm
permits equations to be added or subtracted a multiple number of times.)

We tested these algorithms and representations on core LPs taken from
our computations on 21 small problems from the TSPLIB collection main-
tained by Reinelt (1991); the 21 instances range in size from 1,000 cities to
7,397 cities. The results are reported in Table 3, in multiples of the number
of nonzeros in the outside representation.

Title Suppressed Due to Excessive Length 47

Table 3. Nonzeros in LP Representations

Algorithm Outside Inside Complemented Best
None 1.00 2.81 2.07 0.90

Straight 0.54 1.40 1.11 0.49
Greedy 0.52 1.19 0.95 0.48
Queues 0.49 1.07 0.87 0.45

The immediate conclusions are that the outside form of cuts clearly
dominates the inside form (even with complementation) and that the re-
duction routines appear to be worthwhile. Although the \best" form of cuts
is slightly preferable to the outside form, we use the outside form in our
implementation since this simpli�cation leads to a more eÆcient routine for
computing the reduced costs of columns that are not in the core LP.

For our reduction algorithm, we use the queue-based routine: it is eÆ-
cient and is slightly better than the other two methods.

The representations chosen in earlier computational studies vary greatly
from research team to research team. Dantzig et al. (1954), Hong (1972),
Clochard and Naddef (1993), J�unger et al. (1994), and Naddef and Thienel
(2002b) appear to have used the outside form of subtour inequalities, whereas
Miliotis (1978), Land (1979), Padberg and Hong (1980), Crowder and Pad-
berg (1980), Gr�otschel and Holland (1991), and Padberg and Rinaldi (1991)
all appear to have used the inside form. Clochard and Naddef (1993) and
Naddef and Thienel (2002b) used the outside form of combs and more gen-
eral inequalities, and Land (1979) used a special outside form for blossoms,
but each of the other studies used the inside form for all cuts other than
subtours. The complementation of subtours was probably carried out in
most of the studies that used the inside form of the inequalities, but Pad-
berg and Rinaldi (1991) is the only paper that mentions complementing
other inequalities|they consider complementing the handles in combs.

7.2. External storage of cuts

It is not suÆcient to use the LP solver's internal list of the current cutting
planes as our only representation of the cuts. The trouble is that this inter-
nal representation does not support the computation of the reduced costs of
the edges not present in the core LP. What is needed is a scheme for storing
the cuts in their implicit form, that is, as hypergraphs H = (V;F), where F
is a family of subsets of V . The most important criteria for evaluating such
an external representation scheme are the total amount of storage space
required and the ease with which the data structure supports a fast edge
pricing mechanism.

In our implementation, we choose a very compact representation of the
cuts, one that �ts in well with the pricing routine that we describe in
Section 8. Before we discuss the representation, we present some alternative
schemes that have appeared in earlier studies.

48 David Applegate et al.

7.2.1. Previous Work The external representation of cuts is �rst treated
in Land (1979). Land's technique for storing subtour inequalities is to pack
a collection of pairwise disjoint subsets of V into a single vector of length
jV j, where the subsets correspond to the vertex sets of the subtours. The
entries of the vector provide a labeling of the vertices such that each of
the subsets is assigned a distinct common label. This representation was
particularly useful for Land since her separation routines (connectivity cuts
and a version of subtour shrinking) naturally produced collections that were
pairwise disjoint.

Land used this same technique for storing the handles of blossom in-
equalities. She got around the problem of storing the teeth of the blossoms
by requiring that these edges be part of the core LP. This meant that the
routines for pricing out edges outside the core were never needed to compute
the reduced cost of a tooth edge.

Gr�otschel and Holland (1991) also used column generation, but they did
not report any details of the external representation scheme used in their
study, writing only: \After some experiments we decided to trade space for
time and to implement space-consuming data structures that allow us to
execute pricing in reasonable time."

A similar philosophy of trading o� space for time was adopted by Pad-
berg and Rinaldi (1991). They used a full jV j-length vector to represent
each of the cuts. The representation, however, allowed them to compute
the reduced cost of an edge by making a very simple linear scan through
the cuts, performing only a constant amount of work for each cut.

A more compact representation was used by J�unger et al. (1994). They
store a cut for the hypergraph H = (V;F) by keeping the sets in F as
an array that lists the vertices in each set, one after another. The lists are
preceded by the number of sets, and each set in the list is preceded by the
number of vertices it contains. In the typical case, the length of the array
will be much less than jV j, but the extraction of the cut coeÆcient on an
individual edge is more costly than in Padberg and Rinaldi's approach.

Our scheme is similar to J�unger et al., but uses a di�erent representation
for the individual sets in the cut. It su�ers the same drawback in extract-
ing individual edge coeÆcients, but the pricing mechanism we describe in
Section 8 does not make use of single coeÆcient extraction, using instead
a strategy that calls for the simultaneous pricing of a large group of edges.
This simultaneous pricing allows us to spend a small amount of CPU time,
up front, setting up an auxiliary data structure that will speed the coeÆ-
cient generation for the edges in the pricing group. This strategy allows us
to take advantage of the compact cut representation without incurring a
signi�cant penalty in the performance of our pricing engine.

7.2.2. Hypergraphs The majority of the space used in J�unger et al.'s cut
representation is occupied by the lists of the vertices in individual sets.
To improve on this, we must either �nd a way to write these lists more
compactly or �nd a way to avoid writing them altogether. We postpone a

Title Suppressed Due to Excessive Length 49

discussion of list compression, and �rst consider a method for reducing the
number of lists.

The idea is simple: we reuse old representations. To carry this out, if we
have a collection of cuts H1 = (V;F1);H2 = (V;F2); : : : ;Hr = (V;Fr), we
represent separately the sets S = F1 [F2 [� � � [Fr and the hypergraphs
H1;H2; : : : ;Hr. In this setup, the hypergraphs are lists of pointers to the
appropriate sets, rather than lists of the sets themselves. The bene�t of
this split representation is that the number of sets in S is typically consid-
erably less than the sum of the cardinalities of the individual Fi's. (This
split representation also helps our are pricing routine, as we describe in
Section 8.)

When a cut H = (V;F) is added to the core LP, we add to S the sets
from F that do not already appear in S, and we build a list of pointers for
H into S. To delete a cut H = (V;F), we delete H's list of pointers as well
as all sets in S that were only being referenced by H. To do this eÆciently,
we keep track of the number of times each set in S is being referenced
(increasing the numbers when we add a cut, and decreasing them we delete
a cut), and remove any set whose reference number reaches 0. The elements
of S are stored as entries in an array, using a hash table to check whether
a prescribed set is currently in S.

7.2.3. Tour intervals In Subsection 2.4 we discussed that fact that as our
core LP matures, the LP solution vector x� approximates the incidence
vector �x of an optimal tour, and hence x�(S; V �S) � �x(S; V �S) for most
subsets S of V . For this reason, the sets that appear in cutting planes can
be expected to have a small �x(S; V � S) value. An interpretation of this
is that sets from our cutting planes can be expected to consist of a small
number of intervals in an optimal tour.

We put this to the test, using a pool for the 7,397-city TSPLIB instance
pla7397. The pool consists of 2,868,447 cuts and 1,824,418 distinct sets in
S. (The large pool of cuts was accumulated over a branch-and-cut run;
working with this small TSP instance allowed us to build the pool in a
reasonable amount of computing time.) The average number of vertices in
the members of S is 205.4, but the sets can be represented using an average
of only 5.4 intervals from a speci�c optimal tour|a savings of a factor of
38. This is typical of the compression ratios we obtained in other tests, so
we adopt the interval list approach as our representation scheme, using the
best available initial tour as a substitute for an optimal tour.

