
Published in:DX 94 Workshop on Principles of diagnosis , New Paltz, October 1994.A Formal Semantics for Preferences and Strategies in Model-BasedDiagnosisPeter Fr�ohlich, Wolfgang Nejdl, Michael SchroederLehrstuhl f�ur Informatik VRWTH Aachen52062 Aachen, Germanyffroehlich,nejdl,schroederg@informatik.rwth-aachen.deAbstractThe concept of diagnosis as a process hasbeen coined to introduce a dynamic repre-sentation of the diagnosis process and subse-quent work has focused on formalizing thisnotion. Advancing on previous proposalsbuilt upon rather procedural semantics, weaim to give a formal and declarative seman-tics for the diagnosis process. We give a logi-cal characterization of preferences and strate-gies, expressed by preference relations on sin-gle diagnoses and modal logic formulas onsets of diagnoses, respectively.1 IntroductionOverviewIn most diagnosis systems, diagnosis is considered asa static problem, i.e. the system description and thediagnosis goals are not changed during the diagnosisprocess. As already observed in recent work such as[10] and [1, 2], this is a big disadvantage for the diagno-sis of complex systems. All informations such as di�er-ent speci�cations, modeling assumptions, abstractionsetc. are visible during the whole diagnosis process.Therefore the concept of diagnosis as a process hasbeen coined in [10] and [11] to introduce a dynamicrepresentation of the diagnosis process. Subsequentwork has focused on formalizing this notion, mostof them focusing on speci�c features of this process.Friedrich covers the principle of abstraction in [7],Damasio, Nejdl and Pereira focus on preference rela-tions for diagnoses [5]. The most general approach upto now has been de�ned by B�ottcher and Dressler in[1, 2], including a set of preferences/strategies to guidethe diagnosis process. Although they provide a formalde�nition for preferred diagnosis [6] their descriptionand semantics for diagnosis strategies is rather inter-twined with the workings of an ATMS-based diagnosisengine, resulting in rather procedural semantics explic-itly based on iteration. They show how to computediagnoses, but cannot characterize their results.

So while the theory of model-based diagnosis is wellin place, a declarative theory of using preferences andstrategies during the diagnosis process independent ofspeci�c systems is still missing. Our aim in this paperis to provide a �rst realization of such a theory, basedon preference based semantics for reasoning with pref-erences and on modal logic strategy formulas for cap-turing strategic decisions about working hypotheses.Preferred DiagnosesThe �rst formal characterization of model-based di-agnosis [9] introduced the concept of set-theoreticallyminimal diagnoses to describe which consistent diag-nosis hypothesis are preferred to others. Subsequentsystems usually used a preference relation based onprobabilities. These approaches are all special cases ofa general approach, which ascribes to each (consistent)diagnosis hypothesis a set of properties, and speci�eshow diagnoses with certain properties are preferred todiagnoses with certain other properties. For examplea diagnosis containing a single fault might be consid-ered better than one with more than one fault. Inthis paper we will de�ne such a generalized preferenceconcept based on properties of single diagnoses.StrategiesAnother concept is needed to model strategic decisionsduring the diagnosis process. There we need to evalu-ate a set of preferred diagnoses, and continue diagnosisunder a di�erent set of working hypotheses dependingon the properties of this set of diagnoses. For example,if all preferred diagnoses accuse a component of beingfaulty, we might want to consider re�ning the modelfor this component, producing a set of more speci�cdiagnoses involving subcomponents of the suspectedcomponent. We will call the sequence of sets of work-ing hypotheses adopted during the diagnosis process astrategy . Thus a strategy describes the process of �nd-ing a satisfactory set of diagnoses. Strategic knowledge(i.e. which working hypotheses are adopted dependenton the properties of the current set of diagnoses) is ex-pressed in modal logic on a connected directed graphof S5{structures.



