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1 IntrodutionAs already stressed by Arhimedes [5℄ disovery and proof are di�erent ativities, whihrequire di�erent methods. One must �rst �nd what is to be proved, i.e., a onje-ture, by any proedure, possibly aided by a physial model, then prove it or refute itby logial means. Both tasks an be aided by omputers in various �elds of mathe-matis. Fully automated proofs in graph theory are still limited to simple properties[50℄[51℄[52℄[56℄[64℄[65℄[66℄. In ontrast, partly automated proofs, whih use both humanreasoning and speialized omputer programs, have met with muh suess sine theproof of the 4-olor theorem [2℄[3℄[4℄[116℄ (and despite the ontroversy on the reliabilityof suh proofs, see e.g. [11℄). To illustrate, the �fth update of a \dynami survey" on\Small Ramsey Numbers" [112℄ reviews results whih were obtained with the aid ofthe omputer in 71 papers among the 274 whih are ited. Reourse to the omputerto omplete a diÆult proof is thus widespread.In this paper, we fous on omputer aids to disovery, i.e., �nding onjetures andrefutations, in graph theory. Examples ome from algebrai graph theory.Quite a few systems have been developed in the last 25 years. They are based ondi�erent priniples, whih an be regrouped as follows :(i) enumeration;(ii) interative omputing;(iii) invariant manipulation;(iv) generation and seletion;(v) heuristi optimization.Representative systems of eah family are disussed in the next �ve setions and briefonlusions are given in the last one.2 EnumerationEnumeration refers to two distints operations in mathematis performed, when exam-ining a set of objets or strutures. On the one hand, one an �nd how many there are,i.e. ount them. Methods to do so are well developed in ombinatorial mathematisand graph theory (see e.g. the books [91℄ [107℄). On the other hand, one may on-sider eah of them in turn, i.e., list them (this is sometimes referred to as onstrutureenumeration). Computer aids to disovery whih use enumeration mostly address theseond type of problem. To illustrate, reall that the Folkman number Fe(3; 3; 5) isde�ned as the smallest positive integer n suh that there exists a K5-free graph on nverties for whih every 2-oloring of its edges ontains a monohromati triangle. In[106℄ this number was proved to be equal to 15 by a areful enumeration, exploitingharateristis of graphs with the desired property.Basi problems of enumeration are to avoid dupliation and to eÆiently exploitproperties of the lass of graph under study to urtail the searh. Often graphs aregenerated by adding one vertex at a time, and some adjaent edges. To avoid dupli-ation, graphs are enoded and a unique father is assigned to any son. This prinipleof orderly generation was proposed in [73℄ [74℄ [114℄ [115℄. Variants and extensions, in-luding the anonial path method are disussed in [101℄[102℄. Moreover, symmetry anbe exploited both to avoid dupliation and to aelerate the searh. A reent survey of2



