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ABSTRACT

This paper describes a calibrated and an uncalibrated method for integrating a vision system with
touch sensors and a Coordinate Measuring Machine (CMM). Traditionally, vision systems are used to
measure machined parts and to localize manufacturing defects based on appearances. Our system relies
on a “coarse-fine” approach to integrating vision with CMMs. Vision guides the CMM to the feature to be
measured and the CMM performs the actual measurement. The resulting system is capable of quickly
inspecting large regions with high resolution. We will examine what impact the internet may have on
CMM technology and the ways in which vision can make CMM technology accessible over it. We will
also present results demonstrating the power and flexibility of new, uncalibrated vision techniques.

DISCLAIMER

Certain commercial equipment, instruments, and materials are identified in this paper in order to
adequately specify the experimental procedure. Such identification does not imply recommendation or
endorsement by NIST, nor does it imply that the equipment, instruments or materials identified are neces-
sarily best for the purpose.



1.  Introduction

In the past, Coordinate Measuring Machines (CMMs) required extensive human intervention to
take measurements. The human operator controlled all of the CMM’s movements and indicated when
data points should be logged. When new parts needed to be measured, the operator analyzed the measure-
ments to be taken and then proposed a measurement plan, which consisted of a list describing how and in
what order the measurements were to be executed. The chief bottleneck in such CMM systems was the
human operator. Since the operator had complete control of the CMM at both the highest and lowest
level, the measurement process depended highly on the skills of the CMM operator.

This paper describes how vision-based CMM control algorithms may be used to perform some
CMM programming tasks.  Some of the paper highlights include the following:

• A proposed decomposition of certain measurement tasks to determine which sub-tasks are suitable
for human control and which are suitable for CMM control.

Instead of relying wholly on one or the other, the operator and machine work together in a coordi-
nated manner to perform measurements.

• A description of several improvements made to the general operator-CMM interface.

This includes the development of a system where a human operator plans, requests, and monitors
a series of measurement tasks for a CMM system from a remote site.

• A description of how computer vision may be used by both the CMM and human operator to observe
and control a measurement task.

We have developed vision algorithms which enable a CMM to sense how it interacts with objects
in the 3D world. Using these algorithms, the CMM is capable of “learning” the mapping between
image space and the 3D world. We have experimented with two forms of algorithms: calibrated
and uncalibrated.

• A description of how vision may be used to perform “virtual” fixturing. Mechanical fixtures are com-
monly used to constrain the positions of parts before they are measured.

By constraining the part, the measuring system removes much of the positional ambiguity before
measuring the part. Vision is capable of performing a similar task. Similar to mechanical con-
straints, vision can use optical constraints to limit a part’s positional ambiguity.

• Finally, a brief discussion of the benefits of hierarchical control.

Our system controller implements coarse-fine control. Vision is used to direct the movement of
the CMM with millimeter precision, while touch probes are used to recover sub-micron displace-
ment information.   Combined together, vision and touch give the system an extremely fast way to
recover dense, high-precision measurement data.



2.  Background Information

The Next Generation Inspection System (NGIS)[10] is a multi-year effort to develop a CMM test-
bed for testing and developing advanced sensing and control technology. NGIS draws on research from
many diverse fields including robot control, image processing, tracking, and metrology.

Our work is a direct consequence of our previous research experience in integrating imaging sys-
tems with robot technology.   A relatively complete compendium of the different research approaches
examined in field of integrating vision and robot systems can be found in [6]. One of the works cited is
Allen et al. [2] where we demonstrated that real-time control of tracking and grasping is possible using
stereo cameras. This work shows that calibrated stereo vision, coupled with a suitable prediction and
noise filtering module, is capable of controlling and coordinating the movements of a robot and gripper
system.    In Yoshimi and Allen [14], we have shown that the peg-in-hole insertion task may be performed
with an uncalibrated camera. This work demonstrated that carefully chosen visual invariants may be used
to drive a robotic process efficiently. An uncalibrated camera was used to direct the movements of a Puma
560 robot. The robot’s task was to insert a thin peg into a 2 mm hole. The system performed the peg-in-
hole insertion repeatably. In Yoshimi and Allen [13], we have shown that robot grasping and manipula-
tion is possible with weakly calibrated cameras. By using image Jacobian-based techniques, a robot sys-
tem was capable of compensating for image calibration errors.   In both systems, vision was used to close
an otherwise open loop manipulation problem.