At the start of our TSP computation, we reorder the cities in the
problem so that the best tour we have found up to that point is simply
0; 1; 2; : : : ; jV j � 1. A set is then recorded as an array of pairs of integers
giving the starting and ending indices of the intervals that make up the
set, with a separate �eld giving the total number of intervals stored in the
array.

50 David Applegate et al.

7.3. Pool of cuts

Like the external representation for the LP, the pool needs to store cuts
in the implicit (hypergraph) form. In this case, the important criteria for
evaluating a representation are the amount of storage space required and
the speed with which we can compute, for a prescribed x�, the slacks of
the individual cuts in the pool, that is, �(H)�H Æ x�. Our approach is to
use the methods we adopted in our external LP representation, but take
advantage of the distribution of the references into S to further reduce the
storage requirements.

Consider again the pla7397 pool we mentioned above. The 2,868,447
cuts make a total of 33,814,752 references to sets, and the sets make a total
of 696,150,108 references to cities. Representing each of the cuts as an jV j-
length integer vector would require approximately 78 Gigabytes of memory
on machines that uses 4 bytes to represent an integer. The representation of
J�unger et al. (1994) lowers the storage requirement considerably, calling for
a little over 1.3 Gigabytes of memory. To achieve this, we use only 2 bytes
for each reference to a city, taking advantage of the fact that the instance
has less than 216 cities in total. (Recall that a byte can represent 8 binary
digits.) The split interval representation we described above would use 4
bytes for each interval, to specify its ends; 2 additional bytes for each set
in S, to specify the number of intervals used by the set; 3 bytes for each
reference to a set in S, using the fact that we have less than 224 sets; and 2
additional bytes for each cut, to specify the number of sets. The collection
S has a total of 1,824,418 sets that use a total of 9,877,792 intervals, so the
pool can be stored in approximately 143 Megabytes of memory with this
representation.

7.3.1. Removing Edge Teeth The savings in storage for the split interval
representation is roughly a factor of 9 over the set-list representation for
the pla7397 pool. This magnitude of savings is a big step towards making
the direct use of large pools possible, but it is also somewhat disappointing,
given the factor of 38 compression we obtained in the representation of the
sets in S. The poor showing can be explained by examining the data in
Table 4, giving the number of sets of each size used by the cuts in the pool.
Nearly two-thirds of the sets have cardinality just two, and over four-�fths
of the sets of cardinality �ve or less. This means that, for the majority of the
set references, we are not winning very much over the set-list representation.

An aggressive way to turn this lopsided distribution of set sizes to our
advantage is to simply remove all of the references to sets of cardinality
two, using a teething-like algorithm to reconstruct the sets on-the-y. We
did not pursue this idea, however, due to the considerable time this would
add to the algorithm for searching for violated cuts among the entries in
the pool.

Title Suppressed Due to Excessive Length 51

Table 4. Sets in the pla7397 Pool of Cuts

Size Number Percentage
2 21342827 63.1%
3 3255535 9.6%
4 2267058 6.7%
5 736881 2.2%
6 651018 1.9%
7 261641 0.8%
8 337799 1.0%
9 140427 0.4%

� 10 4821566 14.3%

7.3.2. Set References Another route for decreasing the space requirements
of our pool representation is to be more eÆcient in specifying our references
to sets in S. The straightforward method of using an integer (or 3-byte)
value for each reference is clearly wasteful if one considers the distribution
of the references among the cuts: there are 1,362,872 sets in S that are
referenced only once, whereas the top ten most used sets are each referenced
more than 100,000 times. An eÆcient representation should use less space
to reference the sets that appear most often in the cuts. One way to do
this is to use only a single byte to reference the most frequently used sets,
use two bytes for next most frequently used sets, and restrict the use of
three or four bytes to the sets that have very few references. There are a
number of techniques for implementing this strategy. For example, the �rst
byte in a set reference could either specify a set on its own, or indicate that
a second, third, or forth byte is needed. This is the strategy we adopt. If
the �rst byte of our set reference contains a number, K, between 0 and
127, then the set index is simply K. If K is between 128 and 191, then the
di�erence K � 128 together with a second byte are used to represent the
index. If K is between 192 and 223 then K � 192 plus two additional bytes
are used, and if K > 224 then K�224 plus three additional bytes are used.
(In the pla7397 pool, no reference requires 4 bytes, but we want to have a
representation that would also work for much larger pools.)

Using 3 bytes for each of the 33,814,752 sets contributes 97 Megabytes
to the storage requirements for the split interval representation of the
pla7397 pool. The compressed form of the references brings this down to
62 Megabytes.

This technique for expressing the set references using variable-length
byte strings is a very rudimentary data compression technique. Better re-
sults can be obtained using an encoding developed by Hu�man (1952) (see
Cormen et al. (1990) or Knuth (1968)). Working with a byte-level Hu�-
man code, this would save about 1 Megabyte from the 62 Megabyte total.
If we are willing to work at the bit level, then the set reference storage
can be reduced to 54 Megabytes for the pool. It should be noted, however,
that working with binary encodings would result in some computational
overhead to address the individual bits in the reference strings.

52 David Applegate et al.

7.3.3. Interval References The list of intervals accounts for approximately
38 Megabytes of the storage requirement for the pla7397 pool. Since there
are only 245,866 distinct intervals among the lists, adding another level of
indirection, together with a method for compressing the interval references,
could result in savings similar to what we achieved for the set references.
Rather than doing this, however, we use a direct method to reduce the 4-
byte per interval requirement that the straightforward technique of writing
the ends of the intervals provides. The idea is to represent the interval from
i to j as the number i together with the o�set j � i, using 2 bytes to write
i and either 0, 1 or 2 bytes to write j. This reduces the storage needed for
the intervals down to 28 Megabytes.

This o�set technique can be pushed a little further, writing the entire
list of intervals for a prescribed set as a sequence of 1 or 2 byte o�sets
(splitting any interval that contains city 0 into two smaller intervals, to
avoid the issue of intervals wrapping around from city jV j � 1 to city 0).
This is the method we use in our code, and it lowers the storage requirement
for the interval lists down to approximately 23 Megabytes, for the pla7397
pool.

7.3.4. Summary The memory requirements for the representations of the
pla7397 pool are summarized in Table 5. The entries are progressive in the

Table 5. Memory Requirements for the pla7397 Pool of Cuts

Representation Size (Megabytes)
jV j-length vector 80940

List of sets 1403
Split lists of cities 826
Split intervals 143

Compressed set references 109
Start plus o�set intervals 99
List of interval o�sets 96

sense that \Compressed set references" works with the split-interval repre-
sentation, \Start plus o�set intervals" uses the compressed set references,
and so on.

In our computer code, we use the split interval representation of the
pool, with compressed set references and lists of interval o�sets (the \List
of interval o�sets" entry from Table 5).

8. Edge pricing

Column generation for the TSP is a simple operation for small instances|
we simply run through all of the edges not currently in the core LP, compute
their reduced costs, and add any negative edges into the core. This method
breaks down on larger instances, however, due both to the time required

Title Suppressed Due to Excessive Length 53

to price the entire edge-set and to the large number of negative reduced-
cost edges that the pricing scans will detect. In this section we describe the
techniques we adopt to handle these two diÆculties.

