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Abstract

The concept of diagnosis as a process has
been coined to introduce a dynamic repre-
sentation of the diagnosis process and subse-
quent work has focused on formalizing this
notion. Advancing on previous proposals
built upon rather procedural semantics, we
aim to give a formal and declarative seman-
tics for the diagnosis process. We give a logi-
cal characterization of preferences and strate-
gies, expressed by preference relations on sin-
gle diagnoses and modal logic formulas on
sets of diagnoses, respectively.

1 Introduction

Overview

In most diagnosis systems, diagnosis is considered as
a static problem, i.e. the system description and the
diagnosis goals are not changed during the diagnosis
process. As already observed in recent work such as
[10] and [1, 2], this is a big disadvantage for the diagno-
sis of complex systems. All informationssuch as differ-
ent specifications, modeling assumptions, abstractions
etc. are visible during the whole diagnosis process.

Therefore the concept of diagnosis as a process has
been coined in [10] and [11] to introduce a dynamic
representation of the diagnosis process. Subsequent
work has focused on formalizing this notion, most
of them focusing on specific features of this process.
Friedrich covers the principle of abstraction in [7],
Damasio, Nejdl and Pereira focus on preference rela-
tions for diagnoses [5]. The most general approach up
to now has been defined by Bottcher and Dressler in
[1, 2], including a set of preferences/strategies to guide
the diagnosis process. Although they provide a formal
definition for preferred diagnosis [6] their description
and semantics for diagnosis strategies is rather inter-
twined with the workings of an ATMS-based diagnosis
engine, resulting in rather procedural semantics explic-
itly based on iteration. They show how to compute
diagnoses, but cannot characterize their results.

So while the theory of model-based diagnosis is well
in place, a declarative theory of using preferences and
strategies during the diagnosis process independent of
specific systems is still missing. Our aim in this paper
1s to provide a first realization of such a theory, based
on preference based semantics for reasoning with pref-
erences and on modal logic strategy formulas for cap-
turing strategic decisions about working hypotheses.

Preferred Diagnoses

The first formal characterization of model-based di-
agnosis [9] introduced the concept of set-theoretically
minimal diagnoses to describe which consistent diag-
nosis hypothesis are preferred to others. Subsequent
systems usually used a preference relation based on
probabilities. These approaches are all special cases of
a general approach, which ascribes to each (consistent)
diagnosis hypothesis a set of properties, and specifies
how diagnoses with certain properties are preferred to
diagnoses with certain other properties. For example
a diagnosis containing a single fault might be consid-
ered better than one with more than one fault. In
this paper we will define such a generalized preference
concept based on properties of single diagnoses.

Strategies

Another concept 1s needed to model strategic decisions
during the diagnosis process. There we need to evalu-
ate a set of preferred diagnoses, and continue diagnosis
under a different set of working hypotheses depending
on the properties of this set of diagnoses. For example,
if all preferred diagnoses accuse a component of being
faulty, we might want to consider refining the model
for this component, producing a set of more specific
diagnoses involving subcomponents of the suspected
component. We will call the sequence of sets of work-
ing hypotheses adopted during the diagnosis process a
strategy. Thus a strategy describes the process of find-
ing a satisfactory set of diagnoses. Strategic knowledge
(i.e. which working hypotheses are adopted dependent
on the properties of the current set of diagnoses) is ex-
pressed in modal logic on a connected directed graph
of Sh—structures.



2 Preference Graph

2.1 Starting Point

We will use a first order language with equality (called
Lov;) as general background. ATOM S denotes the set
of atoms of Lop;, LIT is the set of literals, i.e. pos-
itive and negative atoms. The concept of preferences
during the diagnosis process is based on the diagnosis
framework as introduced in [9], where diagnoses were
defined in the following way:

Definition 2.1 Minimal Diagnoses
Let SD, OBS and COMP denote the system de-
scription, the observations and the components, re-
spectively. A minimal diagnosis for SD UOBS is a
minimal set A C COM P such that

SDUOBSU{ab(c)lc € AYU{—ab(c)|lce COMP—A}

1s conslstent.

