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1 Introdu
tionAs already stressed by Ar
himedes [5℄ dis
overy and proof are di�erent a
tivities, whi
hrequire di�erent methods. One must �rst �nd what is to be proved, i.e., a 
onje
-ture, by any pro
edure, possibly aided by a physi
al model, then prove it or refute itby logi
al means. Both tasks 
an be aided by 
omputers in various �elds of mathe-mati
s. Fully automated proofs in graph theory are still limited to simple properties[50℄[51℄[52℄[56℄[64℄[65℄[66℄. In 
ontrast, partly automated proofs, whi
h use both humanreasoning and spe
ialized 
omputer programs, have met with mu
h su

ess sin
e theproof of the 4-
olor theorem [2℄[3℄[4℄[116℄ (and despite the 
ontroversy on the reliabilityof su
h proofs, see e.g. [11℄). To illustrate, the �fth update of a \dynami
 survey" on\Small Ramsey Numbers" [112℄ reviews results whi
h were obtained with the aid ofthe 
omputer in 71 papers among the 274 whi
h are 
ited. Re
ourse to the 
omputerto 
omplete a diÆ
ult proof is thus widespread.In this paper, we fo
us on 
omputer aids to dis
overy, i.e., �nding 
onje
tures andrefutations, in graph theory. Examples 
ome from algebrai
 graph theory.Quite a few systems have been developed in the last 25 years. They are based ondi�erent prin
iples, whi
h 
an be regrouped as follows :(i) enumeration;(ii) intera
tive 
omputing;(iii) invariant manipulation;(iv) generation and sele
tion;(v) heuristi
 optimization.Representative systems of ea
h family are dis
ussed in the next �ve se
tions and brief
on
lusions are given in the last one.2 EnumerationEnumeration refers to two distin
ts operations in mathemati
s performed, when exam-ining a set of obje
ts or stru
tures. On the one hand, one 
an �nd how many there are,i.e. 
ount them. Methods to do so are well developed in 
ombinatorial mathemati
sand graph theory (see e.g. the books [91℄ [107℄). On the other hand, one may 
on-sider ea
h of them in turn, i.e., list them (this is sometimes referred to as 
onstru
tureenumeration). Computer aids to dis
overy whi
h use enumeration mostly address these
ond type of problem. To illustrate, re
all that the Folkman number Fe(3; 3; 5) isde�ned as the smallest positive integer n su
h that there exists a K5-free graph on nverti
es for whi
h every 2-
oloring of its edges 
ontains a mono
hromati
 triangle. In[106℄ this number was proved to be equal to 15 by a 
areful enumeration, exploiting
hara
teristi
s of graphs with the desired property.Basi
 problems of enumeration are to avoid dupli
ation and to eÆ
iently exploitproperties of the 
lass of graph under study to 
urtail the sear
h. Often graphs aregenerated by adding one vertex at a time, and some adja
ent edges. To avoid dupli-
ation, graphs are en
oded and a unique father is assigned to any son. This prin
ipleof orderly generation was proposed in [73℄ [74℄ [114℄ [115℄. Variants and extensions, in-
luding the 
anoni
al path method are dis
ussed in [101℄[102℄. Moreover, symmetry 
anbe exploited both to avoid dupli
ation and to a

