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1 Introduction

As already stressed by Archimedes [5] discovery and proof are different activities, which
require different methods. One must first find what is to be proved, i.e., a conjec-
ture, by any procedure, possibly aided by a physical model, then prove it or refute it
by logical means. Both tasks can be aided by computers in various fields of mathe-
matics. Fully automated proofs in graph theory are still limited to simple properties
[50][51][52][56][64][65][66]. In contrast, partly automated proofs, which use both human
reasoning and specialized computer programs, have met with much success since the
proof of the 4-color theorem [2][3][4][116] (and despite the controversy on the reliability
of such proofs, see e.g. [11]). To illustrate, the fifth update of a “dynamic survey” on
“Small Ramsey Numbers” [112] reviews results which were obtained with the aid of
the computer in 71 papers among the 274 which are cited. Recourse to the computer
to complete a difficult proof is thus widespread.
In this paper, we focus on computer aids to discovery, i.e., finding conjectures and
refutations, in graph theory. Examples come from algebraic graph theory.
Quite a few systems have been developed in the last 25 years. They are based on

different principles, which can be regrouped as follows :

(i) enumeration;

(ii) interactive computing;

(iii) invariant manipulation;

(iv) generation and selection;

(v) heuristic optimization.
Representative systems of each family are discussed in the next five sections and brief
conclusions are given in the last one.

2 Enumeration

Enumeration refers to two distincts operations in mathematics performed, when exam-
ining a set of objects or structures. On the one hand, one can find how many there are,
i.e. count them. Methods to do so are well developed in combinatorial mathematics
and graph theory (see e.g. the books [91] [107]). On the other hand, one may con-
sider each of them in turn, i.e., list them (this is sometimes referred to as constructure
enumeration). Computer aids to discovery which use enumeration mostly address the
second type of problem. To illustrate, recall that the Folkman number F,(3,3,5) is
defined as the smallest positive integer n such that there exists a Kj-free graph on n
vertices for which every 2-coloring of its edges contains a monochromatic triangle. In
[106] this number was proved to be equal to 15 by a careful enumeration, exploiting
characteristics of graphs with the desired property.

Basic problems of enumeration are to avoid duplication and to efficiently exploit
properties of the class of graph under study to curtail the search. Often graphs are
generated by adding one vertex at a time, and some adjacent edges. To avoid dupli-
cation, graphs are encoded and a unique father is assigned to any son. This principle
of orderly generation was proposed in [73] [74] [114] [115]. Variants and extensions, in-
cluding the canonical path method are discussed in [101][102]. Moreover, symmetry can
be exploited both to avoid duplication and to accelerate the search. A recent survey of



Figure 1: A new family of bipartite integral graphs [7]

isomorphism rejection methods is [25]. Several systems do this, e.g. Nauty [101][102].
This system and others such as CoCo [75] [76] are used in the package GAP (Groups,
Algorithms and Programming) [82]. When applied to problems on groups and graphs,
the program GRAPE, which is a part of GAP led to several results [42] [46] [44] [43]
[45] [108] [123] [124], e.g., the discovery of a new infinite family of 5-arcs transitive
cubic graphs.

Some systems for enumerating graphs are specialized, e.g., MOLGEN [83] which
is designed for molecular graphs, Fullgen for fullerenes [26] and minibaum for cubic
graphs [24]. CaGe [27] generates graphs of different types often related to intersting
chemical molecules.

Enumeration of families of graphs defined by given properties often leads to conjec-
tures about them or refutations of such conjectures.

Let G = (V, E) denote a graph with n = |V| vertices (i.e., of order n) and m = |E|
edges (i.e., of size m). Its adjacency matriz A = (ai;) is such that a;; = 1 if vertices
v; and v; are adjacent and a;; = 0 otherwise. The polynomial P()\) = det(A\] — A)
is called characteristic polynomial of G. The spectrum of G is the set of solutions to
P(X) =0, called eigenvalues, and noted S, = (A1, Ag, ..., Ap) with Ay > Ao > -2 > A,
The first eigenvalue \; is called the index or spectral radius.