In the above definition a component’s ok—mode is pre-
ferred to abnormality. This is the usual approach,
which we will assume, too, without loss of generality.
The preference graph defined in the following sections
can easily be modified for the case where abnormality
is preferred over non-abnormality.

2.2 Properties of Diagnoses

To calculate minimal diagnoses we have to find all
minimal models (with respect to ab) of the theory
SD UOBS. In cases where we have a large set of
minimal models, we want to refine the notion of pre-
ferred model by defining preference relations between
minimal models. Minimality as stated in the defini-
tion of minimal diagnoses uses set inclusion to define
preference. This is unsatisfactory as we may want to
express that a solution is minimal in terms of size or
preferred because of some properties it has. Therefore
we define a preference graph that allows the user to
refine the notion of preference.

We express the preference of one minimal model to
another in terms of properties. One model may sat-
1sfy a given property while another does not. These
properties are ordered in a directed preference graph
which describes which properties are preferred to oth-
ers, producing a partial ordering of all possible min-
imal models. The extended definition of a preferred
diagnosis demands not only minimality with respect
to ab, but also minimality with respect to the partial
ordering induced by the preference graph.

We will use properties as an indicator whether a di-
agnosis satisfies a certain condition. A property is ex-
pressed in terms of a literal.

Definition 2.2 Property literals, Property rules
Let PROP C LIT be a set of literals, then p € PROP
is called property. For each property p € PROP the

system description SD may contain a property rule
p ¢ ¢, where ¢ is a formula of the language.

Example 2.1

In order to express the number of faulty components
a diagnosis contains, we define the property literals
single_faults and double_faults. The system descrip-
tion contains the property rules

single_faults &

(VX VY tab(X)Aab(Y) > X =Y)

double_faults &

(VX VY : VZ tab(X) Aab(Y) Aab(Z) —
X=YVX=2ZVY=12)

With the property rules we are able to relate a prop-
erty to a diagnosis. A minimal model of SD UOBS),
where SD contains property rules, indicates which
properties are satisfied by the underlying diagnosis. In
order to enforce a single property p, we add the prop-
erty literal denoting the desired property to the system
description. This ensures that a minimal diagnosis for
the new system description satisfies this property, i.e.
a minimal diagnosis for SD U {p} U OBS guarantees
the property denoted by the property literal p.

By this method we are able to obtain minimal diag-
noses satisfying a single property. In order to express
more general satisfiability conditions, we allow the ad-
dition of a formula of Los; based on property literals.
Such a formula is called property constraint.

Definition 2.3 Property constraint

A formula pc of Lang being composed of property lit-
erals, truth values true and false, connectors A, V,
=, =, > and quantifiers V, 3 is a property constraint.
Nothing else is a property constraint.

Example 2.2 (continued)
Two property constraints are

stngle_faults N =double_faults

and
single_faults V double_faults

We express that the former is preferable to the latter
using a preference graph.

2.3 Preferred Diagnosis

With property rules and property constraints we are
able to check and enforce properties of diagnoses.
Given a preference relation over the property con-
straints, a minimal model being also minimal with re-
spect to this preference relation is preferred to non-
minimal ones. The following definition of preference
graph is an extension of the one given in [5].

Definition 2.4 Preference Graph

A directed, connected, acyclic graph G = (V| E) is
called a preference graph referring to a system descrip-
tion SD and a set of property literals PROP, iff



e 1 is a set of nodes and E a set of edges,

e cach node v € VV has a unique label and a property
constraint over PROP and

e there is a node labeled — (bottom) which is not ac-
cessible by the other nodes, while all other nodes
are accessible from —.

Sometimes we do not distinguish between a node and
its label or its property constraint.

A node v is preferred to a node w, iff w is reachable
from v, while v 1s not reachable from w. As no other
nodes have access to — it is the smallest node.

Definition 2.5 Minimal Node
Let G = (V, E) be a preference graph and v,w € V|
then w is reachable by v, iff there 1s a path

{(UOavl)a (vlaUZ)a .. 'a(vk—lavk)}a (viavi-l—l) S Ea
such that vg = v, vy, = w.

v < w holds, iff w is reachable by v, whereas v is not
reachable by w. v € V is minimal, iff Aw € V.w < v.