elerate the sear
h. A re
ent survey of2



Figure 1: A new family of bipartite integral graphs [7℄isomorphism reje
tion methods is [25℄. Several systems do this, e.g. Nauty [101℄[102℄.This system and others su
h as CoCo [75℄ [76℄ are used in the pa
kage GAP (Groups,Algorithms and Programming) [82℄. When applied to problems on groups and graphs,the program GRAPE, whi
h is a part of GAP led to several results [42℄ [46℄ [44℄ [43℄[45℄ [108℄ [123℄ [124℄, e.g., the dis
overy of a new in�nite family of 5-ar
s transitive
ubi
 graphs.Some systems for enumerating graphs are spe
ialized, e.g., MOLGEN [83℄ whi
his designed for mole
ular graphs, Fullgen for fullerenes [26℄ and minibaum for 
ubi
graphs [24℄. CaGe [27℄ generates graphs of di�erent types often related to intersting
hemi
al mole
ules.Enumeration of families of graphs de�ned by given properties often leads to 
onje
-tures about them or refutations of su
h 
onje
tures.Let G = (V;E) denote a graph with n = jV j verti
es (i.e., of order n) and m = jEjedges (i.e., of size m). Its adja
en
y matrix A = (aij) is su
h that aij = 1 if verti
esvi and vj are adja
ent and aij = 0 otherwise. The polynomial P (�) = det(�I � A)is 
alled 
hara
teristi
 polynomial of G. The spe
trum of G is the set of solutions toP (�) = 0, 
alled eigenvalues, and noted Sp = (�1; �2; : : : ; �n) with �1 � �2 � � � � � �n.The �rst eigenvalue �1 is 
alled the index or spe
tral radius.In [53℄ spe
tra of all graphs with up to 9 verti
es are given. This lists refutes 5
onje
tures of GraÆti ([67℄[69℄, see Se
tion 5).A graph is 
alled integral if all its eigenvalues are integer. Su
h graphs are rare.In [6℄[7℄ it is shown that there are only 263 non-isomorphi
 
onne
ted integral graphswith up to 11 verti
es. These graphs 
ould be determined by enumeration of 
onne
tedgraphs using Nauty [101℄[102℄ and 
omputation of their spe
tra. Su
h a lengthy pro
essrequired a super
omputer. Larger integral graphs, but possibly not all of them for givenn, 
ould be obtained with an evolutionary algorithm, using as �tness fun
tion the sumof distan
es from eigenvalues to their 
losest integer (and variants thereof) [8℄.A bipartite graph Kpq is 
omposed of two independent sets, with p and q verti
esrespe
tively, and some edges joining pairs of verti
es one in ea
h set. It is 
ompleteif it 
ontains su
h edges for all pairs. Among other results, examination of the 263integral graphs suggested two new in�nite families of integral graphs [7℄. The �rst oneis obtained from the 
omplete bipartite graphs Kp;p+2 for p = 1; 2; : : : by appendingan edge to ea
h vertex of the smallest independent set (see Figure 1).A split graph SPpq is 
omposed of a 
lique on p verti
es, an independent set on qverti
es and some edges joining pairs of verti
es one in ea
h of those sets. It is 
ompleteif it 
ontains edges for all su
h pairs. It was observed in [88℄ [109℄ that 
omplete splitgraphs are sometimes but not always integral (see Figure 2). Then, generation of all3



Figure 2: Small integral 
omplete split graph SP2;3
omplete split graphs with n = p + q � 500 and p � 50, and 
omputation of theirspe
trum with the MatlabTM [100℄ programming language, led to several 
onje
tures,e.g.Conje
ture 1 All 
omplete split graphs withq = � i2�+ (p� 1)� i2� � i+ 22 �where i is a positive integer, are integral. Moreover if p is a power of a prime there areno other integral 
omplete split graphs.This 
onje
ture is proved in [88℄.3 Intera
tive 
omputingNumerous 
onje
tures of graph theory are obtained by drawing small graphs on paperor bla
kboard, making hand or po
ket 
al
ulator 
omputations of invariants understudy, reasoning upon their values, then modifying these graphs and 
omputing the
onsequen
es. Su
h a pro
ess 
an be aided by the 
omputer, exploiting its abilitiesto make very qui
k 
omputations and represent graphs in a 
lear way. A pioneeringsystem in this respe
t is Graph [54℄ [55℄ [57℄ developed during the period 1980 { 1984in Belgrade. This system 
omprises three main 
omponents : Algor whi
h implementsgraph algorithms for 
omputing a series of invariants, as well as Biblio and Theor abibliographi
 and a theorem-proving 
omponent respe
tively. These last two will notbe dis
ussed here.Graph also displays the graph 
urrently under study and allows intera
tive mod-i�
ations on s
reen : addition or deletion of edges and / or verti
es (this, of 
ourseallows any transformation). While Graph does not provide 
onje
tures or proofs in anentirely automated way, it has proved to be very su

