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SUMMARY

An important step in many compilers for functional languages is lambda lifting. In his thesis, Hughes
showed that by doing lambda lifting in a particular way, a useful property called full laziness can be
preserved. Full laziness has been seen as intertwined with lambda lifting ever since.

We show that, on the contrary, full laziness can be regarded as a completely separate process to
lambda lifting, thus making it easy to use different lambda lifters following a full-laziness transformation,
or to use the full-laziness transformation in compilers which do not require lambda lifting.

On the way, we present the complete code for our modular fully-lazy lambda lifter, written in the
HASKELL functional programming language.
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INTRODUCTION

Lambda lifting and full laziness 1 are part of the folklore of functional programming,
yet the few published descriptions of fully-lazy lambda lifting have been either
informal or hard to understand, with the notable exception of that of Bird. 2 Our
treatment differs from earlier work in the following ways:

1.

2.

3.

4.

The main technical contribution is to show how full laziness can be separated
from lambda lifting, so that the two transformations can be carried out indepen-
dently. This makes each transformation easier to understand and improves the
modularity of the compiler.
Our treatment deals with a language including let and Ietrec expressions. Not
only is this essential for efficient compilation in the later stages of most
compilers, but we also show that eliminating let (rec) expressions, by translating
them into lambda abstractions, loses full laziness. To our knowledge, this has
not previously been realized.
We show how to decompose each of the transformations further into a compo-
sition of simple steps, each of which is very easy to program, thus further
improving modularity.
We have developed an elegant use of parametrized data types, which allows
the type system to help express the purpose of each pass. -
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We present the complete source code for our solution, and we document some of
the experience we gained in developing it; indeed, the paper can be read as an
exercise in functional programming.

The code is presented in the functional programming language HASKELL, and
the source text for the paper is an executable literate HASKELL program. Lines of
code are distinguished by a leading > sign, the rest of the text being commentary.

We introduce all the notation and background that is required to understand the
paper. The first three sections introduce the language to be compiled, the HASKELL
language, and the main data types to be used. Following these preliminaries we
develop a non-fully-lazy lambda lifter and then refine it into a fully lazy one. The
paper concludes with some optimizations to the fully-lazy lambda lifter.

THE LANGUAGE

We begin by defining a small language,      on which our compiler will operate. The
abstract syntax of the language is given by

expression :: =

defns :: =

def :: =

name
constant
expression, expression
let defns in expression
Ietrec defns in expression
λ name –> expression

def 1 . . . defn (n > 0)

name = expression

the following productions: -

Literals and built-in functions
Application
Non-recursive definitions
Recursive definitions
Lambda abstraction

The concrete syntax is conventional: parentheses are used to disambiguate; appli-
cation associates to the left and binds more tightly than any other operator; the
body of a lambda abstraction extends as far to the right as possible; the usual infix
operators are permitted; and definitions are delimited using layout. Notice that the
bindings in let (rec) expressions are all simple; that is, the left-hand side of the binding
is always just a variable. (Functions are defined by binding variables to lambda
abstractions. ) Here is an example to illustrate these points:

Ietrec
fac = λ n –> if (n == 0) 1 (n * factorial (n–l))

in
fac 100

An important feature of this language is that any pure high-level functional program-
ming language can be translated into it without loss of expressiveness or efficiency.
This process is described in some detail by Peyton Jones. 3

Notice that let (rec) expressions are retained, despite the fact that they are respon-
sible for many of the subtleties in the rest of the paper. They can certainly be
transformed into applications of lambda abstractions and the Y combinator, but
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doing so straightforwardly may result in a serious loss of efficiency ( Reference  3,
Chapter 14). For example, eliminating a let expression introduces a new lambda
abstraction, which will (under the compilation scheme described in this paper) be
lambda-lifted, and thereby decompose execution into smaller steps. Similarly, a naïve
treatment of mutual local recursion using Y involves much packing and unpacking of
tuples, which can easily be avoided if the letrec expression is handled explicitly.
Finally, we show later on that laziness can be lost if let expressions are not handled
specially.

HASKELL

HASKELL is a recently-designed common non-strict pure functional language. 4 For
the purposes of this paper it is fairly similar to SML or Miranda, * except in its
treatment of abstract data types and modules. We make little use of Haskell’s major
technical innovation, namely systematic overloading using type classes.

Haskell modules begin with a declaration naming the module, and importing any
modules it requires:

> module LambdaLift where
>
> import Utilities

Here, the module we shall be defining is called Lambda Lift, and it imports an auxiliary
module called Utilities, whose interface is given in Appendix  II.

A DATA TYPE FOR COMPILATION

Every compiler has a data type which represents the abstract syntax tree of the
program being compiled. The definition of this data type has a substantial impact
on the clarity and efficiency of the compiler, so it merits careful thought.

First failed attempt

As a first attempt, the language described in the previous section can be translated
directly into the following HASKELL algebraic data type declaration:†

> data Expression
> = EConst Constant
>  EVar Name
>  EAp Expression Expression
>  ELam [Name] Expression
>  ELet lsRec [Definition] Expression

*Miranda is a trademark of Research Software Ltd.
†Notice that data constructors, such as EVar and ELam, and type constructors, such as Expression and Name, must

both begin with capital letters in HASKELL.
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We choose to represent names simply by their character string, using a type synonym
declaration.

> type Name = [Char]

Constants may be numbers, booleans, the names of global functions, and so on:

> data Constant = CNum Integer  CBool Bool  CFun Name

The definition of the Constant type can be changed without affecting any of the rest
of this paper. As an example of the Expression type, the  -expression a+3 would
be represented by the HASKELL expression

EAp (EAp (EConst (CFun  ″ + ″ )) (EVar   ″ a ″ )) (EConst (CNum 3))

Let expressions can usually be treated in the same manner as letrec expressions, so
the two are given a common constructor, and distinguished by a flag of type lsRec.
It is convenient to use a boolean for this flag:

> type lsRec = Bool
> recursive = True
> non Recursive = False

Each definition in the definition list of an ELet construction is just a pair:

> type Definition = (Name, Expression)

Second failed attempt

It does not take long to discover that this is an insufficiently flexible data type.
Many compiler passes add information to the abstract syntax tree, and we need a
systematic way to represent this information. Examples of analyses that generate
this sort of information are: free-variable analysis, binding level analysis, type
inference, strictness analysis and sharing analysis.