Example 2.3 (continued)

A preference graph to prefer single to double
to any number of faults has the form G =
({v,w, 2z}, {(v,w), (w,x)} with nodes as given below.
v < w and w < z hold.

o v = (L, {single_faults A ~double_faults})

-~

o w = (1,{single_faults Vv double_faults})

i z = (2,{true})

With the preference graph all concepts of minimality
are covered. Diagnoses need not be minimal with re-
spect to set inclusion only, but they have to be minimal
with respect to the preference graph, too. This gives
us the following definition of preferred diagnosis:

Definition 2.6 Preferred Diagnosis
Let SD, OBS, COMP and G = (V, E) denote the
system description, the observations, the components
and the preference graph, respectively. A preferred
diagnosis for SD UOBS and (G is a minimal set A C
COM P, such that
SD U {pc} UOBS
U Hab(e)|e € AYU{=ab(c)|lc € COMP — A}
1s consistent, where pe is the property constraint of a
node v € (G, and there is no vy € G with property
constraint pey, such that v; < v and
SD U {pc1} UOBS
U Hab(e)|e € AYU{=ab(c)|lc € COMP — A}

1s conslstent.

2.4 Sample Property Rules

In the following paragraphs we discuss some property
rules. faults_complete, n_faults are adopted from [1, 2].

e Choice of specification.
If there are different ways to specify the prob-
lem, we want to switch between these specifica-
tions (views). Given n specifications of the exam-
ined system. All rules belonging to specification 7
contain the property literal spec(7) in their body.
The property rule

n
spec; < /\ specy
Jj=1,7-1

states that only one problem specification is active
at a time. So rules belonging to other specifica-
tions are faded out and are only considered during
the correct phase of the diagnosis process.

e Number of faults.

If n < m holds for integers n and m a diag-
nosis containing n faulty components is prefer-
able to one with m. The diagnosis contains n
components, if exactly two of the n 4+ 1 Vari-
ables X7 ...X,41, who are bound to faulty com-
ponents, are the same. If n_faults denotes the
property literal, \/is an exclusive or of arity n+ 1
that is true if exactly one of its members is true,
while all others are false.

n_faults
n+1 n+1
V?:-I?XZ' . /\ ab(XZ) — \/ Xz' = Xj
i=1 ij=1,i#]

If SD contains property rules for 1 to n faults, the
property constraint

n
t_faults A /\ —j_faults
j=1,j#

expresses that exactly ¢ faults are enforced, while

n

i
\/ t_faults A /\ —j_faults
j=1 J=il, j#i
enforces the number of faulty components to be
less or equal to .

e Preference of Fault modes.
For a given component ¢ with possible fault modes
fmi(e) to fmy(c) the fault mode fim;(¢) may be
the most plausible one. The property rule

only_fm;(c) & /\ = fmj(e)

j=1,5#i

states that other modes than ¢ are not possible by
the property constraint only_fm;.



e Faults Complete
If the fault modes of a component are assumed to
be complete the unknown fault mode is forbidden.

faults_complete(c) < = fmunknown(C)

If the property constraint contains the property
literal faults_complete this property is enforced.

With these properties and many others the user can
define a preference graph as needed. Note, if we have a
lot of partial preferences which are independent of each
other (such as in the case of a local preference order on
fault modes for each component), the combination of
all of these independent preferences can lead to a large
preference graph. However, this does not concern the
user, as such a combination can be done automatically.
Additionally, the preference graph can be constructed
in a lazy fashion, building only the nodes as needed
and forgetting the ones which are not needed any more.
This is also true for encoding probability based prefer-
ences. Therefore, the theoretical worst case size of the
preference graph is of no practical significance. In the
examples we have done so far, the size of the preference
graph is negligible to the size of the theory describing
the system to be diagnosed.

3 Strategies

3.1 Motivation

Property rules refer to one diagnosis. Such properties
are easy to code, as they can be expressed as part of
the system description. This changes when a property
depends on all possible diagnoses. In order to check
such properties we already have to have a given set of
diagnoses.