essful in suggesting 
onje
turesthrough analysis of examples, and also in helping to get proofs by 
he
king parti
ular
ases. The survey papers [49℄ [57℄ mention 55 papers by 16 mathemati
ians with resultsobtained up to 1992 with the help of Graph. Many further papers mentioning use ofGraph have sin
e appeared.We next give a few examples of results obtained with aid of this system. Furthertheorems of algebrai
 graph theory obtained in this way are listed in Table 1. There,Pn denotes the path on n verti
es, P 2n its square, i.e., the graph obtained by joining byan edge pairs of verti
es of Pn at distan
e 2, and 5 the join of two graphs where allverti
es of one are joined by an edge to all those of the other.Example 1 Uni
y
li
 graphs with extremal index are 
hara
terized in [120℄ :4



Table 1: Some theorems obtained with the help of the Graph systemFormula Ref.If G is a tree (with n � 3), then�1(Pn) � �1(G) � �1(K1;n) [99℄
If G is a maximal outerplanar graph (with n � 4), then�1(P 2n) � �1(G) � �1(K1 5 Pn�1) [117℄
If G is a 
onne
ted graph and if G0 is obtained from G bysplitting a vertex, then�1(G0) � �1(G) [121℄

Theorem 2 ([120℄) Let G denote a uni
y
li
 graph; then�1(Cn) � �1(G) � �1(K1n + e)with equality if and only if G is the n-
y
le Cn or the star with one additional edgeK1n + e.Example 2 Combining graph theoreti
al results and 
omputer sear
h with Graph, all
onne
ted, non-regular, non-bipartite integral graphs with maximum degree four weredetermined in [110℄[111℄. This method was used also to �nd 
onne
ted non-regularbipartite integral graphs with � � 4 [9℄ [10℄ as well as one 
lass of 
onne
ted 4-regularintegral graphs [126℄. Note that the sear
h was not 
arried out as a brute-for
e onebut as a man-ma
hine intera
tion, many parts of the sear
h spa
e being dis
arded forgraph theoreti
al reasons or by 
omputational results.Theorem 3 ([110℄[111℄) There are exa
tly 13 integral graphs whi
h are 
onne
tednon-bipartite and non-regular with maximum degree 4.These graphs are represented on Figure 3.In the last de
ade both libraries of graph algorithms and systems for graphs visuali-sation and/or editing have proliferated. We mention a few. GraphBase [94℄, Leda [103℄and Vega [127℄ 
omprise eÆ
ient implementations of many graph algorithms. GraphEd[92℄ and its su

essor Graphlet [93℄, VCG [118℄, CABRI-Graph [37℄, Link [15℄ [16℄ [17℄[18℄, GGCL (Generi
 Graph Component Library) [96℄ and other systems possess in ad-dition an editor. EDGE [105℄, Da Vin
i [81℄, Grappa [12℄ and other systems fo
us ongraph vizualisation and editing. Note that graph drawing is a well developed resear
harea, see, e.g., the surveys [60℄ [62℄ and the book [61℄.Re
ent systems are often the out
ome of the merge of several previous ones. Thisis for instan
e the 
ase of Link whi
h build upon the experien
e of the authors of5



