
Data Integration Using Similarity Joins and
a Word-Based Information Representation
Language

WILLIAM W. COHEN
AT&T Labs—Research, Shannon Laboratory

The integration of distributed, heterogeneous databases, such as those available on the World
Wide Web, poses many problems. Here we consider the problem of integrating data from
sources that lack common object identifiers. A solution to this problem is proposed for
databases that contain informal, natural-language “names” for objects; most Web-based
databases satisfy this requirement, since they usually present their information to the
end-user through a veneer of text. We describe WHIRL, a “soft” database management system
which supports “similarity joins,” based on certain robust, general-purpose similarity metrics
for text. This enables fragments of text (e.g., informal names of objects) to be used as keys.
WHIRL includes textual objects as a built-in type, similarity reasoning as a built-in predicate,
and answers every query with a list of answer substitutions that are ranked according to an
overall score. Experiments show that WHIRL is much faster than naive inference methods,
even for short queries, and efficient on typical queries to real-world databases with tens of
thousands of tuples. Inferences made by WHIRL are also surprisingly accurate, equaling the
accuracy of hand-coded normalization routines on one benchmark problem, and outperforming
exact matching with a plausible global domain on a second.

Categories and Subject Descriptors: H.2.5 [Information Systems]: Database Management—
heterogeneous databases; H.2.3 [Information Systems]: Database Management—data ma-
nipulation languages; query languages; H.3.3 [Information Storage and Retrieval]: Infor-
mation Search and Retrieval—retrieval models; performance evaluation

General Terms: Reliability

1. INTRODUCTION

Integration of distributed, heterogeneous databases, sometimes known as
data integration, is an active area of research in the database community
[Duschka and Genesereth 1997b; Levy et al. 1996b; Arens et al. 1996;
Garcia-Molina et al. 1995; Tomasic et al. 1997; Bayardo et al. 1997].
Largely inspired by the proliferation of database-like sources on the World
Wide Web, previous researchers have addressed a diverse set of problems,

Author’s address: WhizBang Labs, 4616 Henry Street, Pittsburgh, PA 15213; email:
wcohen@whizbang.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 1046-8188/00/0700–0288 $05.00

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000, Pages 288–321.

ranging from access to “semi-structured” information sources [Suciu 1996;
Abiteboul and Vianu 1997; Suciu 1997] to combining databases with
differing schemata [Levy et al. 1996a; Duschka and Genesereth 1997a].
Data integration is analogous to the problem of collection fusion—integra-
tion of distributed text collections—but differs in that the information
sources to be integrated are structured.

In this paper we will consider a new type of data integration problem,
namely, the problem of combining information from relations that lack
common formal object identifiers. To illustrate this problem, consider a
relation p with schema p(company,industry) that associates companies with
a short description of their industries, and a second relation q with schema
q(company,website) that associates companies with their home pages. If p
and q are taken from different, heterogeneous databases, then the same
company might be denoted by different constants x and x9 in p and q
respectively, making it impossible to join p and q in the usual way.

In general, most databases contain many domains in which the individ-
ual constants correspond to entities in the real world; examples of such
“name domains” include course numbers, personal names, company names,
movie names, and place names. Most previous work in data integration
either assumes these “name domains” to be global, or else assumes that
local “name constants” can be mapped into a global domain by some
relatively simple normalization process. However, examination of real-
world information sources reveals many cases in which creating a global
domain by normalization is difficult. In general, the mapping from “name
constants” to real entities can differ in subtle ways from database to
database, making it difficult to determine if two name constants are
coreferent (i.e., refer to the same entity). For instance, in two Web data-
bases listing educational software companies, we find the names “Mi-
crosoft” and “Microsoft Kids”: do these denote the same company, or not?
Which pairs of the following names correspond to the same research
institution: “AT&T Bell Labs,” “AT&T Labs,” “AT&T Labs—Research,”
“AT&T Research,” “Bell Labs,” and “Bell Telephone Labs”? As these exam-
ples indicate, determining if two name constants are coreferent is often far
from trivial. Frequently it requires detailed knowledge of the world, the
purpose of the user’s query, or both.

At first glance, developing a general data integration method for data-
bases that lack common object identifiers might seem to be a hopeless task.
Note, however, that this sort of semantic heterogeneity is not an issue in
integration of unstructured textual information—in collection fusion, any
set of documents can be queried in a uniform way. Note further that many
Web-accessible databases present their information to the end-user
through a veneer of ordinary language; for instance, business databases of
the type described above would certainly include the English names of the
companies involved. This raises an intriguing question: can statistical IR
methods be used to resolve the lack of common object identifiers? In
particular, is it possible to use the English names themselves as keys?

Constructing a database management system (DBMS) that embodies this
approach raises a number of technical problems. A solution to these

Data Integration Using Similarity Joins • 289

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

problems, however, would be a great practical interest: while few pairs of
distributed databases will share a common formal language for describing
entities, many Web-accessible databases do use English as a common
(informal) description for entities. If informal textual descriptions of enti-
ties can be used to join heterogeneous relations, then the scope of current
data integration methods could be greatly extended.

In the remainder of this paper, we first describe a logic for database
integration called WHIRL (for Word-based Heterogeneous Information
Representation Language—the phrase “information representation lan-
guage” indicating an intermediate point between information retrieval
systems and knowledge representation systems). Like a conventional
knowledge representation system or DBMS, WHIRL allows structured data
to be represented. However, WHIRL retains the original local names, and
reasons explicitly about the similarity of pairs of names, using statistical
measures of document similarity that have been developed in the informa-
tion retrieval community. As in conventional database systems, the answer
to a user’s query is a set of tuples; however, these tuples are ordered so that
the “best” answers are presented to the user first. WHIRL considers tuples
to be “better” when the name similarity conditions required by the user’s
query are more likely to hold.

We next describe an efficient query algorithm for WHIRL. Semantically,
WHIRL is much like earlier probabilistic or “fuzzy” database logics [Fuhr
1995; Barbara et al. 1992]; however, certain properties of text make
efficient inference a bit trickier. In particular, it is typically the case that
many pairs of names will be weakly similar, but few will be strongly
similar; this leads to inefficiencies for probabilistic inference algorithms
that compute all tuples with nonzero probability. Our query-answering
algorithm is novel in that it finds the highest-scoring answer tuples
without generating all low-scoring tuples. The query-answering algorithm
also makes heavy use of IR indexing methods.

Finally, we evaluate the algorithm experimentally on real-world data
extracted from the Web. We show that our algorithm is much faster than
naive inference methods, even for short queries. We also show that the
inferences of the system are surprisingly accurate. In one case WHIRL’s
performance equals the performance of a hand-constructed, domain-specific
normalization routine. In a second case, WHIRL’s performance gives better
performance than matching on a plausible global domain. WHIRL’s perfor-
mance is also robust with respect to various deficiencies in the data. This
makes it possible to use WHIRL to join relations with incompatible
schemas. WHIRL can also accurately join relations if local names have not
been completely extracted from the surrounding text.

2. SEMANTICS OF THE WHIRL QUERY LANGUAGE

2.1 The Data Model

Recall that our motivation is to be able to integrate information from
structured information sources that contain textual information. We will

290 • William W. Cohen

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

thus make the natural assumption that all data are stored in relations, but
that the primitive elements of each relation are fragments of text, rather
than character strings or numbers. We call this data model STIR (for
Storing Texts In Relations).

To represent text fragments, we adopt the widely used vector space model
[Salton 1989], which we will now briefly review. We assume a vocabulary T
of terms, which will be treated as atomic; terms might include words,
phrases, or word stems (morphologically derived word prefixes). A fragment
of text is represented as document vector: a vector of real numbers vW [
5 uT u, each component of which corresponds to a term t [T. We will denote
the component of vW which corresponds to t [T by vW t.

A number of schemes have been proposed for assigning weights to terms.
We found it convenient to adopt the widely used TF-IDF weighting scheme
with unit length normalization. Assuming that the document represented
by vW is a member of a document collection C, define vW t to have the value
zero if t is not present in the document represented by vW , and otherwise the
value vW t 5 (log(TFvW , t 1 1) z log(IDFt), where the “term frequency” TFvW , t is
the number of times that term t occurs in the document represented by vW ,
and the “inverse document frequency” IDFt is uC u/nt, where nt is the
number of documents in C that contain the term t. The collection C
associated with a document vector vW will (usually) be the set of text
fragments appearing in the same column of the same relation as vW .

The similarity of two document vectors vW and wW is given by the formula

sim~vW , wW ! 5 O
t[T

vW t z wW t

ivW i z iwW i

which is usually interpreted as the cosine of the angle between vW and wW .
Notice that sim(vW , wW) is always between zero and one.

The general idea behind this scheme is that the magnitude of the
component vW t is related to the “importance” of the term t in the document
represented by vW . Two documents are similar when they share many
“important” terms. The standard TF-IDF heuristic of assigning higher
weights to terms that occur infrequently in a collection is a very reasonable
one in our context: in a collection C of company names, for instance,
common terms like “Inc.” and “Ltd.” would have low weights; uniquely
appearing terms like “Lucent” and “Microsoft” would have high weights;
and terms of intermediate frequency like “Acme” and “American” would
have intermediate weights.1

An extensional database (EDB) consists of a term vocabulary T and set of
relations { p1, . . . , pn}. Associated with each relation p is a set of tuples

1Notice that this representation ignores all information about word order; thus the two strings
“Cohen, William W.” and “William W. Cohen” would be mapped to identical vectors. The vector
space model can be extended to include some word-order information (e.g., Fagan [1989]);
however, in our experience, word order is seldom necessary to distinguish between object
names.

Data Integration Using Similarity Joins • 291

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

tuples(p). Every tuple ^v1W , . . . , vkW & [tuples(p) has exactly k components,
and each of these components viW is a text fragment, represented as a
document vector over T. We will also assume that a score is associated with
every tuple in p. This score will always be between zero and one, and will
be denoted score~p^v1W , . . . , vkW &). Informally, this score measures the degree
of belief in a fact. In most applications, the score of every tuple in a base
relation will be one; however, it will be convenient to allow nonunit scores,
so that materialized views can be stored.