In [53] spectra of all graphs with up to 9 vertices are given. This lists refutes 5
conjectures of Graffiti ([67][69], see Section 5).

A graph is called integral if all its eigenvalues are integer. Such graphs are rare.
In [6][7] it is shown that there are only 263 non-isomorphic connected integral graphs
with up to 11 vertices. These graphs could be determined by enumeration of connected
graphs using Nauty [101][102] and computation of their spectra. Such a lengthy process
required a supercomputer. Larger integral graphs, but possibly not all of them for given
n, could be obtained with an evolutionary algorithm, using as fitness function the sum
of distances from eigenvalues to their closest integer (and variants thereof) [8].

A bipartite graph Kp, is composed of two independent sets, with p and g vertices
respectively, and some edges joining pairs of vertices one in each set. It is complete
if it contains such edges for all pairs. Among other results, examination of the 263
integral graphs suggested two new infinite families of integral graphs [7]. The first one
is obtained from the complete bipartite graphs K, 4o for p = 1,2,... by appending
an edge to each vertex of the smallest independent set (see Figure 1).

A split graph SP,q is composed of a clique on p vertices, an independent set on ¢
vertices and some edges joining pairs of vertices one in each of those sets. It is complete
if it contains edges for all such pairs. It was observed in [88] [109] that complete split
graphs are sometimes but not always integral (see Figure 2). Then, generation of all



Figure 2: Small integral complete split graph SP; 3

complete split graphs with n = p 4+ ¢ < 500 and p < 50, and computation of their
spectrum with the Matlab™™ [100] programming language, led to several conjectures,

e.g.
Conjecture 1 All complete split graphs with

[ eu-olg 15

where 1 is a positive integer, are integral. Moreover if p is a power of a prime there are
no other integral complete split graphs.

This conjecture is proved in [88].

3 Interactive computing

Numerous conjectures of graph theory are obtained by drawing small graphs on paper
or blackboard, making hand or pocket calculator computations of invariants under
study, reasoning upon their values, then modifying these graphs and computing the
consequences. Such a process can be aided by the computer, exploiting its abilities
to make very quick computations and represent graphs in a clear way. A pioneering
system in this respect is Graph [54] [55] [57] developed during the period 1980 — 1984
in Belgrade. This system comprises three main components : Algor which implements
graph algorithms for computing a series of invariants, as well as Biblio and Theor a
bibliographic and a theorem-proving component respectively. These last two will not
be discussed here.

Graph also displays the graph currently under study and allows interactive mod-
ifications on screen : addition or deletion of edges and / or vertices (this, of course
allows any transformation). While Graph does not provide conjectures or proofs in an
entirely automated way, it has proved to be very successful in suggesting conjectures
through analysis of examples, and also in helping to get proofs by checking particular
cases. The survey papers [49] [57] mention 55 papers by 16 mathematicians with results
obtained up to 1992 with the help of Graph. Many further papers mentioning use of
Graph have since appeared.

We next give a few examples of results obtained with aid of this system. Further
theorems of algebraic graph theory obtained in this way are listed in Table 1. There,
P, denotes the path on n vertices, P2 its square, i.e., the graph obtained by joining by
an edge pairs of vertices of P, at distance 2, and 57 the join of two graphs where all
vertices of one are joined by an edge to all those of the other.

Example 1 Unicyclic graphs with extremal index are characterized in [120] :



Table 1: Some theorems obtained with the help of the Graph system
Formula Ref.
If G is a tree (with n > 3), then [99]

M (Pn) < M(G) < Mi(Kqp)

If G is a maximal outerplanar graph (with n > 4), then [117]
M(P2) < M(G) < M (K1 v Pat)

If G is a connected graph and if G’ is obtained from G by [121]
splitting a vertex, then

M (G') < M(G)

Theorem 2 ([120]) Let G denote a unicyclic graph; then
M(Cn) < A(G) < M (K + )

with equality if and only if G is the n-cycle Cy, or the star with one additional edge
Kln + e.