The most obvious way to add such information is to add a new constructor for
annotations to the Expr data type, thus:

> data Expression
> = EVar Name
> 
>  EAnnot Annotation Expression

together with an auxiliary data type for annotations, which can be extended as
required: *

*The type Set a is a standard abstract data type for sets, whose interface is given in Appendix II, but whose
implementation is not further defined.
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> data Annotation = FreeVars (Set Name)
 Level Integer

This allows annotations to appear freely throughout the syntax tree, which appears
admirably flexible. In practice, it suffers from two major disadvantages

1. It is easy enough to add annotation information in the form just described, but
writing a compiler pass which uses information placed there by a previous pass
is downright awkward. Suppose, for example, that a pass wishes to use the
free-variable information left at every node of the tree by a previous pass.
Presumably this information is attached immediately above every node, but the
data type would permit several annotation nodes to appear above each node,
and worse still none (or more than one) might have a free-variable annotation.

Even if the programmer is prepared to certify that there is exactly one
annotation node above every tree node, and that it is a free-variable annotation,
the implementation will still perform pattern-matching to check these assertions
when extracting the annotation.

Both of these problems, namely the requirement for uncheckable program-
mer assertions, and some implementation overhead, are directly attributable
to the fact that every annotated tree has the rather uninformative type
Expression, which says nothing about which annotations are present.

2. The second major problem is that further experimentation reveals that two
distinct forms of annotation are required. The first annotates expressions as
above, but the second annotates the binding occurrences of variables; that is,
the occurrences on the left-hand side of definitions, and the bound variable in
a lambda abstraction. We will call these occurrences binders. An example of
the need for the latter comes in type inference, where the compiler infers a
type for each binder, as well as for each sub-expression.

It is possible to use the expression-annotation to annotate binders, but it is
clumsy and inconvenient to do so.

A happy ending

We shall address the second problem first, since it has an easy solution. All we
need do is parametrize the Expression type with respect to the type of binders, thus:

> data Expr binder
> = EConst Constant
>  EVar Name
>  EAp (Expr binder) (Expr binder)
>  ELam [binder] (Expr binder)
>  ELet lsRec [Defn binder] (Expr binder)
>
> type Defn binder = (binder, Expr binder)

binder is a type variable, which in HASKELL must begin with a lower-case letter.
We can easily recover a definition of our original Expression type, in which a binder
is represented by a Name, using a type synonym declaration, thus:
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> type Expression = Expr Name

Alternatively, a data type in which binders are names annotated with a type can be
defined thus:

> type TypedExpression = Expr (Name, TypeExpr)

where TypeExpr is a data type representing type expressions.
Returning to annotations on expressions, we can re-use the same technique by

parametrizing the data type of expressions with respect to the annotation type. We
want to have an annotation on every node of the tree, so one possibility would be
to add an extra field to every constructor with the annotation information. This is
inconvenient if, for example, one simply wants to extract the free-variable infor-
mation at the top of a given expression without performing case analysis on the root
node. This leads to the following idea: each level of the tree is a pair, whose first
component is the annotation, and whose second component is the abstract syntax
tree node. Here are the corresponding HASKELL data type definitions:

> type AnnExpr binder annot = (annot, AnnExpr ′� binder annot)
>
> data AnnExpr ′ binder annot
> =AConst Constant
>  AVar Name
>  AAp (AnnExpr binder annot) (AnnExpr binder annot)
>  ALam [binder] (AnnExpr binder annot)
>  ALet lsRec [AnnDefn binder annot] (AnnExpr binder annot)
>
> type AnnDefn binder annot = (binder, AnnExpr binder annot)

Notice the way that the mutual recursion between AnnExpr and AnnExpr ′ ensures that
every node in the tree carries an annotation. The sort of annotations carried by an
expression are now manifested in the type of the expression. For example, an
expression annotated with free variables has type AnnExpr Name (Set Name).

It is a real annoyance that AnnExpr ′ and Expr have to define two essentially
identical sets of constructors. There appears to be no way around this within the
Hindley–Milner type system. It would be possible to abandon the Expr type al-
together, because the Expr a is nearly isomorphic to AnnExpr a (), but there are two
reasons why we choose not to do this. First, the two types are not quite isomorphic,
because the latter distinguishes ( (), ⊥) from  ⊥ whereas the former does not. Secondly
(and more seriously), it is very tiresome to write all the ()’s when building and
pattern-matching on trees of type AnnExpr a ().

Finally, we define two useful functions, bindersOf and rhssOf (right-hand-sides of),
which each take the list of definitions in an ELet, and pick out the list of variables
bound by the let (rec), and list of right-hand sides to which they are bound, respect-
ively:
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> bindersOf :: [(binder, rhs)] -> [binder]
> bindersOf defns = [name  (name, rhs) <- defns]
>
> rhssOf :: [(binder, rhs)] –> [rhs]
> rhssOf defns = [rhs  (name,rhs) <- defns]

This definition illustrates the use of a type signature to express the type of the
function to be defined; and of a list comprehension in the right hand side of bindersOf,
which may be read ‘the list of all names, where the pair (name, rhs) is drawn from
the list defns’. Both of these are now conventional features of functional programming
languages.

This completes our development of the central data type. The discussion has
revealed some of the strengths, and a weakness, of the algebraic data types provided
by all modern functional programming languages.

LAMBDA LIFTING

Any implementation of a lexically-scoped programming language has to cope with
the fact that a function may have free variables. Unless these are removed in some
way, an environment-based implementation has to manipulate linked environment
frames, and a reduction-based system is made significantly more complex by the
need to perform α− renaming during substitution. A popular way of avoiding these
problems, especially in graph reduction implementations, is to eliminate all free
variables from function definitions by means of a transformation known as lambda
lifting. Lambda lifting is a term coined by Johnsson, 5 but the transformation was
developed independently by Hughes. 1 A tutorial treatment is given by Peyton
Jones. 3

The lambda-lifting issue is not restricted to functional languages. For example,
Pascal allows a function to be declared locally within one function, and the inner
function may have free variables bound by the outer scope. On the other hand, the
C language does not permit such local definitions. In the absence of side-effects, it
is simple to make a local function definition into a global one: all we need do is add
the free variables as extra parameters, and add these parameters to every call. This
is exactly what lambda lifting does.

In a functional-language context, lambda lifting transforms an expression into a
set of supercombinator definitions, each of which defines a function of zero or more
arguments, and whose body contains no embedded lambda abstractions. In this
paper we shall use the convention that the value of the set of definitions is the value
of the supercombinator $main; this artifice avoids the need to speak of ‘a set of
supercombinator definitions together with an expression to be evaluated’.