Figure 3: The 13 integral graphs of Theorem 3 [110℄[111℄
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Combinatori
a [122℄, NETPAD [104℄, SetPlayer [14℄ and GraphLab [119℄. The Linksystem led to a 
onje
ture, still open, whi
h if true would reveal the �rst known in�niteset of in�nite anti
hains of tournaments [95℄.4 Invariant manipulationGraph theory 
ontains a large number of relations between graph invariants. A few ofthem are equalities, the other inequalities, often nonlinear in one or more parameters.They may involve 
onditions, whi
h are themselves relations or properties de�ning
lasses of graphs, e.g. planar, bipartite, tree, et
. Logi
al variables asso
iated withthese 
lasses may also be 
onsidered as invariants. Generalized relations are thenobtained and are of the forms:(i) \If relation R1 holds then relation R2 holds"e.g. \If �0 = 2 and � � 4 then n � 11" [41℄ where �0 denotes the independen
enumber, i.e., the maximum number of pairwise non-adja
ent verti
es and � the
hromati
 number of G, i.e., the minimum number of 
olors needed to assign a
olor to ea
h vertex su
h that no pair of adja
ent verti
es have the same 
olor.(ii) \If 
ondition 
 holds then relation R holds"e.g. \If G is planar then a � 3" [38℄ where a denotes the arbori
ity of G.(iii) \If 
ondition 
1 holds then 
ondition 
2 holds"e.g. \If G is a tree then it is bipartite" (obvious).(iv) \If relation R holds then 
ondition 
 holds"e.g. \If n � 6Æ and m > 12(n � Æ)(n � Æ � 1) + Æ2 then G is hamiltonian" [28℄where Æ denotes the minimum degree of G and a hamiltonian graph 
ontains apath going ones and only ones through every vertex.In order to build the graph invariant manipulator system Ingrid, 458 relations be-tween graph invariants have been gathered in [21℄[22℄. They involve 37 graph invariants,27 of whi
h are integer-valued, 1 real-valued and 9 boolean. A representative subset ofthese relations, involving �1, is given in Table 2. Here �1 denotes the edge 
hromati
number or smallest number of 
olors needed to 
olor edges so that no two in
identedges have the same 
olor; g denotes the girth or length of the smallest 
y
le of thegraph 
onsidered.Ingrid [20℄[23℄ was designed to assist resear
hers in obtaining pre
ise information, inthe form of intervals on invariant values, for in
ompletely spe
i�ed graphs or 
lasses ofgraphs. To this e�e
t, some parameters are given spe
i�ed values or intervals 
ontainingtheir values. Then rules dedu
ed from the relations are applied to tighten intervals forall invariants. This is done in a systemati
 way, until stability is attained. A tra
ingfun
tion allows listing those relations whi
h have led to the lower or upper bound ofthe �nal interval for an invariant.Moreover, 
onje
tures may be temporarily 
onsidered as theorems (proved relations)added to the system and the 
onsequen
es tested. If the interval of feasible values forsome invariant be
omes empty, a 
ontradi
tion has been found and the 
onje
turerefuted.Ingrid 
an 
ontribute to graph theory in several ways :7



Table 2: Some relations involving �1 in the Ingrid systemFormula Ref. Formula Ref.�1 � 2mn [13℄ �1 �q 2m�0(�0+1) [21℄�1 � � [13℄ � � nn��1 [48℄a � 1 + b�12 
 [97℄ �0 � nn��1 � 13 [63℄� � 2m(2m��21) [63℄ if �1 � �2 then �1 = � [80℄if �1 � pm then g = 3 [53℄ �1 � p� [98℄� � �1 + 1 [13℄ if G is 
onne
ted, then�1 � Æ [13℄ �1 � 2 
os[�=(n+ 1)℄ [13℄(i) Dete
ting existen
e of relations between invariants and sets of relations leadingto them.Consider a pair of invariants for whi
h a relation is sought; vary one of themand 
he
k if the feasible interval of the other given by Ingrid varies also. Ifit is the 
ase, a relation exists. To �nd it, 
onsider whi
h relations have beenused, with the tra
ing fun
tion. Then derive the relation by algebrai
 manipula-tion. This last step is done by hand, but 
ould be automated, for instan
e withMathemati
aTM [128℄.Example 3 In [23℄ a relation is sought between the spe
tral radius �1 and thevertex 
lique 
over number �0, i.e., the smallest number of 
liques whi
h 
overall verti
es. While both parameters had been mu
h studied it did not appearthat any relation between then was yet published. Keeping the order n �xed andvarying �1, Ingrid dete
ted a 
hange in the upper bound of the interval for �0.This was due to the use of the four relation� � �21;�1 � n(� + 1) ;�0 � �1;and �1 � n� �1where �, �1 and �1 denote maximum degree, edge 
overing number (minimumnumber of edges needed to 
over the verti
es) and mat
hing number (maximum8