Example 2 Combining graph theoretical results and computer search with Graph, all
connected, non-regular, non-bipartite integral graphs with maximum degree four were
determined in [110][111]. This method was used also to find connected non-regular
bipartite integral graphs with A <4 [9] [10] as well as one class of connected 4-regular
integral graphs [126]. Note that the search was not carried out as a brute-force one
but as a man-machine interaction, many parts of the search space being discarded for
graph theoretical reasons or by computational results.

Theorem 3 ([110][111]) There are exactly 13 integral graphs which are connected
non-bipartite and non-reqular with mazimum degree 4.

These graphs are represented on Figure 3.

In the last decade both libraries of graph algorithms and systems for graphs visuali-
sation and/or editing have proliferated. We mention a few. GraphBase [94], Leda [103]
and Vega [127] comprise efficient implementations of many graph algorithms. GraphEd
[92] and its successor Graphlet [93], VCG [118], CABRI-Graph [37], Link [15] [16] [17]
[18], GGCL (Generic Graph Component Library) [96] and other systems possess in ad-
dition an editor. EDGE [105], Da Vinci [81], Grappa [12] and other systems focus on
graph vizualisation and editing. Note that graph drawing is a well developed research
area, see, e.g., the surveys [60] [62] and the book [61].

Recent systems are often the outcome of the merge of several previous ones. This
is for instance the case of Link which build upon the experience of the authors of
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Figure 3: The 13 integral graphs of Theorem 3 [110][111]



Combinatorica [122], NETPAD [104], SetPlayer [14] and GraphLab [119]. The Link
system led to a conjecture, still open, which if true would reveal the first known infinite
set of infinite antichains of tournaments [95].

4 Invariant manipulation

Graph theory contains a large number of relations between graph invariants. A few of
them are equalities, the other inequalities, often nonlinear in one or more parameters.
They may involve conditions, which are themselves relations or properties defining
classes of graphs, e.g. planar, bipartite, tree, etc. Logical variables associated with
these classes may also be considered as invariants. Generalized relations are then
obtained and are of the forms:
(i) “If relation Ry holds then relation Ry holds”
e.g. “If o =2 and x > 4 then n > 11”7 [41] where [y denotes the independence
number, i.e., the maximum number of pairwise non-adjacent vertices and y the
chromatic number of G, i.e., the minimum number of colors needed to assign a
color to each vertex such that no pair of adjacent vertices have the same color.

(ii) “If condition ¢ holds then relation R holds”
e.g. “If G is planar then a < 3” [38] where a denotes the arboricity of G.

(iii) “If condition ¢; holds then condition ¢z holds”
e.g. “If G is a tree then it is bipartite” (obvious).

(iv) “If relation R holds then condition ¢ holds”
eg. “If n > 66 and m > £(n —d)(n — 6 — 1) + 62 then G is hamiltonian” [28]
where § denotes the minimum degree of G and a hamiltonian graph contains a
path going ones and only ones through every vertex.

In order to build the graph invariant manipulator system Ingrid, 458 relations be-
tween graph invariants have been gathered in [21][22]. They involve 37 graph invariants,
27 of which are integer-valued, 1 real-valued and 9 boolean. A representative subset of
these relations, involving A;, is given in Table 2. Here x; denotes the edge chromatic
number or smallest number of colors needed to color edges so that no two incident
edges have the same color; g denotes the girth or length of the smallest cycle of the
graph considered.

Ingrid [20]]23] was designed to assist researchers in obtaining precise information, in
the form of intervals on invariant values, for incompletely specified graphs or classes of
graphs. To this effect, some parameters are given specified values or intervals containing
their values. Then rules deduced from the relations are applied to tighten intervals for
all invariants. This is done in a systematic way, until stability is attained. A tracing
function allows listing those relations which have led to the lower or upper bound of
the final interval for an invariant.