More recently, Nashman et al. [10] described how vision data could be used to control the acqui-
sition of scanning touch data. Their system measured the surface profile of a piston head using visual
feedback to control the velocity of the probe tip. Vision served two purposes in their system. First, vision
was used to recover the head of a piston. Second, it was used to control the velocity of the probe as it
moved across the surface of the piston head. As the tip of the probe approached the lip of the piston head,
the probe’s velocity decreased. Our current system extends upon this work.

The NGIS controller is the NIST Real-time Control System (RCS) [1]. Several projects at NIST
and industry have adopted RCS for building robot controllers. RCS has been used on welding, deburring,
and milling machines. NGIS uses the RCS libraries to control the CMM, probe, and vision systems. RCS
is a multi-level, hierarchical control system. At the lowest levels, the system models the organization of a
single machine. These levels includeservo, primitive (prim), elementary-move (e-move) andtask. At
higher levels, RCS addresses the needs of workstations and factory control. Each level operates on a dif-
ferent time and space scale. At the lowest levels, joints and encoders are controlled at theservo level with
milli-second accuracy. At the highest levels, factory schedules are controlled with day accuracy. RCS is
conducive to rapid prototyping, code-reuse and concurrent software development. The NGIS system
implements the 4 lowest levels of RCS control:servo, prim, e-move andtask.

Before going into depth about our system, we will examine two issues related to the integration of
vision and touch. First, we will examine how two paradigms of visual control, calibrated and uncali-
brated, apply to CMM control. A calibrated vision system provides a direct mapping between image
space and the 3D world. An uncalibrated system does not depend on having such a mapping before oper-
ating. An uncalibrated vision system forces us to develop techniques which do not depend on the image
space-to-3D world mapping. Although at first glance uncalibrated vision systems look impractical, they
are, in fact, cheap to construct and resilient to minor perturbations. We will describe techniques we have
developed to perform visual control in both environments.



Second, we will describe some of the challenges faced in developing a distributed interface to all
of the individual parts of the system. In particular, we will describe how the user interface was derived to
be “internet-friendly” and why developing a CMM measurement system with the internet in mind is a
good idea.

3.  Vision paradigms - Calibrated vs. uncalibrated vision

Two distinct vision paradigms exist in the visual control domain. The first paradigm, calibrated
vision, uses calibrated camera systems and performs all control operations in 3D world coordinates. The
second paradigm, uncalibrated vision, uses image Jacobian-based techniques. These two paradigms will
be described in more detail in the following subsections.

Calibrated vision

Calibration gives the position and orientation of a set of cameras in the 3D world and the optical
characterizations of those cameras. Once the camera calibration is known, the position of any object visi-
ble in those cameras may be back projected into the 3D world to determine its 3D position and orienta-
tion.

Manipulation under a calibrated camera system is typically performed in the 3D world coordi-
nates. Part locations and the location of the CMM may be specified in 3D. Manipulation is relatively
straightforward. Distances to objects are determined using straightforward Cartesian calculations. Grasp-
ing and manipulation strategies may also be performed in Cartesian space. Basically, under calibrated
vision, all manipulation problems requiring vision are transformed into 3D Cartesian-based manipulation
problems.

However, the camera calibration problem is known to be very difficult.   Many researchers have
spent their careers examining this problem. Karara’s handbook [8] is considered to be one of the most
complete handbooks on camera calibration. Still, every year, more and more researchers spend time,
money, and effort to develop new calibration techniques and/or to implement and understand old tech-
niques.