Figure 1: A new family of bipartite integral graphs [7℄isomorphism rejetion methods is [25℄. Several systems do this, e.g. Nauty [101℄[102℄.This system and others suh as CoCo [75℄ [76℄ are used in the pakage GAP (Groups,Algorithms and Programming) [82℄. When applied to problems on groups and graphs,the program GRAPE, whih is a part of GAP led to several results [42℄ [46℄ [44℄ [43℄[45℄ [108℄ [123℄ [124℄, e.g., the disovery of a new in�nite family of 5-ars transitiveubi graphs.Some systems for enumerating graphs are speialized, e.g., MOLGEN [83℄ whihis designed for moleular graphs, Fullgen for fullerenes [26℄ and minibaum for ubigraphs [24℄. CaGe [27℄ generates graphs of di�erent types often related to interstinghemial moleules.Enumeration of families of graphs de�ned by given properties often leads to onje-tures about them or refutations of suh onjetures.Let G = (V;E) denote a graph with n = jV j verties (i.e., of order n) and m = jEjedges (i.e., of size m). Its adjaeny matrix A = (aij) is suh that aij = 1 if vertiesvi and vj are adjaent and aij = 0 otherwise. The polynomial P (�) = det(�I � A)is alled harateristi polynomial of G. The spetrum of G is the set of solutions toP (�) = 0, alled eigenvalues, and noted Sp = (�1; �2; : : : ; �n) with �1 � �2 � � � � � �n.The �rst eigenvalue �1 is alled the index or spetral radius.In [53℄ spetra of all graphs with up to 9 verties are given. This lists refutes 5onjetures of GraÆti ([67℄[69℄, see Setion 5).A graph is alled integral if all its eigenvalues are integer. Suh graphs are rare.In [6℄[7℄ it is shown that there are only 263 non-isomorphi onneted integral graphswith up to 11 verties. These graphs ould be determined by enumeration of onnetedgraphs using Nauty [101℄[102℄ and omputation of their spetra. Suh a lengthy proessrequired a superomputer. Larger integral graphs, but possibly not all of them for givenn, ould be obtained with an evolutionary algorithm, using as �tness funtion the sumof distanes from eigenvalues to their losest integer (and variants thereof) [8℄.A bipartite graph Kpq is omposed of two independent sets, with p and q vertiesrespetively, and some edges joining pairs of verties one in eah set. It is ompleteif it ontains suh edges for all pairs. Among other results, examination of the 263integral graphs suggested two new in�nite families of integral graphs [7℄. The �rst oneis obtained from the omplete bipartite graphs Kp;p+2 for p = 1; 2; : : : by appendingan edge to eah vertex of the smallest independent set (see Figure 1).A split graph SPpq is omposed of a lique on p verties, an independent set on qverties and some edges joining pairs of verties one in eah of those sets. It is ompleteif it ontains edges for all suh pairs. It was observed in [88℄ [109℄ that omplete splitgraphs are sometimes but not always integral (see Figure 2). Then, generation of all3



Figure 2: Small integral omplete split graph SP2;3omplete split graphs with n = p + q � 500 and p � 50, and omputation of theirspetrum with the MatlabTM [100℄ programming language, led to several onjetures,e.g.Conjeture 1 All omplete split graphs withq = � i2�+ (p� 1)� i2� � i+ 22 �where i is a positive integer, are integral. Moreover if p is a power of a prime there areno other integral omplete split graphs.This onjeture is proved in [88℄.3 Interative omputingNumerous onjetures of graph theory are obtained by drawing small graphs on paperor blakboard, making hand or poket alulator omputations of invariants understudy, reasoning upon their values, then modifying these graphs and omputing theonsequenes. Suh a proess an be aided by the omputer, exploiting its abilitiesto make very quik omputations and represent graphs in a lear way. A pioneeringsystem in this respet is Graph [54℄ [55℄ [57℄ developed during the period 1980 { 1984in Belgrade. This system omprises three main omponents : Algor whih implementsgraph algorithms for omputing a series of invariants, as well as Biblio and Theor abibliographi and a theorem-proving omponent respetively. These last two will notbe disussed here.Graph also displays the graph urrently under study and allows interative mod-i�ations on sreen : addition or deletion of edges and / or verties (this, of ourseallows any transformation). While Graph does not provide onjetures or proofs in anentirely automated way, it has proved to be very suessful in suggesting onjeturesthrough analysis of examples, and also in helping to get proofs by heking partiularases. The survey papers [49℄ [57℄ mention 55 papers by 16 mathematiians with resultsobtained up to 1992 with the help of Graph. Many further papers mentioning use ofGraph have sine appeared.We next give a few examples of results obtained with aid of this system. Furthertheorems of algebrai graph theory obtained in this way are listed in Table 1. There,Pn denotes the path on n verties, P 2n its square, i.e., the graph obtained by joining byan edge pairs of verties of Pn at distane 2, and 5 the join of two graphs where allverties of one are joined by an edge to all those of the other.Example 1 Uniyli graphs with extremal index are haraterized in [120℄ :4



Table 1: Some theorems obtained with the help of the Graph systemFormula Ref.If G is a tree (with n � 3), then�1(Pn) � �1(G) � �1(K1;n) [99℄
If G is a maximal outerplanar graph (with n � 4), then�1(P 2n) � �1(G) � �1(K1 5 Pn�1) [117℄
If G is a onneted graph and if G0 is obtained from G bysplitting a vertex, then�1(G0) � �1(G) [121℄