Moreover, conjectures may be temporarily considered as theorems (proved relations)
added to the system and the consequences tested. If the interval of feasible values for
some invariant becomes empty, a contradiction has been found and the conjecture
refuted.

Ingrid can contribute to graph theory in several ways :



(i)

Table 2: Some relations involving A; in the Ingrid system

Formula Ref. | Formula Ref.
A > A [13] | M < /sy [21]
A <A [13] | x> 725 [48]
a<1+|3] 7] | Bo > 75— 3 [63]
x> (ang%) [63] | if Ay < & then xy1 = A [80]
if \; > /mtheng=3 [53] | \; > VA [98]
X <A +1 [13] | if G is connected, then

AL >0 [13] | A1 > 2cos[n/(n +1)] [13]

Detecting existence of relations between invariants and sets of relations leading
to them.

Consider a pair of invariants for which a relation is sought; vary one of them
and check if the feasible interval of the other given by Ingrid varies also. If
it is the case, a relation exists. To find it, consider which relations have been
used, with the tracing function. Then derive the relation by algebraic manipula-
tion. This last step is done by hand, but could be automated, for instance with
Mathematica™ [128].

Example 3 In [23] a relation is sought between the spectral radius \; and the
vertez clique cover number 6y, i.e., the smallest number of cliques which cover
all vertices. While both parameters had been much studied it did not appear
that any relation between then was yet published. Keeping the order n fixed and
varying A1, Ingrid detected a change in the upper bound of the interval for 6.
This was due to the use of the four relation

A<M,
n
(A+1)

0o < v,

B >

and
a1 <n—p

where A, a7 and 1 denote maximum degree, edge covering number (minimum
number of edges needed to cover the vertices) and matching number (maximum



number of independent edges) respectively. It is then easy to derive the theorem
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which is useful for small \;.
(ii) Refuting conjectures

Example 4 It was asked in [47] whether there exists planar triangle-free graphs
with exactly 38y vertices. Conjecturing this was the case with the temporary
theorem feature of Ingrid, as explained above, led to a negative answer.

(iii)  Ezploring dominance between relations
An inequality between graph invariants may be implied by one or several other
inequalities. When it is the case, there is no need to add it to the system. To
check this, the bound it gives can be compared with that given by Ingrid for
various feasible values of the invariants involved.

Example 5 The bound
)\1 < —14++v14+8m

was proposed in [125]. Varying m in Ingrid and observing the upper bound on
A1 and the relations used, it was found that the pair of relations

e

<1
ve i

and
A< y2m(x —1)/x

provided bounds which were usually better and never worse. This could then be
proved analytically.

The question of which relations are undominated is considered in [90]. An inequality
i1 > (L) f(i2,13,...,1,) between an invariant 7; and one or several others io, ..., i, is
sharp if for all values of the independent invariants compatible with the existence of a
graph, there is a graph for which equality holds. A complete set of sharp inequalities
between invariants iq,1s,...,%, is composed of 2n sharp lower and upper bounds for
each invariant ¢; in function of the others. Such a complete set for the order, size and
independence number of graphs has been gathered and completed by the proof of a
remaining case in [90].

Ingrid can also be used to help to solve practical problems in network design and for
pedagogical purposes [23]. Discovery-based pedagogy in graph theory is also discussed
in [37], [39] and [58].

5 Generation and selection

The Graffiti system [67][68][70][71][72] is designed for automated generation of con-
jectures in graph theory (as well as in geometry, number theory and mathematical
chemistry). It contains a database of relations and a database of examples, which are
graphs which refuted some conjecture. Grafitti proceeds in two steps :



(i) Graph invariants ij, 49, .. .14, are selected and a large number of a priori relations
between them are generated. They have simple forms, e.g. :

i <4 OF g <4y + gy OF g + 4 <y + ip;

one invariant may also be replaced by a constant, usually 1; sometimes ratios
or products of invariants are also considered. In fact, as an algebraic expression
involving one or several graph invariants is itself a graph invariant, any such
relation can be used.