Calibration techniques usually fall in two general classes: simple, fast calibrations and complex,
slow calibrations. Simple, fast calibrations describe the image space to 3D-world mapping with a small
number of variables usually using a small number of initial calibration data points.   These techniques
include many variations of the two plane technique such as the one by Martins et al.[9] and techniques
which rely on imaging 8 corners of a viewing volume such as that by Hollinghurst and Cipolla[7]. Gener-
ally, these techniques are simple to implement and may be performed relatively quickly. All of these
methods produce rough calibration results. Using these calibration techniques usually results in large
errors when projecting image space points into the 3D world.

Complex calibration techniques, like many of the algorithms covered in [8], recover the calibra-
tion of a camera system with a large number of variables representing many different optical distortions.
Unlike the previous set of calibration techniques, these are highly polished numerical algorithms which
require the use of nonlinear optimizers to achieve their accuracy and precision. These techniques are
often slow, hard to understand, highly susceptible to noise and, at times, do not give better results than the
simple, fast techniques. Faster versions of these complex calibration techniques, such as Tsai [12] and
Castaño [3], were designed to be used in machine vision applications. These faster versions use complex



models and nonlinear optimization to achieve precise calibrations. These methods also share many of the
problems with complex calibration including being difficult to explain, hard to understand, and sensitive
to noise.

Calibrating a camera system has many advantages. In an environment where a camera does not
move and its optics do not change, a one-time, well-performed calibration can be used for the entire life-
time of the system. In this case, recovering a highly accurate calibration is worth the initial start up cost.
Calibration also simplifies the visual control problem since all manipulations are performed in 3D world
coordinates.

Calibration, however, does not solve all problems in visual control. Because all cameras have a
finite number of sensing elements, choosing the right lens for a job is very critical. The camera should see
enough of the world with high enough resolution to perform the desired operation. Due to the trade-off
between resolution and accuracy, most calibrations are typically accurate in only a small part of the
robot’s workspace. If a larger area is to be imaged, each pixel must cover a larger percentage of the world.
Since the spatial resolution of the image sensor remains constant, the overall 3D spatial resolution
decreases. If a smaller area is imaged, parts of the workspace remain unimaged and therefore, uncali-
brated. Another problem comes from introducing an artifact into the robot workspace, often one of the
first steps in most calibration algorithms. If the calibration process occurs once, the time to install and
remove the artifact may be insignificant. But, if daily recalibration is necessary the time spent introducing
and removing the artifact may become significant. As mentioned earlier, calibration algorithms are still a
subject of intense research. Many of the sophisticated calibration methods require careful estimation of
highly sensitive tuning parameters. Since nonlinear optimization is notoriously sensitive, many of these
algorithms are difficult to implement and use.

Calibration, a time consuming process, needs to be performed any time the camera’s position
changes. If small perturbations are made to the camera system or to the calibration matrices, the calibra-
tion may fail catastrophically with no possibility of recovery. Calibration methods may make certain
assumptions about lens distortions which are violated for extremely high distortion lenses like many wide
field-of-view lenses. In many instances, these are the same types of lenses which are most useful in a
machine vision system.

Although calibrated vision systems have much to offer in a vision-guided robot system, the prob-
lems associated with their implementation make them difficult to use in certain CMM/vision configura-
tions. These problems encouraged us to explore the new uncalibrated techniques described in the next
section.

Uncalibrated vision or active vision

Uncalibrated vision and active vision are relatively new areas of study in the robotics and com-
puter vision fields. Generally, these terms imply that the vision system directs the information gathering
process. Examples of these techniques include visual servoing, visual object tracking, and gaze or ver-
gence control.

One advantage of these techniques is that they may not require explicit calibration. Since the
vision system controls the acquisition of data, it is possible for the system to “learn” the image space to
3D world calibration. One method for learning this calibration is through forming an image Jacobian, a
mathematical construct relating differential changes in image space to differential changes in 3D space.
An image Jacobian is similar to a calibration matrix except that its value changes at different locations in



space and is usually valid only for a single position in image space and 3D space.