To take a simple example, consider the program

let
f= λ x–>let g = λ y –> x*x + y in (g3+g4)

in
f 6
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Here, x is free in the abstraction λ y –> x*x + y. The free variable can be removed
by defining a new function $g which takes x as an extra parameter, but whose body
is the offending abstraction, and redefining g in terms of $g, giving the following set
of supercombinator definitions:

$ g x y = x * x + y
fx = let g =$g x in (g3+g4)
$main = f 6

(To stress the fact that this program is a set of supercombinator definitions, we
permit ourselves to write the arguments of the supercombinator on the left of the
= sign. )

Matters are no more complicated when recursion is involved. Suppose that g was
recursive, thus:

let
f = λ x –> Ietrec g = λ y –> cons (x*y) (g y) in g 3

in
f 6

Now x and g are both free in the λ y abstraction, so the lambda lifter will produce
the following set of supercombinators:

$g g x y = cons (x*y) (g y)
fx = letrec g = $g g x in g3
$main = f 6

Notice that the definition of g is still recursive, but the lambda lifter has eliminated
the local lambda abstraction. The program is now directly implementable by most
compiler back-ends.

This is not the only way to handle local recursive function definitions. The main
alternative is described by Johnsson, 6 who generates directly-recursive supercombina-
tors from locally-recursive function definitions; in our example, $g would be directly
recursive rather than calling its parameter g, thus:

$g x y = cons (x*y) ($g x y)
f x = $ g x 3
$main = f 6

The lambda lifter he describes is much more complex than the one we develop here.
For Johnsson it is worth the extra work, because the back-end of his compiler can
produce better code from directly-recursive supercombinators, but it is not clear that
this applies universally to all implementations. At all events, we shall stick to the
simple lambda lifter here, since our main concern is the interaction with full laziness.

Implementing a simple lambda lifter

We are now ready to develop a simple lambda lifter. It will take an expression
and deliver a list of supercombinator definitions; hence so this is its type:
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> lambdaLift :: Expression –> [SCDefn]

Each supercombinator definition consists of the name of the supercombinator, the
list of its arguments, and its body:

> type SCDefn = (Name, [Name], Expression)

It should be the case that there are no ELam constructors anywhere in the third
component of the triple. Unfortunately, there is no way to express (and hence
enforce) this constraint in the type, except by declaring yet another new variant of
Expr lacking such a constructor. This is really another shortcoming of the type system:
there is no means of expressing this sort of subtyping relationship.

The lambda lifter works in three passes:

1.

2.

3.

The

First, we annotate every node in the expression with its free variables. This is
used by the following pass to decide which extra parameters to add to a lambda
abstraction. The freeVars function has type

> freeVars :: Expression –> AnnExpr Name (Set Name)

Secondly, the function abstract abstracts the free variables from each lambda
abstraction, replacing the lambda abstraction by the application of the new
abstraction (now a supercombinator) to the free variables. For example, the
lambda abstraction

( λ x –> y*x + y*z)

would be transformed to

( λ y –>  λ z –> λ x –> y*x + y*z) y z

abstract has the type signature:

> abstract :: AnnExpr Name (Set Name) –> Expression

Notice, from the type signature, that abstract removes the free variable infor-
mation, which is no longer required.
Finally, collectSCs gives a unique name to each supercombinator, collects all
the supercombinator definitions into a single list, and introduces the $main
supercombinator definition:

> collectSCs :: Expression –> [SCDefn]

compiler itself is the composition of these three functions:*

> lambdaLift = collectSCs . abstract . freeVars

It would of course be possible to do all the work in a single pass, but the modularity
provided by separating them has a number of advantages: each individual pass is

*Infix “.” denotes function composition.
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easier to understand, the passes may be reusable (for example, we reuse freeVars
below), and modularity makes it easier to change the algorithm somewhat.

As an example of the final point, the HASKELL compiler under development at
Glasgow will be able to generate better code by omitting the collectSCs pass, because
more is then known about the context in which the supercombinator is applied. For
example, consider the expression, which might be produced by the abstract pass:

let f = ( λ v –> λ x –> v-x) v
in . . .f . . .f . . .

Here abstract has removed v as a free variable from the λ X abstraction. Rather than
compiling the supercombinator independently of its context, our compiler constructs
a closure for f, whose code accesses v directly from the closure and x from the stack.
The calls to f thus do not have to move v onto the stack. The more free variables
there are, the more beneficial this becomes. Nor do the calls to f become less
efficient because the definition is a local one; the compiler can see the binding for
f and can jump directly to its code.

Free variables

We begin by giving the code for the free-variable pass, not because it is particularly
subtle, but because it serves to illustrate HASKELL language notation:

> freeVars (EConst k) = (setEmpty, AConst k)
> freeVars (EVar v) = (setSingleton v, AVar v)

> freeVars (EAp e1 e2) =
> (setUnion (freeVarsOf el ′) (freeVarsOf e2 ′), AAp e1 ′ e2 ′)
> where
> e1 ′ = freeVars e1
> e2 ′ = freeVars e2

> freeVars (ELam args body) =
> (setDifference (freeVarsOf body ′) (setFromList args), ALam args body ′)
> where
> body¢ = freeVars body

> freeVars (ELet isRec defns body) =
> (setUnion defnsFree body Free, ALet isRec (zip binders rhss ′) body ′)
> where
> binders = bindersOf defns
> binderSet = setFromList binders
> rhss ′ = map freeVars (rhssOf defns)
> freelnRhss = setUnionList (map freeVarsOf rhss ′)
> defnsFree  isRec = setDifference freelnRhss binderSet
>  not isRec = freelnRhss
> body ′ = freeVars body
> bodyFree = setDifference (freeVarsOf body ′) binderSet

> freeVarsOf :: AnnExpr Name (Set Name) –> Set Name
> freeVarsOf (free_vars, expr) = free_vars
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In the definition of defnsFree, the boolean condition between the vertical bar and
the equals sign is a guard, which serves to select the appropriate right-hand side.
The function zip is a standard function which takes two lists and returns a list
consisting of pairs of corresponding elements of the argument lists. The set operations
setUnion, setDifference, and so on, are defined in the utilities module, whose interface
is given in Appendix II. Otherwise the code should be self-explanatory.

Generating supercombinators

The next pass merely replaces each lambda abstraction, which is now annotated
with its free variables, with a new abstraction (the supercombinator) applied to its
free variables. The full definition is given in Appendix I; and the only interesting
equation is that dealing with lambda abstractions:

> abstract (free, ALam args body) =
> foldl EAp sc (map EVar fvList)
> where
> fvList = setToList free
> sc = ELam (fvList + + args) (abstract body)

The function foldl is a standard function; given a dyadic function  ⊕, a value b, and
a list xs = [ x 1, . . . . x n ], foldl ⊕ b XS computes (... ((b  ⊕ x l)  ⊕   x 2)  ⊕ . . . x n).
Notice the way that the free-variable information is discarded by the pass, since it
is no longer required.