Classes of graphs to be considered, e.g. general, triangle-free, bipartite, tree and
so on are also specified.

(ii) Selection is performed among relations (or conjectures) obtained in (i). They
may be discarded or provisionally set aside.
The former happens

(a) when a new relation does not appear to be informative. To this effect it is
tested whether it provides a sharper value for some invariant than all other
relations in the database on at least one of the stored examples, or

(b) when a new relation is shown to be false for at least one of those graphs.
The latter happens

(c) when a new relation is implied by an existing conjecture, or

(d) when a new relation for a given class of graphs (e.g. trees) is not refuted by
any example of a larger class (e.g. bipartite graphs), or

(e) when invariants in a relation are too close one to another (i.e. i < i) =
ik + 1);
note that the test for informativeness removes most but not all such relations.

To speed up the procedure, both databases are kept of moderate size. When a
counter-example is found it is added to the database, the refuted relations removed
and possibly others, which become informative, added. When a new relation is added,
those which are no more informative are set aside.

False conjectures play an important role as the systematic addition of graphs refut-
ing them to the database leads to increasingly strong conjectures. The aim is to find
this strongest conjecture for which no counter-example is known. Selected conjectures
are proposed to the mathematical community in the large Written on the Wall [67]
file. Their status, i.e., proved, refuted or open is specified and regularly updated. In-
dications on partial proofs and generalizations of the conjectures are also given, with
references.

Initially, conjectures were examined before inclusion in Written on the Wall and
sometimes proved or refuted; more recently their selection is enterely automated.

Graffiti has attracted the attention of more than 80 graph theorists and has led
to publication of several dozen papers [59], some well-known ones being [40] [77] [78]
[79]. Initially, refutations was easy; in [19] 200 conjectures of Graffiti were tested on all
graphs with up to 10 vertices and over 40 of them were refuted. The remaining early
open conjectures seem to be more likely to hold and some of them appear to be hard
to prove. Relations of Graffiti in algebraic graph theory were studied in depth in [79].
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Table 3: Some conjectures of Graffiti in algebraic graph theory

Num. Formula Status
WOW 19 -, <y Proved in [79]
WOW 43 If G is regular, —\, < ) Proved in [79]
WOW 44 If G is regular, Ay < g Refuted by N. Alon
WOW 45 If G is regular, Ao < 4 Proved by N. Alon
WOW 116 If G is triangle-free, \y < Ra Proved in [79]
WOW 195 ), < max(E*) Open

We next give a few examples. Further relations and their status are presented in
Table 3. There E* denotes the vector whose i component is the number of vertices
at even distance from the it vertex and Ra is the Randic [113] or connectivity index
of a graph G = (V, E) defined as

RaG)= Y —

(ij)eE V™

£
S

where d; is the degree of vertex i.

Example 6 [Conjecture WOW 747, open] Let b be the order of the largest bi-
partite subgraph of a connected graph G, then the average distance between distinct

vertices of G is not more than g

Fajtlowicz observes that if true this conjecture would generalize the previous Con-
jecture WOW 2, i.e., that the average distance is not more that the independence
number, which was proved in [40].

Example 7 [Conjecture WOW 776, refuted] Let p be the sum of positive eigen-
values of G If G is cubic then the independence number of G is greater than or equal
to —1+ L.

An 18-vertex counter-example was found in [109] using the AGX system (see Section
6). For that graph fy =6 and -1+ § > 6.04

Example 8 [Conjecture WOW 256, proved| Let the dual degree of a vertex be
the mean of the degrees of its neigborhoods. Then the maximum eigenvalue of the
adjacency matrix of a graph G is not more than its maximum dual degree.

The same short and elegant proof for this result was found independently by a
researcher in the U.S. and a group of three researchers in France, see [67], page 78. The
result generalizes the well known property that the largest eigenvalue of G is not more
than its maximum degree. The french group noticed that equality holds if and only if
every vertex has the same dual degree.