Uncalibrated vision and, in particular, image Jacobian-based control have many advantages. First,
the amount of time necessary to recover an image Jacobian for a given position in space is nominal. The
initial start-up sequence for the recovery of an image Jacobian is to perturb the robot’s position along two
axes. Many precision camera calibration procedures require the introduction of artifacts in the robot’s
workspace. Introducing, imaging, and removing these artifacts requires time. Other calibration methods
requiring the robot to move to various positions in the environment also take time. By calculating the
image Jacobian only when necessary, we can save a great deal of system time and effort. The system can
immediately use Jacobians derived from this process.

Image Jacobians measure the relationship between image space and 3D space directly.   Since the
vision system observes how the robot moves under different commands, it knows exactly how these com-
mands affect the pose of the robot in the 3D world. If the robot moves to a new position in space, the
image Jacobian can be quickly established for that new position. If the camera position changes, this, too,
may be learned. The key to developing active vision algorithms which use image Jacobians is to rely on
observed relative movements. These techniques require understanding how movements in the 3D world
affect the robot configurations in image space.

The process of updating an image Jacobian is similar to that of updating a calibration matrix.
Instead of performing a complete and possibly flawed calibration up front, image Jacobian-based tech-
niques are updated as they perform the desired robotic task. These methods are amenable to many
machine learning approaches.

As stated earlier, estimates of the image Jacobian appear to approximate the real image Jacobians
very well. Both [13] and [14] demonstrate that the discrete form of the image Jacobian is sufficient for
performing many robotics tasks. Yoshimi and Allen[14] demonstrate that even a single estimate of an
image Jacobian is sufficient if the task is well constrained. Yoshimi and Allen[13] also show that image
Jacobian-based techniques can be used for point-to-point robot control. Depending on what control law is
chosen and the value of the gains, it is possible to construct linear motion paths using image Jacobian
techniques.

Finally, using any differential technique like the image Jacobian allows the system to cancel out
many fixed calibration errors. In [13], the system could compensate for a base-line shift of 400mm and
still accomplish a peg-in-hole insertion task. Any method which requires the robot to move to a calibrated
position would have had difficulty performing this task if the camera calibration were not updated.

Image Jacobians, however, are not without problems. One of the biggest problems is determining
when the Jacobians break down. It is possible to check the accuracy of the Jacobian by observing the
movements of the robot system in image space. If the signs of any of the terms in the Jacobian change or
the Jacobian becomes singular, the system can be ordered to recompute the Jacobian.   Yoshimi and
Allen[14] have shown that large areas of a robot’s workspace have Jacobians which are quite similar.
Coupled with error minimizing techniques, an initial estimate of a Jacobian may be used over a large area
with little degradation.

In many situations, it may not be possible to calculate an image Jacobian. If the basis set is not
chosen carefully, an image Jacobian may be singular. This situation is not uncommon. Any Jacobian
computed where one of the axes is a vector which lies along a line passing though the optical center of the
camera is an example. Selection of good basis sets for different robot/camera configurations is an open



research topic.

Also, using the initial image Jacobian, the robot may slowly converge to the desired control point.
This depends on how accurately the image Jacobian reflects the true image Jacobian at all points along
the robot’s path.

Still for many users, image Jacobian-like techniques are relatively cheap, straightforward starting
points for the implementation of visual control systems.

4.  Internet-based delivery of measurement services

Most CMMs require resources beyond the reach of many small companies. The cost of buying,
installing, and maintaining a CMM is significant. We are currently working on designing technologies
which will enable small companies to operate off-site CMMs safely, efficiently, and effectively. Two
major problems with remote CMM operation exist. First, not everyone has CMM expertise. Mixing inex-
perienced users with expensive machinery is a guaranteed recipe for disaster. Second, the technology for
connecting potential users to CMMs is, at best, nominal. Currently, the most pervasive form of connectiv-
ity is the internet.

Current internet technology is not capable, and never will be capable of delivering the real-time
performance required for normal operator interfaces. The internet is at best non-deterministic and at
worst unreliable. We have developed an internet-based solution which overcomes some of these prob-
lems. If the only feedback a remote CMM operator gets is digitized video from a camera and simple mes-
sage packets, then packet delay and loss can cause the system to behave erratically. In the worst case, lost
or late control commands may cause extreme robot/probe damage. Whatever interface is implemented
should include the most basic of all CMM operations: the emergency stop (e-stop). The e-stop button is
probably the most important button on the CMM control panel, since it is often paramount to worker
safety. Operating an expensive CMM over the internet requires at least the same level of CMM respon-
siveness.