Diagnosis agents influence the diagnosis process by
means of working hypotheses. For example, the agent
may choose to view some component ¢ at a more de-
tailed level. This can be expressed by the working hy-
pothesis refine(c). When this hypothesis is asserted
is specified in a strategy formula and depends on a
property of the current set of diagnoses. From now on
We call this properties conditions, to distinguish them
from the properties used in the preference graph.

Example 3.1 Structural Refinement

In order to increase the efficiency of the diagnostic pro-
cess hierarchies are introduced in the system descrip-
tion. In the beginning of the diagnostic process only
the most abstract model of the system is active. While
diagnosis proceeds, more detailed models of abnormal
system components are considered. The process of re-
fining the models is guided by the following rule:

If an abstract system component C' occurs in
all diagnoses, we prefer to activate a more

detailed model for C'.

The condition above depends on a given set of diag-
noses. In general, however, we need the complete mod-

els gained from SDUOBS and the involved diagnoses,
such as in the case of evaluating the utility of observa-
tions. Then we can express for example that a certain
measurement has to be made if there are two models
predicting contradictory values for that observation.

3.2 Syntax for Strategy Formulas

We assume that the system description SD and the
set of observations OBS are expressed in the language
Lop;. For simplicity, we interpret all atoms of Lop; as
propositions. However the semantics presented here
can be extended to handle quantifiers as well. We al-
ready stated that the agent uses certain working hy-
potheses in order to influence the set of diagnoses.

Definition 3.1 Working Hypothesis, Strateqy Set
Let WHY P C LIT be a set of literals suited for de-
scribing the effect of strategies. A literal L € WHY P
is called a working hypothesis. A set of working hy-
potheses is called a Strategy Set.

The working hypotheses the agent assumes depend on
the properties of a given set of diagnoses. These prop-
erties can be expressed by means of strategy condi-
tions.

Definition 3.2 Strategy Condition

1. Let F' be a formula of the Object Level F' € Logp;.
Then OF and OF are Strategy Conditions.

2. Let C,C" be Strategy Conditions. Then for o €
{A,V, =} Co (" is a Strategy Condition and =C'
i1s a Strategy Condition. Similarly, OC' and &C
are Strategy Conditions.

The language L ong thus defined is similar to an ordi-
nary modal language, with the additional requirement,
that all formulas have to be in the scope of either O
or <, as strategy formulas are always interpreted on
a set of preferred diagnoses and are not attached to a
specific diagnosis.

A strategy condition is a statement about a set of di-
agnoses. As we will see later, this set of diagnoses cor-
responds to a strategy set currently assumed by the
agent.

Example 3.2 Strategy Condition

Consider a system description where ab(c) denotes
that component ¢ is abnormal and val(z, p, y) denotes
that the port p of component x has the value y. Then

Oab(c) A Cval(e,inl, 0)

is a strategy condition. The intended semantics of this
condition is: The agent knows that ab(e) occurs in all
his current diagnoses. Furthermore, there is at least
one diagnosis predicting a value of 0 for the first input
of c.



If the set of diagnoses satisfies a certain strategy condi-
tion, the agent can assume a working hypotheses suit-
able for that situation. This connection between strat-
egy condition and working hypotheses is modelled by
strategy formulas.

Definition 3.3 Strategy Formula
Let C' be a strategy condition and ILi,...L, €
WHY P. Then

C—=<o0L,v...00L,

is a Strategy Formula. The Language consisting of all
strategy formulas is called Lgypq¢ in the remainder of
this paper.

Intuitively €1 means that L is a supported working
hypotheses for integration into the next strategy set
of the diagnosis agent. The rather restricted language
presented so far is sufficient for the specification of all
strategies presented in this paper. Most of the strate-
gies have the form C' — & L. A disjunction of strategy
literals can be used to express dependencies between
strategies (see subsection 3.6).

Example 3.3 Structural Refinement
The strategy formula for structural refinement is

Oab(c) — ©0Orefine(c)

3.3 Semantics for strategy formulas

In this section we define a declarative semantics for
the process of strategy evaluation based on modal
logics evaluated on connected directed graph of S5-
structures, where each Sh—cluster corresponds to a set
of diagnoses under a given strategy set, and a path
through this graph corresponds to a strategy. A se-
mantics for strategies can be judged by the following
criteria:

C1l: (Logical Consistency) A strategy has to be
logically consistent, i.e. 1t must lead to consistent
models of the system.