11



6 Heuristic Optimization

Conjectures in graph theory can be viewed as combinatorial optimization problems on
an infinite family of graphs (of which only those moderate order will be explored).
Indeed, given a relation 75 < 7;, one can minimize over all graphs i; — iy, parameterizing
for instance on the graph order. As soon as a graph such that ¢, — i < 0 is found the
conjecture is refuted. Conversely if extremal or near-extremal values of an invariant
(which may be an expression involving several other ones) are found for all small values
of parameters such as order and size, this may lead, automatically or with the aid of
the computer, to the discovery of new conjectures.

This is the approach on which the AutoGraphiX (AGX) system [1] [29] [30] [31] [32]
33] [34] [35] [36] [87] is based. AGX addresses the following problems :

—

(a) find a graph satisfying given constraints;

(b) find optimal or near-optimal values for an invariant subject to constraints;
(c) refute a conjecture;

(d) find (or suggest) a new conjecture (or sharpen an existing one);

(e) suggest a proof strategy.

AGX uses extensively the Variable Neighborhood Search (VNS) metaheuristic (or
framework for building heuristic) [89]. This metaheuristic exploits the relatively un-
explored idea of systematic change of neighborhood within a local search. VNS starts
with a given randomly generated initial solution (or graph) z, then applies a descent
routine (when minimizing) until a local optimum z is reached. Then a set of nested
neighborhoods centered around z are considered and a point x’ is randomly generated
from the first neighborhood. A descent is performed from z’, leading to a local opti-
mum z”. If 2" = z or if the value of 2" is not better than that of z, the solution z" is
ignored and another solution z’ is generated from the next neighborhood. Otherwise,
as a better local optimum z” than z has been found, the search is recentered there.
When the last neighborhood has been considered one begins again with the first one
until a stopping condition is met.

The descent routine may itself use several neighborhoods (of types of moves). AGX
uses ten simple graph transformations for that purpose : addition of an edge, removal
of an edge, rotation of an edge (i.e., change of one of its endpoints), move of an edge
(i.e., deletion followed by addition, but not in the same position), and similar more
complex changes.

Nested neighborhoods of a graph are defined by the Hamming distance between
edge-sets : the first one consists of all graphs obtained by deletion or addition of a
single edge, then two, and so on.

AGX has led, partly in conjunction with a program for enumerating cubic graphs
[25] to refutation of 9 conjectures of Graffiti [36] [109] and to the discovery of over 50
new conjectures, 15 of which have been proved.

We next give a few examples of those results. Others are listed in Table 4. We recall
a few definitions used there. A comet C); is obtained from a star K, ;;(p > 4) by
appending a path with ¢ edges to a pending vertex. A double comet D, ;, is obtained
from two stars on p and ¢ vertices by joining a pending vertex of each of them with a
path of £ + 1 edges (see Figure 4). The radius r of graph G is the minimum over all

12



Table 4: Some results obtained with AGX

Num

Conjecture

Status

Ref.

Co. AGX 13

Th. AGX 12

Th. AGX 13

Co. AGX 4

If G is a graph with n vertices, m < [5|[5] edges and
minimum energy, then
(i) if they are positive integer a and b such that a xb =
m and a+b < n, G is a complete bipartite graph K, j
possibly with additional isolated vertices
(ii) otherwise G is a complete bipartite graph K, j
with @’ x b < m and @' +b' < n, modified by addition
of m —a' x V' edges joining a vertex on the smallest
side on K p to others vertices on that side, possibly
with additional isolated vertices
Let 7,4 denotes the family of trees with a black and
b white vertices, a > b. Then, for a fixed number of
vertices n and T' € Ty, the minimal value of \; of T
increases monotonously with a — b
For a = b+ 2 and n > 6, the trees T* € T, with
minimum index A; are comets Cj 4. Moreover

lim A\ (T*) =2

n—oo
For a = b+ 3 and n > 7, the trees T* € T, with
minimum index A; are double comets D3, 63 and
A (TF) = 2.
Let G be a graph with n > 3 vertices, then

r 4+ Ra — mode(d) > vn —1—1

(Reinforcement of Conjecture WOW 7)

Open

Proved

Proved

Open

[29]

[34]

Figure 4: Color-constrained trees with minimum index : comets and double comets




vertices of the maximum distance from that vertex to any other.
Observe that they are of two types:
(a) relations between graph invariants and

(b) structure of extremal graphs.