We also observe that abstract treats the two expressions ELam args 1 (ELam args2
body)) and (ELam (args1 + +args2) body) differently. In the former case, the two
abstractions will be treated separately, generating two supercombinators, whereas
in the latter only one supercombinator is produced. It is clearly advantageous to
merge directly-nested ELams before performing lambda lifting. This is equivalent to
the η -abstraction optimization noted by Hughes. 1

Collecting supercombinators

Finally, we have to name the supercombinators and collect them together. To
generate new names, the main collection function has to carry around a name supply;
in particular, it must take the name supply as an argument and return a depleted
supply as a result. In addition, it must return the collection of supercombinators it
has found, and the transformed expression. Because of these auxiliary arguments
and results, we define a function collectSCs_e which does all the work, with collectSCs
being defined in terms of it:

> collectSCs_e :: NameSupply –> Expression
–> (NameSupply, Bag SCDefn, Expression)

> collectSCs e = [( ″ $main ″, [], e ′)] + + bagToList scs
where
(_, SCS, e ′) = collectSCs_e initialNameSupply e
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The name supply is represented by an abstract data type NameSupply, whose interface
is given in Appendix II, but in which we take no further interest. The collection of
supercombinators is a bag, represented by the abstract data type of Bag, which has
similar operations defined on it as those for Set.

The ‘_’ in the last line of collectSCs is a wildcard which signals the fact that we
are not interested in the depleted name supply resulting from transforming the whole
program. The code is now easy to write:

> collectSCs_e ns (EConst k) = (ns, bagEmpty, EConst k)
> collectSCs_e ns (EVar v) = (ns, bagEmpty, EVar v)
> collectSCs_e ns (EAp el e2) =
> (ns2, bagUnion scs1, SCS2, EAp e1 ′ e2 ′)
> where
> (ns1, scs1, e1 ′) = collectSCs_e ns e1
> (ns2, scs2, e2 ′) = collectSCs_e ns1 e2

In the case of lambda abstractions we replace the abstraction by a name, and add
a supercombinator to the result:

> collectSCs_e ns (ELam args body) =
> (ns2, baglnsert (name, args, body ′) bodySCs, EConst (CFun name))
> where
> (ns1, bodySCs, body ′�) = collectSCs_e ns body
> (ns2, name) = newName ns1 ″ SC ″

A common paradigm occurs in the case for let (rec):

> collectSCs_e ns (ELet isRec defns body) =
> (ns2, SCS, ELet isRec defns ′ body ′)
> where
> (ns1, bodySCs, body ′) = collectSCs_e ns body
> ((ns2, SCS), defns ′) = mapAccuml collectSCs_d (nsl, bodySCs) defns
>
> collectScs_d (ns, SCS) (name, rhs) =
> ((nsl, bagUnion scs SCS ′), (name, rhs ′))
> where
> (ns1, SCS ′, rhs ′) = collectSCs_e ns rhs)

When processing a list of definitions, we need to generate a new list of definitions,
threading the name supply through each. This is done by a new higher-order function
mapAccuml, which behaves like a combination of map and foldl; it applies a function
to each element of a list, passing an accumulating parameter from left to right, and
returning a final value of this accumulator together with the new list. mapAccuml is
defined in Appendix  I.

This completes the definition of the simple lambda lifter. We now turn our
attention to full laziness.
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SEPARATING FULL LAZINESS FROM LAMBDA LIFTING

Previous accounts of full laziness have invariably linked it to lambda lifting, by
describing ‘fully-lazy lambda lifting’, which turns out to be rather a complex process.
Hughes gives an algorithm, but it is extremely subtle and does not handle let(rec)
expressions. 1 On the other hand, Peyton Jones does not cover Iet(rec) expressions,
but the description is only informal and no algorithm is given. 3

In this section we show how full laziness and lambda lifting can be cleanly
separated. This is done by means of a transformation involving let expressions. Lest
it be supposed that we have simplified things in one way only by complicating them
in another, we also show that performing fully-lazy lambda lifting without Iet(rec)
expressions risks an unexpected loss of laziness. Furthermore, much more efficient
code can be generated for Iet(rec) expressions in later phases of most compilers than
for their equivalent lambda expressions.

A review of full laziness

We begin by briefly reviewing the concept of full laziness. Consider again the
example given earlier:

let
f= λ x–>let g = λ y –> x*x+y in (g3+g4)

in
f 6

The simple lambda lifter generates the program

$ g x y = x * x + y
fx = let g = $g x in(g3+g4)
$main = f 6

In the body of f there are two calls to g and hence to $g. But ($g x) is not a reducible
expression, so x*x will be computed twice. But x is fixed in the body of f, so some
work is being duplicated. It would be better to share the calculation of x*x between
the two calls to $g. This can be achieved as follows: instead of making x a parameter
to $g, we make x*x into a parameter, like this:

$g p y = p+y
f x = let g = $g(x*x) in (g3+g4)

(we omit the definition of $main from now on, since it does not change). So a fully-
lazy lambda lifter will make each maximal free sub-expression (rather than each free
variable) of a lambda abstraction into an argument of the corresponding supercombi-
nator. A maximal free expression (or MFE) of a lambda abstraction is an expression
which contains no occurrences of the variable bound by the abstraction, and is not
a sub-expression of a larger expression with this property.
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Full laziness corresponds precisely to moving a loop-invariant expression outside
the loop, so that it is computed just once at the beginning rather than once for each
loop iteration.

How important is full laziness for ‘real’ programs? No serious studies have yet
been made of this question, though we plan to do so. However, recent work by
Hoist suggests that the importance of full laziness may be greater than might at first
be supposed. 7 He shows how to perform a transformation which automatically
enhances the effect of full laziness, to the point where the optimizations obtained
compare favorably with those gained by partial evaluation, 8 though with much less
effort.

Fully-lazy lambda lifting in the presence of Iet(rec) s

Writing a fully-lazy lambda lifter, as outlined in the previous section, is somewhat
subtle. Our language, which includes Iet(rec) expressions, appears to make this worse
by introducing a new language construct. For example, suppose the definition of g
in our running example was slightly more complex, thus:

g = λ y –> Ietz = x*x
in let p = z*z
in p + y

Now, the sub-expression x*x is an MFE of the λ y abstraction, but sub-expression
Z*Z is not since z is bound inside the λ y abstraction. Yet it is clear that p depends
only on x (albeit indirectly), and so we should ensure that Z*Z should only be
computed once.

Does a fully-lazy lambda lifter spot this if let expressions are coded as lambda
applications? No, it does not. The definition of g would become

g = λ y –> (λ z –> (λ p –> p+y) (z*z)) (x*x)

Now, x*x is free as before, but Z*Z is not. In other words, if the compiler does not
treat Iet(rec) expressions specially, it may lose full laziness which the programmer
might reasonably expect to be preserved.