number of independent edges) respe
tively. It is then easy to derive the theorem�0 � n� �21(1 + �21)�whi
h is useful for small �1.(ii) Refuting 
onje
turesExample 4 It was asked in [47℄ whether there exists planar triangle-free graphswith exa
tly 3�0 verti
es. Conje
turing this was the 
ase with the temporarytheorem feature of Ingrid, as explained above, led to a negative answer.(iii) Exploring dominan
e between relationsAn inequality between graph invariants may be implied by one or several otherinequalities. When it is the 
ase, there is no need to add it to the system. To
he
k this, the bound it gives 
an be 
ompared with that given by Ingrid forvarious feasible values of the invariants involved.Example 5 The bound �1 � �1 +p1 + 8mwas proposed in [125℄. Varying m in Ingrid and observing the upper bound on�1 and the relations used, it was found that the pair of relations� � �1 + p1 + 8m2 �and �1 �p2m(�� 1)=�provided bounds whi
h were usually better and never worse. This 
ould then beproved analyti
ally.The question of whi
h relations are undominated is 
onsidered in [90℄. An inequalityi1 � (�)f(i2; i3; : : : ; in) between an invariant i1 and one or several others i2; : : : ; in issharp if for all values of the independent invariants 
ompatible with the existen
e of agraph, there is a graph for whi
h equality holds. A 
omplete set of sharp inequalitiesbetween invariants i1; i2; : : : ; in is 
omposed of 2n sharp lower and upper bounds forea
h invariant ij in fun
tion of the others. Su
h a 
omplete set for the order, size andindependen
e number of graphs has been gathered and 
ompleted by the proof of aremaining 
ase in [90℄.Ingrid 
an also be used to help to solve pra
ti
al problems in network design and forpedagogi
al purposes [23℄. Dis
overy-based pedagogy in graph theory is also dis
ussedin [37℄, [39℄ and [58℄.5 Generation and sele
tionThe GraÆti system [67℄[68℄[70℄[71℄[72℄ is designed for automated generation of 
on-je
tures in graph theory (as well as in geometry, number theory and mathemati
al
hemistry). It 
ontains a database of relations and a database of examples, whi
h aregraphs whi
h refuted some 
onje
ture. Gra�tti pro
eeds in two steps :9



(i) Graph invariants i1; i2; : : : ip are sele
ted and a large number of a priori relationsbetween them are generated. They have simple forms, e.g. :ik � il or ik � il + im or ik + il � im + in;one invariant may also be repla
ed by a 
onstant, usually 1; sometimes ratiosor produ
ts of invariants are also 
onsidered. In fa
t, as an algebrai
 expressioninvolving one or several graph invariants is itself a graph invariant, any su
hrelation 
an be used.Classes of graphs to be 
onsidered, e.g. general, triangle-free, bipartite, tree andso on are also spe
i�ed.(ii) Sele
tion is performed among relations (or 
onje
tures) obtained in (i). Theymay be dis
arded or provisionally set aside.The former happens(a) when a new relation does not appear to be informative. To this e�e
t it istested whether it provides a sharper value for some invariant than all otherrelations in the database on at least one of the stored examples, or(b) when a new relation is shown to be false for at least one of those graphs.The latter happens(
) when a new relation is implied by an existing 
onje
ture, or(d) when a new relation for a given 
lass of graphs (e.g. trees) is not refuted byany example of a larger 
lass (e.g. bipartite graphs), or(e) when invariants in a relation are too 
lose one to another (i.e. ik � il =ik + 1);note that the test for informativeness removes most but not all su
h relations.To speed up the pro
edure, both databases are kept of moderate size. When a
ounter-example is found it is added to the database, the refuted relations removedand possibly others, whi
h be
ome informative, added. When a new relation is added,those whi
h are no more informative are set aside.False 
onje
tures play an important role as the systemati
 addition of graphs refut-ing them to the database leads to in
reasingly strong 
onje
tures. The aim is to �ndthis strongest 
onje
ture for whi
h no 
ounter-example is known. Sele
ted 
onje
turesare proposed to the mathemati
al 
ommunity in the large Written on the Wall [67℄�le. Their status, i.e., proved, refuted or open is spe
i�ed and regularly updated. In-di
ations on partial proofs and generalizations of the 
onje
tures are also given, withreferen
es.Initially, 
onje
tures were examined before in
lusion in Written on the Wall andsometimes proved or refuted; more re
ently their sele
tion is enterely automated.GraÆti has attra
ted the attention of more than 80 graph theorists and has ledto publi
ation of several dozen papers [59℄, some well-known ones being [40℄ [77℄ [78℄[79℄. Initially, refutations was easy; in [19℄ 200 
onje
tures of GraÆti were tested on allgraphs with up to 10 verti
es and over 40 of them were refuted. The remaining earlyopen 
onje
tures seem to be more likely to hold and some of them appear to be hardto prove. Relations of GraÆti in algebrai
 graph theory were studied in depth in [79℄.10



