
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 22(4), 317–348 (APRIL 1992)

ARTK-M2: A Kernel for Ada Tasking
Requirements: an Implementation and an

Automatic Generator

JORGE L. DÍAZ-HERRERA , RONALD D. GRAFT AND DOUGLAS B. RUPP
Department of Computer Science, George Mason University, 4400 University Drive,

Fairfax, Virginia 22030-4444, U.S.A.

SUMMARY

A run-time kernel, ARTK-M2, supporting Ada tasking semantics is discussed; full support for task
creation, synchronization, communication, scheduling, and termination is provided, together with all
options of the Ada rendezvous. An implementation in Modula-2 is presented and a method for automati-
cally translating Ada programs into semantically equivalent Modula-2 programs with corresponding
kernel calls is introduced. A parser generator and an attribute grammar were used for the automatic
translation. A subset of the Ada Compiler Validation Capability was processed to test the implementation
and to illustrate the translation mechanism. The kernel is applicable to the study of real-time control
systems; it can also serve as a baseline for studying implementation alternatives of Ada concepts, such
as new scheduling algorithms, and for analysing new language constructs. Work is under way to
implement some of the changes to the Ada tasking model being proposed as a result of the language
revision (Ada9X). Finally, through proper extensions, ARTK-M2 can form an integral part of program-
ming tools such as an Ada compilation system and a distributed kernel for multi-processing environments.

KEY WORDS Run-time kernels Ada tasking Modula-2 Parser generators

INTRODUCTION

Sequential and concurrent languages define a spectrum; at the high-end, a number
of high-level languages provide constructs for specifying concurrent execution (e.g.
Ada l); and at the low-end we have languages with no concurrent programming
constructs but access to operating systems services used to emulate concurrency.
Concurrent programming languages do require special run-time support, and as a
result, whether or not processes are executed in true or apparent concurrency
becomes totally transparent to the programmer. Modula-2 2 is somewhere in the
middle of such a range; it provides primitives useful for implementing concurrency
but does not support a full set of high-level features. Although this has the disadvan-
tage of requiring the programmer to provide implementation details of the underlying
model of concurrency, it makes the language not only easier to implement but ideal
for writing such run-time support systems or kernels.

In this paper we describe ARTK-M2. a run-time kernel, written in Modula-2 that
implements Ada tasking semantics. All options of the

0038–0644/92/040317–32$16.00
© 1992 by John Wiley & Sons, Ltd.

Ada rendezvous including

Received 26 February 1990
Revised 20 November 1991

318 J. L. DÍAZ-HERRERA, R. D. GRAPT AND D. B. RUPP

conditional entry and accept calls, task priorities, family of entries, parameter
passing, and the delay and terminate alternatives of the select statement are provided.
This kernel can be used as a basis for programming concurrent applications using
the Ada tasking model by placing kernel calls at the appropriate places in a Modula-
2 program. The system can also be used as an initial run-time system for an Ada
compilation environment. We illustrate this point here by automatically translating
Ada tasking programs into their semantically equivalent Modula-2 programs using
a parser generator. Finally, ARTK-M2 provides a useful workbench to investigate
implementation and other issues 3–9 which can be studied both quantitatively and
qualitatively. This is specially relevant in the light of Ada language revisions 10 and
for the design of new languages in general.

THE ADA TASKING MODEL

A sequential Ada program consists solely of sequential actions executed as a single
sequential process running on a single logical processor. Concurrent Ada programs
consist of multiple sequential processes that can be executed simultaneously in the
sense that each runs on its own logical processor. Each concurrent Ada process is
defined by a task program unit. An Ada task, which is the unit of logical concurrency,
proceeds independently except at points where it needs to synchronize with other
tasks. Tasks may be implemented on multicomputers, multiprocessors, or with
processor multiplexing on a single physical processor; furthermore, a single task may
be implemented as executing in different physical processors running in parallel. An
important notion is that the actual implementation approach taken by an Ada
compilation system is hidden from the programmer and does not have an effect on
the meaning of a correct concurrent Ada program.

Program and task structure

The notion of a textually monolithic program has disappeared from Ada. An Ada
‘program’ is a hierarchical collection of library units, secondary units and subunits.
Program units, Ada’s basic building blocks, correspond to subprograms, packages
and tasks; where subprograms include both functions and procedures. All Ada
program units are defined in the same structural way as consisting of two parts,
namely a specification and an accompanying body. The syntax is oriented toward
supporting the physical segmentation of software; separately compiled units are
collectively referred to as compilation units. This structure is illustrated graphically
using the HMD notation l 1 in Figure 1. More specifically, a library unit is a separately
compiled subprogram or package specification, a secondary unit is the corresponding
separately compiled body of a library unit, whereas a subunit is the separately
compiled body of a local program unit nested in a secondary unit or in another
subunit. This scheme of separately compiled bodies yields a tree-like hierarchy.
Library units are imported into a compilation unit; this defines a linear partial
ordering of units, or layers of abstractions.

Items defined in the specification part of a program unit are visible, i.e. exported,
outside the unit, whereas items defined in a program unit body are totally hidden
and not accessible from the outside. A unit’s execution semantics is defined by the
statements in the unit body. A unit specification defines an interface separating the

ARTK-M 2 319

Figure 1. Ada library units and task structure

corresponding body from the rest of the software. and includes the unit name and
an optional list of exported items; in addition, a package specification may include
a non exported private section. The purpose of this private section is to provide non-
exported information needed to compile the specification separate from its body and
from other units that use it. A task specification defines the interface of the task
with other tasks and with the ‘main program’. Although the word ‘program’ is not
part of the Ada reserved words list, the idea of a main procedure still persists; it
actually takes the form of a subprogram library unit, and acts as if called by some
enclosing environment task. Tasks cannot be library units, and thus must be declared
inside another unit. If the task specification includes the word type, then it defines
a task type. An object of a task type designates a task having the entries, if any, of
the corresponding task type, and its body. A task specification without the word
type defines a single task object of an anonymous task type; this type is declared by
the compiler.

Figure 2 illustrates task declarations. In this example, the library unit Dining_Philo-
sophers declares two (anonymous type) tasks, Forks and Chairs, and an array of Num
of task type Philosopher. The corresponding proper bodies are submitted separately
as three subunits as indicated by the body stubs in lines 24–26. Excerpts of these
subunits are presented in Figure 3.

Task activation and termination

In Ada, task creation is done implicitly by the run-time system during the elabor-
ation of a task object of the corresponding type. Elaboration refers to the run-time
processing of declarations. The creation of the environment task and the ‘main
subprogram’ is also the responsibility of the run-time system. Elaboration of a task
specification establishes the corresponding task type. The activation of a task causes
itself the elaboration of the declarative part of a task body, which may in turn
contain other (local) tasks, thus forming a hierarchy of (sub) tasks. During task
activation, tasks are initiated for execution after the elaboration of their declarative
part is complete.

Each created task depends on a Master which may be another task, a currently
executing block or subprogram, or a library package. Blocks behave like in-line
anonymous parameterless procedures. Notice that a local package is never a Master.

320 J. L. DÍAZ-HERRERA, R. D. GRAFT AND D. B. RUPP

1 with CALENDAR, TEXT_IO ;
2 use CALENDAR, TEXT_ IO;
3 procedure Dining_Philosophers is . . .
10 task Forks is
11 entry Pick_Up (Fork) ; -- a family of entries
12 entry Put_Down (F : Fork) ;
13 end Forks;
14
15 task Chairs is
16 entry Give (Me : out aChair) ;
17 entry Here_is (My : aChair) ;
18 end Chairs ;
19
20 task type Philosopher is
21 entry Birth (Me : Name; Life_Time : DURATION := 0.0) ;
22 end Philosopher ;
23
24 task body Forks is separate;
25 task body Chairs is separate;
26 task body Philosopher is separate;
27 begin -- tasks "Forks" and "Chairs" activated here
28 declare
29 Dinner : array (Num) of Philosopher ;
30 begin-- All " Dinner (1..Num)" tasks activated here
31 Dinner (1) .Birth ("Hegel", 2.0* years);
32 Dinner (2) .Birth ("Kant", 1.0 * years);
33 Dinner (3) .Birth ("Plato", 3.0 * years);
34 Dinner (4) .Birth ("Pascal", 1.5 * years);
35 Dinner (5) .Birth ("Marx", 2.5 * years);
36 end; -- Block waits for all "Dinner (1..Num)" tasks to terminate
37 end Dining Philosophers ; - subprogram waits for “Forks" and “Chairs" tasks to terminate

Figure 2. Ada task declarations example

Declared or static tasks depend on the Master who created them. Allocated or
dynamic tasks depend on the Master containing the corresponding access type.
Control does not leave a Master until all its depending tasks have terminated. In
general, a Master terminates if it is completed and it has no dependent tasks or all
its dependent tasks have terminated. The semantics of completions are somewhat
more complicated. A Master is complete if any of the following holds: it has reached
the last executable statement of its body, it has raised an unhandled exception, it
has finished executing an exception handler, or it has executed a RETURN statement
(for subprogram Masters), a RETURN, EXIT or GOTO statement (for block Masters),
or a TERMINATE statement (for task Masters). These notions are illustrated in Figures
2 and 3.