The key to the success of internet-based operations on the NGIS system is the development of
internet-safe CMM operations. An internet-safe operation is one which was specifically designed with the
problems of the internet in mind (non-deterministic operation and no guarantee of delivery). For example,
if an operation is moving the probe until it contacts the part, normally a human operator would move the
probe using a joystick until the probe came close to the part. The operator would then reduce the speed of
the CMM and move the probe closer to the part. An experienced CMM operator can quickly judge which
velocity profiles to use when closing to the surface of a part.

Our system achieves this level of operation by separating the real-time component from the user
interface. The CMM only executes commands which are finite and have specific terminating conditions
independent of human reaction times to succeed. Similarly, high-level image processing is performed in
real-time on a dedicated image processor. Updates are sent to the user interface as quickly as possible, but
the system never assumes that the users have certain knowledge before the users perform some action.



 Our system performs all probe tracking and robot control in real-time. E-stop commands are
automatically generated by the system based on probe and vision data. All other functionality runs in
non-real-time mode since the inherent uncertainties of the internet make it impossible to guarantee band-
width and connectivity. All operations must have some internal mechanism to keep the system opera-
tional. We have isolated the user interface (UI) components and have implemented robot manipulation
algorithms which do not rely upon “hard” real-time user interaction. Using the touch-based guarded
move operation isolates a potentially hazardous real-time condition. The system terminates a movement
operation when the probe moves into contact with an object. In this scenario, the real-time aspect of halt-
ing the robot does not depend on user intervention. While the user may initiate the task, task monitoring
and completion checking are under complete autonomous control.

 Other examples of this technique include the visual guarded move - moving the CMM to a
desired position in image space, 1D compliance against a surface - moving the CMM to a desired position
while maintaining probe contact with a surface to be measured, and 2D compliance against a surface -
forcing the CMM to maintain contact with a surface while maintaining a trajectory parallel to the surface
of contact. Notice that in all of these instances, the robot is autonomously controlled in real-time at the
lowest level of the hierarchy. At the task level, higher level control is less time critical and non-real time.
This programming model reinforces the separation of real-time and non-real-time components.

Implementation

The internet interface consists of two parts implemented in Java[4]. These two windows are the
probe/CMM control window and the vision control window. Each interface is independent. Exercising
the vision system without invoking the CMM and vice versa is possible. Visual servoing is possible,
though, only when both interfaces are active.

Figure 1 shows the CMM/probe window (or panel) is comprised of two parts. The CMM control
interface is on the left-side of the window. When the CMM/probe is invoked, the user interface connects
to four RCS communication channels which we call the Neutral Manufacturing Language (NML). Two
command channels exist for sending commands to the CMM and the probe. The other two channels
report the status information of the CMM and the probe. Robot positional status information is displayed
textually and through the slider bar. The user can modify the position of the robot by either sliding the

Figure 1.  CMM and probe control panel.



slider bar or typing in a position. The MOVE ROBOT command is only sent to the robot when the
MOVE ROBOT button is pressed. The MOVE ROBOT command actually violates some of the principles
discussed earlier. Why? There is no stop action. The CMM will not terminate a MOVE ROBOT com-
mand unless the goal position is reached. The GUARDED MOVE DOWN enhances the MOVE ROBOT
commands functionality by adding a probe-triggered guard function.

The probe subwindow (on the right-side of the CMM/probe window) is currently a status-only
window which displays the probe deflections. The window contents cannot be altered. In the future, we
will add probe changing capabilities when a probe changer becomes available.