2.2 Conjunctive Queries Over Relations of Documents

WHIRL is a query language for accessing STIR relations. A conjunctive
WHIRL query is written B1 ` . . . ` Bk where each Bi is a literal. There
are two types of literals. An EDB literal is written p(X1, . . . , Xk) where p
is the name of an EDB relation, and the Xi’s are variable symbols (or
simply variables). A similarity literal is written X ; Y, where X and Y are
variables; intuitively, this will be interpreted as a requirement that docu-
ments X and Y be similar. We will henceforth assume that if X appears in
a similarity literal in a query Q, then X also appears in some EDB literal in Q.

Example 1. To return to the example of the introduction, the join of the
relations p and q might be approximated by the query

Q1: p(Company1,Industry) ` q(Company2,WebSite) `
Company1;Company2

Note that this is different from an equijoin of p and q, which could be
written p(Company,Industry) ` q(Company,WebSite). To find Web sites for
companies in the telecommunications industry one might use the query:

Q2: p(Company1,Industry) ` q(Company2,WebSite) `
Company1;Company2 ` const1(IO) ` Industry;IO

where the relation const1 contains a single document describing the
industry of interest, such as “telecommunications equipment and/or services.”

The semantics of WHIRL are best described in terms of substitutions. A
substitution u is a mapping from variables to document vectors. We will
write a substitution as u 5 {Xi 5 vW i, . . . , Xn 5 vW n}, where each Xi is
mapped to the vector vW i. The variables Xi in the substitution are said to be
bound by u. If Q is a WHIRL query (or a literal or variable) then Qu
denotes the result of applying that mapping to Q—i.e., the result of taking
Q and replacing every variable Xi appearing in Q with the corresponding
document vector viW . A substitution u is ground for Q if Qu contains no
variables.

To define the semantics of WHIRL, we will extend the notion of score to
single literals, and then to conjunctions. Let B be a literal, and u a
substitution such that Bu is ground. If B is an EDB literal p(X1, . . . , Xk),
we define score(Bu) 5 score(p^X1u, . . . , Xku&) if ^X1u, . . . , Xku& [

292 • William W. Cohen

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

tuples(p), and score(Bu) 5 0 otherwise. If B is a similarity literal X ; Y,
we define score(Bu) 5 sim(Xu, Yu).

If Q 5 B1 ` . . . ` Bk is a query and Qu is ground, we define
score(Qu) 5) i51

k score(Biu). In other words, we score conjunctive queries
by combining the scores of literals as if they were independent probabili-
ties.

This combination method has some unfortunate properties; for instance,
two logically equivalent queries (like B and B ` B) can have different
scores. (This problem is shared by the semantics for disjunction, described
below.) More generally, similarity scores are not independent probabilities,
so there is no reason to expect this combination method to be in any sense
optimal. However, this combination method is at least simple and rela-
tively well-understood, and is in our view a reasonable starting point for
research on this sort of data integration system.

Recall that the answer to a conventional conjunctive query is the set of
ground substitutions that make the query “true” (i.e., provable against the
EDB). In WHIRL, the notion of provability has been replaced with the
“soft” notion of score: substitutions with a high score are intended to be
better answers than those with a low score. It seems reasonable to assume
that users will be most interested in seeing the high-scoring substitutions,
and will be less interested in the low-scoring substitutions. We formalize
this as follows. Given an EDB, we define the full answer set SQ for a
conjunctive query Q to be the set of all ui such that Qu i is ground and has
a nonzero score. We define an r-answer RQ for a conjunctive query Q to be
an ordered list of r substitutions u1, . . . , ur from the full answer set SQ
such that

—for all u i [RQ and s [SQ 2 RQ, score(Qu i) $ score(Qs) and
—for all ui, u j [RQ where i , j, score(Qu i) $ score(Qu j).

In other words, RQ contains r highest-scoring substitutions, ordered by
nonincreasing score.2

We will assume the output of a query-answering algorithm given the
query Q will not be a full answer set, but rather an r-answer for Q, where
r is a parameter fixed by the user. To motivate the notion of an r-answer,
observe that in typical situations the full answer set for WHIRL queries
will be very large. For example, the full answer set for the query Q1 given
as an example above would include all pairs of company names Company1,
Company2 that both contain the term “Inc”. This set might be very large.
Indeed, if we assume that a fixed fraction 1/k of company names contain
the term “Inc”, and that p and q each contain a random selection of n
company names, then one would expect the size of the full answer set to
contain (n/k)2 substitutions simply due to the matches on the term “Inc”;
further the full answer set for the join of m relations of this sort would be of
size at least (n/k)m.

2Note that RQ is not always unique, since ties in score can be broken by any method.

Data Integration Using Similarity Joins • 293

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

To further illustrate this point, we computed the pairwise similarities of
two lists p and q of company names,3 with p containing 1163 names, and q
containing 976 names. Although the intersection of p and q appears to
contain only about 112 companies, over 314,000 name pairs had nonzero
similarity. In this case, the number of nonzero similarities can be greatly
reduced by discarding a few very frequent terms like “Inc”. However, even
after this preprocessing, there are more than 19,000 nonzero pairwise
similarities—more than 170 times the number of correct pairings. This is
due to a large number of moderately frequent terms (like “American” and
“Airlines”) that cannot be safely discarded.

In conclusion, it is in general impractical to compute full answer sets for
complex queries, and antisocial to present them to a user. This is why we
formalize the goal of query-answering to be generation of an r-answer.

In some cases, it is not appropriate to arbitrarily limit the size of the
answer; instead, one would like to find all answers with scores above a
certain threshold e. We define an e-answer RQ for a conjunctive query Q to
be all substitutions from the full answer set SQ with a score of at least e,
ordered by nonincreasing score. The parameter e provides an alternative
way of limiting the number of answers to a query.

2.3 Unions of Conjunctive Queries

The scoring scheme given above for conjunctive queries can be fairly easily
extended to more expressive languages. Below we consider one such exten-
sion, which corresponds to projections of unions of conjunctive queries.

A basic WHIRL clause is written p(X1, . . . , Xk) 4 Q, where Q is a
conjunctive WHIRL query that contains all of the Xi’s. A basic WHIRL view
9 is a set of basic WHIRL clauses with heads that have the same predicate
symbol p and arity k. Notice that by this definition, all the literals in a
clause body are either EDB literals or similarity literals—in other words,
the view is “flat,” involving only extensionally defined predicates. (How-
ever, one can easily extend these semantics to all of nonrecursive Datalog,
by assuming that “nonflat” views are “unfolded” before they are evaluated.)
Now, consider a ground instance a 5 p(xW 1, . . . , xW k) of the head of some
view clause. We define the support of a (relative to the view 9 and a given
EDB) to be the set of triples ^ A 4 Q, u, s& satisfying these conditions:

(1) (A 4 Q) [9;
(2) Au 5 a, and Qu is ground; and
(3) score(Qu) 5 s, and s . 0.

The support of a will be written support(a). We then define the score of ^xW 1,
. . . , xW k& in p as follows:

score~ p^xW 1 , . . . , xW k&! 5 1 2 P
^C,u,s&[support~ p~xW1, . . . , xWk!!

~1 2 s! (1)

3These lists are the relations HooverWeb and Iontech from Table IV.

294 • William W. Cohen

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

As motivation for this formula, note that it is a dual of multiplication: if
e1 and e2 are independent probabilistic events with probability p1 and p2

respectively, then the probability of (e1 ` e2) is p1 z p2, and the probability
of (e1 ~ e2) is 1 2 (1 2 p1)(1 2 p2). We can now define the materializa-
tion of the view 9 to be a relation with name p which contains all tuples
^xW 1, . . . , xW k& such that score(^xW 1, . . . , xW k& [p) . 0.

Unfortunately, while this definition is natural, there is a difficulty with
using it in practice. In a conventional setting, it is easy to materialize a
view of this sort, given a mechanism for solving a conjunctive query. In
WHIRL, we would prefer to assume only a mechanism for computing
r-answers to conjunctive queries. However, since Eq. (1) involves a support
set of unbounded size, it appears that r-answers are not enough to even
score a single ground instance a.

Fortunately, however, low-scoring substitutions have only a minimal
impact on the score of a. Specifically, if ^C, u, s& is such that s is close to
zero, then the corresponding factor of (1 2 s) in the score for a is close to
one. One can thus approximate the score of Eq. (1) using a smaller set of
high-scoring substitutions, such as those found in an r-answer for large r
(or an e-answer for small e).

In particular, let 9 contain the clauses A1 4 Q1, . . . , An 4 Qn; let
RQ1

, . . . , RQn
be r-answers for the Qi’s; and let R 5 øiRQi

. Now define the
r-support for a from R to be the set

$^ A 4 Q, u, s&:^ A 4 Q, u, s& [support~a! and u [R%.

Also define the r-score for a from R by replacing support(a) in Eq. (1) with
the r-support set for a. Finally, define the r-materialization of 9 from R to
contain all tuples xW 1, . . . , xW k with nonzero r-score, with the score of xW 1,
. . . , xW k in p being its r-score from R. We define e-support, e-score, and
e-materialization analogously, replacing the r-answers for the Qi’s with
e-answers.

Clearly, the r-materialization of a view can be constructed using only an
r-answer for each clause body involved in the view. As r is increased, the
r-answers will include more and more high-scoring substitutions, and the
r-materialization will become a better and better approximation to the full
materialized view. An analogous statement holds for an e-materialization
as e is decreased.

Thus given an efficient mechanism for computing r-answers (or e-an-
swers) for conjunctive views, one can efficiently approximate the answers to
more complex queries.

2.4 Relation to Other Logics

At the level described so far, WHIRL is closely related to earlier formalisms
for probabilistic databases. In particular, if similarities were stored in a
relation sim(X, Y) instead of being computed “on-the-fly,” and certain

Data Integration Using Similarity Joins • 295

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

irredundancy assumptions are made,4 then WHIRL is a strict subset of
Fuhr’s probabilistic Datalog [Fuhr 1995]. There are also close connections
to existing formalisms for probabilistic relational databases [Barbara et al.
1992].