Tasks interaction

Tasks interact with one another via a non-symmetric mechanism whereby tasks
agree to ‘meet at a given place’, specified by the called task, and controlled by a
self-enforcing delay protocol of tasks waiting on other tasks. That is, each task agrees
to enter a ‘busy waiting’ loop if it needs to wait and it decides by itself when to
leave this loop. Inter-task synchronization and communication occur at explicitly
specified rendezvous points when a connection is made between two tasks, at which
time information may be exchanged as specified by the called task interface. The
asymmetry in the rendezvous has been noted by several authors 12’13 and it refers to

ARTK-M 2 321

40 separate (Dining_Philosophers)
41 task body Forks is . . .
43 State : array (Num) of Status := (others => Free);
44 Left : constant array (Num) of Num :- (5, 1, 2, 3, 4);
45 begin)
46 loop select
47 accept Put_Down (F : Fork) do State (F):= Free; State (Left(F)) := Free; end ;
48 or when State (1) = Free and State (Left(1)) = Free
49 => accept Pick_Up (1) do State (1) :- In_Use; State (Left(1)) := In_Use; end ;
50 or when State (2) = Free and State (Left(2)) = Free . . .
58 or terminate; -- makes task complete when selected
59 end select ;
60 end loop;
61 end Forks ;
62
63 separate (Dining_Philosophers)
64 task body Chairs is . . .
66 begin
67 loop select
68 when Next_Chair <= Num' LAST => accept Give (Me: out aChair) do . . .
69 or when Next_Chair >= Num’FIRST ‘> accept Here_is (My : aChair) do . . .
72 or terminate; -- makes task complete when selected
73 end select;
74 end loop;
75 end Chairs ;
76
77 separate (Dining_Philosophers)
78 task body Philosopher is
79 type Stages is (Unborn, Hungry, Eating, thinking, Starved, Dead);
80 DoB : TIME; -- date of birth
81 DoD : DURATION :- 0.0; -- date of death
82 Status : Stages := Unborn; . . .
86 begin
87 PUT_LINE ("A philosopher was conceived at " & INTEGER'IMAGE (INTEGER (SECONDS (CLOCK)) 1);
88 accept Birth (Me : Name; Life_Time : DURATION := 0.0) do . . . end Birth;
93 Chairs.Give (Me => My_Chair);
94 PUT_LINE (My_Name & " got chair # " & INTEGER'IMAGE (My_Chair)) ; . . .
96 loop Age := CLOCK - DoB;
97 case Status is
98 when Unborn => PUT LINE ("**ERROR**") ; raise TASKING_ERROR;
99 when Thinking => PUT_LINE (My_Name & " Thinking"); Status := Hungry;
100 delay DURATION (DoD / 100); -- better use random num. generator
101 when Hungry => PUT_LINE (My_Name & " Hungry") ;
102 select
103 Forks.Pick_Up (My_Chair); Status := Eating;
104 or delay DURATION (DoD) ; Status := Starved;
105 and select;
106 when Eating => PUT_LINE (My_Name & " Eating"); delay DURATION (DoD / 80);
107 Forks.Put_Down (My_Chair); Status := Thinking;
108 when Dead => PUT_LINE (My_Name & "Dead");
109 Forks.Put_Down (My_Chair); Chairs. Here_is (My_Chair);
110 exit; -- exits the loop !
111 when Starved => PUT_LINE (My_Name & " Starved to death!"); Status := Dead;
112 end case;
113 if Age >= DoD
114 then Status := Dead; PUT_LINE (My_Name & " Died of natural Causes "); end if;
115 end loop;
116 PUT_LINE (My_Name & " buried ") ; -- task completed here !
l17 end Philosopher ;

Figure 3. Ada task body example

322 J. L. DÍAZ-HERRERA, R. D. GRAFT AND D. B. RUPP

the fact that only the caller knows the identity of the rendezvous partner. The callee
must accept unidentified callers based upon an established protocol, and selective
acceptance of a particular task is thus prevented. The semantics of the various
tasking statements are discussed below; the Ada Language Reference Manual (LRM)
or any of several textbooks 14’15 may be consulted for a more complete discussion.

Ada supports an explicit task communication mechanism in the form of an essen-
tially procedural interface between exactly two tasks at a time. A task can call entries
of another task. Upon accepting such calls a connection is established between the
two tasks. A task entry defines a communication path and flow of data between the
task defining it and any other calling task (see Figure 4). An entry may be called
from the ‘main program’ since it is considered a subprogram called from some
environment task. Entry calls are queued FIFO for each corresponding entry declar-
ation. Hardware interrupts are also treated as entry calls by associating with it an
address representation clause; such entries can still be called directly by other tasks!
Like subprograms, entries can be overloaded; furthermore, most of the rules appli-
cable for procedure declarations and procedure calls also apply to entry declarations
and entry calls.

An entry’s meaning is established by one or more accept statements inside the
body of the called task. A special ‘critical section’ of the accept code defines a
sequence of actions to be executed in mutual exclusion during a rendezvous. Control
may only leave the rendezvous by reaching its end, executing a return statement, or
raising an exception. Accepting calls may be fully synchronous or asynchronous, i.e.

 execution time execution

Figure 4. Entries and simple rendezvous

ARTK-M 2 323

deterministic or non-deterministic. Alternative accepts within a select statement are
non-deterministic.

The Ada rendezvous provides for many variations. Let us consider first the case in
which a calling task executes an entry call and the callee task executes a corresponding
accept. This simple rendezvous is illustrated in Figure 4. If the entry call precedes
in time the accept statement, the ‘caller’ is queued indefinitely until the accept is
made. If the accept statement precedes the entry call, the ‘callee’ is indefinitely
blocked until an entry call is made. At the time an entry call is accepted, any
parameters of mode ‘in’ or ‘in out’ are read-in and the called task executes the
rendezvous code while the calling task waits for its conclusion. At the conclusion of
the rendezvous, any updated parameters of mode ‘out’ or ‘in out’, are passed back
to the calling task which is then removed from the entry queue, and its execution
permitted to proceed concurrently again.

Other variations of the simple rendezvous are possible both on the side of the
caller and on the side of the callee. On the one hand, the calling task can make
conditional and timed calls. The conditional entry call, specified by an else alternative
in a select statement, allows the code associated with this alternative to be selected
if the call is not accepted ‘immediately’, i.e. a check is made to see if a corresponding
accept has been executed, in which case the rendezvous takes place, and if not the
call is cancelled. A timed entry call, specified by a delay alternative in a select
statement, works in a similar fashion; the associated code is selected if the call is
not accepted within at least the specified time period, the rendezvous takes place
otherwise.

On the other hand, the accepting task can have various forms of a selective wait.
In general, a selective wait means that a task may accept an entry call from a number
of possible entries and optionally under certain circumstances specified as boolean
expressions. These expressions, known as guards and associated with accepts state-
ments, when evaluating to TRUE or when are not present, define an open accept
alternative. When there are multiple open alternatives, one will be selected if the
corresponding rendezvous can be immediately executed (the LRM does not specify
which open alternative is selected). A delay alternative functions much as described
above for the timed entry call. If an entry call has been made on the corresponding
entry, the rendezvous is executed immediately; otherwise, the accepting task is
blocked for a specified time period awaiting an entry call. If at the expiration of the
delay time an entry call has not been made, the task proceeds without further delay
and the select statement is completed. An else alternative behaves similarly to the
conditional entry call above. A select statement may also contain a terminate altern-
ative, which when selected will render the task complete.

As we can see, the semantics of the select statement is complex. For convenience,
a summary of the select statement is listed in Table I.

KERNEL DESCRIPTION

The model we used to develop our kernel is based on a distributed kernel. 16 Some
modifications were made to this message passing-based model and only those features
required for a uniprocessor environment were included. The original model shows
that nine exported kernel services are sufficient to handle the Ada task dynamics
and inter-task communication. In addition, a procedure, StartTasks, was added in

324 J. L. DÍAZ-HERRERA, R. D. GRAFT AND D. B. RUPP

Table I. Select statement semantics summary

1. There must be at least one accept alternative
2. At most one of the following may also appear

(a) a terminate alternative, or
(b) an else part, or
(c) one or more delay statements.

3. A select alternative is open if either:
(a) it does not have a guard (see below), or
(b) it has a guard and the guard evaluates to true.

4. Before alternatives are considered, the following are evaluated in order:
(a) guards (in an unspecified order), and
(b) delay expression associated with open alternatives.