2 Preference Graph2.1 Starting PointWe will use a �rst order language with equality (calledLObj) as general background. ATOMS denotes the setof atoms of LObj, LIT is the set of literals, i.e. pos-itive and negative atoms. The concept of preferencesduring the diagnosis process is based on the diagnosisframework as introduced in [9], where diagnoses werede�ned in the following way:De�nition 2.1 Minimal DiagnosesLet SD, OBS and COMP denote the system de-scription, the observations and the components, re-spectively. A minimal diagnosis for SD [ OBS is aminimal set � � COMP such thatSD[OBS [fab(c)jc 2 �g[f:ab(c)jc 2 COMP ��gis consistent.In the above de�nition a component's ok{mode is pre-ferred to abnormality. This is the usual approach,which we will assume, too, without loss of generality.The preference graph de�ned in the following sectionscan easily be modi�ed for the case where abnormalityis preferred over non-abnormality.2.2 Properties of DiagnosesTo calculate minimal diagnoses we have to �nd allminimal models (with respect to ab) of the theorySD [ OBS. In cases where we have a large set ofminimal models, we want to re�ne the notion of pre-ferred model by de�ning preference relations betweenminimal models. Minimality as stated in the de�ni-tion of minimal diagnoses uses set inclusion to de�nepreference. This is unsatisfactory as we may want toexpress that a solution is minimal in terms of size orpreferred because of some properties it has. Thereforewe de�ne a preference graph that allows the user tore�ne the notion of preference.We express the preference of one minimal model toanother in terms of properties. One model may sat-isfy a given property while another does not. Theseproperties are ordered in a directed preference graphwhich describes which properties are preferred to oth-ers, producing a partial ordering of all possible min-imal models. The extended de�nition of a preferreddiagnosis demands not only minimality with respectto ab, but also minimality with respect to the partialordering induced by the preference graph.We will use properties as an indicator whether a di-agnosis satis�es a certain condition. A property is ex-pressed in terms of a literal.De�nition 2.2 Property literals, Property rulesLet PROP � LIT be a set of literals, then p 2 PROPis called property. For each property p 2 PROP the

system description SD may contain a property rulep$ c, where c is a formula of the language.Example 2.1In order to express the number of faulty componentsa diagnosis contains, we de�ne the property literalssingle faults and double faults. The system descrip-tion contains the property rulessingle faults$(8X : 8Y : ab(X) ^ ab(Y )! X = Y )double faults $(8X : 8Y : 8Z : ab(X) ^ ab(Y ) ^ ab(Z)!X = Y _X = Z _ Y = Z)With the property rules we are able to relate a prop-erty to a diagnosis. A minimal model of SD [ OBS,where SD contains property rules, indicates whichproperties are satis�ed by the underlying diagnosis. Inorder to enforce a single property p, we add the prop-erty literal denoting the desired property to the systemdescription. This ensures that a minimal diagnosis forthe new system description satis�es this property, i.e.a minimal diagnosis for SD [ fpg [ OBS guaranteesthe property denoted by the property literal p.By this method we are able to obtain minimal diag-noses satisfying a single property. In order to expressmore general satis�ability conditions, we allow the ad-dition of a formula of LObj based on property literals.Such a formula is called property constraint.De�nition 2.3 Property constraintA formula pc of Lang being composed of property lit-erals, truth values true and false, connectors ^, _,:, !,$ and quanti�ers 8, 9 is a property constraint.Nothing else is a property constraint.Example 2.2 (continued)Two property constraints aresingle faults ^ :double faultsand single faults _ double faultsWe express that the former is preferable to the latterusing a preference graph.2.3 Preferred DiagnosisWith property rules and property constraints we areable to check and enforce properties of diagnoses.Given a preference relation over the property con-straints, a minimal model being also minimal with re-spect to this preference relation is preferred to non-minimal ones. The following de�nition of preferencegraph is an extension of the one given in [5].De�nition 2.4 Preference GraphA directed, connected, acyclic graph G = (V;E) iscalled a preference graph referring to a system descrip-tion SD and a set of property literals PROP , i�



� V is a set of nodes and E a set of edges,� each node v 2 V has a unique label and a propertyconstraint over PROP and� there is a node labeled ? (bottom) which is not ac-cessible by the other nodes, while all other nodesare accessible from ?.Sometimes we do not distinguish between a node andits label or its property constraint.A node v is preferred to a node w, i� w is reachablefrom v, while v is not reachable from w. As no othernodes have access to ? it is the smallest node.De�nition 2.5 Minimal NodeLet G = (V;E) be a preference graph and v; w 2 V ,then w is reachable by v, i� there is a pathf(v0; v1); (v1; v2); : : : ; (vk�1; vk)g; (vi; vi+1) 2 E;such that v0 = v, vk = w.v < w holds, i� w is reachable by v, whereas v is notreachable by w. v 2 V is minimal, i� 6 9w 2 V:w < v.Example 2.3 (continued)A preference graph to prefer single to doubleto any number of faults has the form G =(fv; w; xg; f(v; w); (w; x)g with nodes as given below.v < w and w < x hold.t v = (?;fsingle faults ^ :double faultsg)?t w = (1; fsingle faults _ double faultsg)?t x = (2; ftrueg)With the preference graph all concepts of minimalityare covered. Diagnoses need not be minimal with re-spect to set inclusion only, but they have to be minimalwith respect to the preference graph, too. This givesus the following de�nition of preferred diagnosis:De�nition 2.6 Preferred DiagnosisLet SD, OBS, COMP and G = (V;E) denote thesystem description, the observations, the componentsand the preference graph, respectively. A preferreddiagnosis for SD [OBS and G is a minimal set � �COMP , such thatSD [ fpcg [OBS[ fab(c)jc 2 �g [ f:ab(c)jc 2 COMP ��gis consistent, where pc is the property constraint of anode v 2 G, and there is no v1 2 G with propertyconstraint pc1, such that v1 < v andSD [ fpc1g [OBS[ fab(c)jc 2 �g [ f:ab(c)jc 2 COMP ��gis consistent.

2.4 Sample Property RulesIn the following paragraphs we discuss some propertyrules. faults complete, n faults are adopted from [1, 2].� Choice of speci�cation.If there are di�erent ways to specify the prob-lem, we want to switch between these speci�ca-tions (views). Given n speci�cations of the exam-ined system. All rules belonging to speci�cation Icontain the property literal spec(I) in their body.The property rulespeci $ n̂j=1; j:i:specjstates that only one problem speci�cation is activeat a time. So rules belonging to other speci�ca-tions are faded out and are only considered duringthe correct phase of the diagnosis process.� Number of faults.If n < m holds for integers n and m a diag-nosis containing n faulty components is prefer-able to one with m. The diagnosis contains ncomponents, if exactly two of the n + 1 Vari-ables X1 : : :Xn+1, who are bound to faulty com-ponents, are the same. If n faults denotes theproperty literal, W: is an exclusive or of arity n+1that is true if exactly one of its members is true,while all others are false.n faults $8n+1i=1 Xi : n+1Vi=1 ab(Xi) ! n+1Wi;j=1; i6=j: Xi = XjIf SD contains property rules for 1 to n faults, theproperty constrainti faults ^ n̂j=1; j 6=i:j faultsexpresses that exactly i faults are enforced, whilei_j=1 i faults ^ n̂j=i+1; j 6=i:j faultsenforces the number of faulty components to beless or equal to i.� Preference of Fault modes.For a given component c with possible fault modesfm1(c) to fmn(c) the fault mode fmi(c) may bethe most plausible one. The property ruleonly fmi(c) $ n̂j=1; j 6=i:fmj(c)states that other modes than i are not possible bythe property constraint only fmi.



� Faults CompleteIf the fault modes of a component are assumed tobe complete the unknown fault mode is forbidden.faults complete(c) $ :fmunknown(c)If the property constraint contains the propertyliteral faults complete this property is enforced.With these properties and many others the user cande�ne a preference graph as needed. Note, if we have alot of partial preferences which are independent of eachother (such as in the case of a local preference order onfault modes for each component), the combination ofall of these independent preferences can lead to a largepreference graph. However, this does not concern theuser, as such a combination can be done automatically.Additionally, the preference graph can be constructedin a lazy fashion, building only the nodes as neededand forgetting the ones which are not needed any more.This is also true for encoding probability based prefer-ences. Therefore, the theoretical worst case size of thepreference graph is of no practical signi�cance. In theexamples we have done so far, the size of the preferencegraph is negligible to the size of the theory describingthe system to be diagnosed.3 Strategies3.1 MotivationProperty rules refer to one diagnosis. Such propertiesare easy to code, as they can be expressed as part ofthe system description. This changes when a propertydepends on all possible diagnoses. In order to checksuch properties we already have to have a given set ofdiagnoses.Diagnosis agents in
uence the diagnosis process bymeans of working hypotheses. For example, the agentmay choose to view some component c at a more de-tailed level. This can be expressed by the working hy-pothesis refine(c). When this hypothesis is assertedis speci�ed in a strategy formula and depends on aproperty of the current set of diagnoses. From now onWe call this properties conditions, to distinguish themfrom the properties used in the preference graph.Example 3.1 Structural Re�nementIn order to increase the e�ciency of the diagnostic pro-cess hierarchies are introduced in the system descrip-tion. In the beginning of the diagnostic process onlythe most abstract model of the system is active. Whilediagnosis proceeds, more detailed models of abnormalsystem components are considered. The process of re-�ning the models is guided by the following rule:If an abstract system component C occurs inall diagnoses, we prefer to activate a moredetailed model for C.The condition above depends on a given set of diag-noses. In general, however, we need the complete mod-