Fortunately, there is a straightforward way to handle Iet(rec) expressions, as
described by Peyton Jones, namely to ‘float’ each let(rec) definition outward until it
is outside any lambda abstraction in which it is free ( Reference 3, Chapter 15). For
example, all we need do is transform the definition of g to the following:

g = Iet z = x*x
in let p = Z*Z

in λ y –> p+y

Now x*x and Z*Z will each be computed only once. Notice that this property should
hold for any implementation of the language, not merely for one based on lambda
lifting and graph reduction. This is a clue that full laziness and lambda lifting are
not as closely related as at first appears, a topic to which we shall return in the next
section.
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Meanwhile, how can we decide how far out to float a definition? It is most easily
done by using lexical level numbers (or de Bruijn numbers). There are three steps:

1.

2.

3.

First, assign to each lambda-bound variable a level number, which says how
many lambdas enclose it. Thus in our example, x would be assigned level
number 1, and y level number 2.
Now, assign a level number to each Iet(rec) bound variable (outermost first),
which is the maximum of the level numbers of its free variables, or zero if
there are none. In our example, both p and z would be assigned level number
1. Some care needs to be taken to handle Ietrec s correctly.
Finally, float each definition (whose binder has level n, say) outward, until it
is outside the lambda abstraction whose binder has level n + 1, but still inside
the level- n abstraction. There is some freedom in this step about exactly where
between the two the definition should be placed.

Each mutually-recursive set of definitions defined in a Ietrec should be floated out
together, because they depend on each other and must remain in a single letrec. If,
in fact, the definitions are not mutually recursive despite appearing in the same
letrec, this policy might lose laziness by retaining in an inner scope a definition which
could otherwise be floated further outwards. The standard solution is to perform
dependency analysis on the definitions in each letrec expression, to break each
group of definitions into its minimal subgroups. We take no further interest in this
optimization, which is discussed in Chapter 6 of Reference 3.

Finally, a renaming pass should be carried out before the floating operation, so
that there is no risk that the bindings will be altered by the movement of the let(rec)
definitions. For example, the expression

λ y –> let y = x*x in y

is obviously not equivalent to

let y = x*x in  λ y –> y

All that is required is to give every binder a unique name to eliminate the name
clash.

Full laziness without lambda lifting

At first it appears that the requirement to float Iet(rec) s outward in order to
preserve full laziness merely further complicates the already subtle fully lazy lambda
lifting algorithm suggested by Hughes. However, a simple transformation allows all
the full laziness to be achieved by let(rec) floating, while lambda lifting is performed
by the original simple lambda lifter.

The transformation is this: before floating Iet(rec) definitions, replace each MFE e
with the expression let v = e in v. This transformation both gives a name to the MFE
and makes it accessible to the let(rec) floating transformation, which can now float
out the new definitions. Ordinary lambda lifting can then be performed. For example,
consider the original definition of g:
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let
f= λ x –> let g = λ y – > x * x + y

i n ( g 3 + g 4 )
in
f 6

The subexpression x*x is an MFE, so it is replaced by a trivial let expression:

let
f = λ x –> Iet g = λ y –> (let v = x*x in v)+y

in (g3 + g4)
in
f 6

Now the let expression is floated outward:

let
f = λ x –> Iet g = let v = x*x in λ y – > v + y

i n ( g 3 + g 4 )
in
f 6

Finally, ordinary lambda lifting will discover that v is free in the λ y expression, and
the resulting program becomes

$g v y = v+y
f x Iet g = let v = x*x in $g v

i n ( g 3 + g 4 )
$main = f 6

A few points should be noted here. First, the original definition of a maximal free
expression was relative to a particular lambda abstraction. The new algorithm we
have just developed transforms certain expressions into trivial let expressions. Which
expressions are so transformed? Just the ones which are MFEs of any enclosing
lambda abstraction. For example, in the expression

λ y –> λ z –> (y + (x*x)) / z

two MFEs are identified: (x*x), since it is an MFE of the λ y abstraction, and (y +
(x*x)), since it is an MFE of the λ z abstraction. After introducing the trivial let-
bindings, the expression becomes

λ y –> λ Z –> (let v1 = y + (let V2 = x*x in v2) in v1)/ z

Secondly, either the newly-introduced variable v must be unique, or the expression
must be renamed uniquely after the MFE-identification pass.

Thirdly, in the final form of the program v is only referenced once, so it would
be sensible to replace the reference by the right-hand side of the definition and



A MODULAR FULLY-LAZY LAMBDA LIFTER 495

eliminate the definition, yielding exactly the program we obtained using Hughes’s
algorithm. This is a straightforward transformation, and we shall not discuss it further
here, except to note that this property will hold for all let definitions which are
floated out past a lambda. In any case, many compiler back-ends will generate the
same code regardless of whether or not the transformation is performed.

A fully lazy lambda lifter

Now we are ready to define the fully-lazy lambda lifter. It can be decomposed
into the following stages:

1. First we must make sure that all ELam constructors bind only a single variable,
because the fully-lazy lambda lifter must treat each lambda individually. It
would be possible to encode this in later phases of the algorithm, by dealing
with a list of arguments, but it turns out that we can express an important
optimization by altering this pass alone:

> separateLams :: Expression –> Expression

2. First we annotate all binders and expressions with level numbers, which we
represent by natural numbers starting with zero:

> type Level = Int
> add Levels :: Expression –> AnnExpr (Name, Level) Level

3. Next we identify all MFEs, by replacing them with trival let expressions. Level
numbers are no longer required on every sub-expression, only on binders:

> identify MFEs :: Ann Expr (Name, Level) Level –> Expr (Name, Level)

4. A renaming pass makes all binders unique, so that floating does not cause
name-capture errors. This must be done after identifyMFEs, which introduces
new bindings:

> rename :: Expr (Name, a) –> Expr (Name, a)

5. Now the let(rec) definitions can be floated outwards. The level numbers are not
required any further:

> float :: Expr (Name, Level) –> Expression

6. Finally, ordinary lambda lifting can be carried out, using lambdaLift from the
section dealing with simple lambda lifting.

The fully-lazy lambda lifter is just the composition of these passes:

> fullyLazyLift = lambdaLift . float . rename .
identifyMFEs . addLevels . separateLams
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Separating the lambdas

The first pass, which separates lambdas so that each ELam only binds a single
argument, is completely straightforward. The only interesting equation is that which
handles abstractions, which we give here:

> separateLams (E Lam args body) = foldr mkLam (separateLams body) args
where
mkLam arg body = ELam [arg] body

The other equations are given in Appendix I.

Adding level numbers

There are two complications concerning annotating an expression with level num-
bers.