Table 3: Some 
onje
tures of GraÆti in algebrai
 graph theoryNum. Formula StatusWOW 19 ��n � � Proved in [79℄WOW 43 If G is regular, ��n � �1 Proved in [79℄WOW 44 If G is regular, �2 � �0 Refuted by N. AlonWOW 45 If G is regular, �2 � �1 Proved by N. AlonWOW 116 If G is triangle-free, �1 � Ra Proved in [79℄WOW 195 �n � max(E�) OpenWe next give a few examples. Further relations and their status are presented inTable 3. There E� denotes the ve
tor whose ith 
omponent is the number of verti
esat even distan
e from the ith vertex and Ra is the Randi
 [113℄ or 
onne
tivity indexof a graph G = (V;E) de�ned asRa(G) = X(i;j)2E 1pdidjwhere di is the degree of vertex i.Example 6 [Conje
ture WOW 747, open℄ Let b be the order of the largest bi-partite subgraph of a 
onne
ted graph G, then the average distan
e between distin
tverti
es of G is not more than b2 .Fajtlowi
z observes that if true this 
onje
ture would generalize the previous Con-je
ture WOW 2, i.e., that the average distan
e is not more that the independen
enumber, whi
h was proved in [40℄.Example 7 [Conje
ture WOW 776, refuted℄ Let p be the sum of positive eigen-values of G If G is 
ubi
 then the independen
e number of G is greater than or equalto �1 + p2 .An 18-vertex 
ounter-example was found in [109℄ using the AGX system (see Se
tion6). For that graph �0 = 6 and �1 + p2 > 6:04Example 8 [Conje
ture WOW 256, proved℄ Let the dual degree of a vertex bethe mean of the degrees of its neigborhoods. Then the maximum eigenvalue of theadja
en
y matrix of a graph G is not more than its maximum dual degree.The same short and elegant proof for this result was found independently by aresear
her in the U.S. and a group of three resear
hers in Fran
e, see [67℄, page 78. Theresult generalizes the well known property that the largest eigenvalue of G is not morethan its maximum degree. The fren
h group noti
ed that equality holds if and only ifevery vertex has the same dual degree. 11



6 Heuristi
 OptimizationConje
tures in graph theory 
an be viewed as 
ombinatorial optimization problems onan in�nite family of graphs (of whi
h only those moderate order will be explored).Indeed, given a relation ik � il, one 
an minimize over all graphs il� ik, parameterizingfor instan
e on the graph order. As soon as a graph su
h that il � ik < 0 is found the
onje
ture is refuted. Conversely if extremal or near-extremal values of an invariant(whi
h may be an expression involving several other ones) are found for all small valuesof parameters su
h as order and size, this may lead, automati
ally or with the aid ofthe 
omputer, to the dis
overy of new 
onje
tures.This is the approa
h on whi
h the AutoGraphiX (AGX) system [1℄ [29℄ [30℄ [31℄ [32℄[33℄ [34℄ [35℄ [36℄ [87℄ is based. AGX addresses the following problems :(a) �nd a graph satisfying given 
onstraints;(b) �nd optimal or near-optimal values for an invariant subje
t to 
onstraints;(
) refute a 
onje
ture;(d) �nd (or suggest) a new 
onje
ture (or sharpen an existing one);(e) suggest a proof strategy.AGX uses extensively the Variable Neighborhood Sear
h (VNS) metaheuristi
 (orframework for building heuristi
) [89℄. This metaheuristi
 exploits the relatively un-explored idea of systemati
 