Theorem 2 ([120℄) Let G denote a uniyli graph; then�1(Cn) � �1(G) � �1(K1n + e)with equality if and only if G is the n-yle Cn or the star with one additional edgeK1n + e.Example 2 Combining graph theoretial results and omputer searh with Graph, allonneted, non-regular, non-bipartite integral graphs with maximum degree four weredetermined in [110℄[111℄. This method was used also to �nd onneted non-regularbipartite integral graphs with � � 4 [9℄ [10℄ as well as one lass of onneted 4-regularintegral graphs [126℄. Note that the searh was not arried out as a brute-fore onebut as a man-mahine interation, many parts of the searh spae being disarded forgraph theoretial reasons or by omputational results.Theorem 3 ([110℄[111℄) There are exatly 13 integral graphs whih are onnetednon-bipartite and non-regular with maximum degree 4.These graphs are represented on Figure 3.In the last deade both libraries of graph algorithms and systems for graphs visuali-sation and/or editing have proliferated. We mention a few. GraphBase [94℄, Leda [103℄and Vega [127℄ omprise eÆient implementations of many graph algorithms. GraphEd[92℄ and its suessor Graphlet [93℄, VCG [118℄, CABRI-Graph [37℄, Link [15℄ [16℄ [17℄[18℄, GGCL (Generi Graph Component Library) [96℄ and other systems possess in ad-dition an editor. EDGE [105℄, Da Vini [81℄, Grappa [12℄ and other systems fous ongraph vizualisation and editing. Note that graph drawing is a well developed researharea, see, e.g., the surveys [60℄ [62℄ and the book [61℄.Reent systems are often the outome of the merge of several previous ones. Thisis for instane the ase of Link whih build upon the experiene of the authors of5



Figure 3: The 13 integral graphs of Theorem 3 [110℄[111℄
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Combinatoria [122℄, NETPAD [104℄, SetPlayer [14℄ and GraphLab [119℄. The Linksystem led to a onjeture, still open, whih if true would reveal the �rst known in�niteset of in�nite antihains of tournaments [95℄.4 Invariant manipulationGraph theory ontains a large number of relations between graph invariants. A few ofthem are equalities, the other inequalities, often nonlinear in one or more parameters.They may involve onditions, whih are themselves relations or properties de�ninglasses of graphs, e.g. planar, bipartite, tree, et. Logial variables assoiated withthese lasses may also be onsidered as invariants. Generalized relations are thenobtained and are of the forms:(i) \If relation R1 holds then relation R2 holds"e.g. \If �0 = 2 and � � 4 then n � 11" [41℄ where �0 denotes the independenenumber, i.e., the maximum number of pairwise non-adjaent verties and � thehromati number of G, i.e., the minimum number of olors needed to assign aolor to eah vertex suh that no pair of adjaent verties have the same olor.(ii) \If ondition  holds then relation R holds"e.g. \If G is planar then a � 3" [38℄ where a denotes the arboriity of G.(iii) \If ondition 1 holds then ondition 2 holds"e.g. \If G is a tree then it is bipartite" (obvious).(iv) \If relation R holds then ondition  holds"e.g. \If n � 6Æ and m > 12(n � Æ)(n � Æ � 1) + Æ2 then G is hamiltonian" [28℄where Æ denotes the minimum degree of G and a hamiltonian graph ontains apath going ones and only ones through every vertex.In order to build the graph invariant manipulator system Ingrid, 458 relations be-tween graph invariants have been gathered in [21℄[22℄. They involve 37 graph invariants,27 of whih are integer-valued, 1 real-valued and 9 boolean. A representative subset ofthese relations, involving �1, is given in Table 2. Here �1 denotes the edge hromatinumber or smallest number of olors needed to olor edges so that no two inidentedges have the same olor; g denotes the girth or length of the smallest yle of thegraph onsidered.Ingrid [20℄[23℄ was designed to assist researhers in obtaining preise information, inthe form of intervals on invariant values, for inompletely spei�ed graphs or lasses ofgraphs. To this e�et, some parameters are given spei�ed values or intervals ontainingtheir values. Then rules dedued from the relations are applied to tighten intervals forall invariants. This is done in a systemati way, until stability is attained. A traingfuntion allows listing those relations whih have led to the lower or upper bound ofthe �nal interval for an invariant.Moreover, onjetures may be temporarily onsidered as theorems (proved relations)added to the system and the onsequenes tested. If the interval of feasible values forsome invariant beomes empty, a ontradition has been found and the onjeturerefuted.Ingrid an ontribute to graph theory in several ways :7