At first it looks as though it is sufficient to write a function which returns an
expression annotated with level numbers; then for an application, for example, one
simply takes the maximum of the levels of the two sub-expressions. Unfortunately,
this approach loses too much information, because there is no way of mapping the
level number of the body of a lambda abstraction to the level number of the
abstraction itself. The easiest solution is first to annotate the expression with its free
variables, and then use a mapping freeSetToLevel from variables to level numbers,
to convert the free-variable annotations to level numbers.

> freeSetTo Level :: Set Name –> Assn Name Level – > Level
> freeSetToLevel free_vars env =
> maximum (0 : map (ass Lookup env) (setToList free_vars))
> – – If there are no free variables, return level zero

The second complication concerns letrec expressions. What is the correct level
number to attribute to the newly-introduced variables? The right thing to do is to
take the maximum of the levels of the free variables of all the right-hand sides
without the recursive variables, or equivalently map the recursive variables to level
zero when taking this maximum. This level should be attributed to each of the new
variables. Let expressions are much simpler: just attribute to each new variable the
level number of its right-hand side.

Now we are ready to define addLevels. It is the composition of two passes, the
first of which annotates the expression with its free variables, whereas the second
uses this information to generate level-number annotations:

addLevels = freeToLevel freeVars

We have defined the freeVars function already, so it remains to define freeToLevel.
The main function will need to carry around the current level, and a mapping from
variables to level numbers, so as usual we define freeToLevel in terms of freeToLevel_e
which does all the work:
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> freeToLevel_e :: Level -- Level of context
> –> Assn Name Level -- Level of in-scope names
> –> Ann Expr Name (Set Name) -- Input expression
> –> AnnExpr (Name, Level) Level -- Result expression

> freeToLevel e = freeToLevel_e 0 [] e

We represent the name-to-level mapping as an association list, with type Assn Name
Level. The interface of association lists is given in Appendix II, but notice that it is
not abstract. It is so convenient to use all the standard functions on lists, and
notation for lists, rather than to invent their analogues for associations, that we have
compromised the abstraction.

For constants, variables and applications, it is simpler and more efficient to ignore
the free-variable information and calculate the level number directly:

> freeToLevel_e level env (_, AConst k) = (0, AConst k)
> freeToLevel_e level env (_, AVar v) = (assLookup env v, AVar v)
> freeToLevel_e level env (_, AAp e1 e2) =
> (max (levelOf e1 ′) (levelOf e2 ′), AAp e 1′ e2 ′)
> where
> e1 ′ = freeToLevel_e level env e1
> e2 ′ = freeToLevel_e level env e2

This cannot be done for lambda abstractions, so we compute the level number of
the abstraction using freeSetToLevel. We also assign a level number to each variable
in the argument list. At present we expect there to be only one such variable, but
we shall allow there to be several and assign them all the same level number. This
works correctly now, and turns out to be just what is needed to support a useful
optimization later:

> freeToLevel_e level env (free, ALam args body) =
> (freeSetToLevel free env, ALam args ′ body ′)
> where
> body ′ = freeToLevel_e (level + 1 ) (args ′ + + env) body
> args’ = zip args (repeat (level+ 1 ))

Let(rec) expressions follow the scheme outlined at the beginning of this section:

> freeToLevel_e level env (free, ALet isRec defns body) =
> (levelOf body ′, ALet isRec defns ′ body ′)
> where
> binders = bindersOf defns
> free RhsVars = setUnion List [free  (free, –) < – rhssOf defns]
> maxRhsLevel = freeSetToLevel freeRhsVars
> ([(name,0)  name <-- binders] + + env)
> defns ′ = map freeToLevel_d defns
> body ′ = freeToLevel_e level (bindersOf defns ′ + + env) body
>
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> freeToLevel_d (name, rhs) = ((name, levelOf rhs ′), rhs ′)
where rhs ′ = freeToLevel_e level envRhs rhs

> envRhs  isRec = [(name, maxRhsLevel) \ name <– binders] ++ env
> \ not isRec= env

Notice that the level of the whole let(rec) expression is that of the body. This is valid
provided that the body refers to all the binders directly or indirectly. If any definition
is unused, we might assign a level number to the Ietrec which would cause it to be
floated outside the scope of some variable mentioned in the unused definition. This
is easily fixed, but it is simpler to assume that the expression contains no redundant
definitions.*

Finally the auxiliary function levelOf extracts the level from an expression:

> levelOf :: Ann Expr a Level –> Level
> levelOf (level, e) = level

Identifying MFEs

It is simple to identify MFEs, by comparing the level number of an expression
with the level of its context. This requires an auxiliary parameter to give the level
of the context:

> identify MFEs_e :: Level –> AnnExpr (Name, Level) Level –> Expr (Name,
Level)

> identifyMFEs e = identify MFEs_e 0 e

Once an MFE e has been identified, our strategy is to wrap it in a trivial let
expression of the form let v = e in v; but not all MFEs deserve special treatment in
this way. For example, it would be a waste of time to wrap such a let expression
around an MFE consisting of a single variable or constant. Other examples are given
below, in the section on redundant full laziness. We encode this knowledge of which
MFEs deserve special treatment in a function notMFECandidate:

> notMFECandidate (AConst k) = True
> notMFECandidate (AVar v) = True
> notMFECandidate – = False – – For now, everything else is a candidate

identifyMFEs_e works by comparing the level number of the expression with that of
its context. If they are the same, or for some other reason the expression is not
a candidate for special treatment, the expression is left unchanged, except that
identifyMFEs_e1 is used to apply identifyMFEs_e to its subexpressions; otherwise we
use transformMFE to perform the appropriate transformation:

> identify MFEs_e cxt (level, e)=
> if (level = = cxt  notMFECandidate e)

*The dependency analysis phase referred to earlier could eliminate such definitions.
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> then e ′
> else transformMFE level e ′
> where
> e ′ = identifyMFEs_e1 level e

> transformMFE level e = ELet nonRecursive [(( ″ v ″,λεϖελ), e)] (EVar ″ v ″)

identifyMFEs_e1 applies identifyMFEs_e to the components of the expression. Its
definition is straightforward, and is given in Appendix I.

Renaming and floating

The renaming pass is entirely straightforward, involving plumbing a name supply
in a similar manner to collectSCs. The final pass, which floats let(rec) expressions out
to the appropriate level, is also fairly easy.

Complete definitions for rename and float are given in Appendix I.

AVOIDING REDUNDANT FULL LAZINESS

Full laziness does not come for free. It has two main negative effects:

1. Multiple lambda abstractions, such as λ x–> λ y– >E turn into one supercombi-
nator under the simple scheme, but two under the fully lazy scheme. Two
reductions instead of one are therefore required to apply it to two arguments,
which may well be more expensive.

2. Lifting out MFEs removes subexpressions from their context, and thereby
reduces opportunities for a compiler to perform optimizations. Such optimiza-
tion might be partially restored by an interprocedural analysis which figured
out the contexts again, but it is better still to avoid creating the problem.