hange of neighborhood within a lo
al sear
h. VNS startswith a given randomly generated initial solution (or graph) x0 then applies a des
entroutine (when minimizing) until a lo
al optimum x is rea
hed. Then a set of nestedneighborhoods 
entered around x are 
onsidered and a point x0 is randomly generatedfrom the �rst neighborhood. A des
ent is performed from x0, leading to a lo
al opti-mum x00. If x00 = x or if the value of x00 is not better than that of x, the solution x00 isignored and another solution x0 is generated from the next neighborhood. Otherwise,as a better lo
al optimum x00 than x has been found, the sear
h is re
entered there.When the last neighborhood has been 
onsidered one begins again with the �rst oneuntil a stopping 
ondition is met.The des
ent routine may itself use several neighborhoods (of types of moves). AGXuses ten simple graph transformations for that purpose : addition of an edge, removalof an edge, rotation of an edge (i.e., 
hange of one of its endpoints), move of an edge(i.e., deletion followed by addition, but not in the same position), and similar more
omplex 
hanges.Nested neighborhoods of a graph are de�ned by the Hamming distan
e betweenedge-sets : the �rst one 
onsists of all graphs obtained by deletion or addition of asingle edge, then two, and so on.AGX has led, partly in 
onjun
tion with a program for enumerating 
ubi
 graphs[25℄ to refutation of 9 
onje
tures of GraÆti [36℄ [109℄ and to the dis
overy of over 50new 
onje
tures, 15 of whi
h have been proved.We next give a few examples of those results. Others are listed in Table 4. We re
alla few de�nitions used there. A 
omet Cp;t is obtained from a star Kp�1;1(p � 4) byappending a path with t edges to a pending vertex. A double 
omet Dp;t;q is obtainedfrom two stars on p and q verti
es by joining a pending vertex of ea
h of them with apath of t + 1 edges (see Figure 4). The radius r of graph G is the minimum over all12



Table 4: Some results obtained with AGXNum. Conje
ture Status Ref.Co. AGX 13 If G is a graph with n verti
es, m � bn2 
dn2 e edges andminimum energy, then(i) if they are positive integer a and b su
h that a�b =m and a+ b � n, G is a 
omplete bipartite graph Ka;bpossibly with additional isolated verti
es(ii) otherwise G is a 
omplete bipartite graph Ka0;b0with a0� b0 � m and a0+ b0 � n, modi�ed by additionof m � a0 � b0 edges joining a vertex on the smallestside on Ka0;b0 to others verti
es on that side, possiblywith additional isolated verti
es
Open [29℄

Th. AGX 12 Let Ta;b denotes the family of trees with a bla
k andb white verti
es, a � b. Then, for a �xed number ofverti
es n and T 2 Ta;b, the minimal value of �1 of Tin
reases monotonously with a� b Proved [30℄Th. AGX 13 For a = b + 2 and n � 6, the trees T � 2 Ta;b withminimum index �1 are 
omets C4;n�4. Moreoverlimn!1�1(T �) = 2For a = b + 3 and n � 7, the trees T � 2 Ta;b withminimum index �1 are double 
omets D3;n�6;3 and�1(T �) = 2.
Proved [30℄

Co. AGX 4 Let G be a graph with n � 3 verti
es, thenr +Ra�mode(d) � pn� 1� 1(Reinfor
ement of Conje
ture WOW 7) Open [34℄