Given this, it might well be asked why it is necessary to introduce a new
and more restricted probabilistic logic. Our response is that the assump-
tions made in WHIRL enable relatively efficient inference, without making
the logic too restricted to handle its intended task—integration of hetero-
geneous, autonomous databases by reasoning about the similarity of
names. In particular, these restrictions make it possible to generate an
r-answer for conjunctive queries efficiently, even if the full answer set is
large, and even if the document vectors used to represent local entity
names are quite diverse. These claims will be substantiated more fully in
Section 5 below.

3. THE QUERY PROCESSING ALGORITHM

3.1 Overview of the Algorithm

The current implementation of WHIRL implements the operations of
finding an r-answer to a conjunctive query and an r-materialization of a
view. In this section we will describe an efficient strategy for constructing
an r-answer to a query, and then present some detailed examples of the
algorithm. It should be emphasized that, while the semantics of Section 2
can be easily extended to include other sorts of similarity metrics, the
specific query-answering algorithm that we have implemented in WHIRL
relies heavily on the details of the document vector representation for text.
In particular, the algorithm makes heavy use of “inverted indices” (which
map a term to a document containing that term), and hence requires a
term-based representation for text. To a lesser extent, the algorithm also
relies on the facts that similarity is defined as the inner product of two
vectors, and that rare terms are given heavier weights in a document
vector. We leave open the problem of efficiently implementing more general
similarity logics.

We begin our description of the implementation with a short overview of
the main ideas used in the algorithm. In WHIRL, finding an r-answer is
viewed as an optimization problem; in particular, the query-processing
algorithm uses a general method called Ap search [Nilsson 1987; Pearl
1984; Korf 1993] to find the highest-scoring r substitutions for a query.
Viewing query processing as search is natural, given that the goal is to find
a small number of good substitutions, rather than all satisfying substitu-
tions; the search method we use also generalizes certain “short-cut” tech-

4Specifically, if one assumes that queries B1 ` . . . Bk are “irredundant” in the sense that
there is no ground substitution u with nonzero score such that Biu 5 Bju for i Þ j, and make
the same independence assumptions made in Fuhr’s DatalogPID, then the score for a WHIRL
predicate is exactly the probability of the corresponding compound event, which is the same as
the probability computed by DatalogPID.

296 • William W. Cohen

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

niques used in IR ranked retrieval [Turtle and Flood 1995]. However, using
search in query processing is unusual for database systems, which more
typically use search only in optimizing a query; in WHIRL, search is used
to generate each tuple in an answer.

To motivate our use of search, consider finding an r-answer to the
WHIRL query

insiderTip(X) ` publiclyTraded(Y) ` X;Y

where the relation publiclyTraded is very large, but the relation insiderTip is
very small. In processing the corresponding equijoin insiderTip(X) ` public-
lyTraded(Y) ` X5Y with a conventional database system, one would first
construct a query plan: for example, one might first find all bindings for X,
and then use an index to find all values Y in the first column of public-
lyTraded that are equivalent to some X. It is tempting to extend such a
query plan to WHIRL, by simply changing the second step to find all values
Y that are similar to some X.

However, this natural extension can be quite inefficient. Imagine that
insiderTip contains the vector xW , corresponding to the document “Armadil-
los, Inc”. Due to the frequent term “Inc”, there will be many documents Y
that have nonzero similarity to xW , and it will be expensive to retrieve all of
these documents Y and compute their similarity to xW .

One way of avoiding this expense is to start by retrieving a small number
of documents Y that are likely to be highly similar to xW . In this case, one
might use an index to find all Y ’s that contain the rare term “Armadillos”.
Since “Armadillos” is rare, this step will be inexpensive, and the Y ’s
retrieved in this step must be somewhat similar to xW . (Recall that the
weight of a term depends inversely on its frequency, so rare terms have
high weight; and hence these Y ’s will share at least one high-weight term
with X.) Conversely, any Y9 not retrieved in this step must be somewhat
dissimilar to xW , since such a Y9 cannot share with xW the high-weight term
“Armadillos”. This suggests that if r is small, and an appropriate pruning
method is used, a subtask like “find the r documents Y that are most
similar to xW ” might be accomplished efficiently by the subplan of “find all
Y ’s containing the term ‘Armadillos’.”

Of course, this subplan depends on the vector xW . To find the Y ’s most
similar to the document “The American Software Company” (in which every
term is somewhat frequent) a very different type of subplan might be
required. The observations suggest that query processing should proceed in
small steps, and that these steps should be scheduled dynamically, in a
manner that depends on the specific document vectors being processed.

In the query-processing algorithm described below, we will use the Ap

algorithm to search through a space of partial substitutions: for example,
one state in the search space for the query given above would correspond to
the substitution that maps X to xW and leaves Y unbound. The steps we take
through this search space are small ones, as suggested by the discussion
above; for instance, one operation is to select a single term t and use an
inverted index to find plausible bindings for a single unbound variable.

Data Integration Using Similarity Joins • 297

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

Finally, we allow the search algorithm to order these operations dynami-
cally, focusing on those partial substitutions that seem to be most promis-
ing, and effectively pruning partial substitutions that cannot lead to a
high-scoring ground substitution.

3.2 Ap search

Ap search (summarized in Figure 1) is a graph search method which
attempts to find the highest-scoring path between a given start state s0 and
a goal state [Nilsson 1987; Korf 1993]. Goal states are defined by a
goalState predicate. The graph being searched is defined by a function
children(s), which returns the set of states directly reachable from state s.
To conduct the search the Ap algorithm maintains a set OPEN of states
that might lie on a path to some goal state. Initially OPEN contains only
the start state s0. At each subsequent step of the algorithm, a single state
is removed from the OPEN set; in particular, the state s that is “best”
according to a heuristic function, f(s), is removed from OPEN. If s is a goal
state, then this state is output; otherwise, all children of s are added to the
OPEN set. The search continues until r goal states have been output, or all
states s in OPEN have f(s) , e, or the search space is exhausted.

The procedure described above is a variant of the Ap procedure normally
studied, but it has similar desirable properties, as shown in Section 4.

Fig. 1. A generic version of Ap search, and an implementation of WHIRL based on Ap. (In
lines marked p, X ; Y is constraining in Qu with generator p(Y1, . . . , Yk) and generation
index ,, and t is a term with nonzero weight in Xu.)

298 • William W. Cohen

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

3.3 The Operators and Heuristic Function

We will now explain how this general search method has been instantiated
in WHIRL. In processing queries, the following data structures will be
used. An inverted index will map terms t [T to the tuples that contain
them: specifically, we will assume a function index(t, p, i) which returns
the set of tuples ^vW 1, . . . , vW i, . . . , vW k& in tuples(p) such that t appears in
vW i. This index can be evaluated in linear time (using an appropriate data
structure) and precomputed in linear time from the EDB. We will also
precompute the function maxweight(t, p, i), which returns the maximum
value of vW t over all documents vW in the ith column of p.

The states of the graph searched will be triples ^Q, u, E&, where Q is the
query to be answered; u is a substitution; and E is a set of exclusions. Goal
states will be those for which Qu is ground, and the initial state s0 is ^Q, À,
À&. An exclusion is a pair ^t, Y& where t is a term and Y is a variable.
Intuitively, it means that the variable Y must not be bound to a document
containing the term t. More formally, a set of exclusions restricts possible
states as follows:

Definition 1 (Valid State). Let Q be a conjunctive WHIRL query; let u be
a substitution; and let E be a set of pairs E 5 {^t1, Y1&, ^t2, Y2&, . . . ,}. A
state ^Q, u, E& is valid if @^t, Y& [E, the document vector Yu does not
contain the term t—i.e., if @^t, Y& [E, (Yu)t 5 0.

Below, we will define the search space so that all descendents of a node
^Q, u, E& must be valid. This step eliminates certain redundancies the
graph defined by the children function.

We will adopt the following terminology. Given a substitution u and
query Q, a similarity literal X ; Y is constraining for Qu iff exactly one of
Xu and Yu are ground. Without loss of generality, we assume that Xu is
ground, and Yu is not. For any variable Y, the EDB literal of Q that
contains Y is the generator for Y; the position , of Y within this literal is
Y ’s generation index. We will assume that in the query Q, each variable in
Q appears exactly once in an EDB literal; thus the generator for every Y is
unique.5

Children are generated in two ways: by exploding a state, or by con-
straining a state. Exploding a state corresponds to picking all possible
bindings of some unbound EDB literal. To explode a state s 5 ^Q, u, E&,
pick some EDB literal p(Y1, . . . , Yk) such that all the Yi’s are unbound by
u, and then construct all valid states of the form ^Q, u ø {Y1 5 v1W , . . . ,
Yk 5 vkW }, E& such that ^vW 1, . . . , vW k& [tuples(p). These are the children of
s.

The second operation of constraining a state implements a sort of
sideways information passing. To constrain a state s 5 ^Q, u, E&, pick

5This restriction is made innocuous by an additional predicate eq(X, Y) which is true when X
and Y are bound to the same document vector. The implementation of the eq predicate is
relatively straightforward, and will be ignored in the discussion below.

Data Integration Using Similarity Joins • 299

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

some constraining literal X ; Y and some term t with nonzero weight in
the document Xu such that ^t, Y& [y E. Let p(Y1, . . . , Yk) be the generator
for the (unbound) variable Y, and let , be Y ’s generation index. Two sets of
child states will now be constructed. The first is a singleton set containing
the state s9 5 ^Q, u, E9&, where E9 5 E ø {^t, Y&}. Notice that by further
constraining s9, other constraining literals and other terms t in Xu can be
used to generate further plausible variable bindings. The second set St

contains all valid states ^Q, u i, E& such that ui 5 u ø {Y1 5 v1W , . . . , Yk 5

vkW } for some ^vW 1, . . . , vW k& [index(t, p, ,). The states in St thus correspond
to binding Y to some vector containing the term t. The set children(s) is St
ø {s9}.