C2: (Preferredness) A strategy must result in an
Sh—cluster, where all necessary working hypothe-
ses suggested by the strategy formulas have been
adopted.

C3: (Minimality) Only working hypotheses sug-
gested by strategy formulas should be adopted.

We are going to define a strategy class, which can ex-
plicitly cope with C1 and C2. However, there is a
tradeoff between C3 and efficient implementation. So,
we are going to introduce a strategy concept that only
satisfies a weak minimality concept (Local Minimality)
but can be implemented efficiently.

We start defining our semantics by giving a meaning
to the strategy conditions. These conditions are in-
terpreted by standard Sh-Models [3]. We construct
an SHh—Model from a strategy set A in the following
manner:

Definition 3.4 Induced S5-Model M4
Let A be a strategy set. Then we define the induced
S5-model My = (W, R, P), where

1. W is a set of identifiers corresponding to all pre-

ferred diagnoses of SDUOBS U A
2. R=WxW

3. Pis amapping ATOMS — W, assigning to each
atom a (possibly empty) set of preferred diagnoses
in which it occurs.

The set of preferred diagnoses is used here in the sense
as defined in Section 2. Note, that in general the map-
ping has to define the truth value not only of abnor-
mality predicates, but all other predicates used in the
strategy formulas.

Strategy conditions are evaluated as follows:

Definition 3.5 Semantics of Lcong
Let M = (W, R, P), be an Lcong—Model, where W #
(). F, I, Fy are strategy conditions:

1. M |y F,F € ATOMS, iff w € P(F)
My OF, iff w € W exists, s.th. M |5 F
M, OF, iffforallwe W: M |5, F

M ey Fi A Foy iff M =y Fr and M =, Fo
M |y —F, iff M e F.

MEF, iffforalweW  : M, F.

S Ot e W N

If W =0, we define M = F to be true for all formulas
F (ex falso quod libet).

Lemma 3.1 Azioms for Loona
The semantics of L on g satisfies the usual S5-Axioms.

When the agent changes his working hypotheses from
one strategy set A to a strategy set A’ this induces a
change from one L¢,ng—model M4 to another My .

MA—" MA/

A — A
So we need two concepts: A Strategy Graph defines an
accessibility relation on the strategy sets. A connected

graph of L onq—models, the Lgyyqt —Model, provides in-
terpretation for a strategy graph.

Definition 3.6 Strateqy Graph, Lstrqt —Model
A Strategy Graph 1s a structure

G=(AR)

where A a set of strategy sets with # € A and R is an
accessibility relation on A, i.e. R C A x A.



An Lgirqt—Model 1s a structure
M=(WR)
where W 1s a set of Loong—Models and R C W x W

1s an accessibility relation on the Lo onq—Models.

The obvious connection between the strategy graph
and the Lg¢,q:—model is given by the following defini-
tion:

Definition 3.7 Induced Lg;rq:—Model
Let G = (A, R) be a strategy graph. The Lgtrqr—
Model induced by G is defined as

Mg = (W, R)

where W is the set of L¢ong—Models corresponding to
the strategy sets in A, i.e. W ={ My | A€ A}. R/
connects the Lcong—Models corresponding to strategy
sets connected in R: R' = {(Ma,Mp) | (A, B) € R}.

Strategy formulas are evaluated as follows:

Definition 3.8 Semantics for Lgirar
Let M = (W, R) be an Lgirqr-Model, and S a strategy

formula:
MES, iffforall M; e W: (M, M;) ES

where

F, Py, Fy are strategy formulas.

This semantics is extended to a set of strategy formulas
as follows: Let & be a set of strategy formulas:

MES, iffforal SeS: MES

The ©—operator means that a working hypotheses has
to be assumed in at least one of the directly following
strategy sets. So in our semantics strategy formulas
only propose certain working hypotheses, an agent fol-
lowing our semantics can adopt an arbitrary subset of
these hypotheses (provided they are not contradictory
together with SD and OBS). A strategy graph char-
acterizes the solution space for strategy evaluation. A
strategy is then a particular solution in this space. Un-
til now we have declaratively defined the basic seman-
tics for strategy formulas. In the next section we will
characterize an important subclass within this seman-
tics.