Table 2: Some relations involving �1 in the Ingrid systemFormula Ref. Formula Ref.�1 � 2mn [13℄ �1 �q 2m�0(�0+1) [21℄�1 � � [13℄ � � nn��1 [48℄a � 1 + b�12  [97℄ �0 � nn��1 � 13 [63℄� � 2m(2m��21) [63℄ if �1 � �2 then �1 = � [80℄if �1 � pm then g = 3 [53℄ �1 � p� [98℄� � �1 + 1 [13℄ if G is onneted, then�1 � Æ [13℄ �1 � 2 os[�=(n+ 1)℄ [13℄(i) Deteting existene of relations between invariants and sets of relations leadingto them.Consider a pair of invariants for whih a relation is sought; vary one of themand hek if the feasible interval of the other given by Ingrid varies also. Ifit is the ase, a relation exists. To �nd it, onsider whih relations have beenused, with the traing funtion. Then derive the relation by algebrai manipula-tion. This last step is done by hand, but ould be automated, for instane withMathematiaTM [128℄.Example 3 In [23℄ a relation is sought between the spetral radius �1 and thevertex lique over number �0, i.e., the smallest number of liques whih overall verties. While both parameters had been muh studied it did not appearthat any relation between then was yet published. Keeping the order n �xed andvarying �1, Ingrid deteted a hange in the upper bound of the interval for �0.This was due to the use of the four relation� � �21;�1 � n(� + 1) ;�0 � �1;and �1 � n� �1where �, �1 and �1 denote maximum degree, edge overing number (minimumnumber of edges needed to over the verties) and mathing number (maximum8



number of independent edges) respetively. It is then easy to derive the theorem�0 � n� �21(1 + �21)�whih is useful for small �1.(ii) Refuting onjeturesExample 4 It was asked in [47℄ whether there exists planar triangle-free graphswith exatly 3�0 verties. Conjeturing this was the ase with the temporarytheorem feature of Ingrid, as explained above, led to a negative answer.(iii) Exploring dominane between relationsAn inequality between graph invariants may be implied by one or several otherinequalities. When it is the ase, there is no need to add it to the system. Tohek this, the bound it gives an be ompared with that given by Ingrid forvarious feasible values of the invariants involved.Example 5 The bound �1 � �1 +p1 + 8mwas proposed in [125℄. Varying m in Ingrid and observing the upper bound on�1 and the relations used, it was found that the pair of relations� � �1 + p1 + 8m2 �and �1 �p2m(�� 1)=�provided bounds whih were usually better and never worse. This ould then beproved analytially.The question of whih relations are undominated is onsidered in [90℄. An inequalityi1 � (�)f(i2; i3; : : : ; in) between an invariant i1 and one or several others i2; : : : ; in issharp if for all values of the independent invariants ompatible with the existene of agraph, there is a graph for whih equality holds. A omplete set of sharp inequalitiesbetween invariants i1; i2; : : : ; in is omposed of 2n sharp lower and upper bounds foreah invariant ij in funtion of the others. Suh a omplete set for the order, size andindependene number of graphs has been gathered and ompleted by the proof of aremaining ase in [90℄.Ingrid an also be used to help to solve pratial problems in network design and forpedagogial purposes [23℄. Disovery-based pedagogy in graph theory is also disussedin [37℄, [39℄ and [58℄.5 Generation and seletionThe GraÆti system [67℄[68℄[70℄[71℄[72℄ is designed for automated generation of on-jetures in graph theory (as well as in geometry, number theory and mathematialhemistry). It ontains a database of relations and a database of examples, whih aregraphs whih refuted some onjeture. Gra�tti proeeds in two steps :9