8.1. Previous Work

We begin with a discussion of some earlier TSP column generation systems,
starting with the paper of Land (1979).

In Land's study, the problem instances are described by specifying the
geometric coordinates of the cities. Thus, she did not explicitly store the
complete set of edges, relying instead on the ability to compute the cost
between any prescribed pair of cities in order to carry out a pricing scan.
This implicit treatment of the edge-set raised two problems. First, since
her external LP representation did not explicitly list the teeth in blossom
inequalities, the reduced costs for these edges could not be computed from
the representation. Secondly, edges in the core LP that were not in the
optimal basis but were set to the upper bound of 1, could appear to have
negative reduced costs in the pricing scan. To deal with these \spurious
infeasibilities", she maintained a data structure (consisting of an ordered
tree and an extra list for edges that did not �t into the tree) to record the
teeth edges and the non-basic 1-edges, and skipped over these pairs of cities
during the pricing scan. Every negative edge that was detected in a scan
was added to the core until a limit of 500 core edges was reached. After
that, any further negative edges were swapped with core edges that were
both non-basic and set to 0.

The pricing scans in Land's code were carried out at �xed points in the
solution process, where the code moved from one phase to another. These
transition points were determined by the completion of subtour generation,
the completion of blossom generation, the detection of an integral LP so-
lution, and the production of an LP optimal value that was above the cost
of the best computed tour.

The issue of spurious edges was avoided by Gr�otschel and Holland (1991),
using an original approach to edge generation. Before starting the LP por-
tion of their TSP code, they passed the entire edge-set through a prepro-
cessor that eliminated the majority of the edges from further consideration.
Working with this reduced set, they maintained the core edges and the non-
core edges as disjoint lists and restricted the pricing scans to the non-core
set. Their scans were carried out after the cutting-plane phase of the com-
putation ended without �nding a new cut. If additional edges were brought
into the core LP, their code reentered the cutting-plane phase and contin-
ued to alternate between cutting and pricing until all non-core edges had
nonnegative reduced cost.

The preprocessor used by Gr�otschel and Holland takes the output of
a run of the Held and Karp (1971) lower-bound procedure, computes the
implicit reduced costs, and uses the resulting values to indicate edges that

54 David Applegate et al.

cannot be contained in any tour that is cheaper than the best tour com-
puted up to that point. These edges could thus be discarded from further
consideration. For the instances they studied, this process resulted in suÆ-
ciently many deletions to permit them to implement their explicit edge list
approach without running into memory diÆculties.

Padberg and Rinaldi [1991] did not use preprocessing, but obtained a
similar e�ect by implementing an approach that permitted them to quickly
eliminate a large portion of the edge-set based on the LP reduced costs. At
the start of their computation, they stored a complete list of the edge costs,
ordered in such a way that they could use a formula (involving a square
root computation) to obtain the two endpoints of an edge with a prescribed
index. Their pricing scans were carried out over this list, and possible spu-
rious infeasibilities were handled by checking that candidate edges having
negative reduced cost were not among the current nonbasic core edges that
have been set to their upper bound of 1. Each of the remaining negative
reduced cost edges were added to the core set after the scan. Taking ad-
vantage of this simple rule, Padberg and Rinaldi stopped the computation
of the reduced cost of an edge once it had been established that the value
would indeed be negative.

Edge elimination comes into the Padberg and Rinaldi approach once a
good LP lower bound for the problem instance has been obtained. Their
process works its way through the complete set of edges, adding to a \reser-
voir" any edge that could not be eliminated based on its reduced cost and
the value of the best computed tour. If the number of edges in the reser-
voir reaches a prescribed maximum, then the elimination process is bro-
ken o� and the index k of the last checked edge in the complete list is
recorded. >From this point on, pricing scans can be carried out by working
�rst through the edges in the reservoir and then through the edges in the
complete list starting at index k. Further elimination rounds attempt to
remove edges from the reservoir and increase the number of preprocessed
edges by working from k and adding any non-eliminated edges to the free
places in the reservoir.

Padberg and Rinaldi also introduced the idea of permitting the status
of the LP to determine when a pricing scan should be carried out, rather
than using �xed points in the solution process. Their stated purpose is to
try to keep the growth in the size of the core edge-set under control. To
achieve this, they wanted to avoid the bad pricing scans that can arise after
a long sequence of cutting-plane additions. Their strategy was simple: carry
out a pricing scan after every �ve LP computations.

J�unger et al. (1994) adopt the Padberg-Rinaldi reservoir idea, but they
also keep a precomputed \reserve" set of edges and do not price over the
entire edge-set until each edge in the reserve set has nonnegative reduced
cost. When their initial set of core edges is built from the k-nearest neigh-
bors, the reserve set consists of the (k+5)-nearest graph. The default value
for k is 5, but J�unger et al. also carried out tests using other values.

Title Suppressed Due to Excessive Length 55

Following the Padberg and Rinaldi approach, J�unger et al. carry out a
price scan after every �ve LP computations. They remark that, with this
setup, the time spent on pricing for the instances in their test set (which
included TSPs with up to 783 cities) was between 1% and 2% of the total
running time.

8.2. Underestimating the Reduced Costs

A pricing mechanism for larger problem instances must deal with two is-
sues that were not treated in the earlier studies. First, in each of the above
approaches, the entire edge-set is scanned, edge by edge, at least once,
and possibly several times. This would be extremely time consuming for
instances having 106 or more cities. Secondly, although the Padberg and
Rinaldi approach of carrying out a pricing scan after every �ve LP compu-
tations is aimed at keeping the size of the core set of edges under control,
early on in the computation of larger instances, far too many of the non-core
edges will have negative reduced costs (if we begin with a modestly sized
initial core edge-set) to be able to simply add all of these edges into the core
LP. This latter problem is a subtle issue in column generation and we have
no good remedy, using only a simple heuristic for selecting the edges (see
Section 6.2 and Section 8.4). The �rst problem, on the other hand, can be
dealt with quite e�ectively using an estimation procedure that allows us to
skip over large numbers of edges during a pricing scan, as we now describe.

Suppose we would like to carry out a scan with a core LP speci�ed by
the cuts H1 = (V;F1);H2 = (V;F2); : : : ;Hr = (V;Fr). The dual solution
provided by the LP solver consists of a value yv for each city v and a
nonnegative value Yj for each cut Hj . Let S = F1[� � �[Fr be the collection
of member sets of the hypergraphs and, for each S in S, let �j(S) denote
the number of times S is included in Fj , for j = 1; : : : ; r. (Recall that the
members of Fj need not be distinct.) For each S in S, let

YS =
X

(�j(S)Yj : j = 1; : : : ; r):

The reduced cost of an edge e = fu; vg, having cost ce, is given by the
formula

�e = ce � yu � yv �
X

(YS : e \ S 6= ;; e� S 6= ;):

The computational expense in evaluating this expression comes from both
the number of terms in the summation and the calculations needed to
determine the sets S that make up this sum. A quick estimate can be
obtained by noting that each of these sets S must contain either u or v. To
use this we can compute

�yv = yv +
X

(YS : v 2 S and S 2 S)

56 David Applegate et al.

for each city v and let

��e = ce � �yu � �yv :

For most edges, ��e will be a good approximation to �e. Moreover, since ��e
is never greater than �e, we only need to compute �e if the estimate ��e is
negative.