3.4 Valid Strategies

In the remainder of this chapter we will introduce the
concept of a Valid Strategy which can handle the crite-
ria we postulated in the beginning of the last section.
We do this by enforcing additional restrictions on the
concept of strategy graph:

1. We assume, that at least one path of the strategy
graph has to end in a consistent node, where all
proposed working hypotheses have already been
adopted. This is captured by the concept of a
Stable Strategy Graph.

2. We consider monotonic strategy graphs, i.e. each
successive node only adds some working hypothe-
ses to the strategy set of its predecessor.

3. We call a monotonic strategy graph locally min-
tmal, iff only ©&-Literals necessary to satisfy the
strategy formulas are added to a successor node.

Definition 3.9 Restrictions on the Strateqy Graph
Let S be a set of strategy formulas, G = (4, R) be
a strategy graph, and Mg the induced £ g¢q¢—model,
such that Mg = S.

Stable Strategy Graph A € A is called a Stable
Node, iff

it is logically consistent (M4 is not empty, i.e. there
exists a set of diagnoses under strategy set A) and

(Mg, My) E OOX & (Mg, My) FOX

G 1s called a Stable Strategy Graph, iff it contains a
stable node A € A.

Monotonic Strategy Graph ¢ is called mono-
tonic, iff for all nodes A € A and for each predecessor
A’ of A

A CA

Locally Minimal Strategy Graph A node A € A
is called locally minimal, if there is no strategy graph

G = (A, R with Mg =S and A € A’ such that
{X| X eWHYPA (Mg, Ms) E©OOX}
C {X|XeWHYPA (Mg, My) = OOX}

G 1s called a Locally Minimal Strategy Graph iff every
node in G is locally minimal.

This means, that on each transition from A to one of
its successors A’ only ©—Literals necessary to satisfy
the strategy formulas are added.

The restrictions presented are summarized by the fol-
lowing concept:

Definition 3.10 Valid Strategy Graph

Let S be a set of strategy formulas, G = (4, R) be
a strategy graph, and Mg the induced £ g¢q¢—model,
such that Mg |= 8. G is called a Valid Strategy Graph

wrt S, iff G is stable, monotonic and locally minimal.



Definition 3.11 Valid Strategy
Let & C Lgirqt- Let G be a valid strategy graph wrt.
S. A Valid Strategy is a path (B, Ag, ... A,) in G where

A, 1s a stable node.

Now let us check this concept against the criteria we
defined in the beginning of this section: (Cl1) is sat-
isfied: if a stable strategy set exists in G, the diagno-
sis agent non—deterministically chooses a path through
the strategy graph ending in a stable strategy set. If
no stable strategy set exists in &, GG is not a valid
strategy graph.

(C2) is satisfied, because every valid strategy ends in
a stable node. A stable node is defined to already con-
tain all the necessary working hypotheses. The con-
cept of a valid strategy is a tradeoff between (C3) and
efficient implementation, because it 1s a good approx-
imation to minimality and we think it can still be im-
plemented efficiently. This property of a valid strategy
1s made explicit in the following theorem:

Theorem 1 Characterization of Valid Strategies

Let (B, Ag,...A,) be a valid strategy. Let A;, A;44
be a transition between strategy sets occurring in the
strategy. Then for a working hypotheses wh:

wh € Ajyr ,iff

wh 1s needed to satisfy a particular strategy formula
with respect to a strategy set A;,j <.

Proof: At each step (going from A; to Aj41) only
working hypotheses are added which are needed to sat-
isfy the strategy formulas (local minimality). A work-
ing hypothesis remains in the strategy sets once it has
been adopted (monotonicity).

3.5 An example

Consider the following system composed of two ab-
stract components ¢; and c¢s.

The abstract component ¢; has three subcomponents
€21, €22 and ca3 not visible in the initial model.