The vision interface window (Figure 2) allows the user to see what the vision system “sees.” In
Figure 2, the top panel contains buttons which allow the user to connect to various vision processing
computers to provide visual feedback for control. In our laboratory, we have at least three such comput-
ers. The state of the user interface also determines what effect button clicks have on the image display in
the bottom panel. For instance, in the normal state, a button click has no effect. Dragging the mouse with
the left mouse button depressed causes a box to be drawn on the image, perhaps to highlight some event.
If the interface is in add_tracker mode, clicking on the interface sends a message to the vision system to
allocate a tracker at the clicked-on image position. Currently, the system supports the creation of two dif-
ferent types of image-based trackers: threshold-based and correlation-based. Correlation-based tracking
is discussed in [10]. Threshold-based tracking examines pixels in a 10x10 neighborhood surrounding the
specific point. It finds the centroid of all pixels whose value satisfies some threshold criterion. The value
of the centroid is used as the position of the tracked point. The upper limit on the number of regions
tracked depends highly on the vision system and processing platform.

The vision interface also includes support for entities (albeit at a very primitive level currently).
Figure 3 shows the Entity Manager control panel used to manage vision scan paths. The probe will scan
the part surface while following these paths. The scan paths are point-based entities. The system is capa-
ble of recognizing three separate types of scan paths: the random “point-and-click” scan path, the inner
surface scan path (the inside of a pocket) and the outer surface scan path (the outside of a boss).   All three

Figure 2.  Vision control panel.



types of paths are indicated in Figure 3. The circle on the lower right is a pocket to be scanned. The rect-
angle located in the circular path is a boss. The remaining two paths are arbitrary scan paths created by
the user with the point and click interface. In the next version of this software, this interface will be sup-
plemented with CAD model constructs.

Performance

Since Java is an interpreted language, the resulting software interfaces run approximately one
order of magnitude slower than compiled software. This performance cost was deemed acceptable for the
greater potential of easily distributable software. For the probe/CMM interface, the relatively low band-
width necessary for moving the CMM and observing the probe deflections does not seem to tax network
bandwidth. On the other hand, the vision interface requires tremendous bandwidth for video images.
Using uncompressed 320x240 8-bit grey scale images, we were able to get ~5Hz video updates to a Java
user interface. The video server, itself, was capable of processing video and tracking multiple targets at
30Hz.   The video server could also relay these tracking results to the probe/CMM system at 30 Hz with
minimal delay.

Both interfaces benefited from using RCS Neutral Manufacturing Language (NML)[11] as the
communication library. First, having a standard communication interface makes it possible to swap out
the user interface and insert a higher level control module. This is one which possibly performs many of
the tasks the human operator performs without rewriting the CMM controller code. Moreover, since
NML supports multiple writers to a command channel, it is possible for both an expert and a novice to
connect to the same CMM and share control of that CMM during some measurement operation. Such
operations are normally not part of a standard CMM communications package. Second, a standard set of
CMM messages - commands sent from other processes to the CMM process - allows us to concentrate on
the task of programming a CMM over learning a new language. The same user interface and/or higher
level control process can access our current CMM or a new CMM speaking the same language as long as
they both implement the same command interpreter. These and many other aspects of RCS are discussed
in [11].

5.  System Description

Figure 4 is a schematic illustration of the NGIS system. The CMM controlled by the system is a

Figure 3.  Entity manager control panel



four degree-of-freedom Cordax. The rotational degree of freedom associated with the table has been dis-
abled for our experiments. An Automated Precision, Incorporated (API) 2D pan-tilt wrist has been
attached to the end effector of the CMM.   Future experiments will include automatic normalization of a
probe principle axis to the surface scanned. For all of the experiments described in this paper, the wrist
was held in a fixed pose.

We have experimented with several different probes in this system. Currently, the complement of
probes includes a simple 1D LVDT (linear variable differential transformer), a 3 DOF LVDT from API, a
capacitive sensor from ExtrudeHone and a laser triangulation probe from Sensor Adaptive Machines, Inc.
(SAMI). A kinematic base has been attached to the base of each probe to facilitate the connection of each
probe to the pan-tilt wrist.