(i) Graph invariants i1; i2; : : : ip are seleted and a large number of a priori relationsbetween them are generated. They have simple forms, e.g. :ik � il or ik � il + im or ik + il � im + in;one invariant may also be replaed by a onstant, usually 1; sometimes ratiosor produts of invariants are also onsidered. In fat, as an algebrai expressioninvolving one or several graph invariants is itself a graph invariant, any suhrelation an be used.Classes of graphs to be onsidered, e.g. general, triangle-free, bipartite, tree andso on are also spei�ed.(ii) Seletion is performed among relations (or onjetures) obtained in (i). Theymay be disarded or provisionally set aside.The former happens(a) when a new relation does not appear to be informative. To this e�et it istested whether it provides a sharper value for some invariant than all otherrelations in the database on at least one of the stored examples, or(b) when a new relation is shown to be false for at least one of those graphs.The latter happens() when a new relation is implied by an existing onjeture, or(d) when a new relation for a given lass of graphs (e.g. trees) is not refuted byany example of a larger lass (e.g. bipartite graphs), or(e) when invariants in a relation are too lose one to another (i.e. ik � il =ik + 1);note that the test for informativeness removes most but not all suh relations.To speed up the proedure, both databases are kept of moderate size. When aounter-example is found it is added to the database, the refuted relations removedand possibly others, whih beome informative, added. When a new relation is added,those whih are no more informative are set aside.False onjetures play an important role as the systemati addition of graphs refut-ing them to the database leads to inreasingly strong onjetures. The aim is to �ndthis strongest onjeture for whih no ounter-example is known. Seleted onjeturesare proposed to the mathematial ommunity in the large Written on the Wall [67℄�le. Their status, i.e., proved, refuted or open is spei�ed and regularly updated. In-diations on partial proofs and generalizations of the onjetures are also given, withreferenes.Initially, onjetures were examined before inlusion in Written on the Wall andsometimes proved or refuted; more reently their seletion is enterely automated.GraÆti has attrated the attention of more than 80 graph theorists and has ledto publiation of several dozen papers [59℄, some well-known ones being [40℄ [77℄ [78℄[79℄. Initially, refutations was easy; in [19℄ 200 onjetures of GraÆti were tested on allgraphs with up to 10 verties and over 40 of them were refuted. The remaining earlyopen onjetures seem to be more likely to hold and some of them appear to be hardto prove. Relations of GraÆti in algebrai graph theory were studied in depth in [79℄.10



Table 3: Some onjetures of GraÆti in algebrai graph theoryNum. Formula StatusWOW 19 ��n � � Proved in [79℄WOW 43 If G is regular, ��n � �1 Proved in [79℄WOW 44 If G is regular, �2 � �0 Refuted by N. AlonWOW 45 If G is regular, �2 � �1 Proved by N. AlonWOW 116 If G is triangle-free, �1 � Ra Proved in [79℄WOW 195 �n � max(E�) OpenWe next give a few examples. Further relations and their status are presented inTable 3. There E� denotes the vetor whose ith omponent is the number of vertiesat even distane from the ith vertex and Ra is the Randi [113℄ or onnetivity indexof a graph G = (V;E) de�ned asRa(G) = X(i;j)2E 1pdidjwhere di is the degree of vertex i.Example 6 [Conjeture WOW 747, open℄ Let b be the order of the largest bi-partite subgraph of a onneted graph G, then the average distane between distintverties of G is not more than b2 .Fajtlowiz observes that if true this onjeture would generalize the previous Con-jeture WOW 2, i.e., that the average distane is not more that the independenenumber, whih was proved in [40℄.Example 7 [Conjeture WOW 776, refuted℄ Let p be the sum of positive eigen-values of G If G is ubi then the independene number of G is greater than or equalto �1 + p2 .An 18-vertex ounter-example was found in [109℄ using the AGX system (see Setion6). For that graph �0 = 6 and �1 + p2 > 6:04Example 8 [Conjeture WOW 256, proved℄ Let the dual degree of a vertex bethe mean of the degrees of its neigborhoods. Then the maximum eigenvalue of theadjaeny matrix of a graph G is not more than its maximum dual degree.The same short and elegant proof for this result was found independently by aresearher in the U.S. and a group of three researhers in Frane, see [67℄, page 78. Theresult generalizes the well known property that the largest eigenvalue of G is not morethan its maximum degree. The frenh group notied that equality holds if and only ifevery vertex has the same dual degree. 11