5. Open accept alternatives are considered first:
(a) if rendezvous is possible, then one of the corresponding accept alternatives is selected

arbitrarily (including more than one alternative for the same entry).
(b) if rendezvous is not possible, and no else part does exist, the task is suspended until a

call is made to an open accept alternative.
6. Open delay alternatives are considered next:

if several open delay alternatives exist, the one with the smallest duration is selected, and if
more than one exists with the same duration, one is chosen arbitrarily. (Negative delay
durations are treated as zero).

The following additional rules further specify the semantics for the else part and the selection of
terminate alternatives.
7. Selective wait with an else part:

(a) else alternative selected if and only if no accept statement can be selected ‘immediately’.
(b) else alternative selected if no open alternatives exist. In fact it is an error if there are no

open alternatives and no else; PROGRAM_ERROR is raised.
8. An open terminate alternative is selected if and only if

(a) the task’s Master is complete, and
(b) any sibling (other tasks with same Master) is either terminated, or potentially terminated

(i.e. waiting to terminate).

order to initially place the tasks into the ready queue. The small number of pro-
cedures is a result of combining all entry call and accept variants into only two
‘control’ units. The simple, conditional, and timed entry calls are combined into a
single pruned entry call statement. The statement is implemented through a single
procedure, EntryCall. Similarly, a pruned selective wait construct is used to represent
the variations on the accept statement. Because of the greater complexity of the
accept statement, two kernel procedures, AcceptBegin and AcceptEnd are required
to implement the pruned selective wait. Additional kernel procedures are used to
elaborate, activate, terminate, abort, delay, and transmit information on the task
hierarchical structure. Task states and state transitions are shown in Figure 5;
reference to this diagram and a study of the example and test programs presented
later should clarify uncertainties in how the kernel is accessed and used.

Tasks are created in accordance with Ada semantics and task names assigned in
the order of creation. The semantics of task elaboration and activation, defined
earlier, are specified in the Ada LRM Section 9.3. Recall that the activation of a
declared task starts after elaboration of the declarative part of the enclosing unit;
formal elaboration will include a call to ARTK-M2 procedure ElaborateTask. This
will be followed by a call to ActivateTask and, to indicate a child/parent relationship,
by a call to ChildTask.

ARTK-M 2 325

Figure 5. Task state transitions and kernel services

Tasking semantics and implementation details

The general implementation approach to the ARTK-M2 is as follows: each task
is implemented in one-to-one correspondence with a Modula-2 coroutine. A virtual
processor for each task is achieved by interleaved execution using the Modula-2
TRANSFER procedure. A non-pre-emptive scheduling algorithm is implemented with
a context switch initiated each time ARTK-M2 services are requested. An alternative
pre-emptive scheduling algorithm is implemented with a context switch initiated by
time-slicing as well as by ARTK-M2 service requests. Access to ARTK-M2 services
is exclusive y through the set of procedures listed above.

The ARTK-M2 has total responsibility for task generation, termination, schedul-
ing, and inter-task communication and synchronization. Task termination and task
abort are two issues of particular concern. It is not clear that all eventualities
have been considered in the Ada LRM. The ARTK-M2 implements a termination
algorithm based upon the LRM specifications, presented and discussed in a previous
report; 17 this report also provides additional details and interface specification for
each exported ARTK-M2 monitor procedure.

Data types and structures

The principal data structures used in the ARTK-M2 are four as follows (details
found in Reference 17): (1) the task structure (TCB Table), (2) the ready queue,
(3) the delay queue and (4) the busy queue. A task table, indexed by task id and
implemented as an array of pointers to a record type defining a task control block
(TCB), provides all information required for task management. The storage of entry
parameters in the TCB is after the XINU operating system. 18 The ready queue is a
simple priority queue list using an ARRAY [1.. Maximum Priority] of a FIFO queue type.
The array index serves as the task priority and all tasks of equal priority are in the

326 J. L. DÍAZ-HERRERA, R. D. GRAFT AND D. B. RUPP

same FIFO queue. Although a more thorough discussion can be found in our earlier
report, 17 it is noted here that implementation of the abstract type Queue proved to
be crucial to the overall efficiency of the ARTK-M2. The baseline approach uses
dynamically allocated nodes in a linked list structure. Subsequent testing showed
this to be a particularly poor selection.

Task entry queues are also conventional FIFO queues using simple FIFO schedul-
ing of the same type as the ready queue, since the Ada LRM specifies that priorities
not be recognized in rendezvous scheduling. Simple delays are implemented using
an ARRAY[1.. MaxTasks] of Time. The task name serves as the array index; the array
entry is the task release time (release time = current time + delaytime.) The array
is searched at every context switch and all tasks whose release time is less than or
equal to the current time are inserted in the corresponding ready queue. The former
is consistent with the LRM which requires delays to be ‘at least’ the duration
specified. Linear search is used since the number of delayed tasks will probably be
small. In addition to timing through tick counting, using the timer interrupt trapped
and used to update the ARTK-M2 time, a variation was developed using calls to
the system clock. This technique, while inherently more efficient, can be highly
inaccurate since the ARTK-M2 time is updated only upon entry to the ARTK-M2
dispatcher.

WRITING ADA-LIKE TASKS IN MODULA-2

In what follows we discuss the mapping of Ada tasking programs into their Modula-
2/ARTK-M2 counterparts. This process is illustrated by taking a concurrent Ada
program and converting it into a Modula-2 equivalent program which makes calls
to ARTK-M2 routines. Figure 6 shows the basic scenario for the translation process.
Note that the translation may not be straightforward because all features of sequential
Ada are not available in Modula-2. Each task, including the ‘main program’ is
implemented as a Modula-2 coroutine. The implementation of the main Ada subprog-
ram and environment task are reversed into a ‘main’ task (Task0) spawned from an

Figure 6. Mapping concurrent Ada into ARTK-M2 Modula-2 equivalents

ARTK-M 2 327

environment ‘program’ (module EnvMod), respectively. Figure 7 shows details of a
template module that can be used as a starting point.

A subset of the Ada Compiler Validation Capability (ACVC) test suite for tasks
was processed in order to test the ARTK-M2 implementation. The ACVC tests are
grouped according to the Ada LRM chapters, and into categories according to
whether the test is testing compile-time, run-time or link-time features. The set of
tests corresponding to tasking are found in chapter 9 of the LRM, and only those
tests which are executable were picked; there were 200 plus tests, with an average
length of 200 lines of Ada source code. An automatic translator generated the
corresponding Modula-2/ARTK-M2 programs. This translation process is discussed
next.

Automatic generation

The translation process was based on grammars augmented with procedural
abstractions, attribute grammars, and fed to a parser generator tool (see Figure 8).
To this end, a subset of the Ada syntax is augmented with translation routines
representing semantic actions executed during the parsing process. These routines
actually implement the transformation into Modula-2. The parser generator used
was the Mystro Parser Generator (PARGEN) system. 19 It requires the semantics
associated with the input grammar to be written in Pascal. The development of the
translator proceeded as follows: since PARGEN tries to generate an LALR(l)
parser, it was essential to maintain partial translations in order to collect inherited
attributes and keep to a one pass translation of the Ada source. A good way to do
this was the creation of intermediate data structures, called pseudo-files or psfiles
for short, operated by a set of corresponding I/O routines.

Each record on the semantic stack in the parser contains a pointer to a user-
defined structure, one part of which is a psfile. A frame on the stack is associated
with each symbol in the RHS of a grammar rule. Therefore partial translations of
previously scanned code can be combined with the current code and passed along.
Three instances of psfiles were used. One such structure is used to keep parts of the
source code currently being processed, but which have not been reduced as yet.
Another psfile structure is used to contain Modula-2 declarations that are generated
during the processing of Ada executable statements. Since these declarations are
generated after the corresponding Ada declarative part has already been processed,
they are saved in order to be emitted later when the declarative and executable parts
are combined. For example, Modula-2 does not allow functions to return composite
types, such types must be returned as pointers whose type declaration is placed on
this psfile. The other psfile structure works in a similar way, but it contains executable
code that must precede to the current statement being parsed.

A similar structure was defined for the symbol table. It contains information
gleaned when the symbol is scanned. Consider for example a task entry-call, which
syntactically looks identical to a procedure call and thus there is one grammar rule
that serves to parse both statements; semantically, however, they are very different,
with the task entry call requiring special handling to generate the appropriate calls
to the ARTK-M2.