The vision system consists of an Elmo “Lipstick” CCD camera with a 12mm lens. The Elmo gen-
erates both SVideo and NTSC output. The Elmo SVideo output is fed into a Sun Video digitizer mounted
in a Sun Ultrasparc workstation running Solaris 2.5. While the Sun Video digitizer is capable of digitizing
24-bit, 320x240 pixel color images at 30 frames per second (fps), the system only uses 8-bit, grey-scale,
320x240 pixel images. While many specialized vision systems exist which are capable of measuring sev-
eral million pixels per frame, most commercial off-the-shelf NTSC systems digitize at either a resolution
of 640x480 or 320x240 pixels. Even at 320x240 pixels, our system demonstrates the feasibility and utility
of vision-based robot control.

The NGIS software is constructed on top of a heterogeneous operating system environment. Cur-
rently, the Cordax CMM is controlled under VxWorks, the probes are controlled either under VxWorks or
Microsoft Windows NT, the vision system is controlled under Solaris, and the user interfaces are con-

LVDT Probe

Z

X

Y

Part to be
Measured

Camera
System

Figure 4.  Illustration depicting CMM, probe and camera setup.



trolled under Java Virtual Machine[4]. In most typical developmental environments, this number of oper-
ating systems would make the cost of maintaining communications libraries prohibitively expensive. The
NGIS system uses RCS NML to overcome this problem. NML allows many different processes running
on different computers to communicate with one another. NML has support for single read/write channels
and read/write channels with multiple readers and writers. It has support for queueing messages. It has
support for backplane, shared memory, and internet communication. The NML libraries that are available
free from NIST are compilable under VxWorks, Solaris, Lynx OS, and the many forms of Microsoft Win-
dows. [11]

As stated earlier, the connection between the various hardware and software components and the
user is handled through Java user interfaces. Java is a new language designed with the internet in mind.
Java code is not executed on the host machine; it is executed in the user’s web browser. The delivery
model for Java interfaces is as follows. A pointer to Java code is imbedded in an internet web page. The
user loads the web page into his/her web browser via an internet connection. When the pointer corre-
sponding to the browser is accessed, either by key press or by mouse click, the user’s web browser opens
a connection to the server holding the code, downloads the code and executes it in a secure “sandbox”
called the Java Virtual Machine. The Java Virtual Machine was especially designed to securely handle
code on the internet. For more information on Java see [4].

Figure 5 illustrates the relationship between the different coordinate systems in the NGIS system.
The following parameters are used in the paper to describe various relationships within our system:

• W - the world coordinate system.

W

T3

Tprobe

Ucam
Vcam

Optical Axis

Tcam
Xworld

Yworld

Zworld

Focal Plane

P(λ)

Figure 5.  Relationship between the different coordinate systems.



• (Xworld, Yworld, Zworld) - the axes ofW.

• Tcam - the camera transform matrix.

• P(λ) - the perspective effect introduced by a camera system with focal length λ.

• (Ucam, Vcam) - the axes of the image space coordinate system.

• T3 - the transform fromW to the end effector of the CMM minus the probe.

• Tprobe - the transform from the end-effector of the CMM to the tip of the probe.

• TIP - the actual 3D location of the probe tip in the 3D world. TIP = T3 * Tprobe.

•  - the projection of TIP into image space. w *  = P(λ) * T-1
cam * TIP.

• w - is a camera dependent scaling factor.

6.  Experimental Results

 We have developed two methods for vision-based CMM control. The first calibrates a camera
system using a standard calibration technique and then performs movements and manipulations. The
results of this calibration-based approach are presented in the next section. They illustrate the fidelity of a
simple camera calibration algorithm. The second section describes an image Jacobian-based technique
which requires almost no set-up time.   Experimental results are presented demonstrating the efficacy of
the image Jacobian in performing a CMM measurement task.

Calibrated vision results

This section describes vision-guided CMM control using a calibrated vision system. The calibra-
tion is performed using an algorithm by Castaño [3]. This algorithm is a nonlinear calibration procedure
which uses linear calibration results as the initial guess for an iterative search.