Example 9 The energy of a graph [84] [85] is defined as

n
EZZ\M-
=1

A study of graphs with extremal energy [29], parameterizing on n and m led, among

others, to the conjectures
4m

E>2y/mand E > —.
n

Both of them have been easily proved.

Example 10 In the same study, unicyclic graphs with maximum energy were investi-
gated. This led to the following structural result.

Conjecture AGX 16 Among unicyclic graphs with n vertices the cycle C,, has maz-
imum energy if n <7 orn =9, 10, 11, 13 and 15; otherwise the unicyclic graph with
mazximum enerqy is Cg + Pp_g i.e., Cg with an appended path with n — 6 edges.

Partial results towards the proof of this conjecture were recently obtained : it is
shown in [86] that among bipartite unicyclic graphs those with maximum energy are
either C,, or Cg + P, _g.

The results of these two examples were obtained interactively. However there are
several ways to use AGX in an entirely automated way [34]. Indeed conjectures can be
found by

(i) a numerical procedure which exploits the mathematics of principal components
analysis in order to find ressemblances instead of differences between extremal
graphs. This leads, in polynomial time, to a basis of affine relations between
graph invariants;

(ii) a geometric procedure, i.e., finding the convex hull of the set of extremal graphs
viewed as points in invariant space, facets of this convex hull give linear relations,
i.e., lower and upper bounds on the invariants associated with each of the axes;

(iii) an algebraic procedure, i.e., recognizing the class of extremal graphs found, and
if it is a well-defined one for which formulae relating graph invariants are known,
eliminating variables to get simple relations between the invariants under study.

Example 11 In [30] color-constrained trees (i.e., trees with given numbers of black or
white vertices) with minimum index are investigated. A further study of the extremal
graphs found was performed in [34][35]. To this effect 15 graph invariants were com-
puted and the numerical method applied. In addition to some trivial relations it led to
the following result.

Conjecture AGX 9 In all color-constrained trees with minimum index

1
Bozg(m—l—nl—l—D—Zr)
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where By denotes the independence number, m the size, ny the number of pendent
vertices, D the diameter and r the radius.

It is unlikely that a relation with as many invariants could have been obtained
without a computer.

This conjecture is open; it does not hold for all trees. However it could be shown
[34] that the right-hand side is an upper bound on the independence number of trees.
So Conjecture AGX 9 implies that color-constrained trees with maximum index have
maximum independence number.

Example 12 Using the geometric approach [34] to study chemical graphs (i.e., graphs
with a maximum degree of 4) led to find :

Theorem AGX 5 In all chemical graphs
1
Ra > 1 (n1+m).

This was proved using linear programming arguments.

Example 13 Conjecture 8 of Graffiti is that in a graph G
I + Ra — mode(d) > 0

where [ denote the average distance between of distinct vertices and d the vector of
degrees of G. Using the algebraic approach led to the following strengthening of that
result :

Conjecture AGX 5 In a graph G

i 2(n — 1
[+ Ra— mode(d) > 2" =Y 4 o TT-2ifn>3.
n

7 Concluding remarks

Several discovery systems in graph theory have been very succesful in helping mathe-
maticians to formulate and explore conjectures, or to suggest interesting conjectures in
an entirely automated way. Moreover, new systems sometimes based on new principles
are being developed. The underlying paradigms, i.e., enumeration, interactive comput-
ing, formula manipulation, generation and selection, heuristic optimization, are varied.
They appear to be largely complementary. So one may expect much activity and the
advent of more comprehensive systems in the near future.
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