Translating the sequential Ada code was straightforward, given that the ACVC
tests for tasking did not contain some of the more obscure sequential constructs,

328 J. L. DÍAZ-HERRERA, R. D. GRAFT AND D. B. RUPP

1 MODULE EnvMod; (* This module is a template for converting Ada concurrent
2 programs into Modula-2 programs with calls to ARTK-M2 service routines *)
3 IMPORT ARTKM 2 ; (*The following are available:(accessed with prefix ARTK.M2)
4 -- Constants
5 InfiniteDelay, Infinite Time, Max Tasks, MaxEntryPerTask, TaskName,
6 MaxChildren, MaximumPriority, NumberOfEntries, PriorityNumber;
7 -- Types
8 EntryName, Time, GuardArray, IndexArray, AcceptData, TaskAllocation, ,
9 EntryData, TaskError, AcceptRecord, TaskRecord, EntryRecord,
10 ProcessPointer, SimulatedTime, CurrentTime;
11 -- Variables
12 Elaborate Task, Activate Task, Delay Task, Start Tasks;
13 -- Procedures
14 EntryCall, AcceptBegin, AcceptEnd, ChildTask, Terminate Task, AbortTask, Busy; *)

15 (*!!! Add other imported modules as required!!!*)

16 CONST TimeSlice = 5; (*!!! Change as desired. !!!*)
11 (*!!! Add other constants as required. !!!*)

18 TYPE Task0ParmsRec = record . . . end; (*!!! Add for each task entry parameter. !!!*)
19 Task0Entry = (Task0Entry1, . . .); (*!!! Add for each task entry. !!!*)
20 (*!!! Add other types as required. !!!*)

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
41
42
43
44
45
46
47
48
49
50
51
52
53

VAR Task0Name : ARTKM2 . TaskName; (*!!! Add for each task. !!!*)
Task0Parms : Task0ParmsRec ; (*!!! Add for each task. !!!*)

(*!!! Add other variables as required. !!!*)
PROCEDURE Task0; (* This procedure represents the Ada "main” program. *)

(* this is a Modula-2 coroutine, and thus must not return *)
BEGIN (* Main program logic here. Permissible kernel calls are:

ARTKM2.EntryCall/.DelayTask/.Busy/.TerminateTask/.AbortTask*)
END Task0;
PROCEDURE Task 1 ; (* This procedure represents a typical Ada task. *)

(* this is a Modula-2 coroutine, and thus must not return *)
BEGIN (* Main program logic here. Possible kernel calls are:

ARTKM2.EntryCall/.AcceptBegin/.AcceptEnd/.DelayTask/Busy
.Terminate Task/.AbortTask;

The following kernel cells CANNOT be made:
ARTKM2.ElaborateTask/.ActivateTask/.ChildTask/.StartTasks
(Ada requires parent task not be active until all of its children are
active, thus these calls can only be made from the main module) *)

END Task1;
(*!!! Repeat above for the desired number of tasks. !!!*)
BEGIN (* Module EnvMod: represents the Ada environment task *)

ARTKM2. ElaborateTask(Task0Name, Task0Name, Task0, 5000, 1, 0);
ARTKM2.ElaborateTask(Task1Name, Task0Name, Task1, 5000, 1, 0);

(* Repeat above for all tasks; use appropriate parameters *)
(* Order is not important but Task O must be elaborated first. *)

ARTKM2.ActivateTask(Task1Name);
(* Activate all tasks that have no children with the above call. *)
(* Then repeat for all tasks that have no grandchildren. Etc. *)
(* This insures that no task starts running until all of its children

are running. Note that Task0 is not explicitly activated.
This is done implicitly by ARTKM2. *)

ARTKM2.ChildTask(Task0Name, Task1Name);
(* Repeat above call as necessary *)

ARTKM2.StartTasks
END EnvMod.

Figure 7. Template Modula-2 concurrent program

ARTK-M 2 329

Figure 8. PARGEN elements

and only those constructs that were in the tests were addressed. Of the 200+ relevant
tests, only about 80 tests were actually processed; most of the non-processed tests
were testing tasking exceptions or using exceptions to implement the test objective;
the current version of ARTK-M2 does not implement exceptions. The addition of
exception handling facilities to Modula-2 programs has been discussed in the litera-
ture; exception handling will be incorporated in the kernel at a later stage. Although
our goal was not to write a translator for Ada, we ended up processing many Ada
constructs not directly related to tasking. One of the more interesting ones is the
Ada block statement, which is translated into an anonymous procedure whose
declaration is moved to the declarative section of the surrounding block and replaced
by a call, as shown in Figure 9.

A task specification containing one or more entries, with or without parameters
is translated as shown in Figure 10, with each entry becoming a record which contains

Figure 9.

330 J. L. DÍAZ-HERRERA, R. D. GRAFT AND D. B. RUPP

a field for every parameter. For simplicity, even parameterless entries generate a
record. All entries for a particular task are then combined into an enumeration type.
Names for the various identifiers are constructed by catenating the task name and
entry name with descriptive suffixes.

A task body with simple rendezvous generates the code in Figure 11.
A call to a task entry relies upon information previously saved when parsing the

task specification, and further, it is necessary to check the symbol table to distinguish
between a call to an entry and call to a procedure, since they can be syntactically
identical. In the translation illustrated in Figures 12 and 13, the parameter in the
call is an ‘in’ parameter, and so must be assigned to the proper field in the Parms
record before the entry call. The first argument in the call to EntryCall is the task
control block index. The second is the index of the entry, i.e. the first entry. The
third argument is the address of the parameter record and the last specifies an
infinite wait for an accept.

Elaboration, activation, and specification of parentchild relationships are the last
things to happen before the tasks are explicitly started. See Figure 7, lines 40–50,
for an illustration.

TEST RESULTS

Qualitative testing for implementation errors used sample test programs from the
Ada Compiler Validation Capability. The C-tests for tasking consist of 206 separate
tests, of these, less than half could be translated in a straight forward manner with
little or no modification. A large portion of the tests (120) contain exception handlers
which have no counter-part in Modula-2, nor are implemented in our kernel;
fortunately most of these tests could be run after some modifications which had no
significant impact on the quality of the test.

For quantitative testing we used a version of the kernel for which no time
dependent activity is permitted. The principle quantitative testing sequence compared

Figure 10.

ARTK-M 2 331

Figure 11.

Figure 12.

Figure 13.

the rendezvous approach with that of monitors for mutual exclusion purposes. The
profiler tool used intercepts the18·2 Hz timer interrupt and examine the processor
registers and program counter. Comparison of these values with addresses obtained
from the linker map were sufficient to infer the percentage of time spent on each
module.

332 J. L. DÍAZ-HERRERA, R. D. GRAFT AND D. B. RUPP

Examination of the results shows that nearly 79 per cent of the run time was spent
in the STORAGE, QUEUE, and PQUEUE modules. The STORAGE module implements
dynamic storage allocation; the only program elements making significant use of
dynamic memory allocation are QUEUE and PQUEUE for the linked list implemen-
tation of task entry queues and ready queue. As remarked earlier, the dynamic
queue implementation was a particularly poor choice. It is also noted that nearly 19
per cent of the run time was spent inside the ARTK-M2 and only 2 per cent in
procedures representing the actual applications code.

Significance

The fractional time spent in productive work is not in itself a reliable indicator of
inherent inefficiency. A more significant number is the ratio of the rendezvous and
semaphore overheads. The theoretical lower bound for the rendezvous/semaphore
overhead ratio is then 3:1, somewhat less than the 3·4:1 measured value. The value
in excess of 3·0 represents the ARTK-M2 contribution to the total overhead. The
overhead ratio should be task insensitive and only weakly dependent upon other
factors such as machine architecture and compiler efficiency. It is interesting to note
that even with a zero overhead ARTK-M2 and infinitely fast queueing operations,
the Ada rendezvous has twice the overhead of a comparable semaphore implemen-
tation of these examples.

SUMMARY AND FUTURE RESEARCH

Ada syntax provides constructs for specifying actions to be performed by more than
one task. These actions are executed in sequence, and several of these sequences
may be in progress at the same time. The language treats synchronization and
communication on an equal footing; the rendezvous mechanism is intended to
support both. A run-time kernel is needed to implement overlapped or interleaved
concurrency. A reasonably complete implementation of a run-time kernel supporting
Ada tasking has been discussed. The semantic rules of Ada tasking allows for several
different implementations of a supporting run-time kernel. Some maybe more suited
to certain applications than others. A message-based model for a uniprocessor
environment was implemented as a Modula-2 module. Individual Ada tasks are
represented as coroutines; full support for task creation, synchronization, communi-
cation, scheduling, and termination is provided through 10 exported ARTK-M2
procedures. All options of the Ada rendezvous including conditional entry and
accept calls, task priorities, multiple entries, parameter passing, and the delay and
terminate alternatives of the select statement are provided. ARTK-M2 testing,
though incomplete, included qualitative and quantitative test programs to reveal
implementation errors and estimate rendezvous overhead costs. The latter used a
simple problem to compare current semantics with Ada rendezvous behavior and
proposed extensions.