Given the operations above, there will typically be many ways to “con-
strain” or “explode” a state. In the current implementation of WHIRL, a
state is always constrained using the pair ^t, Y& such that xW t z maxweight(t,
p, ,) is maximal (where p and , are the generator and generation index for
Y). States are always exploded using the EDB relation containing the
fewest tuples. A state will always be exploded if there is some unbound
EDB literal corresponding to a singleton relation; if no such EDB literal
exists, but there are constraining literals, then the state will be con-
strained; and if there are no constraining literals either, then the state will
be exploded.

It remains to define the heuristic function. As shown in Section 4, the
correctness of the algorithm requires that f(^Q, u, E&) 5 score(Qu) if u is
ground; and if u is not ground, f(^Q, u, E&) must be an upper bound on
score(Qu9) for all ground u9 . u. We thus define

f~^Q, u, E&! ; P
Biu ground

g~Bi , u, E! z P
Biu not ground

h~Bi , u, E!

where g(Bi, u, E) 5 score(Biu), and h(Bi, u, E) is an appropriate upper
bound on score(Biu9). We will let this bound equal 1 for all literals with the
exception of constraining literals. For constraining literals, h[is defined
as follows:

h~Bi , u, E! ; O
t[T:^t,Y&¸E

xW t z maxweight~t, p, ,! (2)

where p and , are the generator and generation index for Y.

3.4 Additional Details

In the current implementation of WHIRL, the terms of a document are
stems produced by the Porter stemming algorithm [Porter 1980]. In gen-
eral, the term weights for a document viW are computed relative to the
collection C of all documents appearing in the ith column of p. However,
the TF-IDF weighting scheme does not provide sensible weights for rela-
tions that contain only a single tuple. (These relations are used as a means

300 • William W. Cohen

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

of introducing “constant” documents into a query.) Therefore weights for
these relations must be calculated as if they belonged to some other
collection C9.

To set these weights, every query is checked before invoking the query
algorithm to see if it contains any EDB literals p(X1, . . . , Xk) for a
singleton relation p. If one is found, the weights for the document xiW to
which a variable Xi will be bound are computed using the collection of
documents found in the column corresponding to Yi, where Yi is some
variable that appears in a similarity literal with Xi. If several such Yi’s are
found, one is chosen arbitrarily. If Xi does not appear in any similarity
literals, then its weights are irrelevant to the computation.

The current implementation of WHIRL keeps all indices and document
vectors in main memory, and consists of about 5500 lines of C and C11.6

3.5 Examples of WHIRL

We will now walk through some examples of this procedure. For clarity, we
will assume that terms are words.

Example 2. Consider the query

const1(IO) ` p(Company,Industry) ` Industry;IO

where const1 contains the single document “telecommunications services
and/or equipment.” The first step in answering this query will be to explode
the singleton relation const1. This will produce one child, s1, containing the
appropriate binding for IO, which will be placed on the OPEN list.

Next s1 will be removed from the OPEN list. Since Industry;IO is now a
constraining literal, a term from the bound variable IO will be picked,
probably the relatively rare stem “telecommunications.” The inverted index
will be used to find all tuples ^co1, indW1&, . . . , ^coWn, indWn& such that indWi

contains the term “telecommunications”, and n child substitutions that map
Company5coWi and Industry5indWi will be constructed. Since these substitu-
tions are ground, they will be given f[values equal to their actual scores
when placed on the OPEN list. A new state s91 containing the exclusion
^telecommunications,Industry& will also be placed on the OPEN list. Note
that f(s91) , f(s1), since the best possible score for the constraining literal
Industry;IO can match at most only four terms: “services”, “and”, “or”,
“equipment”, all of which are relatively frequent, and hence have low
weight.

Next, a state will again be removed from the OPEN list. It may be that
f(s91) is less than the f[value of the best goal state; in this case, a ground
substitution will be removed from OPEN, and an answer will be output. Or
it may be that f(s91) is higher than the best goal state, in which case it will
be removed and a new term, perhaps “equipment”, will be used to generate

6Although it would have been preferable to implement both STIR and WHIRL using MIX
[Knuth 1975].

Data Integration Using Similarity Joins • 301

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

some additional ground substitutions. These will be added to the OPEN list,
along with a state s 01 which has a larger exclusion set and thus a lower f[
value.

This process will continue until r documents are generated. Note that it
is quite likely that low-weight terms such as “or” will not be used at all.

In a survey article, Turtle and Flood [1995] review a number of query
optimization methods for ranked retrieval IR systems. The most effective of
these was one they call the maxscore optimization. The behavior of WHIRL
on queries of the sort shown above is identical to the behavior of an IR
system using the maxscore optimization.

Example 3. Consider the query

p(Company1,Industry) ` q(Company2,WebSite) ` Company1;Company2

In solving this query, the first step will be to explode the smaller of these
relations. Assume that this is p, and that p contains 1000 tuples. This will
add 1000 states s1, . . . , s1000 to the OPEN list. In each of these states,
Company1 and Industry are bound, and Company1;Company2 is a con-
straining literal. Thus each of these 1000 states is analogous to the state s1
in the preceding example.

However, the f[values for the states s1, . . . , s1000 will not be equal.
The value of the state si associated with the substitution u i will depend on
the maximum possible score for the literal Company1;Company2, and this
will be large only if the high-weight terms in the document Company1u i
appear in the company field of q. As an example, a one-word document like
“3Com” will have a high f[value if that term appears (infrequently) in the
company field of q, and a zero f[value if it does not appear; similarly, a
document like “Agents, Inc” will have a low f[value if the term “agents”
does not appear in the first column of q.

The result is that the next step of the algorithm will be to choose a
promising state si from the OPEN list—a state that could result in a good
final score. A term from the Company1 document in si—say “3Com”—will
then be picked and used to generate bindings for Company2 and WebSite. If
any of these bindings results in perfect match, then an answer can be
generated on the next iteration of the algorithm.

In short, the operation of WHIRL is somewhat similar to time-sharing
1000 simpler queries on a machine for which the basic unit of computation
is to access a single inverted index. However, WHIRL’s use of the f[
function will schedule the computation of these queries in an intelligent
way: queries unlikely to produce good answers can be discarded, and
low-weight terms are unlikely to be used.

Example 4. Consider the query

p(Company1,Industry) ` q(Company2,WebSite) ` Company1;Company2
` const1(IO) ` Industry;IO

where the relation const1 contains the single document, “telecommunica-
tions and/or equipment.” In solving this query, WHIRL will first explode

302 • William W. Cohen

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

const1 and generate a binding for IO. The literal Industry;IO then becomes
constraining, so it will be used to pick bindings for Company1 and Industry
using some high-weight term, perhaps “telecommunications”.

At this point there will be two types of states on the OPEN list. There will
be one state s9 in which only IO is bound, and ^telecommunications,Industry&
is excluded. There will also be several states s1, . . . , sn in which IO,
Company1, and Industry are bound; in these states, the literal
Company1;Company2 is constraining. If s9 has a higher score than any of
the si’s, then s9 will be removed from the OPEN list, and another term from
the literal Industry;IO will be used to generate additional variable bind-
ings.

However, if some si literal has a high f[value then it will be taken
ahead of s9. Note that this is possible when the bindings in si lead to a good
actual similarity score for Industry;IO as well as a good potential similarity
score for Company1;Company2 (as measured by the h[function). If an si
is picked, then bindings for Company2 and WebSite will be produced,
resulting in a ground state. This ground state will be removed from the
OPEN list on the next iteration only if its f[value is higher than that of s9
and all of the remaining si’s.

This example illustrates how bindings can be propagated through simi-
larity literals. The binding for IO is first used to generate bindings for
Company1 and Industry, and then the binding for Company1 is used to bind
Company2 and Website. Note that bindings are generated using high-
weight, low-frequency terms first, and low-weight, high-frequency terms
only when necessary.

4. CORRECTNESS OF THE IMPLEMENTATION

We will now show formally that the implementation of WHIRL described in
Section 3 implements the semantics described in Section 2.

THEOREM 1. Let WHIRL(r, e, Q) be the Ap algorithm, as instantiated in
Figure 1. Then

—the output of WHIRL(r, e, Q) is an e-answer for Q, if r 5 1`, and
—the output of WHIRL(r, e, Q) is an r-answer for Q, if e 5 0 (and the

graph G contains at least r goal states).

PROOF. The proof of the theorem proceeds in three steps.
For the first step, define a graph G to be a bounded tree if it is a tree of

finite depth and finite branching factor in which the goal states are all
leaves. We will show that the graph defined by the children function is a
bounded tree.

For the next step, define a heuristic function f[to be admissible iff for
all states s and all states s9 reachable from s, f(s) $ f(s9). We will show
that f(^Q, u, E&) is admissible.

Finally, will we argue that the Ap algorithm has this property: if f[is
admissible and the graph G defined by the children function is a bounded

Data Integration Using Similarity Joins • 303

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

tree, then the Ap variant of Figure 1 outputs in nonincreasing order the
goal states with the largest f[values.

The termination conditions for Ap are clear. Notice also that each state
s 5 ^Q, u, E& encodes a substitution u, and that f(s) 5 score(Qu) for u that
are ground for Q. Thus the three claims above imply that the algorithm of
Figure 1 will compute an e-answer for Q when called with r 5 1`, and an
r-answer for Q when called with e 5 0 (assuming that G contains at least r
goal states).

To see that children defines a bounded graph, note first that either
exploding a state and constraining a state produces a finite number of
children. The number of ways a state can be exploded or constrained is
immaterial, since for each state, only one of these operations will be chosen
(following the heuristics described in Definition 1). Also, a state can be
exploded at most once for every EDB literal, and if X ; Y is a constraining
literal in which X is bound to a document with w nonzero terms, then the
state can be constrained (using this literal) at most w times. This bounds
the depth of the graph.

To see that children defines a tree, let desc(s) denote the descendent
states of s, and consider two sibling states si and sj with common parent
s 5 ^Q, u, E&. If si and sj were formed by exploding s, then clearly desc(si)
and desc(si) are disjoint (since some variables will be bound to different
values). If si and sj were formed by constraining s, then there are two cases
to consider. On one case, both si and sj are in the set St, shown in
Definition 1 to be the valid elements of

$^Q, u ø Y1 5 v1W, . . . , Yk 5 vkW%, E&:^vW 1, . . . , vW k& [index~t, p, ,!)}.