6 Heuristi OptimizationConjetures in graph theory an be viewed as ombinatorial optimization problems onan in�nite family of graphs (of whih only those moderate order will be explored).Indeed, given a relation ik � il, one an minimize over all graphs il� ik, parameterizingfor instane on the graph order. As soon as a graph suh that il � ik < 0 is found theonjeture is refuted. Conversely if extremal or near-extremal values of an invariant(whih may be an expression involving several other ones) are found for all small valuesof parameters suh as order and size, this may lead, automatially or with the aid ofthe omputer, to the disovery of new onjetures.This is the approah on whih the AutoGraphiX (AGX) system [1℄ [29℄ [30℄ [31℄ [32℄[33℄ [34℄ [35℄ [36℄ [87℄ is based. AGX addresses the following problems :(a) �nd a graph satisfying given onstraints;(b) �nd optimal or near-optimal values for an invariant subjet to onstraints;() refute a onjeture;(d) �nd (or suggest) a new onjeture (or sharpen an existing one);(e) suggest a proof strategy.AGX uses extensively the Variable Neighborhood Searh (VNS) metaheuristi (orframework for building heuristi) [89℄. This metaheuristi exploits the relatively un-explored idea of systemati hange of neighborhood within a loal searh. VNS startswith a given randomly generated initial solution (or graph) x0 then applies a desentroutine (when minimizing) until a loal optimum x is reahed. Then a set of nestedneighborhoods entered around x are onsidered and a point x0 is randomly generatedfrom the �rst neighborhood. A desent is performed from x0, leading to a loal opti-mum x00. If x00 = x or if the value of x00 is not better than that of x, the solution x00 isignored and another solution x0 is generated from the next neighborhood. Otherwise,as a better loal optimum x00 than x has been found, the searh is reentered there.When the last neighborhood has been onsidered one begins again with the �rst oneuntil a stopping ondition is met.The desent routine may itself use several neighborhoods (of types of moves). AGXuses ten simple graph transformations for that purpose : addition of an edge, removalof an edge, rotation of an edge (i.e., hange of one of its endpoints), move of an edge(i.e., deletion followed by addition, but not in the same position), and similar moreomplex hanges.Nested neighborhoods of a graph are de�ned by the Hamming distane betweenedge-sets : the �rst one onsists of all graphs obtained by deletion or addition of asingle edge, then two, and so on.AGX has led, partly in onjuntion with a program for enumerating ubi graphs[25℄ to refutation of 9 onjetures of GraÆti [36℄ [109℄ and to the disovery of over 50new onjetures, 15 of whih have been proved.We next give a few examples of those results. Others are listed in Table 4. We realla few de�nitions used there. A omet Cp;t is obtained from a star Kp�1;1(p � 4) byappending a path with t edges to a pending vertex. A double omet Dp;t;q is obtainedfrom two stars on p and q verties by joining a pending vertex of eah of them with apath of t + 1 edges (see Figure 4). The radius r of graph G is the minimum over all12



Table 4: Some results obtained with AGXNum. Conjeture Status Ref.Co. AGX 13 If G is a graph with n verties, m � bn2 dn2 e edges andminimum energy, then(i) if they are positive integer a and b suh that a�b =m and a+ b � n, G is a omplete bipartite graph Ka;bpossibly with additional isolated verties(ii) otherwise G is a omplete bipartite graph Ka0;b0with a0� b0 � m and a0+ b0 � n, modi�ed by additionof m � a0 � b0 edges joining a vertex on the smallestside on Ka0;b0 to others verties on that side, possiblywith additional isolated verties
Open [29℄

Th. AGX 12 Let Ta;b denotes the family of trees with a blak andb white verties, a � b. Then, for a �xed number ofverties n and T 2 Ta;b, the minimal value of �1 of Tinreases monotonously with a� b Proved [30℄Th. AGX 13 For a = b + 2 and n � 6, the trees T � 2 Ta;b withminimum index �1 are omets C4;n�4. Moreoverlimn!1�1(T �) = 2For a = b + 3 and n � 7, the trees T � 2 Ta;b withminimum index �1 are double omets D3;n�6;3 and�1(T �) = 2.
Proved [30℄