The simplicity of the ��e computation makes it possible to work through
the entire set of edges of a TSP instance in a reasonable amount of time,
even in the case of the 500 billion edges that make up an instance having 106

cities. It still requires us to examine each edge individually, however, and
this would not work for instances much larger than 106 cities. Moreover, the
time needed to explicitly pass through the entire edge-set would restrict our
ability to carry out multiple price scans. What we need is a scheme that is
able to skip over edges without computing the ��e's. Although we cannot do
this in general, for geometric problem instances we can accomplish this by
taking advantage of the form of the edge-cost function when carrying out
a pricing scan. The approach we take is similar to that used by Applegate
and Cook (1993) to solve matching problems.

Suppose we have coordinates (vx; vy) for each city v and that the cost
cfu;vg of an edge fu; vg satis�es

cfu;vg � tjux � vxj (22)

for some positive constant t, independent of u and v.

For these instances, we have

�e � ��e � tjux � vxj � �yu � �yv:

So we only need to consider pricing those edges fu; vg such that

tjux � vxj � �yu � �yv < 0: (23)

This second level of approximation allows us to take advantage of the ge-
ometry. (Condition (23) holds for each \EDGE WEIGHT TYPE" in the
TSPLIB, other than the EXPLICIT and SPECIAL categories.)

At the start of a pricing scan, we compute tvx � �yv for each city v and
build a linked list of the cities in nondecreasing order of these values. We
then build a permutation of the cities to order them by nondecreasing value
of vx. With these two lists, we begin processing the cities in the permuted
order. While processing city v, we implicitly consider all edges fu; vg for
cities u that have not yet been processed. The �rst step is to delete v from
the linked list. Then, since ux � vx for each of the remaining cities u, we
can write the inequality (23) as

tux � �yu < tvx � �yv: (24)

We therefore start at the head of the linked list, and consider the cities u in
the linked list order until (24) is no longer satis�ed, skipping over all of the

Title Suppressed Due to Excessive Length 57

cities further down in the order. For each of the u's that we consider, we
�rst compute ��fu;vg and then compute �fu;vg only if this value is negative.

This cut-o� procedure is quite e�ective in limiting the number of edges
that need to be explicitly considered. For the cost functions that are sup-
ported by kd-trees (see Bentley (1992)), however, it would be possible to
squeeze even more performance out of the pricing routine by treating the �y
values as an extra coordinate in a kd-tree (as David S. Johnson (personal
communication) proposed in the context of the Held-Karp lower bound pro-
cedure) and replacing the traversal of the linked list by a nearest-neighbor
search.

8.3. Batch Pricing

Coming out of the approximate pricing, we have edges for which we must
explicitly compute �e. As we discussed in Section 7.2, extracting these
reduced costs from the external LP representation is considerably more
time consuming than with the memory-intensive representation used by
Padberg and Rinaldi (1991). It is therefore important, in our case, to make
a careful implementation of the pricing scheme.

J�unger et al. (1994) were faced with a similar problem. Their method is
to build a pricing structure before the start of a pricing scan, and use this
to speed up their computations. The structure consists of lists, for each city
v, of the hypergraphs that contain v in one of their member sets. Working
with the inside form of cuts, they compute the reduced cost of an edge
fv; wg by �nding the intersection of the two hypergraph lists and working
through the sets to extract the appropriate coeÆcients.

We also build a pricing structure, but the one we use is oriented around
edges, rather than cities. To make this work, we price large groups of edges
simultaneously, rather than edge by edge. This �ts in naturally with the
pricing scan mechanism that we have set up, since we can just hold o� on
computing the necessary �e's until we have accumulated some prescribed
number of edges (say 20,000).

In our setup, to compute the reduced costs of a prescribed set, U , of
edges, we can begin with the ��e values that have already computed. To
convert ��e to �e, we need to add 2 � YS for each set S in S that contains
both ends of e. The structure we build to carry this out consists of an
incidence list for each city v, containing the indices of the edges of U that
are incident with v. For each set S in S having YS > 0, we run though each
city v in S and carry out the following operation. We consider, in turn,
each edge in v's incidence list and check whether the other end of the edge
is marked. If it is indeed marked, then we add 2�YS to the edge's ��e value.
Otherwise, we simply move on to the next edge. After all of the edges have
been considered, we mark the city v and move on to the next city in S. The
marking mechanism can be handled by initially setting a mark �eld to 0

58 David Applegate et al.

for all cities, and, after each set is processed, incrementing the value of the
integer label that we consider to be a \mark" in the next round.

After all sets have been processed, the ��e values have been converted to
�e for each e 2 U . We then attach each of the edges having negative �e to
a queue that holds the edges that are candidates for entering the core LP
(see Subsection 6.2). Finally, the incidence structure is freed, and we wait
for the next set of edges that need to be priced.

8.4. Cycling through the edges

Our pricing strategy does not require us to implicitly consider the entire
edge-set during each pricing scan, but only that a good sampling of the
potentially bad edges be scanned. We therefore use the pricing algorithm
in two modes, as in J�unger et al. (1994). In the �rst mode, we only consider
the k-nearest edges for some integer k (say k = 50), and in the second
mode we treat the full edge-set. In both cases, the routine works its way
through the edges, city by city, accumulating the set U of edges having
��e < 0 that will be priced exactly. Each time it is called, the search picks
up from the last city that was previously considered, wrapping around to
city 0 whenever the end of the city list is reached.

The approximate pricing algorithm is reset whenever the yv's and Yj 's
are updated. A reset involves the computation of the new YS 's and �yi's,
as well as the creation of a new linked list order. If successive calls to the
algorithm, without a reset, allow us to process all of the edges, then we
report this to the calling routine and carry out no further approximate
pricing until the next reset occurs; this provides information that can be
used to terminate a pricing scan.

8.5. Permitting negative edges

During our column generation procedure we take advantage of the fact that
if z� is the objective value of the LP solution and p is the sum of the reduced
costs of all edges having negative reduced cost, then z�+p is a lower bound
for the TSP instance. This observation follows from LP duality, using the
dual variables corresponding to the xe � 1 constraints for each edge e.

In our computations, we terminate the column generation process when
jpj falls below some �xed value (0.1 in our code). This small penalty in the
lower bound is accepted in order to avoid the bad behavior that can arise
as we try to complete the column generation while maintaining a small core
LP.

9. Computational results

The tests reported in this section were carried out on a Compaq AlphaServer
ES40 Model 6/500, with 8 GBytes of random access memory, running

Title Suppressed Due to Excessive Length 59

True64 Unix (version 4.0F). The processor speed of the AlphaServer is
500 MHz; the SPEC CPU2000 benchmarks are SPECint2000 = 299 and
SPECfp2000 = 382. The Concorde code was compiled with \cc -arch host
-04 -g3"; the LP solver used was ILOG CPLEX (version 7.1). In all of our
tests, we utilize only a single processor of the AlphaServer (it contains a
total of 4 processors).

9.1. Subtour bound

Let V denote the set of cities for an instance of the TSP and let E denote
the edge-set of the complete graph on V . Recall that the subtour bound for
the TSP is the optimal value of

Minimize
P
(cexe : e 2 E) (25)

subject to

x(fvg; V � fvg) = 2 for all v 2 V (26)

x(S; V � S) � 2 for all S 2 V; S 6= ;; S 6= V (27)

0 � xe � 1 for all e 2 E; (28)

that is, the optimal value of the LP obtained by appending the set of all
subtour inequalities to the degree equations for the instance.