Again, clearly desc(si) and desc(si) are disjoint. In the other case, exactly
one of si, sj is in St, and the other is not: let us assume without loss of
generality that sj 5 s9 5 ^Q, u, E ø {^t, Y&}& and si [St. In this case, the
descendents of sj must be disjoint from the descendents of si, since (because
of the exclusion ^t, Y&) no descendents of sj can bind Y to a vector with
nonzero weight for t, and all of the descendents of si bind Y some vector
with nonzero weight for t. Thus the graph generated by the children
function is a tree.

To see that f[is admissible, it is sufficient to note that Eq. (2) is an
upper bound on the score of Biu9 relative to any ground superset u9 of u
associated with a valid state.

Finally, we wish to show that if f[is admissible, and the graph G
defined by the children function is a bounded tree, then algorithm Ap of
Figure 1 outputs in nonincreasing order the goal states with the largest f[
values. This statement is a slight (and unsurprising) variant7 of the
correctness property traditionally associated with Ap search [Nilsson 1987],

7The principle differences are that Ap usually is considered to minimize a sum of costs, rather
than maximizing a score that is a product, and that Ap usually is only used to find a single
“best” goal state. The former difference is trivial; the latter, somewhat more important.

304 • William W. Cohen

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

but we include a proof for the sake of completeness. Specifically, we will
show the following:

Let si be some goal state output by Ap, and let i be the number of times the
“while” loop had been executed when si was output. Then for any goal state
s in G, if f(s) . f(si), then s was output by Ap at some iteration j, where
j , i.

Let P(s, k) be the proposition “s, or some ancestor of s, is in OPEN at
iteration k.” Since si selected at stage i has maximal value of all nodes in
OPEN, it clearly cannot be the case that s is in OPEN at iteration i.
Further, by the admissibility of f, we have that f(s9) $ f(s) . f(si) for any
ancestor s9 of s, so it also cannot be the case that any ancestor of s is in
OPEN at iteration i. Hence P(s, i) is false.

Let j be the largest number for which P(s, j) is true. Note that j , i and
j $ 0; since all goal states are reachable from s0, P(s, 0) is true. At
iteration j, either s or an ancestor of s was removed from OPEN, and
neither s nor an ancestor of s was inserted on OPEN. Let sj be the node
removed at iteration j. If sj were a nongoal state (an ancestor of s) then
some child of s9 of sj is also an ancestor of s, and s9 would be inserted on
OPEN, making P(s, j 1 1) true. Thus sj must be the goal state, s, and sj(5
s) will be output at iteration j.

This concludes the proof of correctness of the algorithm. e

5. EXPERIMENTAL RESULTS

We evaluated our implementation of WHIRL along two dimensions. First,
we wished to measure the time needed to evaluate queries. Second, we
wished to measure the accuracy of the answers produced by WHIRL. In this
evaluation we used the measures of precision and recall traditionally used
in the statistical IR community. All experiments were performed using an
implementation of WHIRL that keeps all indices and document vectors in
main memory.

5.1 Controlled Timing Experiments

We evaluated run-time performance with CPU time measurements on a
specific class of queries, which we will henceforth call similarity joins. A
similarity join is a query of the form

p~X1 , . . . , Xi , . . . , Xk! ` q~Y1 , . . . , Yj , . . . , Yb! ` Xi , Yj .

An r-answer to this query will consist of the r tuples from p and q such
that Xi and Yj are most similar. In these experiments we used the relations
described in Table I.

Similarity join queries have several advantages for benchmarking pur-
poses. This query type is highly relevant to our research goals, since it is
directly related to the sort of data integration problem which led us to
develop WHIRL. This class of queries is also sufficiently constrained in
form so that it can be handled using simple algorithms built on top of

Data Integration Using Similarity Joins • 305

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

well-known, previously existing IR search methods. This makes it possible
to compare the query optimizations used in WHIRL with previous query
optimizations. In particular, we will compare WHIRL with the following
algorithms:

—The naive method for similarity joins takes each document in the ith
column of relation p in turn, and submits it as an IR ranked retrieval
query to a corpus corresponding to the j-column of relation q. The top r
results from each of these IR queries are then merged to find the best r
pairs overall. This might be more appropriately called a “semi-naive”
method; on each IR query, we use inverted indices, but we employ no
special query optimizations.

—As noted above, WHIRL is closely related to maxscore optimization
[Turtle and Flood 1995]. We thus compared WHIRL to a maxscore
method for similarity joins; this method is analogous to the naive method
described above, except that the maxscore optimization is used in finding
the best r results from each “primitive” query.

The version of the interpreter used here is also slightly different from the
one used in other experiments. To facilitate this comparative study, we
used a version of WHIRL which shares as much low-level code as possible
with the implementations for the naive and maxscore methods; elsewhere,
we used a version of the WHIRL interpreter that was extended to better
support experimentation. The two implementations are identical at the
level of description given in Section 3.

To see how these algorithms behave, we used them to compute the top 10
answers8 for the similarity join of subsets of the IMDB and VideoFlicks
relations. In particular, we joined size n subsets of both relations, for
various values of n between 2000 and 30,000. The results for the movie
domain are shown in Figure 2. For this data, WHIRL speeds up the
maxscore method by a factor of between 4 and 9, and speeds up the naive
method by a factor of 20 or more. Note that the absolute time required to
compute the join is fairly modest—with n 5 30,000, WHIRL takes well
under a minute9 to pick the best 10 answers from the 900 million possible
candidates.

8In other experiment (not reported here) we have explored the result of increasing r up to
several thousand. For these sorts of problems the compute time for WHIRL grows no worse
than linearly with r.
9Timing results are given in CPU seconds on a MIPS Irix 6.3 with 200MHz R10000 processors.

Table I. Relations Used in Controlled Timing Experiments

306 • William W. Cohen

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

We also joined ReutersTrain and Hoovers using the company name
column of Hoovers and the story column of ReutersTrain. This application of
similarity joins corresponds to searching for all references in the Reuters
corpus to any company listed in Hoovers, and illustrates an interesting
blending of IR search with data integration. The results are shown in the
first graph of Figure 3. On these problems the maxscore method does not
improve over the naive method with respect to CPU time.10 However,
WHIRL speeds up the naive method by a factor of 2–4. The absolute time
required is again small—about 5 CPU seconds for n 5 2474.

It should be noted that the run-time for these queries is fast in part
because some of the documents being joined are names. Names tend to be
short and highly discriminative, and thus behave more like traditional
database keys than arbitrary documents might. This point is illustrated
experimentally in the second graph of Figure 3, which shows the run-time
for similarity joins of ReutersTrain with ReutersTest. This is again a
plausible task: it represents using a similarity join for a kind of duplicate
detection. Although WHIRL still improves substantially over its nearest
competitor the absolute time requirements are much higher: WHIRL takes
nearly four minutes to find the 10 most similar documents with n 5 3000.
In this case none of the columns involved in the join contain short,
namelike documents.

5.2 Timing Results for Typical Queries

The similarity joins studied in the previous section are important because
they are the simplest WHIRL queries which cannot be answered by either a
conventional database system, or a conventional IR ranked retrieval sys-

10It does, however, greatly reduce the number of accesses to the inverted index, as Turtle and
Flood observed.

Fig. 2. Runtime in CPU seconds for similarity joins of movie names.

Data Integration Using Similarity Joins • 307

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

tem. However, these simple queries are probably not typical of the sort of
queries that one would like to pose to a real data integration system; one
would expect that typical user queries would be more selective, and more
complex.

To better understand WHIRL’s behavior on “typical” queries, WHIRL
was embedded into a working, Web-based, data integration system [Cohen
1998b]. This system spiders a number of related Web sites and extracts a
WHIRL knowledge base, which can then be queried. The main additional
components of this system are an HTTP server interface to WHIRL, which
allows conjunctive queries11 to WHIRL to be easily formulated, and a
spider program, which downloads and extracts data from HTML pages.
Two moderately large domains were implemented for this system, one
integrating information on birds of North America, and one integrating
information about educational computer games.

The interface to the system in the game domain allows the user to ask a
question by filling out an HTML form—e.g., “help me find reviews of games
that are in the category ‘art’, are recommended by two or more sites, and
are designed for children six years old.” This question is then translated
into a conjunctive WHIRL query. The interface to the bird domain is
similar: an example of a question that might be posed in this domain, again
using a forms interface, is “help me find pictures of birds in the order
pelicaniforms that have been sighted in New Jersey and are endangered or
threatened.” In addition to a forms interface for constructing complex
questions, the bird domain interface also supports browsing the database,
and a “quick search” feature, in which a simple keyword query can be used
to search relevant portions of the database. Browsing and “quick search”
are implemented by translating browsing commands and simple keyword
searches into appropriate WHIRL queries.

11The user’s queries are conjunctive, but not necessarily flat—they may involve WHIRL views,
which are used in this system to make the different data sources more compatible.

Fig. 3.. Runtime in CPU seconds for similarity joins of company names and news stories.

308 • William W. Cohen

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

We made both domains available on the Web, and recorded each query
issued to the system. Later we took a “snapshot” of each domain12 and
measured the response time for a subset of these queries. In the game
domain, we took a random sample of 100 queries. In the bird domain, we
took all queries (over a period of several days) which used the “advanced
search” feature, thus excluding many of the simpler queries; there are 91
queries in this sample.

A comparative study of performance is inappropriate here, since arbi-
trary WHIRL queries cannot be answered by any means other than the
algorithm of Section 3; thus, Table II simply summarizes the results. Note
that the average response time is well under a second.

Table III provides some additional detail on these results. For each
domain and for each number k, we show the number of queries that are
k-way joins, the average number of similarity literals used in k-way join
queries, and the average time to execute the k-way join queries.13 In these
samples, many of the queries are relatively simple, but a substantial
fraction are moderately complex: in the bird domain, about a quarter are 4-,
5-, or 6-way joins, and in the game domain, about a quarter are 5- or 6-way
joins. WHIRL is still quite efficient, even on the longer queries.