els gained from SD[OBS and the involved diagnoses,such as in the case of evaluating the utility of observa-tions. Then we can express for example that a certainmeasurement has to be made if there are two modelspredicting contradictory values for that observation.3.2 Syntax for Strategy FormulasWe assume that the system description SD and theset of observations OBS are expressed in the languageLObj. For simplicity, we interpret all atoms of LObj aspropositions. However the semantics presented herecan be extended to handle quanti�ers as well. We al-ready stated that the agent uses certain working hy-potheses in order to in
uence the set of diagnoses.De�nition 3.1 Working Hypothesis, Strategy SetLet WHY P � LIT be a set of literals suited for de-scribing the e�ect of strategies. A literal L 2WHY Pis called a working hypothesis. A set of working hy-potheses is called a Strategy Set.The working hypotheses the agent assumes depend onthe properties of a given set of diagnoses. These prop-erties can be expressed by means of strategy condi-tions.De�nition 3.2 Strategy Condition1. Let F be a formula of the Object Level F 2 LObj.Then 2F and 3F are Strategy Conditions.2. Let C;C 0 be Strategy Conditions. Then for � 2f^;_;!g C �C 0 is a Strategy Condition and :Cis a Strategy Condition. Similarly, 2C and 3Care Strategy Conditions.The language LCond thus de�ned is similar to an ordi-nary modal language, with the additional requirement,that all formulas have to be in the scope of either 2or 3, as strategy formulas are always interpreted ona set of preferred diagnoses and are not attached to aspeci�c diagnosis.A strategy condition is a statement about a set of di-agnoses. As we will see later, this set of diagnoses cor-responds to a strategy set currently assumed by theagent.Example 3.2 Strategy ConditionConsider a system description where ab(c) denotesthat component c is abnormal and val(x; p; y) denotesthat the port p of component x has the value y. Then2ab(c) ^3val(c; in1; 0)is a strategy condition. The intended semantics of thiscondition is: The agent knows that ab(c) occurs in allhis current diagnoses. Furthermore, there is at leastone diagnosis predicting a value of 0 for the �rst inputof c.



If the set of diagnoses satis�es a certain strategy condi-tion, the agent can assume a working hypotheses suit-able for that situation. This connection between strat-egy condition and working hypotheses is modelled bystrategy formulas.De�nition 3.3 Strategy FormulaLet C be a strategy condition and L1; : : :Ln 2WHY P . ThenC ! 3332L1 _ : : :3332Lnis a Strategy Formula. The Language consisting of allstrategy formulas is called LStrat in the remainder ofthis paper.Intuitively 333L means that L is a supported workinghypotheses for integration into the next strategy setof the diagnosis agent. The rather restricted languagepresented so far is su�cient for the speci�cation of allstrategies presented in this paper. Most of the strate-gies have the formC ! 333L. A disjunction of strategyliterals can be used to express dependencies betweenstrategies (see subsection 3.6).Example 3.3 Structural Re�nementThe strategy formula for structural re�nement is2ab(c)! 3332refine(c)3.3 Semantics for strategy formulasIn this section we de�ne a declarative semantics forthe process of strategy evaluation based on modallogics evaluated on connected directed graph of S5{structures, where each S5{cluster corresponds to a setof diagnoses under a given strategy set, and a paththrough this graph corresponds to a strategy. A se-mantics for strategies can be judged by the followingcriteria:C1: (Logical Consistency) A strategy has to belogically consistent, i.e. it must lead to consistentmodels of the system.C2: (Preferredness) A strategy must result in anS5{cluster, where all necessary working hypothe-ses suggested by the strategy formulas have beenadopted.C3: (Minimality) Only working hypotheses sug-gested by strategy formulas should be adopted.We are going to de�ne a strategy class, which can ex-plicitly cope with C1 and C2. However, there is atradeo� between C3 and e�cient implementation. So,we are going to introduce a strategy concept that onlysatis�es a weak minimality concept (Local Minimality)but can be implemented e�ciently.We start de�ning our semantics by giving a meaningto the strategy conditions. These conditions are in-terpreted by standard S5-Models [3]. We constructan S5{Model from a strategy set A in the followingmanner:

De�nition 3.4 Induced S5{Model MALet A be a strategy set. Then we de�ne the inducedS5{model MA := hW;R;P i, where1. W is a set of identi�ers corresponding to all pre-ferred diagnoses of SD [OBS [A2. R = W �W3. P is a mapping ATOMS !W , assigning to eachatom a (possibly empty) set of preferred diagnosesin which it occurs.The set of preferred diagnoses is used here in the senseas de�ned in Section 2. Note, that in general the map-ping has to de�ne the truth value not only of abnor-mality predicates, but all other predicates used in thestrategy formulas.Strategy conditions are evaluated as follows:De�nition 3.5 Semantics of LCondLet M = hW;R;P i, be an LCond{Model, where W 6=;. F; F1; F2 are strategy conditions:1. M j=w F; F 2 ATOMS, i� w 2 P (F )2. M j=w 3F , i� w 2W exists, s.th. M j=w F3. M j=w 2F , i� for all w 2W : M j=w F4. M j=w F1 ^ F2, i� M j=w F1 and M j=w F25. M j=w :F , i� M 6j=w F .6. M j= F , i� for all w 2W :M j=w F .If W = ;, we de�ne M j= F to be true for all formulasF (ex falso quod libet).Lemma 3.1 Axioms for LCondThe semantics of LCond satis�es the usual S5-Axioms.When the agent changes his working hypotheses fromone strategy set A to a strategy set A0 this induces achange from one LCond{model MA to another MA0 .--..... .....A0MAA MA0So we need two concepts: A Strategy Graph de�nes anaccessibility relation on the strategy sets. A connectedgraph of LCond{models, the LStrat{Model, provides in-terpretation for a strategy graph.De�nition 3.6 Strategy Graph, LStrat{ModelA Strategy Graph is a structureG = hA;Riwhere A a set of strategy sets with ; 2 A and R is anaccessibility relation on A, i.e. R � A� A.



An LStrat{Model is a structureM = hW;Riwhere W is a set of LCond{Models and R � W �Wis an accessibility relation on the LCond{Models.The obvious connection between the strategy graphand the LStrat{model is given by the following de�ni-tion:De�nition 3.7 Induced LStrat{ModelLet G = hA;Ri be a strategy graph. The LStrat{Model induced by G is de�ned asMG = hW;R0iwhere W is the set of LCond{Models corresponding tothe strategy sets in A, i.e. W = fMA j A 2 Ag. R0connects the LCond{Models corresponding to strategysets connected in R: R0 = f(MA;MB) j (A;B) 2 Rg.Strategy formulas are evaluated as follows:De�nition 3.8 Semantics for LStratLetM = hW;Ri be an LStrat-Model, and S a strategyformula:M j= S; i� for all Mi 2 W : (M;Mi) j= Swhere1. (M;Mi) j= C;C 2 LCond, i� Mi j= C.2. (M;Mi) j= F1 ^ F2, i� Mi j= F1 and Mi j= F2.3. (M;Mi) j= :F , i� Mi 6j= F4. (M;Mi) j= 333F , i� Mj 2 W exists, such that(Mi;Mj) 2 R and (M;Mj) j= FF; F1; F2 are strategy formulas.This semantics is extended to a set of strategy formulasas follows: Let S be a set of strategy formulas:M j= S; i� for all S 2 S :M j= SThe 333{operator means that a working hypotheses hasto be assumed in at least one of the directly followingstrategy sets. So in our semantics strategy formulasonly propose certain working hypotheses, an agent fol-lowing our semantics can adopt an arbitrary subset ofthese hypotheses (provided they are not contradictorytogether with SD and OBS). A strategy graph char-acterizes the solution space for strategy evaluation. Astrategy is then a particular solution in this space. Un-til now we have declaratively de�ned the basic seman-tics for strategy formulas. In the next section we willcharacterize an important subclass within this seman-tics.