Strategy Formulas for this example

In this small example we only consider two strategies:
Structural Refinement and Behavioural Refinement.
For both abstract components we have the strategy
”Behavioural Refinement”, i.e. we can activate a more
detailed behavioural model for a component, if differ-
ent diagnoses contain different fault models. Suppose,
each of the components has two fault models fml and
fm?2. This can be expressed by the following formulas:

Omode(fmy, e1) A Omode(fma, c1) = ©Or_fm(cy)
Omode(fmy, ea) A Omode(fma, ca) = ©Or_fm(ca)

We use a more detailed model of ¢, if it is known to
be abnormal:

Oab(ce) — ©Or(ca)

Normally we would also specify a measurement strat-
egy for y. For simplicity, we don’t provide this. Please
refer to the following section.

Evaluating the strategies

Suppose, we have observed values for # and z, which
are not compatible to the assumption, that both ¢
and ¢y are ok. The following table shows the diag-
noses under each set of working hypotheses (only the
behavioural modes are listed):

] {mode(fmy,c1)}, {mode(fma,c1)}
{mode(fmy,ca)}, {mode(fma,ca)}
{rfm(c1)} | {mode(fmy, ca)}, {mode(fma, ca)}
{rfm(ca)} | {mode(fmy, c1)}, {mode(fmz,c2)}
{mode(fmy,ca)}
{r_fm(c1), | {mode(fmy,ca)}
r_fm(ca)}
{r_fm(c1), | {mode(fmy,eca1)}
r(e2)}
{r_fm(cy),
r_fm(ca), | {mode(fmy,ea1)}
r(ea)}

Behavioural Refinement of component ¢; leads to the
knowledge that ¢2 must be faulty. So structural re-
finement has to be activated for c¢;. After activating
both working hypotheses the agent finds the only sin-
gle fault ¢o1. The following picture shows a valid strat-
egy graph for this example.

From the graph we can derive that (#, {r_fm(c1)},
{r-fm(c1),r(c2)}) is a valid strategy. Under the
strategy formulas we provided, also (#, {r_fm(cs)},
{r-fm(c1),r-fm(c2)}, {rofm(er), rofm(ca), r(ea)}) is
a valid strategy, since r_fm(cz) is also a possible work-
ing hypothesis under belief @.



3.6 Some Additional Strategies

In this section we present two additional strategies
based on [1, 2] (though interpreted differently).

Introducing Physical Negation

If for a component ¢ a behavioural mode other than
the unknown mode can be assigned, we do not want
to consider the unknown mode (i.e. we assume the
specified fault modes are complete).

Omode(my, e)V. .. Omode(my, ¢) — ©0 fm_complete(c)

If fm—complete i1s active for a component ¢, we can
assure that c1s assigned a known fault mode by adding
the following rule to the system description:

VC : fm_complete(C) — (ok(C) VvV IM : mode(M, C'))
Measurements

If different consistent models of the system predict dif-
ferent values for some component ¢ we can discriminate
between these values by making a measurement. The
strategy rule used in a digital circuit would look like:

Swval(e, 1) A Cval(e,0) = GOmeasure(c)

Sometimes this is not sufficient. When measurements
are expensive, we only want to do the measurement, if
the cheaper strategy st is not available:

Swval(e, 1) A Qval(e,0) A =OOst; — GOmeasure(c)

means that no measurement has to be executed while
the strategy literal a is still supported.

4 Summary and Future Work

The i1ssues addressed in this paper have been first dis-
cussed in [10] and further investigated in [1, 2]. Our
paper defines the concept of preferred diagnosis by a
flexible and expressive preference relation between sin-
gle diagnoses based on diagnosis properties. It defines
the concept of diagnosis strategies using modal logic
strategy formulas interpreted on a connected graph of
Sb-models. Our approach allows not only to express
system models in a declarative way (which is one of
the main advantages of model-based diagnosis), but
extends this declarativity to the meta level by allow-
ing the declarative description of preferences and diag-
nosis strategies. The integration of both concepts as
presented (strategy evaluation based on our concept
of preferred diagnosis) thus is a declarative definition
of the results of diagnosis as a process which has been
missing in previous approaches.

The declarative semantics for preferences and strate-
gies can be described by extended logic programs [4].
We are currently working to efficiently implement the
formal concepts introduced in this paper as well as
define additional strategy classes based on this frame-
work, (i.e. strategy classes that interpret minimality
in a stronger sense).
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