5.3 Average Precision of Similarity Joins

Efficient reasoning is only worthwhile if the inferences made are useful
ones. Therefore, we also evaluated the accuracy of inferences made by
WHIRL, again using data taken from the Web.

We adopted the following methodology. Again focusing on similarity
joins, we selected pairs of relations which contained two or more plausible
“key” fields. One of these fields, the “primary key,” was used in the
similarity literal in the join. The second key field was used to check the
correctness of proposed pairings; specifically, a pairing was marked as
“correct” if the secondary keys matched (using an appropriate matching
procedure) and “incorrect” otherwise.

We then treated “correct” pairings in the same way that “relevant”
documents are typically treated in evaluation of a ranking proposed by a

12Notice that since the sites indexed are not static, the size of the databases changes every
time the spiders are run.
13The number k does not count “joins” with singleton relations like the const relations in the
example queries of Section 3.5.

Table II. Performance of the WHIRL Interpreter on Real-World Queries

Data Integration Using Similarity Joins • 309

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

standard IR system. In particular, we measured the quality of a ranking
using (noninterpolated) average precision. To motivate this measurement,
assume the end-user will scan down the list of answers and stop at some
particular “target answer” that he or she finds to be of interest. The
answers listed below this “target” are not germane, since they are not
examined by the user. Above the target, one would like to have a high
density of correct pairings; specifically, one would like the set S of answers
above the target to have high precision, where the precision of S is the ratio
of the number of correct answers in S to the number of total answers in S.
Average precision is the average precision for all “plausible” target an-
swers, where an answer is considered a plausible target only if it is correct.
To summarize, letting ak be the number of correct answers in the first k,
and letting c(k) 5 1 iff the kth answer is correct and letting c(k) 5 0
otherwise, average precision is the quantity (k51

r c(k) z ak/k.
Note that average precision is 1 only when all correct answers precede all

incorrect answers. In the experiments below, we used r-answers of size r 5
1000 to compute average precision.

To evaluate similarity joins, we picked 13 pairs of relations from several
different domains. Table IV summarizes the relations used in these exper-
iments. In the movie domain, we used movie names as a primary key, and
as a secondary key, we used a special key constructed by a hand-coded
normalization procedure for film names developed for an application of the
Information Manifold,14 another data integration system [Levy et al.
1996b]. In the animal and bird domains, for several pairs of relations, we
used common names as the primary key, and scientific names as a
secondary key, again with a hand-coded matching procedure.15 In the
business domain, we joined Iontech and HooversWeb using company names
as the primary key, and the string representing the “site” portion of the
home page as a secondary key; also in the business domain, we joined two

14Thanks to Alon Levy and Jaewoo Kang for providing me with the data and normalization
routines.
15In the BirdCall relation, we manually cleaned the secondary keys—but not the primary
keys—by fixing spelling errors.

Table III. A More Detailed Summary of the Performance of the WHIRL Interpreter on
Real-World Queries

310 • William W. Cohen

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

collections of restaurant “listings” (containing a name, address, phone
number, and brief description of the cuisine served), using manually
constructed secondary keys.16 In the domain of computer games, we joined
two lists of computer games, again using manually constructed secondary
keys.

We also used several pairs of relations which were derived from Web
sites in which someone had manually collected a large number of pointers
to external pages of a specific type. Such “hotlists” are common on the Web,
but we restricted ourselves to hotlists with the following properties: the
pages were associated with named objects (e.g., animals, birds, or national
parks); the external site contained an index of pages of this type; and in the
hotlist site, pages had been systematically relabeled. In this situation, the
names associated with the pages can be used as a primary key, and the
URLs of the pages can be used as a secondary key.

For example, one such page collected pointers to animal “factsheets” from
three different sites, associating each factsheet with an animal name. We
took the animal names from this page and split them into three relations
(IntFact1, IntFact2, and IntFact3) based on the external site hosting the

16Thanks to Sheila Trejada for supplying the restaurant data.

Table IV. Relations Used in Measuring Accuracy of Similarly Joins

Data Integration Using Similarity Joins • 311

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

associated URL. We then constructed relations based on the index pages in
the external sites (SWFact, FWSFact, NMFSFact) and joined the appropri-
ate pairs of relations. The relations IntBird1, IntBird2, IntBirdMap, and
IntPark were derived from similar sources. The results are summarized in
Table V.

On these domains, similarity joins are extremely accurate. In the movie
domain, the performance is actually identical to the hand-coded normaliza-
tion procedure. Overall, the average value for average precision is more
than 95%. These results contrast with the typical performance of statistical
IR systems on retrieval problems, where the average precision of a state-of-
the art IR system usually is closer to 50% than 90%. This suggests that the
similarity reasoning required to match names is easier than the similarity
reasoning required to process a typical IR ranked retrieval query.

In the experiments, we used the secondary key as a “gold standard”;
however, in some of the domains, the matching procedure for the secondary
keys is somewhat error prone. This is especially true for Web sites used as
secondary keys in joining HooverWeb and Iontech. To estimate the accuracy
of the secondary keys we took the top 100 pairs in the join of HooverWeb
and Iontech, and manually checked all pairings marked as “incorrect”
according to the secondary key. Table VI shows some representative pairs
of names for this particular problem, together with an indication as to
whether the pairing is correct (u) or incorrect (✕). Of the 13 pairings
marked “incorrect,” there were 11 in which the secondary keys were wrong,
one in which the WHIRL pairing was wrong (at rank 77), and one pair
where correctness could not be easily determined. This suggests that the
similarity join is actually more accurate than the use of Web sites as a key.

Performance in the computer game domain also seems to be anomolous—
average precision here is much lower than for other domains with reliable
secondary keys. The problem here seems to be that computer game names
vary more widely than in the other domains; also, there are many groups of
related, but distinct, games with similar names. For example, “Disney’s
Ready for Math with Pooh” and “Disney’s Ready to Read with Pooh” denote

Table V. Average Precision for Similarity Joins

312 • William W. Cohen

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

different games, but “Disney’s Animated StoryBook, 101 Dalmations” and
“101 Dalmations—Disney Interactive” both denote the same game. As
another example, “The Lion King: Storybook” and “Lion King Animated
StoryBook” both denote the same game, and “Disney’s Activity Center, The
Lion King” and “The Lion King Activity Center” both denote a second,
distinct game. Soft matches based on similarity are necessarily less accu-
rate in such a domain.17

5.4 Similarity Joins with Incompatible Schemata

Another problem that occurs in integrating heterogeneous data is the
problem of incompatible schemata. For example, consider trying to associ-
ate professors with their university affiliation using the relations profes-
sor(name, workAddress) and university(name, state). These relations cannot
be joined in any conventional sense; however, it is plausible that concate-
nating a university name and state would give a text fragment similar to a
workAddress (although not an identical fragment, since typically a workAd-
dress would have a number of extra terms, such as “Department of
Computer Science”, in addition to some variant of the university name and
its state). In this case, an appropriate similarity join might give a useful
result, even though the objects being joined are in fact different.

We explored this possibility in the following experiments. We began by
considering different schemata for the MovieLink and Review relations, with
the aim of constructing problems that are similar to the sort of incompati-
ble-schemata problem given above, but still possible to evaluate rigorously
by checking individual pairings. The full schemas for these relations are
MovieLink(movieName, cinemaName, address, phone, zipcode) and Review-
(movieName, newspaper, review) respectively. For MovieLink, we considered
a variation in which each tuple contains a “movie listing”—i.e., a single
document containing a movie name plus a complete cinema address. For
Review, we considered a variation in which each tuple contains only a
review entry, and no separate movie name field; thus similarity joins must
compute the similarity of a movie name or movie listing to the full text of a

17On the other hand, normalization of these types of names would be extremely difficult.

Table VI. Pairs of Names from the Hoovers and Iontech Relations

Data Integration Using Similarity Joins • 313

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

movie review.18 We then computed similarity joins with each possible
combination of a MovieLink variant and a Review variant.

One would expect the irrelevant “noise” words that appear along with the
movie names to have some adverse affect on precision. In our experiments
with the Review and Movielink relations, however, the effect was quite
slight: joining movie names to movie listings reduces average precision by
only a little over 1%, and joining movie listings to complete reviews reduces
average precision by less than 6%. Finally, joining movie listings to movie
names leads to no measurable loss in average precision.

To substantiate these results, we considered two additional domains. The
Web page associated with the relation demo lists on-line demos of educa-
tional games for children as a list of free-text descriptions, some represen-
tative items of which are given below:

—7th Level has The Great Word Adventure Demo starring Howie Mandel
for Windows.

—Conexus has two shockwave demos - Bubbleoids (from Super Radio
Addition with Mike and Spike) and Hopper (from Phonics Adventure with
Sing Along Sam).

In the experiments of Table V, game names were (manually) extracted from
this listing. Here, we used each complete list item from Demo as a key, and
joined these list items with the game names from AgeList. We recorded a
pairing as correct if the AgeList game was mentioned in the Demo list item.
In this difficult domain, the addition of these “noise words” decreases
average precision from 86.1% to 67.1%. Although “noise words” have a
greater effect here, it should be noted that even without extraction, the
result of the similarity join is certainly accurate enough to be usable; for
instance, the first 23 pairings contain only two mistakes, appearing at
ranks 5 and 6, both of which incorrectly pair the games “Mario Teaches
Typing” and “Mario Teaches Typing 2.”

A final experiment used the BirdCall relation. This relation was originally
derived by manually extracting bird names from a Web site devoted to bird
calls. The bird names appear in paragraph-length descriptions of related
groups of sound files, some examples19 of which follow:

—Scarlet Tanager (58kB) Piranga olivacea. New Paltz, June 1997. “. . .Robin-
like but hoarse (suggesting a Robin with a sore throat).” (Peterson) “Pa
double-tone which can only be imitated by strongly humming and whis-
tling at the same time.” (Mathews)

—American Goldfinch Carduelis tristis. Song in flight (47kB) “as he goes he
sings with a thin, wiry voice Per-CHIC-o-ree, and he does so rhythmically
with his undulating flight, always breaking out with the song just at the

18The movie reviews usually contain a title naming the movie being reviewed, but also contain
a lot of additional text. The average length of a review is more than 400 words.
19Punctuation has been added for clarity. The text in the original is also structured by
interleaved graphics, and by positioning on the page.