3.4 Valid StrategiesIn the remainder of this chapter we will introduce theconcept of a Valid Strategy which can handle the crite-ria we postulated in the beginning of the last section.We do this by enforcing additional restrictions on theconcept of strategy graph:1. We assume, that at least one path of the strategygraph has to end in a consistent node, where allproposed working hypotheses have already beenadopted. This is captured by the concept of aStable Strategy Graph.2. We consider monotonic strategy graphs, i.e. eachsuccessive node only adds some working hypothe-ses to the strategy set of its predecessor.3. We call a monotonic strategy graph locally min-imal , i� only 333{Literals necessary to satisfy thestrategy formulas are added to a successor node.De�nition 3.9 Restrictions on the Strategy GraphLet S be a set of strategy formulas, G = hA;Ri bea strategy graph, and MG the induced LStrat{model,such that MG j= S.Stable Strategy Graph A 2 A is called a StableNode, i�it is logically consistent (MA is not empty, i.e. thereexists a set of diagnoses under strategy set A) and(MG;MA) j= 3332X $ (MG ;MA) j= 2XG is called a Stable Strategy Graph, i� it contains astable node A 2 A.Monotonic Strategy Graph G is called mono-tonic, i� for all nodes A 2 A and for each predecessorA0 of A A0 � ALocally Minimal Strategy Graph A node A 2 Ais called locally minimal, if there is no strategy graphG0 = hA0;R0i with MG j= S and A 2 A0, such thatfX j X 2WHY P ^ (MG0 ;MA) j= 3332Xg� fX j X 2WHY P ^ (MG ;MA) j= 3332XgG is called a Locally Minimal Strategy Graph i� everynode in G is locally minimal.This means, that on each transition from A to one ofits successors A0 only 333{Literals necessary to satisfythe strategy formulas are added.The restrictions presented are summarized by the fol-lowing concept:De�nition 3.10 Valid Strategy GraphLet S be a set of strategy formulas, G = hA;Ri bea strategy graph, and MG the induced LStrat{model,such that MG j= S. G is called a Valid Strategy Graphwrt S, i� G is stable, monotonic and locally minimal.



De�nition 3.11 Valid StrategyLet S � LStrat. Let G be a valid strategy graph wrt.S. A Valid Strategy is a path h;; A0; : : :Ani in G whereAn is a stable node.Now let us check this concept against the criteria wede�ned in the beginning of this section: (C1) is sat-is�ed: if a stable strategy set exists in G, the diagno-sis agent non{deterministically chooses a path throughthe strategy graph ending in a stable strategy set. Ifno stable strategy set exists in G, G is not a validstrategy graph.(C2) is satis�ed, because every valid strategy ends ina stable node. A stable node is de�ned to already con-tain all the necessary working hypotheses. The con-cept of a valid strategy is a tradeo� between (C3) ande�cient implementation, because it is a good approx-imation to minimality and we think it can still be im-plemented e�ciently. This property of a valid strategyis made explicit in the following theorem:Theorem 1 Characterization of Valid StrategiesLet h;; A0; : : :Ani be a valid strategy. Let Ai; Ai+1be a transition between strategy sets occurring in thestrategy. Then for a working hypotheses wh:wh 2 Ai+1,i�wh is needed to satisfy a particular strategy formulawith respect to a strategy set Aj ; j � i.Proof: At each step (going from Aj to Aj+1) onlyworking hypotheses are added which are needed to sat-isfy the strategy formulas (local minimality). A work-ing hypothesis remains in the strategy sets once it hasbeen adopted (monotonicity).3.5 An exampleConsider the following system composed of two ab-stract components c1 and c2.b b bc1 c2x y zThe abstract component c2 has three subcomponentsc21, c22 and c23 not visible in the initial model.Strategy Formulas for this exampleIn this small example we only consider two strategies:Structural Re�nement and Behavioural Re�nement.For both abstract components we have the strategy"Behavioural Re�nement", i.e. we can activate a moredetailed behavioural model for a component, if di�er-ent diagnoses contain di�erent fault models. Suppose,each of the components has two fault models fm1 andfm2. This can be expressed by the following formulas:3mode(fm1 ; c1) ^3mode(fm2 ; c1)! 3332r fm(c1)3mode(fm1 ; c2) ^3mode(fm2 ; c2)! 3332r fm(c2)