The ARTK-M2 can be a useful tool in the study of real-time control systems,
serve as a baseline for implementing alternatives seeking improved efficiency, and
when properly extended, form an integral part of a distributed Ada run-time kernel
in a multiprocessing environment. The efficiency issues discussed here and elsewhere
are critical and alternate implementations must be explored. Recently proposed

ARTK-M 2 333

additional semantics to take care of priority scheduling problems 20 are being
implemented in ARTK-M2. A restructuring of the kernel following the object-
oriented philosophy is also being considered; this version of the kernel is planed to
be written in Oberon. 21

And finally, some known limitations and potential problem areas of the implemen-
tation include: (1) The handling of task exceptions arising during task activation
(LRM 9.3) is not implemented. (2) As mentioned earlier, the problems of task
termination (LRM 9.4) are significant and all eventualities may not be covered by
the LRM. The task termination algorithm used in the ARTK-M2 should therefore
be critically studied. (3) Task and Entry Attributes (LRM 9.9) have not been
included but inclusion of these features should not be difficult. (4) The Task Abort
Statement (LRM 9.10) has only been implemented up to Paragraph 5.

REFERENCES

1. Reference Manual for the Ada Programming Language, ANSI/Military Standard MIL-STD-1815A,
US Department of Defense, January 1983.

2. N. Wirth, Programming in Modula-2, 2nd edn, Springer-Verlag, 1983.
3. P. N. Hilfinger, ‘Implementation strategies for Ada tasking idioms’, Proceedings of the AdaTec

Conference on Ada, October 1982, p. 26.
4. A. N. P. Habermann and I. R. Nassi, ‘Efficient implementation of Ada tasks’, Technical Report

CMU-CS-80-103, Carnegie-Mellon University, 1980.
5. W. Eventoff, D. Harvey and R. J. Price, ‘The rendezvous and monitor concepts: is there an

efficiency difference?’, Proceedings of ACM-SIGPLAN Symposium on the Ada Programming
Language, December 1980, p. 156.

6. W. Hoyer, ‘Intertask communication realized with an interrupt mechanism’, ‘Proceedings of the
AdaTec Conference on Ada, 1985.

7. A. Jones and A. Ardo, ‘Comparative efficiency of different implementations of the Ada rendez-
vous’, Proceedings of the Ada-TEC Conference on Ada, October 1982, p. 212.

8. T. P. Baker and G. A. Riccardi, ‘Ada tasking: from semantics to efficient implementation’, IEEE
Software, 2, (2), 34, (1985).

9. D. A. Fisher and R. M. Weatherly, ‘Issues in the design of a distributed operating system for
Ada’, IEEE Computer, 19, (5), 38, (1986).

10. Ada9X Project Report Mapping Document, Draft, Office of the Under Secretary of Defense for
Acquisition, Washington, D.C. 20301, U.S.A, February 1991.

11. J. L. Díaz-Herrera, ‘Hierarchical modular diagrams: an approach to describe the static software
structure’ to appear in IEEE Software.

12. J. Welsh and A. Lister, ‘A comparative study of task communication in Ada’, Software—Practice
& Experience, 11, 257, (1981).

13. N. Francez and S. A. Yemini, ‘Symmetric intertask communication’, ACM Transactions on Pro-
gramming Languages and Systems, 7, (4), 622, (1985).

14. N. Cohen, Ada as a Second Language, McGraw-Hill, 1986.
15. J. G. P. Barnes, Programming In Ada, 3rd edn, Addison-Wesley, 1989.
16. R. M. Weatherly, ‘A message-based kernel to support Ada tasking’, Proceedings of the Conference

on Ada Applications and Environments, IEEE Computer Society, October 1984, p. 136.
17. J. L. Díaz-Herrera and R. Graft, ‘Ada Multitasking for Modula-2’, George Mason University,

Fairfax, Virginia, Department of Computer Science, TR, 3–90, 1990.
18. D. Comer, Operating System Design, The XINU Approach, Prentice-Hall, 1984, p. 95.
19. R. Conings, ‘Pargen: an LR parser generator’, College of William and Mary, 1985.
20. L. Sha and J. B. Goodenogh, ‘Real-time scheduling theory and Ada’, IEEE Computer, April 1990,

pp. 53-62.
21. N. Wirth, ‘The programming language Oberon’, Software—Practice and Experience, 18, 671–690

(1988).

334 J. L. DÍAZ-HERRERA, R. D. GRAFT AND D. B. RUPP

APPENDIX: DINING PHILOSOPHERS EXAMPLE
-- Dining Philosophers Ada Example

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

with CALENDAR, TEXT_IO;
use CALENDAR, TEXT_IO;
with Random;use Random;
procedure Dining_Philosophers is

subtype Num is POSITIVE range 1..5;
subtype Fork is Num;
subtype Chair is Num;
subtype Name is STRING;
Years : constant := 60;

task Forks is
entry Pick_Up (Fork;
entry Put_Down (F :

end Forks;

task Chairs is

; -- a family of entries
Fork) ;

entry Give (Me_A: out Chair);
entry Here_is (My : Chair);

end Chairs ;

task type Philosopher is
entry Birth (Me : Name; Life_Time : DURATION := 0.0);

end Philosopher ;

task body Forks is separate;
task body Chairs is separate;
task body Philosopher is separate;

begin
declare

Dinner : array (Num) of Philosopher ;
begin

Dinner (1) .Birth ("Hegel", 2.0 l Years);
Dinner (2) .Birth ("Kant", 1.0 * Years);
Dinner (3) .Birth ("Plato", 3.0 “* Years);
Dinner (4) .Birth ("Pascal", 1.5 * Years);
Dinner (5) .Birth ("Marx", 2.5 * Years);

end;
end Dining_Philosophers:

separate (Dining_Philosophers)’
task body Forks is

type State is (In_Use, Free);
Forks_State : array (Num) of State := (others => Free);
Left : constant array (Num) of Num := (5, 1, 2, 3, 4);

begin
loop select

accept Put_Down (F : Fork) do
Forks_State (F) := Free;
Forks_State (Left(F)) := Free;

end Put_Down ;
or when Forks_State (1) = Free and Forks_State (Left(1)) = Free
=> accept Pick_Up (1) do

Forks_State (1) := In_Use;
Forks_State (Left(l)) := In_Use;

end Pick_Up:
or when Forks-State (2) = Free and Forks_State (Left(2)) = Free
=> accept Pick_Up (2) do

ARTK-M 2 335

-- Dining Philosophers Ada Example

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

Forks_State (2) := In_Use;
Forks_State (Left(2)) := In_Use;

end Pick_Up;
or when Forks_State (3) = Free and Forks_State (Left(3)) = Free
=> accept Pick_Up (3) do

Forks_State (3) := In_Use;
Forks_State (Left(3)) := In_Use;

end Pick_Up;
or when Forks_State (4) = Free and Forks_State (Left(4)) = Free
=> accept Pick_Up (4) do

Forks_State (4) := In_Use;
Forks_State (Left(4)) := In_Use;

end Pick_Up:
or when Forks_State (5) = Free and Forks_State (Left(5)) = Free
=> accept Pick_Up (5) do

Forks_State(5) := In
Forks_State

end Pick_Up;
or terminate;
end select;

end loop;
end Forks ;

_Use;
Left (5) := In_Use;

separate (Dining_Philosophers)
task body Chairs is

Next_Chair : POSITIVE := 1;
begin

loop select
when Next_Chair <= NUM'LAST
=> accept Give (Me_A: out Chair) do

Me_A := Next_Chair ;
Next_Chair := Next_Chair + 1;

end Give :
or when Next_Chair >= NuM'FIRST
=> accept Here is (My : Chair) do

Next_Chair := Next_Chair - 1:
end Here_is ;

or terminate;
end select;

end loop:
end Chairs ;

separate (Dining_Philosophers)
task body Philosopher is

type Stages is (Unborn, Hungry, Eating, thinking, Starved, Dead);
DOB : TIME; -- date of birth
DoD : DURATION := 0.0; -- date of death
Age : DURATION := 0.0;
Status : stages := Unborn;
My_Name STRING (1..10) := (1..10 => ' ');
My_Chair : Chair;

begin
PUT_LINE ("A philosopher was conceived at " &

INTEGER'IMAGE (INTEGER(SECONDS (CLOCK))));
accept Birth (Me : Name; Life_Time : DURATION := 0.0) do

My_Name (1. .Me'LENGTH) := me;
Status := Hungry;
DoD := Life_Time;

336 J. L. DÍAZ-HERRERA, R. D. GRAFT AND D. B. RUPP

-- Dining Philosophers Ada Example

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

PUT_LINE (My_Name & " was born") ;
end Birth;
Chairs .Give (Me_A => My_Chair);
PUT_LINE (My_Name & " got chair # " & INTEGER'IMAGE (My_Chair));
DoB := CLOCK;
loop