As an initial test of our cutting-plane implementation, we compute the
subtour bound for a randomly generated 1,000,000-city Euclidean instance.
Our test instance was obtained by specifying the options \-s 99 -k 1000000"
in the Concorde code; just as in David Johnson's E1M.0, its cities are
points with integer coordinates drawn uniformly from the 1,000,000 by
1,000,000 grid and the cost of an edge is the Euclidean distance between
the corresponding points, rounded to the nearest integer.

In Table 6, we report the running times (in CPU hours on the Com-
paq AlphaServer ES40 5/600) for various choices of the subtour separation
heuristics we described in Section 2. In each case, we run the code until the
exact separation routine returns without any cuts, and the column gener-
ation routine returns without any edges. The running times do not vary
widely, but the results indicate that for this type of uniformly distributed
TSP instance, it is preferable to include only a subset of the separation
heuristics. In the remaining tests in this section, we will restrict our subtour

Table 6. 1,000,000-city Subtour Bound: Choice of Cuts

Cuts CPU Hours
Connect, interval, shrink, exact 26.75

Connect, shrink, exact 26.89
Connect, interval, exact 24.65

Connect, exact 24.63

60 David Applegate et al.

cuts to the combination of the connected-component and interval heuristics,
together with the Padberg-Rinaldi exact separation routine.

The tests reported in Table 6 were not run with our standard initial
edge-set, consisting of the union of 10 heuristically generated tours. Al-
though the tour-union idea performs very well when we are trying to com-
pute a strong lower bound on a TSP instance, an initial set that is more
closely tied to the subtour bound is preferable in the present case. In choos-
ing such a set, we begin by computing an approximation to the reduced costs
that would occur if we optimized over the subtour-bound LP. One way to do
this is to �rst solve the degree LP consisting of only the constraints (26) and
(28). The degree LP is a simple network optimization problem that can be
solved via a combinatorial primal-dual algorithm, combined with a column
generation routine to price over the complete graph, as in Applegate and
Cook (1993) and Miller and Pekny (1995). Once we have the dual solution
for the degree LP, we can select for each city v the k edges having the least
reduced-cost among the edges meeting v. The tests reported in Table 6
were run with the initial edge-set consisting of 4 least-reduced-cost edges
meeting each city, together with a tour generated by a greedy algorithm.

In Table 7, we compare the total CPU time needed to obtain the
1,000,000-city subtour bound starting with three di�erent initial edge-sets.
The \10 Tours" set is obtained using short runs of Chained Lin-Kernighan
to generate the tours; the \4-Nearest" set consists of the 4 least-cost edges
meeting each city, together with a tour generated by a greedy algorithm;
the \Fractional 4-nearest" is the set used in Table 6.

Table 7. 1,000,000-city Subtour Bound: Choice of Initial Edge-set

Edge-set CPU Hours
10 Tours 44.26
4-Nearest 30.91

Fractional 4-Nearest 24.31

The best of the results reported in Table 7 was obtained with the frac-
tional 4-nearest edge-set. The running time can be improved further, how-
ever, by increasing the density of the set, as we report in Table 8. The best
of the runs in this test used the fractional 6-nearest, taking just over 19
hours to compute the subtour bound for this 1,000,000-city instance.

In Table 9, we indicate the growth in the running time used to compute
the subtour bound for randomly generated Euclidean instances ranging
from size 250,000 up to 1,000,000. The results suggest that the running
time is growing as a quadratic function of the number of cities. To explore
this, we give a rough pro�le of the running time for the 1,000,000-city
instance in Table 10. In the pro�le, the \50-nearest pricing" entry is the
time spent in repeatedly computing the reduced costs over the 50-nearest
edge-set (the �rst phase of our column generation procedure) and the \Full

Title Suppressed Due to Excessive Length 61

Table 8. 1,000,000-city Subtour Bound: Size of Initial Edge-set

Edge-set CPU Hours
Fractional 4-Nearest 24.31
Fractional 5-Nearest 19.62
Fractional 6-Nearest 19.02
Fractional 7-Nearest 19.16
Fractional 8-Nearest 20.13
Fractional 9-Nearest 20.92
Fractional 10-Nearest 21.97

Table 9. Growth of Running Time for Subtour Bound

Number of Cities CPU Hours
250,000 1.74
500,000 6.47
1,000,000 24.31

pricing" entry is the time spent to price over the complete set of edges (this
was only carried out once, since no negative reduced cost edges were found
in this second phase of our column generation procedure).

Table 10. Growth of Running Time for Subtour Bound

Task CPU Time
Initial edges and tour 0.71%

Connect cuts 0.07%
Interval cuts 0.28%
Exact cuts 0.64%

50-nearest pricing 1.47%
Full pricing 0.70%

LP solve after adding edges 34.42%
LP solve after adding cuts 61.71%

The results of Table 9 and Table 10 suggest that the time spent in the
LP solver grows quadratically with the number of cities. In Table 11, we
report the number of nonzero coeÆcients in the �nal core LP for the three
runs that were used in Table 9. The growth in the size of the LP problems

Table 11. Number of Nonzeros in Final LP

Number of cities Nonzeros
250,000 1,518,920
500,000 3,027,376
1,000,000 6,059,563

appears to be linear, indicating the quadratic behavior is either within the
LP solver itself or it is due to the strategy we use for adding cuts and edges
to the LP (we add cuts in groups of 2,000 and we add edges in groups of
100; see Section 6).

62 David Applegate et al.

9.2. 85,900-city TSPLIB instance

The largest test instance in Reinelt's (1991) TSPLIB contains 85,900 cities.
This \pla85900" instance was contributed by David S. Johnson; it arose
in a programmable logic array application at AT&T in 1986. The cities
in pla85900 are speci�ed as coordinates in R2, and the edge costs are the
Euclidean distances rounded up to the next integer.

The best known tour for pla85900 has length 142,384,358; the tour was
found by Hisao Tamaki using the algorithm described in Tamaki (2002).
The best known lower bound for this instance is 142,307,500, showing that
Tamaki's tour is no more than 0.055% away from optimal. This lower bound
was found by Concorde, using a short branch-and-cut run.

Although 85,000 cities is well below the target for our large-scale imple-
mentation, the code is still an e�ective way to obtain a good lower bound in
a reasonably short amount of CPU time. To illustrate this, we ran Concorde
using the connect-interval-exact combination of subtour cuts, together with
the separation routines described in Section 4 and the local cuts procedure
with tmax = 8. In Figure 1, we plot the gap (to Tamaki's tour) versus the
CPU time.

100 1000 10000
CPU Seconds (Log-Scale)

0

0.1

0.2

0.3

0.4

0.5

0.6

%
 G

ap
 to

 B
es

t K
no

w
n

T
ou

r

Fig. 1. Concorde run on pla85900

The plot in Figure 1 shows that the improvement in the lower bound
tails o� as we exhaust the useful cuts that can be supplied by our separation
routines, but in under 10 hours of CPU time the code was able to obtain
an optimality gap of under 0.1%.

Title Suppressed Due to Excessive Length 63

9.3. 1,000,000-city Euclidean TSP

The best known tour for David Johnson's randomly generated Euclidean
1,000,000-city instance E1M.0 has length 713,302,702; it was found by Keld
Helsgaun in 2002 using a variant of the LKH heuristic described in Hels-
gaun (2000).