These points are elaborated by Fairbairn 9 and Goldberg. 10 Furthermore, they point 
out that often no benefit arises from lifting out every MFE from every lambda
abstraction. In particular

1. If no partial applications of a multiple abstraction can be shared, then nothing
is gained by floating MFEs out to a point between the nested abstractions.

2. Very little is gained by lifting out an MFE that is not a reducible expression.
No work is shared thereby, though there maybe some saving in storage because
the closure need only be constructed once. This is more than outweighed by
the loss of compiler optimizations caused by removing the expression from its
context.

3. Lifting out an MFE which is a constant expression (i.e. level 0), thereby adding
an extra parameter to pass in, is inefficient. It would be better to make the
constant expression into a supercombinator.

These observations suggest some improvements to the fully-lazy lambda lifter, and
they turn out to be quite easy to incorporate:
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1. If a multiple abstraction is not separated into separate ELam constructors by
the separateLam pass, then all the variables bound by it will be given the same
level number. It follows that no MFE will be identified which is free in the
inner abstraction but not the outer one. This ensures that no MFEs will be
floated out to some point between two abstractions represented by a single
ELam constructor.

All that is required is to modify the separateLams pass to keep in a single
ELam constructor each multiple abstraction of which partial applications cannot
be shared. This sharing information is not trivial to deduce, but at least we
have an elegant way to use its results by modifying only a small part of our
algorithm.

This is one reason why we chose to allow ELam constructors to take a list of
binders.

2. identifyMFEs use a predicate notMFECandidate to decide whether to identify a
particular subexpression as an MFE. This provides a convenient place to add
extra conditions to exclude from consideration expressions which are not red-
exes. This condition, too, is undecidable in general, but a good approximation
can be made in many cases; for example (+ 3) is obviously not a redex.

3. When identifying MFEs it is easy to locate those that are constant expressions,
because their level numbers are zero. We can ensure rather neatly that it is
turned into a supercombinator by the subsequent lambda-lifting pass, by making
it into a lambda abstraction with an empty argument list. This was the other
reason why we decided to make the ELam constructor take a list of arguments.
The modification affects only identify MFEs_e, thus:

> identify MFEs_e cxt (level, e) =
> if (level == cxt  notMFECandidate e) then
> e ′
> else if (level > 0) then
> ELet nonRecursive [(( ″ v ″, level), e ′)] (EVar ″ v ″)
> else
> ELam [] e ′
> where
> e ′ = identify MFEs_e1 level e

RETROSPECTIVE AND COMPARISON WITH OTHER WORK

It is interesting to compare our approach with Bird’s very nice paper 2 which addresses
a similar problem. Bird’s objective is to give a formal development of an efficient
fully-lazy lambda lifter, by successive transformation of an initial specification. The
resulting algorithm is rather complex, and would be hard to write down directly,
thus fully justifying the effort of a formal development.

In contrast, we have expressed our algorithm as a composition of a number of
very simple phases, each of which can be specified readily and written down directly.
The resulting program has a constant-factor inefficiency, because it makes many
traversals of the expression. This is easily removed by folding together successive
passes into a single function, eliminating the intermediate data structure. Unlike
Bird’s transformations, this is a straightforward process.
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Our approach has the major advantage that it is modular. This allows changes to
be made more easily. For example, it would be a simple matter to replace the
lambda lifter with one which performed lambda lifting in the way suggested by
Johnsson, 5 whereas doing the same for Bird’s algorithm would be a major exercise.
Similarly, it proved rather easy to modify the algorithm to be more selective about
where full laziness is introduced.

The main disadvantage of our approach is that we are unable to take advantage
of one optimization suggested by Hughes, namely ordering the parameters to a
supercombinator to reduce the number of MFEs. The reason for this is that the
optimization absolutely requires that lambda lifting be entwined with the process of
MFE identification, whereas we have carefully separated these activities! Happily
for us, the larger MFEs created by this optimization are always partial applications,
which should probably not be identified as MFEs because no work is shared thereby.
Even so, matters might not have fallen out so fortuitously, and our separation of
concerns has certainly made some kinds of transformation rather difficult.
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APPENDIX I: OMITTED CODE

This appendix contains the definitions of functions omitted from the main paper.

abstract

We begin with the function abstract:

> abstract (_, AConst k) = EConst k
> abstract (_, AVar v) = EVar v
> abstract (_, AAp el e2) = EAp (abstract e1 ) (abstract e2)

> abstract (free, ALam args body) =
> foldl EAp sc (map Evar fvList)
> where
> fvList = setToList free
> sc = ELam (fvList + + args) (abstract body)

> abstract (_, ALet isRec defns body) =
> Elet isRec [(name, abstract body) I (name, body) < – defnsl (abstract body)

separateLams

Next comes the code for separateLams:

> separateLams (EConst k) = EConst k
> separateLams (EVar v) = EVar v
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> separateLams (EAp e1 e2) = EAp (separateLams e1) (separateLams e2)
> separateLams (ELam args body) = foldr mkLam (separateLams body) args
> where
> mkLam arg body = ELam [arg] body
> separateLams (ELet isRec defns body) =
> ELet isRec [(name, separateLams rhs)  (name, rhs) <– defnsl
> (separateLams body)

identifyMFEs_e1

identifyM FEs–e1 applies identifyMFEs_e to the components of the expression:

> identify MFEs_e1 :: Level – > Ann Expr ′ (Name, Level) Level –> Expr (Name,
> Level)
> identify MFEs_e1 level (AConst k) = EConst k
> identify MFEs_e1 level (AVar v) = EVar v
> identify MFEs_e1 level (AAp el e2) =
> EAp (identify MFEs_e level e1 ) (identify MFEs_e level e2)

When it encounters a binder it changes the ‘context’ level number carried down as
its first argument:

> identify MFEs_e1 level (ALam args body) =
> ELam args (identify MFEs_e argLevel body)
> where
> (–, argLevel) = head args
>
> identify MFEs_e1 level (ALet isRec defns body) =
> ELet isRec defns ′ body ′
> where
> body ′ = identify MFEs_e level body
> defns ′ = [ ((name, rhsLevel),identify MFEs_e rhsLevel rhs)
>  ((name, rhsLevel),rhs) <- defns]

rename

The function rename gives unique names to the variables in an expression. We
need an auxiliary function rename_e  to do all the work:

> rename e = e ′ where (–, e ′) = rename_e [] initialNameSupply e

> rename_e :: Assn Name Name –> NameSupply –> Expr (Name,a)
> –> (NameSupply, Expr (Name, a))
> rename_e env ns (EConst k) = (ns, EConst k)
> rename_e env ns (EVar v) = (ns, EVar (assLookup env v))
> rename_e env ns (EAp e1 e2) =
> (ns2, EAp e1 ′ e2 ′)
> where
> (ns1, e1 ′) = rename_e env ns e1
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> (ns2, e2 ′ = rename_e env ns1 e2
> rename_e env ns (ELam args body) =
> (ns1, ELam args ′ body ′)
> where
> (ns1, args ′) = mapAccuml newBinder ns args
> (ns2, body ′) = rename_e (assocBinders args args ′ + + env) ns1 body

> rename_e env ns (ELet isRec defns body) =
> (ns3, ELet isRec (zip binders ′ rhss ′) body’)
> where 
> (ns1, body ′) = rename_e env ′ ns body
> binders = bindersOf defns
> (ns2, binders ′) = mapAccuml newBinder ns1 binders
> env ′ = assocBinders binders binders’ ++ env
> (ns3, rhss ′) = mapAccuml (rename_e rhsEnv) ns2 (rhssOf defns)
> rhsEnv  isRec = env ′
>  not isRec = env

newBinder is just like newName, but works over (Name, a) binders:

> newBinder ns (name, info) =
> (ns1, (name ′, info)) where (ns1, name ′) = newName ns name

assocBinders builds an association list between the names inside two lists of (Name,
a) binders:

> assocBinders :: [( Name, a)] –> [( Name,a)l –> Assn Name Name
> assocBinders binders binders ′ = zip (map fst binders) (map fst binders ′)

float

The final pass floats let(rec) expressions out to the appropriate level. The main
function has to return an expression together with a list of definitions which should
be floated outside the expression:

> float_e :: Expr (Name, Level) –> (FloatedDefns, Expression)

The top-level function float uses float_e to do the main work, but if any definitions
are floated out to the top level, float had better install them at this level, thus:

> float e = install floatedDefns e ′ where (floatedDefns, e ′) = float_e e

There are many possible representations for the FloatedDefns type, and we shall
choose a simple one, by representing the definitions being floated as a list, each
element of which represents a group of definitions, identified by its level, and
together with its lsRec flag:

> type FloatedDefns = [(Level, lsRec, [Defn Name])]
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Since the definitions in the list may depend on one another, we add the following
constaint: a definition group may depend only on definition groups appearing earlier
in the FloatedDefns list.

It is now possible to define install, which wraps an expression in a nested set of
Iet(rec) s containing the specified definitions:

> install :: FloatedDefns –> Expression –> Expression
> install defnGroups e =
> foldr installGroup e defnGroups
> where
> installGroup (level, isRec, defns) e = ELet isRec defns e

We can now proceed to a definition of float_e. The cases for variables, constants
and applications are straightforward:

> float_e (EConst k) = ([], EConst k)
> float_e (EVar v) = ([], EVar v)
> float_e (EAp e1 e2) = (fall ++ fd2, EAP e1 ′ e2 ′)
> where
> (fall, e1 ′) = float_e e1
> (fd2, e2 ′) = float_e e2

How far out should a definition be floated? There is more than one possible choice,
but here we choose to install a definition just inside the innermost lambda which
binds one of its free variables. *

> float_e (ELam args body) =
> (outerLevelDefns, ELam args ′ (install thisLevelDefns body’))
> where
> args ′ = [arg  (arg, level) <– args]
> (_,thisLevel) = head args --Extract level of abstraction
> (floatedDefns, body’) = float_e body
> thisLevelDefns = filter grouplsThisLevel floatedDefns
> outerLevelDefns = filter (not. grouplsThisLevel) floatedDef ns
> grouplsThisLevel (level, isRec, defns) = level >= thisLevel

The case for a let(rec) expression adds its definition group to those floated out from
its body, and from its right-hand sides. The latter must come first, since the new
definition group may depend on them:

> float_e (ELet isRec defns body) =
> (rhsFloatDefns ++ [thisGroup] ++ body FloatDefns, body ′)
> where
> (body FloatDefns, body ′) = float_e body
> (rhsFloatDefns, defns ′) = mapAccuml float_defn [] defns

*Recall that all variables bound by a single ELam construct are given the same level
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> thisGroup = (thisLevel, isRec, defns ′)
> (_,thisLevel) = head (bindersOf defns)
>
> float_defn floatedDefns ((name,level), rhs) =
> (rhsFloatDefns + + floatedDefns, (name, rhs ′))
> where
> (rhsFloatDefnst rhs ′) = float_e rhs

mapAccuml

Finally, here is the full definition of utility function mapAccuml:

> mapAccuml :: (b –> a–> (b, c)) -- Function of element of input list
> -- and accumulator, returning new
> -- accumulator and element of result

- -  l i s t
> –> b -- Initial accumulator
> –> [a] -- Input list
> –> (b, [c]) -- Final accumulator and result list

< mapAccuml f b [] = (b, [])
> mapAccuml f b (X:XS) = (b2, x ′: xs  ′)

where (b1, x ′) = f b x
> (b2, ΞΣ′) = mapAccuml f b1 xs

APPENDIX II: INTERFACE TO Utilities MODULE

This is the text of the interface for the Utilities module. This interface is imported by
the line import Utilities in the LambdaLift module. The interface can be deduced by
the compiler from the text of the Utilities module; indeed the interface below is
exactly that produced by the compiler, apart from some reordering and comments.

The first line introduces and names the interface:

> interface Utilities where

Next we have declarations for the Set type. Notice that the data type Set is given
with an abbreviated data declaration, which omits the constructor(s). This makes the
Set type abstract since the importing module can only build sets and take them apart
using the functions provided in the interface.

> data Set a
> setDifference
> setlntersect
> setUnion
> setUnionList
> setToList
> setSingleton
> setEmpty
> setFrom List

:: (Ord a) => (Set a) –> (Set a) –> Set a
:: (Ord a) => (Set a) –> (Set a) –> Set a
:: (Ord a) => (Set a) –> (Set a) –> Set a
:: (Ord a) => [Set al –> Set a
:: (Set a) -> [a]
:: a–> Set a
:: Set a
:: (Ord a) => [a] –> Set a
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Bags, association lists and the name supply follow similarly. Notice that association
lists are declared with a type synonym, so they are not abstract.

> data Bag a
> bagUnion ::
> baglnsert ::
> bagToList
> bagFrom List ::
> bagSingleton
> bagEmpty

::

(Bag a) –> (Bag a) –> Bag a
a –> (Bag a) –> Bag a
(Bag a) -> [a]
[a] -> Bag a
a –> Bag a
Bag a

::
::

> type Assn a b = [(a, b)]
> assLookup :: (Eq a) => [(a, b)] –> a –> b

> data NameSupply
> initialNameSupply :: NameSupply
> newName :: NameSupply –> [Char] –> (NameSupply, [Char])

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.
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