314 • William W. Cohen

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

crest of the wavelike curve.” (Mathews) Limekiln Lake, August 1996. Song
in flight (62kB); Perching song (59kB); and another (48kB) from the same
bird. Long Island, July 1997.

Using a methodology similar to that used with the Demo relation, we joined
these descriptions to a list of bird names. Average precision for the data
with manually extracted names was 95.8%; without extraction, average
precision is decreased to 83.0%. These results are summarized in Table VII.

6. RELATED WORK

Chaudhuri et al. [1995] present efficient solutions to the problem of loosely
integrating Boolean text queries with database queries. In contrast, we
have considered a much tighter integration between databases and statis-
tical IR queries. The assumptions made by Chaudhuri et al. are not
particularly appropriate in the context of heterogeneous database integra-
tion.

As noted above in Section 2.4, WHIRL is closely related to probabilistic
databases (e.g., Fuhr [1995] and Barbara et al. [1992]). To our knowledge
such database systems have not been used in data integration tasks.
Furthermore, the implementation of WHIRL is unique in generating only a
few “best” answers to a query; existing probabilistic database systems
typically find all tuples with nonzero probability. As we argued above in
Section 2.2, this would often be impractical for the problems encountered in
this sort of heterogeneous database integration, due to the prevalence of
weak matches between documents.

Fuzzy set theory [Zadeh 1965] has also been used as the basis for “soft”
database systems [Bosc and Prade 1997]. Fagin [1998] and others have
proposed algorithms that find the best few answers to a conjunctive query
in this model. However, unlike WHIRL, these algorithms make assump-
tions about the independence of the atomic queries, and provide the best
answer only with high probability.

The WHIRL query algorithm borrows heavily from techniques previously
used to optimize ranked retrieval searches in statistical IR. To our knowl-
edge, these techniques have not been previously used for approximating the
join of lists of documents. More generally, the sort of approximate join

Table VII. Average Precision for Similarity Joins between Pairs of Relations with
Incompatible Schemas, or Incompletely Extracted Names

Data Integration Using Similarity Joins • 315

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

implemented in WHIRL has not been investigated in the IR literature,
although numerous other hybrids of statistical IR techniques with database
representations have been proposed (e.g., Schäuble [1993] and Fuhr
[1995]).

There has also been much work on approximate matching techniques for
the removal of duplicates and merging of heterogeneous data sources
[Newcombe et al. 1959; Felligi and Sunter 1969; Kilss and Alvey 1985;
Huffman and Steier 1995; Hernandez and Stolfo 1995; Monge and Elkan
1997]. Most of the approximate matching methods proposed are domain-
specific (e.g., the Synoname™ algorithm [Borgman and Siegfried 1992] for
personal names). A notable exception is the Smith-Waterman edit distance
adopted by Monge and Elkan [1997]. Applying these techniques is a
relatively expensive off-line process which usually is not guaranteed to find
the best matches, due to the nearly universal use of “blocking” heuristics
which restrict the number of similarity comparisons.

Here, we have considered approximate matching using the vector space
model of similarity. This model enjoys a number of advantages. Like
Smith-Waterman, it is domain-independent. It is extremely well supported
experimentally as a similarity metric for text; we note that in a previous
comparison, a simple term-weighting method gave better matches than the
Smith-Waterman metric [Monge and Elkan 1996]. Finally, by using in-
verted indices, it is possible to quickly locate items similar to a given item.
Exploitation of this property results in an approximate matching algorithm
that is guaranteed to find the best pairings, but still fast enough to
interleave with query answering. Note that interleaving matching with
query answering, rather than computing the best matches off-line, has an
important consequence: rather than commit early as to whether a match is
correct or incorrect, one can propagate uncertainty about approximate
matches, and then use the propagated uncertainty to rank answers pre-
sented to the end-user. Another advantage of interleaving matching and
query answering is that, in some circumstances, incorrect matches can lead
to correct inference [Cohen and Hirsh 1998].

There have also been a number of approaches to data integration which
address issues orthogonal to the problem of lack of common domains.
Examples of such work include “semi-structured” data models [Suciu 1996;
Abiteboul and Vianu 1997; Suciu 1997]. While we have focused here on
relational models, due to their simplicity, we believe that many of the basic
principles of WHIRL can be applied to more complex data models as well.

A number of systems seek to provide a database-like view of the Web
(e.g., Fiebig et al. [1997], Mendelzon and Milo [1997], and Konopnicki and
Schmueli [1995]), in which queries can express combinations of keyword
searches and hypertext connectivity constraints; in effect, these languages
offer a means of declaratively navigating the Web. An interesting variant of
this approach is represented by the WebKB project [Craven et al. 1998],
which uses machine learning techniques to find views of the Web (in the
database sense) that model objects and relationships in the real world.
WHIRL differs in emphasis from this work, in that we focus on answering

316 • William W. Cohen

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

queries involving information stored on data-like Web pages, rather than
using data about the architecture of the Web itself to answer queries, or to
learn models of the world. At a more technical level, our work focuses on
integrating sites that contain no explicit links connecting them. WHIRL
also differs from most database-like views of the Web in that it includes
statistical IR methods for searching within documents, rather than boolean
keyword search methods.

In its basic motivation, our work is inspired by previous work in the
integration of heterogeneous data sources, such as data sources on the Web
[Levy et al. 1996b; Arens et al. 1996; Garcia-Molina et al. 1995; Atzeni et
al. 1997; Tomasic et al. 1997; Bayardo et al. 1997]. None of these previous
systems, however, include a “fuzzy” matching procedure for names; instead
they construct global domains using hand-crafted domain-specific normal-
ization schemes, or domain-specific matching algorithms [Fang et al. 1994].

The connection between WHIRL and other data integration systems is
discussed more fully in another paper [Cohen 1998b], which describes the
WHIRL-based data integration system mentioned in Section 5.2. The focus
of that paper is on mechanisms for converting HTML information sources
into STIR databases, and other practical issues in fielding a data integra-
tion system. In contrast, this paper focuses on efficient theorem-proving
algorithms for WHIRL, and evaluation of WHIRL’s performance in con-
trolled experiments.

Some of the results of this paper have appeared elsewhere in a more
preliminary form [Cohen 1997; 1998a]. Additional experiments concerning
the accuracy of WHIRL’s inferences on queries involving projection have
also appeared elsewhere [Cohen and Hirsh 1998].

7. CONCLUSIONS

In an ideal world, one would like to integrate information from heteroge-
neous autonomous databases with little or no human effort. In other words,
one would like data to be easily shared among databases. Unfortunately,
such data sharing is difficult with current data models. One fundamental
and critical problem is the lack of global domains: different databases are
likely to use different constants to refer to the same real-world entity,
making operations like joins across relations from different databases
impossible.

We believe the data model and query language presented in this paper
represent a significant advance toward the long-term goal of easily shar-
able data. We have outlined an approach to the integration of structured
heterogeneous information sources, based on extended conventional data-
base query languages with standard IR methods for reasoning about
textual similarity. The approach is embodied in an implemented “informa-
tion representation language” called WHIRL. WHIRL is intended for inte-
gration of relations that are semantically heterogeneous in the sense that
there is no common naming scheme for entities.

Data Integration Using Similarity Joins • 317

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

The problem of integrating relations without global domains has received
little prior attention. Current data integration systems typically use do-
main-specific rules to normalize entity names, and then use the normalized
versions of these names as keys. These normalization rules are developed
manually, sometimes at considerable effort. In practice, the cost of this
process in terms of human time limits data integration systems to rela-
tively well structured data collected from a relatively small number of sites.
Furthermore, normalization is prone to error, and unlike WHIRL, a system
based on normalized keys has no way of either assessing the likelihood of
such errors or (more importantly) informing the user of potential errors.

Our experiments show that the accuracy of WHIRL’s “similarity joins”
are quite good, even compared to hand-coded integration schemes based on
normalization. In one case WHIRL’s performance equals the performance of
a hand-constructed, domain-specific normalization routine. In a second
case, WHIRL’s performance gives better performance than matching on a
plausible global domain. WHIRL is robust enough to join relations using
incompletely extracted names. Also, WHIRL is efficient—the current imple-
mentation can handle multiple-join queries on moderate sized databases
(containing a few tens of thousands of tuples) at interactive speeds.

Although these results are encouraging, many additional topics remain
to be addressed. There are many well-known methods for conducting an
approximate Ap search; some or all of these may lead to substantial
performance improvements. The current version of WHIRL handles heter-
ogeneous data, but not in a distributed fashion; this is another intriguing
topic for future work. We would also like to consider the issue of closely
integrating WHIRL with appropriate learning methods for text categoriza-
tion [Lewis 1992; Cohen and Singer 1996], adjusting numerical parameters
for queries [Bartell et al. 1994; Boyan et al. 1994; Cohen et al. 1997], and
learning logical expressions [Quinlan 1990].

ACKNOWLEDGMENTS

The author is grateful to Alon Levy for numerous helpful discussions while
I was formulating this problem, and for comments on a draft of the paper;
to Jaewoo Kang and Sheila Tejada, for providing data; to Alex Borgida, Sal
Stolfo, and Mark Jones for comments on the paper; to Susan Cohen for
proofreading; and to Edith Cohen, David Lewis, Haym Hirsh, Fernando
Pereira, Divesh Srivastava, Dan Suciu, and many other colleagues for
helpful advice and discussions.

REFERENCES

ABITEBOUL, S. AND VIANU, V. 1997. Regular path queries with constraints. In Proceedings of
the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS-97) (Tucson, AZ, May 1997).

ARENS, Y., KNOBLOCK, C. A., AND HSU, C.-N. 1996. Query processing in the SIMS informa-
tion mediator. In A. Tate Ed., Advanced Planning Technology. Menlo Park, CA: AAAI Press.