We ran Concorde on E1M.0 using the same selection of cutting-plane
separation routines that were used in Section 9.2, but in this case we grad-
ually increased the size of the local cuts' tmax parameter from 0 up to 28.
Each successive run in this study was initialized with the LP and cut pool
that were produced in the previous run. The results are reported in Ta-
ble 12. The \Bound" column gives the �nal lower bound that was achieved
by each run and the \Gap" column reports the % gap to the cost of the tour
found by Helsgaun, that is 100 � (713302702�Bound)=Bound. The cumu-
lative CPU time is reported in days, again using the Compaq AlphaServer
ES40 Model 6/500.

Table 12. Concorde run on 1,000,000-city Euclidean TSP

Cuts Bound Gap Total CPU Days
tmax = 0 711088074 0.311% 2.1
tmax = 8 712120984 0.166% 11.0
tmax = 10 712651618 0.091% 23.6
tmax = 12 712746082 0.078% 29.2
tmax = 14 712813323 0.068% 38.9
tmax = 20 712903086 0.056% 72.1
tmax = 24 712954779 0.049% 154.2
tmax = 28 713003014 0.042% 308.1

The results in Table 12 demonstrate the ability of the local cuts pro-
cedure to permit cutting-plane codes to achieve strong lower bounds on
even very large problem instances. The total running time of the study
was nearly one year, however, indicating that further progress needs to be
made. In this test, approximately 97% of the CPU time was used by the
LP solver to produce optimal primal and dual solutions after the addition
of cutting planes and after the addition of edges to the core LP, so this is a
natural area for future research. We will comment further on the LP solver
in the next section.

9.4. World TSP

In this section we study the \World TSP", a 1,904,711-city instance avail-
able at www.math.princeton.edu/tsp/world/. This instance was created
in 2001, using data from the National Imagery and Mapping Agency1 and

1 http://164.214.2.59/gns/html/

64 David Applegate et al.

from the Geographic Names Information System2 to locate populated points
throughout the world. The cities in the World TSP are speci�ed by their
latitude and longitude, and the cost of travel between cities is given by an
approximation of the great circle distance on the Earth, treating the Earth
as a ball. (This cost function is a variation of the TSPLIB GEO-norm,
scaled to provide the distance in meters rather than in kilometers.)

The distribution of the points in the World TSP is indicated in Figure 2.
The best known tour for this instance was again found by K. Helsgaun,
using a variant of the LKH heuristic; the length of the tour is 7,519,173,074
meters.

Fig. 2. World TSP

To study the cutting-plane method on this large instance, we repeated
the test we made on the 1,000,000-city instance in the previous section. In
this case, we let the local cuts' parameter tmax increase from 0 up to 16;
the results are reported in Table 13. We did not attempt to run local cuts
with larger values of tmax due to the overall running time of the code.

Table 13. Concorde run on 1,904,711-city World TSP

Cuts Bound Gap Total CPU Days
tmax = 0 7500743582 0.245% 12.0
tmax = 8 7504218236 0.199% 22.0
tmax = 12 7508333052 0.144% 77.9
tmax = 14 7510154557 0.120% 163.6
tmax = 16 7510752016 0.112% 256.1

As in the 1,000,000-city test, the CPU usage is dominated by the time
spent in the LP solver after the addition of cutting planes and after the

2 http://geonames.usgs.gov/

Title Suppressed Due to Excessive Length 65

addition of edges. In this case, the portion of time spent solving LP problems
was approximately 98% of the total CPU time (and the percentage was
growing as the run progressed).

9.5. Conclusions

The computational tests on the 1,000,000-city andWorld TSPs demonstrate
the e�ectiveness of the mix of cutting planes that have been developed
for the TSP. Of particular interest for general large-scale applications of
the cutting-plane method may be the cut-alteration procedures (Section 4)
and the local-cut procedure (Section 5), since both of these themes can be
adapted for applications beyond the context of the TSP.

The tests also indicate the need for further research into solution meth-
ods for large-scale LP problems|the CPU time in our tests was dominated
by the time spent in the LP solver. We comment on this in more detail
below.

To give an indication of the properties of the LP problems that arose
in our computations, we isolated a single LP that was created by adding
2,000 subtour inequalities to a previously solved core LP during our test of
the World TSP. We refer to this problem as LP2000; it was taken from the
end of the World TSP run.

In Table 14, we report some statistics on the size of LP2000. Note that
the number of rows includes the original 1,904,711 degree constraints, so at
this point in the computation the core LP contained 731,182 cutting planes.
Note also the sparsity of LP2000 (the \Nonzeros" entry counts the number
of nonzero coeÆcients in the constraint matrix); this is due in part to the
internal representation of the LP we described in Section 7.1.

Table 14. LP2000 Statistics

Rows Columns Nonzeros Nonzeros per Column
2,635,893 4,446,024 23,397,782 5.26

Starting with the optimal basis for the previously solved core LP, the
CPLEX code produced an optimal solution for LP2000 in 46,341 seconds on
the Compaq AlphaServer ES40 6/500, using the dual-steepest-edge simplex
algorithm (starting with unit norms).

Although the running time of the CPLEX solver is remarkably small for
a problem of the size and complexity of LP2000, our study certainly suggests
that the solution of LP problems remains the bottleneck in implementations
of the Dantzig et al. method for large-scale instances. One possibility for
overcoming this diÆculty is to explore the use of alternative methods for
solving the LP problems, rather than relying on the simplex algorithm.
Indeed, LP2000 can be solved in approximately 11,000 seconds if we use the
CPLEX barrier code and run on all 4 processors of the AlphaServer ES40

66 David Applegate et al.

(at the present time there is no e�ective way to run the simplex algorithm in
a parallel environment on LP instances of the size and shape of LP2000). A
diÆculty with this approach, however, is that our cutting-plane separation
routines have not been designed to deal e�ectively with the dense solutions
produced by barrier codes (as opposed to the basic solutions found by the
simplex algorithm). Although it is possible to use a crossover routine to
obtain a basic optimal solution from a barrier solution, in this instance the
CPLEX crossover function required over six days of CPU time to carry out
the conversion.

Acknowledgements. We would like to thank the late Michael Pearlman for his tireless
technical support that provided us with a superb computational platform for carrying
out the tests reported in this study.

References

1. Agarwala, R., D. L. Applegate, D. Maglott, G. D. Schuler, A. A. Sch�a�er. 2000. A
fast and scalable radiation hybrid map construction and integration strategy. Genome
Research 10, 350{364.

2. Applegate, D., R. Bixby, V. Chv�atal, W. Cook. 1995. Finding cuts in the TSP (A
preliminary report). DIMACS Technical Report 95-05. DIMACS, Rutgers University,
New Brunswick, New Jersey, USA.

3. Applegate, D., R. Bixby, V. Chv�atal, W. Cook. 1998. On the solution of traveling
salesman problems. Documenta Mathematica Journal der Deutschen Mathematiker-
Vereinigung, International Congress of Mathematicians. 645{656.

4. Applegate, D., R. Bixby, V. Chv�atal, W. Cook. 2001. TSP cuts which do not conform
to the template paradigm. M. J�unger, D. Naddef, eds. Computational Combinatorial
Optimization. Springer, Heidelberg, Germany. 261{304.