We use a more detailed model of c2, if it is known tobe abnormal: 2ab(c2)! 3332r(c2)Normally we would also specify a measurement strat-egy for y. For simplicity, we don't provide this. Pleaserefer to the following section.Evaluating the strategiesSuppose, we have observed values for x and z, whichare not compatible to the assumption, that both c1and c2 are ok. The following table shows the diag-noses under each set of working hypotheses (only thebehavioural modes are listed):; fmode(fm1; c1)g; fmode(fm2; c1)gfmode(fm1; c2)g; fmode(fm2; c2)gfr fm(c1)g fmode(fm1; c2)g; fmode(fm2; c2)gfr fm(c2)g fmode(fm1; c1)g; fmode(fm2; c2)gfmode(fm1; c2)gfr fm(c1); fmode(fm1; c2)gr fm(c2)gfr fm(c1); fmode(fm1; c21)gr(c2)gfr fm(c1);r fm(c2); fmode(fm1; c21)gr(c2)gBehavioural Re�nement of component c1 leads to theknowledge that c2 must be faulty. So structural re-�nement has to be activated for c2. After activatingboth working hypotheses the agent �nds the only sin-gle fault c21. The following picture shows a valid strat-egy graph for this example.�� ��
@@@@@@I 6������������6 @@@@I�����? ?fr fm(c1)g fr fm(c2)gfr fm(c1); r fm(c2)gfr fm(c1); r(c2)g fr fm(c1); r fm(c2); r(c2)g
;From the graph we can derive that h;, fr fm(c1)g,fr fm(c1); r(c2)gi is a valid strategy. Under thestrategy formulas we provided, also h;, fr fm(c2)g,fr fm(c1); r fm(c2)g, fr fm(c1); r fm(c2); r(c2)gi isa valid strategy, since r fm(c2) is also a possible work-ing hypothesis under belief ;.



3.6 Some Additional StrategiesIn this section we present two additional strategiesbased on [1, 2] (though interpreted di�erently).Introducing Physical NegationIf for a component c a behavioural mode other thanthe unknown mode can be assigned, we do not wantto consider the unknown mode (i.e. we assume thespeci�ed fault modes are complete).3mode(m1; c)_: : :3mode(mn; c)! 3332fm complete(c)If fm{complete is active for a component c, we canassure that c is assigned a known fault mode by addingthe following rule to the system description:8C : fm complete(C) ! (ok(C) _ 9M : mode(M;C))MeasurementsIf di�erent consistent models of the system predict dif-ferent values for some component cwe can discriminatebetween these values by making a measurement. Thestrategy rule used in a digital circuit would look like:3val(c; 1) ^3val(c; 0)! 3332measure(c)Sometimes this is not su�cient. When measurementsare expensive, we only want to do the measurement, ifthe cheaper strategy st1 is not available:3val(c; 1) ^3val(c; 0) ^ :3332st1 ! 3332measure(c)means that no measurement has to be executed whilethe strategy literal a is still supported.4 Summary and Future WorkThe issues addressed in this paper have been �rst dis-cussed in [10] and further investigated in [1, 2]. Ourpaper de�nes the concept of preferred diagnosis by a
exible and expressive preference relation between sin-gle diagnoses based on diagnosis properties. It de�nesthe concept of diagnosis strategies using modal logicstrategy formulas interpreted on a connected graph ofS5{models. Our approach allows not only to expresssystem models in a declarative way (which is one ofthe main advantages of model-based diagnosis), butextends this declarativity to the meta level by allow-ing the declarative description of preferences and diag-nosis strategies. The integration of both concepts aspresented (strategy evaluation based on our conceptof preferred diagnosis) thus is a declarative de�nitionof the results of diagnosis as a process which has beenmissing in previous approaches.The declarative semantics for preferences and strate-gies can be described by extended logic programs [4].We are currently working to e�ciently implement theformal concepts introduced in this paper as well asde�ne additional strategy classes based on this frame-work, (i.e. strategy classes that interpret minimalityin a stronger sense).
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