Age := CLOCK - DoB;
case Status is
when UnBorn => PUT LINE ("**ERROR**") ;

raise TASKING_ERROR;
when Thinking => PUT_LINE (My_Name & " Thinking") ;

delay DURATION (RandomReal*20.0);
Status := Hungry;

when Hungry => PUT_LINE (My_Name & " Hungry") ;
select

Forks.Pick_Up (My_Chair);
Status := Eating;

or delay DURATION (RandomReal*10.0);
Status := Starved;

end select;
=> PUT_LINE (My_Name & " Eating"*) ;
delay DURATION (RandomReal*5.0);
Forks.Put_Down (My_Chair); Status := Thinking;
=> PUT_LINE (My_Name & " Dead") ;
Forks.Put_Down (My_Chair);
Chairs.Here_is (My_Chair);
exit:

when Starved => PUT LINE (My_Name & " Starved to death! ") ;
Status := Dead;

end case;

if Age >= DoD then
Status := Dead:
PUT_LINE (My_Name & " Died of natural causes");

end if;
end loop;
PUT LINE (My_Name & " Buried");

end Philosopher ;

when Eating

when Dead

-- dining Philosophers Ada Example: results

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

- -
A philosopher was conceived at 36373
A philosopher was conceived at 36373
A philosopher was conceived at 36373
A philosopher was conceived at 36373
A philosopher was conceived at 36373
Hegel was born
Kant was born
Plato was born
Pascal was born
Marx was born
Hegel got chair # 1
Hegel Hungry
Hegel Eating
Kant got chair # 2
Kant Hungry
Plato got chair # 3
Plato Hungry
Plato Eating
Pascal got chair # 4

ARTK-M 2 337

- - Dining Philosophers Ada Example: results

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

Pascal
Marx
Marx
Hege 1
Plato
Marx
Kant
Harx
Pascal
Kant
Pascal
Pascal
Pascal
Kant
Kant
Pascal
Marx
Marx
Hegel
Kant
Marx
Hegel
Plato
Plato
Marx
Hege 1
Marx
Plato
Pascal
Hegel
Marx
Plato
Hegel
Pascal
Pascal
Plato
Hegel
Plato
Kant
Kant
Plato
Plato
Plato
Plato
Pascal
Pascal
Kant
Pascal
Kant
Kant
Kant
Hegel
Hegel
Marx
Hegel
Pascal
Marx
Marx
Pascal
Pascal

Hungry
got chair # 5
Hungry
Thinking
Thinking
Eating
Eating
Thinking
Eating
Thinking
Thinking
Hungry
Eating
Hungry
Eating
Thinking
Hungry
Eating
Hungry
Thinking
Thinking
Eating
Hungry
Eating
Hungry
Thinking
Eating
Thinking
Hungry
Hungry
Thinking
Hungry
Eating
Eating
Thinking
Eating
Thinking
Thinking
Hungry
Eating
Hungry
Starved to death!
Dead
Buried
Hungry
Eating
Thinking
Thinking
Hungry
Eating
Thinking
Hungry
Eating
Hungry
Thinking
Hungry
Eating
Thinking
Eating
Thinking

338 J. L. DÍAZ-HERRERA, R. D. GRAFT AND D. B. RUPP

-- Dininq Philosophers Ada Example: results

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

Hegel
Hegel
Hegel
Kant
Kant
Kant
Marx
Marx
Pascal
Marx
Pascal
Pascal
Pascal
Pascal
Pascal
Hegel
Hegel
Pascal
Pascal
Hegel
Kant
Kant
Kant
Pascal
Marx
Marx
Marx
Hegel
Hegel
Hegel
Marx
Marx
Pascal
Marx
Pascal
Pascal
Pascal
Marx
Marx
Marx
Hegel
Hegel
Hegel
Marx
Marx
Marx
Hegel
Hegel
Hegel
Marx
Marx
Marx
Hegel
Hegel
Hegel
Hegel
Marx
Marx
Marx
Marx
Marx
Marx
Marx

Hungry
Eating
Thinking
Hungry
Eating
Thinking
Hungry
Eating
Hungry
Thinking
Eating
Thinking
Hungry
Eating
Thinking
Hungry
Eating
Hungry
Eating
Thinking
Died of natural causes
Dead
Buried
Thinking
Hungry
Eating
Thinking
Hungry
Eating
Thinking
Hungry
Eating
Hungry
Thinking
Died of natural causes
Dead
Buried
Hungry
Eating
Thinking
Hungry
Eating
Thinking
Hungry
Eating
Thinking
Hungry
Eating
Thinking
Hungry
Eating
Thinking
Hungry
Died of natural causes
Dead
Buried
Hungry
Eating
Thinking
Hungry
Died of natural causes
Dead
Buried

ARTK-M 2 339

-- Dining Philosophers Modula-2 translation

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
- - - - - - - - - - - - - - - - - - - - - .

MODULE Dining_Philosophers;
FROM Calendar IMPORT Date, GetMachineDate, DeltaDate;
FROM DurationOps IMPORT Duration, UnitSet, GreaterOrEqual, Unit, Clear;
FROM Terminal IMPORT WriteString, WriteLn;
FROM AdaAttributes IMPORT INTEGER_IMAGE:
FROM Strings IMPORT ConCat;
FROM SYSTEM IMPORT ADR;
FROM Break IMPORT EnableBreak;
IMPORT ARTKM2;
FROM AdaTypes IMPORT NATURAL, POSITIVE, STRING;
FROM TimeDate IMPORT Time, GetTime, TimeToString;
FROM Random IMPORT RandomReal;

TYPE Num= POSITIVE[1. .5];
TYPE Fork= Num;
TYPE Chair= Num;
TYPE Name= STRING;
CONST Years=60.0;
CONST TicksPerSecond-20.0;
VAR I:POSITIVE;

TYPE ForksParmsRec =
RECORD

F: Fork;
END ;
TYPE ForksParmsRecPtr = POINTER TO ForksParmsRec;
VAR ForksParms: ForksParmsRec;
TYPE ForksEntry= (ForksPick_Up1, ForksPick_Up2, ForksPick_Up3,

ForksPick_Up4, ForksPick_Up5, ForksPut_Down) ;
VAR TASKMain: ARTKM2.TaskName;
VAR TASKForks: ARTKM2.TaskName;

TYPE ChairsParmsRec =
RECORD

Me_A: Chair;
My: Chair;

END ;
TYPE ChairsParmsRecPtr = POINTER TO ChairsParmsRec;
VAR ChairsParms: ChairsParmsRec;
TYPE ChairsEntry= (ChairsGive, ChairsHere_is);
VAR TASKChairs: ARTKM2.TaskName;

TYPE PhilosopherParmsRec =
RECORD

Me: Name;
Life_Time: Duration;

END ;-

TYPE PhilosopherParmsRecPtr = POINTER TO PhilosopherParmsRec;
VAR PhilosopherParms: PhilosopherParmsRec;
TYPE PhilosopherEntry= (PhilosopherBirth) ;
TYPE TASKPhilosopher=ARTKM2 .TaskName;
VAR Dinner: ARRAY Num OF TASKPhilosopher;

PROCEDURE Forks;
VAR ForksParmsPtr: ForksParmsRecPtr;

340 J. L. DÍAZ-HERRERA, R. D. GRAFT AND D. B. RUPP

-- Dining Philosophers Modula-2 translation

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

‘8

VAR F: Fork;
VAR Guards: ARTKM2. GuardArray;
VAR iGuards: CARDINAL;
VAR WaitTime: ARTKM2. Time;
VAR SELECTOR: CARDINAL;
TYPE State= (In_Use,Free);
VAR Forks_State: ARRAY Num OF State;
VAR Left: ARRAY Num OF Num;

BEGIN
Forks_State[1] :=Free;
Forks_State[2] :=Free;
Forks_State[3] :=Free;
Forks_State[4] :=Free;
Forks_State[5] :=Free;
Left[1] :=5;
Left[2] :=l;
Left[3] :=2;
Left[4] :=3;
Left[S] :-4;
LOOP

WaitTime := ARTKM2. INFINITEDELAY;
FOR iGuards := 1 TO HIGH(Guards) DO Guards[iGuards] := 0; END;
IF (Forks_State[1] =Free) AND (Forks_State[Left [1]]=Free) THEN

Guards[ORD(ForksPick_Up1) +1] := -1;
END ;
IF (Forks_State[2] -Free) AND (Forks_State[Left [2]]=Free) THEN

Guards [ORD(ForksPick_Up2) +1] := -1;
END ;
IF (Forks_State[3]=Free) AND (Forks_State[Left [3]]=Free) THEN

Guards [ORD(ForksPick_Up3) +1] := -1;
END ;
IF (Forks_State[4]=Free) AND (Forks_State [Left[4]]=Free) THEN

Guards [ORD(ForksPick_Up4) +1] := -1;
END ;
IF (Forks_State[5]=Free) AND (Forks_State[Left [5]]=Free) THEN

Guards[ORD(ForksPick_Up5) +1] := -1;
END ;
Guards [ORD(ForksPut_Down) +1] := -1;
ARTKM2.AcceptBegin (Guards, WaitTime, ForksParmsPtr, SELECTOR);
CASE SELECTOR OF
1:

|
2:

|
3:

|
4:

Forks_State[1] :=In_Use;
Forks_State [Left[1]] :=In_Use;
ARTKM2.AcceptEnd(SELECTOR, ForksParmsPtr) :

Forks_State[2] :=In_Use;
Forks_State [Left[2]] :=In_Use;
ARTKM2.AcceptEnd(SELECTOR, ForksParmsPtr) ;

Forks_State[3] :=In_Use;
Forks_State[Left [3]] :=In_Use;
ARTKM2.AcceptEnd(SELECTOR, ForksParmsPtr);

Forks_State[4] :=In_Use;
Forks_State[Left [4]] :=In_Use;

ARTK-M 2 341

-- Dining Philosophers Modula-2 translation

117
118 |
119 5:
120
121
122
123 |
124 6:
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

ARTKM2.AcceptEnd(SELECTOR, ForksParmaPtr);

Forks_State[5] :=In_Use;
Forks_State[Left [5]] :=In_Use;
ARTKM2.AcceptEnd(SELECTOR, ForksParmsPtr);

F:=ForksParme.Ptrˆ .F;
Forks_State[F] :=Free;
Forks_State[Left [F]] :=Free;
ARTKM2.AcceptEnd(SELECTOR, ForksParmsPtr);

END (* CASE *);
END (* LOOP *);
ARTKM2.TerminateTask(0);

END Forks;

PROCEDURE Chairs;
VAR ChairsParmsPtr: ChairsParmsRecPtr;
VAR Me_A; Chair;
VAR My: Chair;
VAR Guards: ARTKM2.GuardArray;
VAR iGuards: CARDINAL;
VAR WaitTime: ARTKM2.Tirne;
VAR SELECTOR: CARDINAL;
VAR Next_Chair:POSITIVE;

BEGIN
Next_Chair :=1;
LOOP

WaitTime := ARTKM2. INFINITEDELAY;
FOR iGuards := 1 TO HIGH(Guards) DO Guards[iGuards] := 0; END;
IF Next_Chair<=MAX(Num) THEN

Guards [ORD(ChairsGive) +1] := -1;
END ;
IF Next_Chair>=MIN(Num) THEN

Guards [ORD(ChairsHere_is) +1] := -1;
END ;
ARTKM2.AcceptBegin (Guards, WaitTime, ChairsParmsPtr, SELECTOR);
CASE SELECTOR OF

156 1:
157
158
159
160
161 |
162 2:
163
164
165
166 |
167 3:
168

Me_A:=Next_Chair;
Next_Chair :=Next_Chair+ 1;
ChairsParmsPtrˆ.Me A := Me_A;
ARTKM2.AcceptEnd (SELECTOR,ChairsParmsPtr) ;

My := ChairsParmsPtrˆ .My;
Next_Chair:=Next_Chair- 1;
ARTKM2.AcceptEnd(SELECTOR, ChairsParmsPtr);

ARTKM2.TerminateTask(0);
169 END (* CASE *);
170 END (* LOOP *);
171 ARTKM2.TerminateTask(0);
172 END Chairs;
173
174 PROCEDURE Philosopher;

342 J. L. DÍAZ-HERRERA, R. D. GRAFT AND D. B. RUPP

-- Dining Philosophers Modula-2 translation

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

VAR ATHOME : BOOLEAN ;
VAR PhilosopherParmsPtr: PhilosopherParmsRecPtr;
VAR Me: Name;
VAR Life_Time: Duration:
VAR Guards: ARTKM2.GuardArray;
VAR iGuards: CARDINAL;
VAR WaitTime: ARTKM2.Time;
VAR SELECTOR: CARDINAL;
TYPE Stages= (Unborn,Hungry,Eating, Thinking, Starved,Dead) ;
VAR DoB:Date;
VAR DoD:Duration;
VAR Age:Duration;
VAR Status:Stages;
VAR My_Name:STRING;
VAR My_Chair:Chair;
STRING1 :ARRAY[0. .16] OF CHAR;
STRING2 :ARRAY[0. .48] OF CHAR;
STRING3 :ARRAY[0..14] OF CHAR;
STRING4 :ARRAY[0. .18] OF CHAR;
STRING5 :ARRAY[0. .4] OF CHAR;
STRING6 :ARRAY[0. .23] OF CHAR;
STRING7 :ARRAY[0. .14] OF CHAR;
STRING8 :ARRAY[0. .14] OF CHAR;
STRING9 :ARRAY[0. .14] OF CHAR;
STRING10 :ARRAY[0. .14] OF CHAR;
STRING1l :ARRAY[0. .23] OF CHAR;
STRING12 :ARRAY[0. .28] OF CHAR;
STRING13 :ARRAY[0. .12] OF CHAR;
CLOCK:Date;

BEGIN
GetMachineDate (CLOCK);
INTEGER_IMAGE (CLOCK.second, STRING1);
Concat("A philosopher was conceived at ",STRING1,STRING2);
WriteString (STRING2) ;WriteLn:

FOR iGuards := 1 TO HIGH(Guards) DO Guards[iGuards] := O; END;
Guards[ORD(PhilosopherBirth) +1] := -1;
ARTKM2.AcceptBegin (Guards, ARTKM2. INFINITEDELAY,

PhilosopherParmsPtr, SELECTOR);
He := PhilosopherParmsPtr^ .Me;
Life_Time := PhilosopherParmsPtr^ .Life_Time;
My_Name:=Me:
Status:=Hungry;
DoD:=Life_Time:
Concat(My_Name ," was born",STRING3) ;
WriteString(STRING3) ;WriteLn;

ARTKM2.AcceptEnd(SELECTOR, PhilosopherParmsPtr) ;

ARTKM2.EntryCall (TASKChairs, ORD(ChairsGive)+1, ORD(1),
ADR(ChairsParms), ARTKM2. INFINITEDELAY, ATHOME);

My_Chair := ChairsParms.Me_A;
Concat(My_Name," got chair # ",STRING4);
INTEGER_IMAGE (My_Chair, STRING5);
Concat(STRING4, STRINFG5,STRING6) ;
WriteString (STRING6);WriteLn;
GetMachineDate (DoB);
LOOP

GetMachineDate (CLOCK);

ARTK-M 2 343

-- Dining Philosophers Modula-2 translation

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

DeltaDate (DOB, CLOCK, Unit Set(Second), Age) ;

CASE Status OF
Unborn:

WriteString ("**ERROR**"); WriteLn;
|
Thinking:

Concat(My_Name," Thinking", STRING7) ;
WriteString (STRING7);WriteLn;
ARTKM2.DelayTask(O, TRUNC(RandomReal ()* TicksperSecond*20.0));
Status:=Hungry:

|
Hungry:

Concat(My_Name," Hungry",STRING8);
WriteString (STRING8);WriteLn;
CASE My_Chair OF
1:

ARTKM2.EntryCall (TASKForks, ORD(ForksPick_Up1) +1, ORD(1),
ADR(ForksParms), TRUNC(RandomReal ()* TicksPerSecond*10.0),
ATHOME) ;

IF ATHOME THEN
Status:=Eating;

ELSE
Status:=Starved;

END (* IF *);
I
2:

ARTKM2.EntryCall (TASKForks, ORD(ForksPick_Up2) +1, ORD(1),
ADR(ForksParms), TRUNC(RandomReal ()* TicksPerSecond*10.0),
ATHOME) ;

IF ATHOME THEN
Status:=Eating;

ELSE
Status:=Starved;

END (* IF *);
|
3:

ARTKM2.EntryCall (TASKForks, ORD(ForksPick_Up3) +1, ORD(l),
ADR(ForksParms), TRUNC(RandomReal ()* TicksPerSecond*10.0),
ATHOME) ;

IF ATHOME THEN
Status:=Eating;

ELSE
Status:=Starved;

END (* IF *);
|
4:

ARTKM2.EntryCall (TASKForks, ORD(ForksPick_Up4) +1, ORD(1),
ADR(ForksParms) , TRUNC(RandomReal () *TicksPerSecond*10 .0),
ATHOME) ;

IF ATHOME THEN
Status: =Eating;

ELSE
Status:=Starved;

END (* IF *);
|
5:

ARTKM2.EntryCall (TASKForks, ORD(ForksPick_Up5) +1, ORD(1),

344 J. L. DÍAZ-HERRERA, R. D. GRAFT AND D. B. RUPP

-- Dining Philosophers Modula-2 translation

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

ADR(ForksParms) , TRUNC (RandomReal () *TicksPerSecond* 10. O) ,
ATHOME) ;

IF ATHOME THEN
Status :=Eating;

ELSE
Status:=Starved;

END (* IF *);
END (* CASE *);

|
Eating:

Concat(My_Name, " Eating",STRING9) ;
WriteString (STRING9);WriteLn;
ARTXt42.DelayTask(O, TRUNC(RandomReal ()* TicksPerSecond*5 .0));
ForksParms.F := My_Chair;
ARTKM2.EntryCall (TASKForks, ORD(ForksPut_Down) +1, ORD(1),