Figure 4: Color-
onstrained trees with minimum index : 
omets and double 
omets13



verti
es of the maximum distan
e from that vertex to any other.Observe that they are of two types:(a) relations between graph invariants and(b) stru
ture of extremal graphs.Example 9 The energy of a graph [84℄ [85℄ is de�ned asE = nXi=1 j�ij:A study of graphs with extremal energy [29℄, parameterizing on n and m led, amongothers, to the 
onje
tures E � 2pm and E � 4mn :Both of them have been easily proved.Example 10 In the same study, uni
y
li
 graphs with maximum energy were investi-gated. This led to the following stru
tural result.Conje
ture AGX 16 Among uni
y
li
 graphs with n verti
es the 
y
le Cn has max-imum energy if n � 7 or n = 9, 10, 11, 13 and 15; otherwise the uni
y
li
 graph withmaximum energy is C6 + Pn�6 i.e., C6 with an appended path with n� 6 edges.Partial results towards the proof of this 
onje
ture were re
ently obtained : it isshown in [86℄ that among bipartite uni
y
li
 graphs those with maximum energy areeither Cn or C6 + Pn�6.The results of these two examples were obtained intera
tively. However there areseveral ways to use AGX in an entirely automated way [34℄. Indeed 
onje
tures 
an befound by(i) a numeri
al pro
edure whi
h exploits the mathemati
s of prin
ipal 
omponentsanalysis in order to �nd ressemblan
es instead of di�eren
es between extremalgraphs. This leads, in polynomial time, to a basis of aÆne relations betweengraph invariants;(ii) a geometri
 pro
edure, i.e., �nding the 
onvex hull of the set of extremal graphsviewed as points in invariant spa
e, fa
ets of this 
onvex hull give linear relations,i.e., lower and upper bounds on the invariants asso
iated with ea
h of the axes;(iii) an algebrai
 pro
edure, i.e., re
ognizing the 
lass of extremal graphs found, andif it is a well-de�ned one for whi
h formulae relating graph invariants are known,eliminating variables to get simple relations between the invariants under study.Example 11 In [30℄ 
olor-
onstrained trees (i.e., trees with given numbers of bla
k orwhite verti
es) with minimum index are investigated. A further study of the extremalgraphs found was performed in [34℄[35℄. To this e�e
t 15 graph invariants were 
om-puted and the numeri
al method applied. In addition to some trivial relations it led tothe following result.Conje
ture AGX 9 In all 
olor-
onstrained trees with minimum index�0 = 12 (m+ n1 +D � 2r)14



where �0 denotes the independen
e number, m the size, n1 the number of pendentverti
es, D the diameter and r the radius.It is unlikely that a relation with as many invariants 
ould have been obtainedwithout a 
omputer.This 
onje
ture is open; it does not hold for all trees. However it 
ould be shown[34℄ that the right-hand side is an upper bound on the independen
e number of trees.So Conje
ture AGX 9 implies that 
olor-
onstrained trees with maximum index havemaximum independen
e number.Example 12 Using the geometri
 approa
h [34℄ to study 
hemi
al graphs (i.e., graphswith a maximum degree of 4) led to �nd :Theorem AGX 5 In all 
hemi
al graphsRa � 14 (n1 +m) :This was proved using linear programming arguments.Example 13 Conje
ture 8 of GraÆti is that in a graph G�l +Ra� mode(d) � 0where �l denote the average distan
e between of distin
t verti
es and d the ve
tor ofdegrees of G. Using the algebrai
 approa
h led to the following strengthening of thatresult :Conje
ture AGX 5 In a graph G�l +Ra� mode(d) � 2(n� 1)n +pn� 1� 2 if n � 3:7 Con
luding remarksSeveral dis
overy systems in graph theory have been very su

esful in helping mathe-mati
ians to formulate and explore 
onje
tures, or to suggest interesting 
onje
tures inan entirely automated way. Moreover, new systems sometimes based on new prin
iplesare being developed. The underlying paradigms, i.e., enumeration, intera
tive 
omput-ing, formula manipulation, generation and sele
tion, heuristi
 optimization, are varied.They appear to be largely 
omplementary. So one may expe
t mu
h a
tivity and theadvent of more 
omprehensive systems in the near future.A
knowledgement. This work was done while the �rst author visited the Servi
e deMath�ematiques de la Gestion of Brussels University. Support of the Resear
h in Brus-sels program is gratefully a
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