5. Applegate, D., R. Bixby, V. Chv�atal, W. Cook. 2003. Concorde. Available at
www.math.princeton.edu/tsp .

6. Applegate, D., W. Cook. 1993. Solving large-scale matching problems. D. S Johnson,
C. C. McGeoch, eds. Algorithms for Network Flows and Matching. American Mathe-
matical Society, Providence, Rhode Island, USA. 557{576.

7. Applegate, D., W. Cook, A. Rohe. 2003. Chained Lin-Kernighan for large traveling
salesman problems. INFORMS Journal on Computing 15, 82{92.

8. Balas, E. 1975. Facets of the knapsack polytope. Mathematical Programming 8, 146{
164.

9. Bentley, J. L. 1992. Fast algorithms for geometric traveling salesman problems. ORSA
Journal on Computing 4, 387{411.

10. Bixby, R., M. Fenelon, Z. Gu, E. Rothberg, R. Wunderling. 2000. MIP: Theory
and practice - closing the gap. M. J. D. Powell, S. Scholtes, eds. System Modelling
and Optimization: Methods, Theory and Applications. Kluwer Academic Publishers,
Dordrecht, The Netherlands. 19{49.

11. Bixby, R., M. Fenelon, Z. Gu, E. Rothberg, R. Wunderling. 2003. Mixed-Integer
Programming: A Progress Report. M. Gr�otschel, ed. The Sharpest Cut, Festschrift in
honor of Manfred Padberg's 60th birthday. SIAM, Philadelphia. To appear.

12. Boyd, E. A. 1993. Generating Fenchel cutting planes for knapsack polyhedra. SIAM
Journal of Optimization 3, 734{750.

13. Boyd, E. A. 1994. Fenchel cutting planes for integer programs. Operations Re-
search 42, 53{64.

14. Chekuri, C. S., A. V. Goldberg, D. R. Karger, M. S. Levine, C. Stein.
1997. Experimental study of minimum cut algorithms. Proceedings of the
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. ACM Press,
New York, USA. 324{333. (The full version of the paper is available at
www.cs.dartmouth.edu/~cliff/papers/MinCutImplement.ps.gz .)

Title Suppressed Due to Excessive Length 67

15. Christof, T., G. Reinelt. 1995. Parallel cutting plane generation for the TSP. P. Fritz-
son, L. Finmo, eds. Parallel Programming and Applications. IOS Press, Amsterdam,
The Netherlands. 163{169.

16. Chv�atal, V. 1973. Edmonds polytopes and weakly hamiltonian graphs. Mathematical
Programming 5, 29{40.

17. Chv�atal, V. 1983. Linear Programming. W. H. Freeman and Company, New York,
USA.

18. Clochard, J.-M., D. Naddef. 1993. Using path inequalities in a branch and cut code
for the symmetric traveling salesman problem. G. Rinaldi, L. Wolsey, eds. Third IPCO
Conference. 291{311.

19. Cook, W., P. D. Seymour. 2003. Tour merging via branch decomposition. To appear
in INFORMS Journal on Computing.

20. Cormen, T. H., C. E. Leiserson, R. L. Rivest. 1990. Introduction to Algorithms. The
MIT Press, Cambridge, Massachusetts, USA.

21. Cornu�ejols, G., J. Fonlupt, D. Naddef. 1985. The traveling salesman problem on a
graph and some related integer polyhedra. Mathematical Programming 33, 1{27.

22. Craven, B. D. 1988. Fractional Programming. Heldermann, Berlin, Germany.
23. Crowder, H., E. L. Johnson, M. Padberg. 1983. Solving large-scale zero-one linear
programming problems. Operations Research 31, 803{834.

24. Crowder, H., M. W. Padberg. 1980. Solving large-scale symmetric travelling sales-
man problems to optimality. Management Science 26, 495{509.

25. DIMACS. 2001. 8th DIMACS implementation challenge: the traveling salesman
problem. www.research.att.com/~dsj/chtsp/ .

26. Edmonds, J. 1965. Maximum matching and a polyhedron with 0,1-vertices. Journal
of Research of the National Bureau of Standards|B 69B, 125{130.

27. Fleischer, L. 1999. Building chain and cactus representations of all minimum cuts
from Hao-Orlin in the same asymptotic run time. Journal of Algorithms 33, 51{72.

28. Fleischer, L., �E. Tardos. 1999. Separating maximally violated comb inequalities in
planar graphs. Mathematics of Operations Research 24, 130{148.

29. Ford, L. R., D. R. Fulkerson. 1962. Flows in Networks. Princeton University Press,
Princeton, NJ, USA.

30. Goldberg, A. V. 1985. A new max-ow algorithm. Technical Report MIT/LCS/TM
291. Laboratory for Computer Science, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, USA.

31. Gomory, R.E. 1969. Some polyhedra related to combinatorial problems. Linear Al-
gebra and Its Applications 2, 451{558.

32. Gr�otschel, M., O. Holland. 1987. A cutting-plane algorithm for minimum perfect
2-matchings. Computing 39, 327{344.

33. Gr�otschel, M., O. Holland. 1991. Solution of large-scale symmetric travelling sales-
man problems. Mathematical Programming 51, 141{202.

34. Gr�otschel, M., M. Padberg. 1979a. On the symmetric traveling salesman problem I:
inequalities. Mathematical Programming 16, 265{280.

35. Gr�otschel, M., M. Padberg. 1979b. On the symmetric traveling salesman problem
II: lifting theorems and facets. Mathematical Programming 16, 281{302.

36. Gr�otschel, M., M. Padberg. 1985. Polyhedral theory. E. L. Lawler, J. K. Lenstra, A.
H. G. Rinnooy Kan, D. B. Shmoys, eds, The Traveling Salesman Problem. John Wiley
& Sons, Chichester, UK. 252{305.

37. Hammer, P. L., E. L. Johnson, U. N. Peled. 1975. Facets of regular 0-1 polytopes.
Mathematical Programming 8, 179{206.

38. Harel, D., R. E. Tarjan. 1984. Fast algorithms for �nding nearest common ancestors.
SIAM Journal on Computing 13, 338{355.

39. Held, M., R. M. Karp. 1971. The traveling-salesman problem and minimum spanning
trees: part II. Mathematical Programming 1, 6{25.

40. Helsgaun, K. 2000. An e�ective implementation of the Lin-Kernighan traveling sales-
man heuristic. European Journal of Operational Research 126, 106{130. The LKH code
is available at www.dat.ruc.dk/~keld/research/LKH/ .

41. Hong, S. 1972. A Linear Programming Approach for the Traveling Salesman Prob-
lem. Ph.D. Thesis. The Johns Hopkins University, Baltimore, Maryland, USA.

42. Hu�man, D. A. 1952. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE 40, 1098{1101.

68 David Applegate et al.

43. Johnson, D. S., L. A. McGeoch. 1997. The traveling salesman problem: a case study.
E. Aarts, J. K. Lenstra, eds. Local Search in Combinatorial Optimization. John Wiley
& Sons, Chichester, UK. 215{310.

44. Johnson, D. S., L. A. McGeoch. 2002. Experimental analysis of heuristics for the
STSP. G. Gutin, A. Punnen, eds. The Traveling Salesman Problem and its Variations.
Kluwer Academic Publishers, Dordrecht, The Netherlands. 369{443.

45. J�unger, M., G. Reinelt, G. Rinaldi. 1995. The traveling salesman problem. M. Ball,
T. Magnanti, C. L. Monma, G. Nemhauser, eds. Handbook on Operations Research
and Management Sciences: Networks. North Holland, Amsterdam, The Netherlands.