ADR(ForksParms), ARTKM2. INFINITEDELAY, ATHOME);
Status:=Thinking;

|
Dead:

Concat(My_Name," Dead",STRING10);
WriteString (STRINGI10 ;WriteLn;
ForksParms.F := My_Chair:
ARTKM2.EntryCall (TASKForks, ORD(ForksPut_Down) +, ORD(1),

ADR(ForksParms), ARTKM2. INFINITEDELAY, ATHOME);
ChairsParms.My := My_Chair;
ARTKM2.EntryCall (TASKChairs, ORD(ChairsHere_is) +1, ORD(1),

ADR(ChairsParms), ARTKM2. INFINITEDELAY, ATHOME);
EXIT;

I
Starved:

Concat(My_Name, "Starved to death!",STRING11);
WriteString (STRING11) ;WriteLn;
Status:=Dead;

END (* CASE *);

IF GreaterOrEqual (Age,DoD, Second) THEN
Status:=Dead;
Concat(My_Name, "Died of natural causes", STRINGl2);
WriteString (STRING12) ;WriteLn;

END ;
END (* LOOP *);
Concat(My_Name," Buried", STRING13) ;
WriteString (STRING13);WriteLn;
ARTKM2.TerminateTask(0);

END Philosopher;

PROCEDURE Main;
VAR ATHOME: BOOLEAN;
PROCEDURE Anonymous:
BEGIN

PhilosopherParms .Me := "Hegel";
Clear (PhilosopherParms.Life_Time);
PhilosopherParms .Life_Time [Minute]:= 2.0;
ARTKM2.EntryCall (Dinner[1],

ORD (PhilosopherBirth) +1,
ORD(1),
ADR(PhilosopherParms),
ARTKM2.INFINITEDELAY,

ARTK-M 2 345

-- Dining Philosophers Modula-2 translation

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

ATHOME) ;
PhilosopherParms.Me := "Kant";
Clear(PhilosopherParms .Life_Time);
PhilosopherParma .Life_Time [Minute] := 1.0;
ARTKM2.EntryCall (Dinner[2],

ORD(PhilosopherBirth) +1,
ORD(1),
ADR(PhilosopherParms),
ARTKM2.INFINITEDELAY,
ATHOME) ;

PhilosopherParms.Me := "Plato";
Clear(PhilosopherParms .Life Time);
PhilosopherParms.Life_Time [Minute] := 3.0;
ARTKM2.EntryCall (Dinner[3],

ORD(PhilosopherBirth) +1,
ORD(1),
ADR(PhilosopherParms) ,
ARTKM2. INFINITEDELAY,
ATHOME) ;

PhilosopherParms.Me := "Pascal";
Clear (PhilosopherParms .Life Time);
PhilosopherParms .Life_Time [Minute] := 1.5;
ARTKM2.EntryCall (Dinner[4],

ORD (PhilosopherBirth) +1,
ORD(1),
ADR(PhilosopherParms),
ARTKM2.INFINITEDELAY,
ATHOME) ;

PhilosopherParms.Me := "Marx";
Clear(PhilosopherParms .Life_Time);
PhilosopherParms .Life_Time [Minute] := 2.5;
ARTKM2.EntryCall (Dinner[5],

OFfD (PhilosopherBirth) +1,
ORD(1),
ADR(PhilosopherParms) ,
ARTKM2. INFINITEDELAY,
ATHOME) ;

END Anonymous1;
BEGIN

Anonymous;
ARTKN2.TerminateTask(0);

END Main;

BEGIN
(* Task Initialization *)
EnableBreak;
ARTKM2.ElaborateTask (TASKMain, TASKMain, Main, 5000, 1, 0);
FOR 1:=1 TO 5 DO

ARTKM2.ElaborateTask (Dinner[I], TASKMain, Philosopher, 5000, 1, 1);
END (* FOR *);
FOR 1:=1 TO 5 DO

ARTKM2.ActivateTask (Dinner[I]) ;
END (* FOR *);
FOR 1:=1 TO 5 DO

ARTKM2.ChildTask (TASKMain, Dinner[I]) ;
END (* FOR *);
ARTKM2.ElaborateTask (TASKChairs, TASKMain, Chairs, 5000, 1, 2) ;
ARTKJ42.ActivateTask (TASKChairs) ;

346 J. L. DÍAZ-HERRERA, R. D. GRAFT AND D. B. RUPP

-- Dining Philosophers Modula-2 translation

407 ARTKM2.ChildTask (TASKMain, TASKChairs) ;
408 ARTKM2.ElaborateTask (TASKForks, TASKMain, Forks, 5000, 1, 6);
409 ARTKM2.ActivateTask(TASKForks) ;
410 ARTKM2.ChildTask(TASKMain, TASKForks);
411 ARTKM2.ChildTask(TASKMain, TASKMain);
412 ARTKM2.StartTasks();
413 END Dining_Philosophers.

-- Dining Philosophers Modula-2 translation: results

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

--

A philosopher was conceived at 51
A philosopher was conceived at 51
A philosopher was conceived at 51
A philosopher was conceived at 51
A philosopher was conceived at 51
Hegel was born
Kant was born
Hegel got chair # 1
Hegel Hungry
Plato was born
Kant got chair # 2
Kant Hungry
Hegel Eating
Pascal was born
Plato got chair # 3
Plato Hungry
Marx was born
Pascal got chair # 4
Pascal Hungry
Plato Eating
Marx got chair # 5
Marx Hungry
Plato Thinking
Pascal Eating
Pascal Thinking
Hegel Thinking
Marx Eating
Kant Eating
Pascal Hungry
Kant Thinking
Marx Thinking
Pascal Eating
Marx Hungry
Pascal Thinking
Marx Eating
Marx Thinking
Kant Hungry
Kant Eating
Plato Hungry
Kant Thinking
Plato Eating
Kant Hungry
Marx Hungry
Marx Eating

ARTK-M 2 347

-- Dininq Philosophers Modula-2 translation: results

47
48
49
50
51
52
53
54
55
56
57
58

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

Kant Starved to death!
Kant Dead
Kant Buried
Plato Thinking
Hegel Hungry
Marx Thinking
Hegel Eating
Hegel Thinking
Pascal Hungry
Pascal Eating
Plato Hungry
Pascal Thinking
Marx Eating
Plato Hungry
Plato Eating
Plato Thinking
Marx Thinking
Marx Hungry
Marx Eating
Plato Hungry
Plato Eating
Marx Thinking
Marx Hungry
Marx Eating
Plato Thinking
Marx Thinking
Hegel Hungry
Hegel Died of natural causes
Hegel Dead
Hegel Buried
Marx Hungry
Marx Eating
Plato Hungry
Plato Eating
Marx Thinking
Plato Thinking
Marx Hungry
Marx Died of natural causes
Marx Dead
Marx Buried
Plato Hungry
Plato Eating
Plato Thinking
Plato Hungry
Plato Died of natural causes
Plato Dead
Plato Buried
Ready Queue is empty. . .
Deadlock has occurred. .

348 J. L. DÍAZ-HERRERA, R. D. GRAFT AND D. B. RUPP

-- Dining Philosophers Modula-2 translation: results

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

Plato Eating
Marx Hungry
Marx Eating
Plato Thinking
Hegel Hungry
Marx Thinking
Hegel Eating
Plato Hungry
Plato Eating
Hegel Thinking
Marx Hungry
Marx Eating
Plato Thinking
Marx Thinking
Plato Hungry
Plato Eating
Pascal Hungry
Pascal Starved to death!
Pascal Dead
Pascal Busied
Plato Thinking
Hegel Hungry
Hegel Eating
Plato Hungry
Plato Eating
Plato Thinking
Marx Hungry
Hegel Thinking
Marx Eating
Plato Hungry
Plato Eating
Marx Thinking
Plato Thinking
Plato Hungry
Plato Eating
Plato Thinking
Hegel Hungry
Hegel Eating
Hegel Thinking
Marx Hungry
Marx Eating
Marx Thinking
Marx Hungry
Marx Eating
Marx Thinking
Plato Hungry
Plato Eating
Plato Thinking
Hegel Hungry
Hegel Eating
Marx Hungry
Hegel Thinking
Marx Eating
Marx Thinking
Hegel Hungry
Hegel Eating
Marx Hungry
Hegel Thinking

	ARTK-M2: A Kernel for Ada Tasking Requirements: an Implementation and an Automatic Generator
	SUMMARY
	INTRODUCTION
	THE ADA TASKING MODEL
	Program and task structure
	Task activation and termination
	Tasks interaction

	KERNEL DESCRIPTION
	Tasking semantics and implementation details
	Data types and structures

	WRITING ADA-LIKE TASKS IN MODULA-2
	Automatic generation

	TEST RESULTS
	Significance

	SUMMARY AND FUTURE RESEARCH
	REFERENCES
	APPENDIX: DINING PHILOSOPHERS EXAMPLE