Co. AGX 4 Let G be a graph with n � 3 verties, thenr +Ra�mode(d) � pn� 1� 1(Reinforement of Conjeture WOW 7) Open [34℄

Figure 4: Color-onstrained trees with minimum index : omets and double omets13



verties of the maximum distane from that vertex to any other.Observe that they are of two types:(a) relations between graph invariants and(b) struture of extremal graphs.Example 9 The energy of a graph [84℄ [85℄ is de�ned asE = nXi=1 j�ij:A study of graphs with extremal energy [29℄, parameterizing on n and m led, amongothers, to the onjetures E � 2pm and E � 4mn :Both of them have been easily proved.Example 10 In the same study, uniyli graphs with maximum energy were investi-gated. This led to the following strutural result.Conjeture AGX 16 Among uniyli graphs with n verties the yle Cn has max-imum energy if n � 7 or n = 9, 10, 11, 13 and 15; otherwise the uniyli graph withmaximum energy is C6 + Pn�6 i.e., C6 with an appended path with n� 6 edges.Partial results towards the proof of this onjeture were reently obtained : it isshown in [86℄ that among bipartite uniyli graphs those with maximum energy areeither Cn or C6 + Pn�6.The results of these two examples were obtained interatively. However there areseveral ways to use AGX in an entirely automated way [34℄. Indeed onjetures an befound by(i) a numerial proedure whih exploits the mathematis of prinipal omponentsanalysis in order to �nd ressemblanes instead of di�erenes between extremalgraphs. This leads, in polynomial time, to a basis of aÆne relations betweengraph invariants;(ii) a geometri proedure, i.e., �nding the onvex hull of the set of extremal graphsviewed as points in invariant spae, faets of this onvex hull give linear relations,i.e., lower and upper bounds on the invariants assoiated with eah of the axes;(iii) an algebrai proedure, i.e., reognizing the lass of extremal graphs found, andif it is a well-de�ned one for whih formulae relating graph invariants are known,eliminating variables to get simple relations between the invariants under study.Example 11 In [30℄ olor-onstrained trees (i.e., trees with given numbers of blak orwhite verties) with minimum index are investigated. A further study of the extremalgraphs found was performed in [34℄[35℄. To this e�et 15 graph invariants were om-puted and the numerial method applied. In addition to some trivial relations it led tothe following result.Conjeture AGX 9 In all olor-onstrained trees with minimum index�0 = 12 (m+ n1 +D � 2r)14



where �0 denotes the independene number, m the size, n1 the number of pendentverties, D the diameter and r the radius.It is unlikely that a relation with as many invariants ould have been obtainedwithout a omputer.This onjeture is open; it does not hold for all trees. However it ould be shown[34℄ that the right-hand side is an upper bound on the independene number of trees.So Conjeture AGX 9 implies that olor-onstrained trees with maximum index havemaximum independene number.Example 12 Using the geometri approah [34℄ to study hemial graphs (i.e., graphswith a maximum degree of 4) led to �nd :Theorem AGX 5 In all hemial graphsRa � 14 (n1 +m) :This was proved using linear programming arguments.Example 13 Conjeture 8 of GraÆti is that in a graph G�l +Ra� mode(d) � 0where �l denote the average distane between of distint verties and d the vetor ofdegrees of G. Using the algebrai approah led to the following strengthening of thatresult :Conjeture AGX 5 In a graph G�l +Ra� mode(d) � 2(n� 1)n +pn� 1� 2 if n � 3:7 Conluding remarksSeveral disovery systems in graph theory have been very suesful in helping mathe-matiians to formulate and explore onjetures, or to suggest interesting onjetures inan entirely automated way. Moreover, new systems sometimes based on new priniplesare being developed. The underlying paradigms, i.e., enumeration, interative omput-ing, formula manipulation, generation and seletion, heuristi optimization, are varied.They appear to be largely omplementary. So one may expet muh ativity and theadvent of more omprehensive systems in the near future.Aknowledgement. This work was done while the �rst author visited the Servie deMath�ematiques de la Gestion of Brussels University. Support of the Researh in Brus-sels program is gratefully aknowledged. We thank D. Stevanovi� for useful omments.
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