ATZENI, P., MECCA, G., AND MERIALDO, P. 1997. Semistructured and structured data on the
Web: going back and forth. In D. Suciu Ed., Proceedings of the Workshop on Management of

318 • William W. Cohen

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

Semistructured Data (Tucson, Arizona, May 1997). Available on-line from http://www.re-
search.att.com/;suciu/workshop-papers.html.

BARBARA, D., GARCIA-MOLINA, H., AND PORTER, D. 1992. The management of probabilistic
data. IEEE Transations on knowledge and data engineering 4, 5 (October), 487–501.

BARTELL, B. T., COTTRELL, G. W., AND BELEW, R. K. 1994. Automatic combination of multiple
ranked retrieval systems. In Seventeenth Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (1994).

BAYARDO, R. J., BOHRER, W., BRICE, R., CICHOCKI, A., FOWLER, J., HELAL, A., KASHYAP, V.,
KSIEZYK, T., MARTIN, G., NODINE, M., RASHID, M., RUSINKIEWICZ, M., SHEA, R., UNNIKRISHAN,
C., UNRUH, A., AND WOELK, D. 1997. Infosleuth: an agent-based semantic integration of
information in open and dynamic environments. In Proceedings of the 1997 ACM SIGMOD
(May 1997).

BORGMAN, C. L. AND SIEGFRIED, S. L. 1992. Getty’s Synoname and its cousins: a survey of
applications of personal name-matching algorithms. Journal of the American Society for
Information Science 43, 7, 459–476.

BOSC, P. AND PRADE, H. 1997. An introduction to the fuzzy set and possibility theory-based
treatment of queries and uncertain or imprecise databases. In Uncertainty management in
information systems. Kluwer Academic Publishers.

BOYAN, J., FREITAG, D., AND JOACHIMS, T. 1994. A machine learning architecture for optimiz-
ing web search engines. Technical Report WS-96-05, American Association of Artificial
Intelligence.

CHAUDHURI, S., DAYAL, U., AND YAN, T. 1995. Join queries with external text sources:
execution and optimization techniques. In Proceedings of the 1995 ACM SIGMOD (May
1995).

COHEN, W. W. 1997. Knowledge integration for structured information sources containing
text (extended abstract). In The SIGIR-97 Workshop on Networked Information Retrieval
(1997).

COHEN, W. W. 1998a. Integration of heterogeneous databases without common domains
using queries based on textual similarity. In Proceedings of ACM SIGMOD-98 (Seattle, WA,
1998).

COHEN, W. W. 1998b. A Web-based information system that reasons with structured
collections of text. In Proceedings of Autonomous Agents-98 (St. Paul, MN, 1998).

COHEN, W. W. AND HIRSH, H. 1998. Joins that generalize: Text categorization using WHIRL.
In Proceedings of the Fourth International Conference on Knowledge Discovery and Data
Mining (New York, NY, 1998), pp. 169–173.

COHEN, W. W. AND SINGER, Y. 1996. Context-sensitive learning methods for text categoriza-
tion. In Proceedings of the 19th Annual International ACM Conference on Research and
Development in Information Retrieval (Zurich, Switzerland, 1996), pp. 307–315. ACM Press.

COHEN, W. W., SCHAPIRE, R. E., AND SINGER, Y. 1997. Learning to order things. In Advances
in Neural Processing Systems 10 (Denver, CO, 1997). MIT Press.

CRAVEN, M., DIPASQUO, D., FREITAG, D., MCCALLUM, A., MITCHELL, T., NIGAM, K., AND SLATTERY,
S. 1998. Learning to extract symbolic knowledge from the world wide web. In Proceedings
of the Fifteenth National Conference on Artificial Intelligence (AAAI-98) (Madison, WI,
1998).

DUSCHKA, O. M. AND GENESERETH, M. R. 1997a. Answering recursive queries using views. In
Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS-97) (Tucson, AZ, May 1997).

DUSCHKA, O. M. AND GENESERETH, M. R. 1997b. Query planning in infomaster. In Proceed-
ings of the Twelfth Annual ACM Symposium on Applied Computing (SAC97) (San Jose, CA,
February 1997).

FAGAN, J. L. 1989. The effectiveness of a nonsyntactic approach to automatic phrase
indexing for document retrieval. Journal of the American Society for Information Science 40,
2, 115–132.

FAGIN, R. 1998. Fuzzy queries in multimedia database systems. In Proc. 1998 ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’98)
(1998).

Data Integration Using Similarity Joins • 319

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

FANG, D., HAMMER, J., AND MCLEOD, D. 1994. The identification and resolution of semantic
heterogeneity in multidatabase systems. In Multidatabase Systems: An Advanced Solution
for Global Information Sharing, pp. 52–60. IEEE Computer Society Press, Los Alamitos,
California.

FELLIGI, I. P. AND SUNTER, A. B. 1969. A theory for record linkage. Journal of the American
Statistical Society 64, 1183–1210.

FIEBIG, T., WEISS, J., AND MOERKOTTE, G. 1997. RAW: a relational algebra for the Web. In D.
Suciu Ed., Proceedings of the Workshop on Management of Semistructured Data (Tucson,
Arizona, May 1997). Available on-line from http://www.research.att.com/;suciu/workshop-
papers.html.

FUHR, N. 1995. Probabilistic Datalog—a logic for powerful retrieval methods. In Proceed-
ings of the 1995 ACM SIGIR conference on research in information retrieval (New York,
1995), pp. 282–290.

GARCIA-MOLINA, H., PAPAKONSTANTINOU, Y., QUASS, D., RAJARAMAN, A., SAGIV, Y., ULLMAN, J.,
AND WIDOM, J. 1995. The TSIMMIS approach to mediation: Data models and languages
(extended abstract). In Next Generation Information Technologies and Systems (NGITS-95)
(Naharia, Israel, November 1995).

HERNANDEZ, M. AND STOLFO, S. 1995. The merge/purge problem for large databases. In
Proceedings of the 1995 ACM SIGMOD (May 1995).

HUFFMAN, S. AND STEIER, D. 1995. Heuristic joins to integrate structured heterogeneous
data. In Working notes of the AAAI spring symposium on information gathering in heteroge-
neous distributed environments (Palo Alto, CA, March 1995). AAAI Press.

KILSS, B. AND ALVEY, W. 1985. Record linkage techniques—1985. Statistics of Income
Division, Internal Revenue Service Publication 1299-2-96. Available from http://www.bts.
gov/fcsm/methodology/.

KNUTH, D. E. 1975. The Art of Computer Programming, Volume I: Fundamental Algorithms
(second edition). Addison-Wesley, Reading, MA.

KONOPNICKI, D. AND SCHMUELI, O. 1995. W3QS: a query system for the world wide web. In
Proceedings of the 21st International Conference on Very Large Databases (VLDB-96)
(Zurich, Switzerland, 1995).

KORF, R. 1993. Linear-space best-first search. Artificial Intelligence 62, 1 (July), 41–78.
LEVY, A. Y., RAJARAMAN, A., AND ORDILLE, J. J. 1996a. Query answering algorithms for

information agents. In Proceedings of the 13th National Conference on Artificial Intelligence
(AAAI-96) (Portland, Oregon, August 1996).

LEVY, A. Y., RAJARAMAN, A., AND ORDILLE, J. J. 1996b. Querying heterogeneous information
sources using source descriptions. In Proceedings of the 22nd International Conference on
Very Large Databases (VLDB-96) (Bombay, India, September 1996).

LEWIS, D. 1992. Representation and learning in information retrieval. Technical Report
91-93, Computer Science Dept., University of Massachusetts at Amherst. PhD Thesis.

MENDELZON, A. AND MILO, T. 1997. Formal models of Web queries. In Proceedings of the
Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS-97) (Tucson, AZ, May 1997).

MONGE, A. AND ELKAN, C. 1996. The field-matching problem: algorithm and applications. In
Proceedings of the Second International Conference on Knowledge Discovery and Data
Mining (August 1996).

MONGE, A. AND ELKAN, C. 1997. An efficient domain-independent algorithm for detecting
approximately duplicate database records. In The proceedings of the SIGMOD 1997 work-
shop on data mining and knowledge discovery (May 1997).

NEWCOMBE, H. B., KENNEDY, J. M., AXFORD, S. J., AND JAMES, A. P. 1959. Automatic linkage
of vital records. Science 130, 954–959.

NILSSON, N. 1987. Principles of Artificial Intelligence. Morgan Kaufmann.
PEARL, J. 1984. Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley, Reading, MA.
PORTER, M. F. 1980. An algorithm for suffix stripping. Program 14, 3, 130–137.
QUINLAN, J. R. 1990. Learning logical definitions from relations. Machine Learning 5, 3,

239–266.

320 • William W. Cohen

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

SALTON, G. ED. 1989. Automatic Text Processing. Addison Wesley, Reading, Massachusetts.
SCHÄUBLE, P. 1993. SPIDER: A multiuser information retrieval system for semistructured

and dynamic data. In Proceedings of the 1993 ACM SIGIR conference on research in
information retrieval (Pittsburgh, PA, 1993), pp. 318–327.

SUCIU, D. 1996. Query decomposition and view maintenance for query languages for un-
structured data. In Proceedings of the 22nd International Conference on Very Large Data-
bases (VLDB-96) (Bombay, India, 1996).

SUCIU, D. ED. 1997. Proceedings of the Workshop on Management of Semistructured Data.
Available on-line from http://www.research.att.com/suciu/workshop-papers.html, Tucson,
Arizona.

TOMASIC, A., AMOUROUX, R., BONNET, P., AND KAPITSKAIA, O. 1997. The distributed informa-
tion search component (Disco) and the World Wide Web. In Proceedings of the 1997 ACM
SIGMOD (May 1997).

TURTLE, H. AND FLOOD, J. 1995. Query evaluation: strategies and optimizations. Informa-
tion processing and management 31, 6 (November), 831–850.

ZADEH, L. A. 1965. Fuzzy sets. Information and Control 8, 338–353.

Received November 1998; revised July 1999; accepted March 2000

Data Integration Using Similarity Joins • 321

ACM Transactions on Information Systems, Vol. 18, No. 3, July 2000.