46. J�unger, M., G. Reinelt, G. Rinaldi. 1997. The Traveling Salesman Problem. M.
Dell'Amico, F. MaÆoli, S. Martello, eds. Annotated Bibliographies in Combinatorial
Optimization. John Wiley & Sons, Chichester, UK. 199{221.

47. J�unger, M., G. Reinelt, S. Thienel. 1994. \Provably good solutions for the traveling
salesman problem". Zeitschrift f�ur Operations Research 40, 183{217.

48. J�unger, M., G. Reinelt, S. Thienel. 1995. Practical problem solving with cutting
plane algorithms. W. Cook, L. Lov�asz, P. Seymour, eds. Combinatorial Optimization.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science 20. Amer-
ican Mathematical Society, Providence, Rhode Island, USA. 111{152.

49. J�unger, M., G. Rinaldi, S. Thienel. 2000. Practical performance of minimum cut
algorithms. Algorithmica 26, 172{195.

50. Karger, D. R., C. Stein. 1996. A new approach to the minimum cut problem. Journal
of the ACM 43, 601{640.

51. Knuth, D. 1968. Fundamental Algorithms, Adison Wesley, Reading, Massachusetts,
USA.

52. Land, A. 1979. The solution of some 100-city travelling salesman problems. Technical
Report. London School of Economics, London, UK.

53. Letchford, A. N. 2000. Separating a superclass of comb inequalities in planar graphs.
Mathematics of Operations Research 25, 443{454.

54. Letchford, A. N., A. Lodi. 2002. Polynomial-time separation of simple comb inequal-
ities. W. J. Cook, A. S. Schulz, eds. Integer Programming and Combinatorial Opti-
mization. Lecture Notes in Computer Science 2337. Springer, Heidelberg, Germany.
93{108.

55. Levine, M. 1999. Finding the right cutting planes for the TSP. M. T. Goodrich, C.
C. McGeoch, eds. Algorithm Engineering and Experimentation, International Work-
shop ALEXNEX'99. Lecture Notes in Computer Science 1619. Springer, Heidelberg,
Germany. 266{281.

56. Lin, S., B. W. Kernighan. 1973. An e�ective heuristic algorithm for the traveling-
salesman problem. Operations Research 21, 498{516.

57. Marchand, H., A. Martin, R. Weismantel, L. A. Wolsey. 1999. Cutting planes in
integer and mixed-integer programming. Technical Report CORE DP9953. Universit�e
Catholique de Louvain, Louvain-la-Neuve, Belgium.

58. Martin, O., S. W. Otto, E. W. Felten. 1991. Large-step Markov chains for the trav-
eling salesman problem. Complex Systems 5, 299{326.

59. Miliotis, P. 1978. Using cutting planes to solve the symmetric travelling salesman
problem. Mathematical Programming 15, 177{188.

60. Miller, D. L., J. F. Pekny. 1995. A staged primal-dual algorithm for perfect b-
matching with edge capacities. ORSA Journal on Computing 7, 298{320.

61. Naddef, D. 2002. Polyhedral theory and branch-and-cut algorithms for the symmet-
ric TSP. G. Gutin, A. Punnen, eds. The Traveling Salesman Problem and its Varia-
tions. Kluwer Academic Publishers, Dordrecht, The Netherlands. 29{116.

62. Naddef, D., G. Rinaldi. 1992. The graphical relaxation: A new framework for the
symmetric traveling salesman polytope. Mathematical Programming 58, 53{88.

63. Naddef, D., S. Thienel. 2002a. EÆcient separation routines for the symmetric trav-
eling salesman problem I: general tools and comb separation. Mathematical Program-
ming 92, 237{255.

64. Naddef, D., S. Thienel. 2002b. EÆcient separation routines for the symmetric travel-
ing salesman problem II: separating multi handle inequalities. Mathematical Program-
ming 92, 257{283.

65. Nemhauser, G. L, L. A. Wolsey. 1988. Integer and Combinatorial Optimization. John
Wiley & Sons, New York, USA.

66. Padberg, M. W. On the facial structure of set packing polyhedra. Mathematical
Programming 5, 199{215.

Title Suppressed Due to Excessive Length 69

67. Padberg, M. W. A note on zero-one programming. Operations Research 23, 833{837.
68. Padberg, M., M. Gr�otschel. 1985. Polyhedral computations. E. L. Lawler, J. K.
Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys, eds, The Traveling Salesman Problem.
John Wiley & Sons, Chichester, UK. 307{360.

69. Padberg, M. W., S. Hong. 1980. On the symmetric travelling salesman problem: a
computational study. Mathematical Programming Study 12, 78{107.

70. Padberg, M. W., M. R. Rao. 1982. Odd minimum cut-sets and b-matchings. Math-
ematics of Operations Research 7, 67{80.

71. Padberg, M. W., G. Rinaldi. 1990a. An eÆcient algorithm for the minimum capacity
cut problem. Mathematical Programming 47, 19{36.

72. Padberg, M. W., G. Rinaldi. 1990b. Facet identi�cation for the symmetric traveling
salesman polytope. Mathematical Programming 47, 219{257.

73. Padberg, M. W., G. Rinaldi. 1991. A branch-and-cut algorithm for the resolution of
large-scale symmetric traveling salesman problems. SIAM Review 33, 60{100.

74. Pulleyblank, W. R. 1973. Faces of Matching Polyhedra. Ph.D. Thesis. Department of
Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada.

75. Reinelt, G. 1991. TSPLIB { A traveling salesman problem library. ORSA Jour-
nal on Computing 3, 376{384. An updated version of the library is available at
http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/.

76. Schieber, B., U. Vishkin. 1988. On �nding lowest common ancestors: simpli�cation
and parallelization. SIAM Journal on Computing 17, 1253{1262.

77. Schrijver, A. 1986. Theory of Linear and Integer Programming. John Wiley & Sons,
Chichester, UK.

78. Stancu-Minasian, I. M. 1997. Fractional Programming. Kluwer, Dordrecht, The
Netherlands.

79. Tamaki, H. 2002. Alternating cycles contribution: a tour merging strategy for the
traveling salesman problem. Submitted.

80. Tarjan, R. E. 1975. EÆciency of a good but not linear set union algorithm. Journal
of the Association of Computing Machinery 22, 215{225.

81. Tarjan, R. E. 1983. Data Strutures and Network Algorithms. SIAM, Philadelphia.
82. Tarjan, R. E., J. van Leeuwen. 1984. Worst-case analysis of set union algorithms.
Journal of the Association of Computing Machinery. 31, 245{281.

83. Vanderbei, R. J. 2001. Linear Programming: Foundations and Extensions. Kluwer
Academic Publishers, Boston, USA.

84. Wenger, K. M. 2002. A new approach to cactus construction applied to TSP support
graphs. W. J. Cook, A. S. Schulz, eds. Integer Programming and Combinatorial Op-
timization. Lecture Notes in Computer Science 2337. Springer, Heidelberg, Germany.
109{126.

85. Wolsey, L. A. 1975. Faces for a linear inequality in 0-1 variables. Mathematical
Programming 8, 165{178.

86. Wolsey, L. A. Facets and strong valid inequalities for integer programs. Operations
Research 24, 367{372.

87. Wolsey, L. A. 1998. Integer Programming. John Wiley & Sons, New York, USA.