We used the following procedure to acquire calibration data for the algorithm. First, the probe is
mounted on the CMM, and the camera was mounted in a location where it could observe the workspace
of the CMM. The visible workspace of the vision/robot/probe system is initially estimated by hand. The
CMM is moved under joystick control to many different positions in the workspace to measure the extent
of the camera’s field of view. The probe is moved closer to the camera and then moved so the projection
of the probe lands as close as possible to the top-left, top-right, bottom-left and bottom-right corners in
camera space. It is not possible to reach these corners in most cases due to physical constraints. This
defines a “front plane” to the workspace. We then move the CMM away from the camera and perform the
same operation. This operation defines a “rear plane.”   This frustum-like space is then populated with
three dimensional points.

Next, a red light-emitting diode (LED) is attached to the probe tip. LEDs are inexpensive and are
easily tracked in images. All external lights are dimmed. The LED’s position is found by first threshold-
ing the image and then finding the centroids of the resulting pixel clusters. We assume the illumination
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profile for the LED is uniform in all directions. The LED’s position in future frames is estimated using a
filtering/prediction algorithm described in [10].

The CMM is then commanded to move the probe to each predetermined 3D point within the frus-
tum-like space and then stop. The vision system tracks the LED during the entire movement. When the
probe stops, the vision system waits for the image to settle and then it records the (x, y, z) position of the
probe tip along with its (u, v) image position. The two sets of values are concatenated together to form
(xi, yi, zi, ui, vi) quintuplets.

Next we describe the results of one such calibration. For this experiment, the dimensions of the far
calibration plane was 292x104 mm. The dimensions of the near calibration plane was 191x133 mm. The
two planes were separated by 265mm. The exact corners of the calibrated work space were (-116.00, -
41.00, 22.0), (176.00, -41.00, 22.00),(176.00, 63.00, 22.00), (-116.00, 63.00, 22.00), (-30.00, -41.00, -
243.0), (161.00, -41.00, -243.00), (143.00, 92.00, -243.00), and (-30.00, 92.00,-243.00). The units are
millimeters. The first four points determined the “far” plane. The last four points determined the “near”
plane. 100 data points were created in the far plane and 99 data points were created in the near plane. The
data points were found by interpolating between the corners of each plane.

Figure 6 is the path taken in image space by the LED as it moved through all of the calibration
points.   The location of the LED was found by thresholding the entire image at a predetermined intensity
threshold. The LED’s position was calculated to be the centroid of the resulting pixel cluster. The starting
position of the LED is image location (252, 89). The final position is (24, 46). Castaño’s calibration algo-
rithm returns a calibration matrix. Figure 7 shows the result when the original 3D points are projected
into image space using the resulting calibration matrix. The results appear to track the position of the
original points very well. The entire effort took approximately 30 minutes of machine and operator time.
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Figure 6.  Track of LED in image space for the calibration experiment.
The coordinates are in pixels.



Uncalibrated vision results

In this section, we describe our experiments and experiences in developing new image Jacobian-
based techniques for CMM control.   Our method assumes that a mechanism exists for picking out the tip
of the probe in the image and for indicating the desired scan path. In this system, the probe tip and scan
path are indicated by the user on the graphic user interface.

We model the relationship between the camera system and image space using the following equa-
tion:

, where Tprobe =  in end effector coordinates. (1)

Differentiating the above equation results in a relationship which relates image space with the 3D
world. However, full knowledge of all the parameters is necessary to derive the complete Jacobian matrix.
Since we assume that the calibration between image space and the world does not exist, we do not
recover the image Jacobian directly.

Instead, the system estimates the control movements for a 2D Z-X plane inW. If y is kept con-
stant, the differential relationship between image space andW can be written as follows:

, for δy = 0. (2)

where J, the estimate of the image Jacobian, is

(3)

Eq. (2) links small linear moves in image space to small linear moves inW.

The algorithm the system follows to derive the initial image Jacobian is:

1. Move the CMM to some position inW where TIP is observable in image space.
2. TIP projects to the point  in image space. (Projections from 3D to 2D image space are denoted

by the prime notation.)
3. Move the probe to a new position TIP + (0, 0,δz). The change in the pose of the probe tip in image

space (δuδz, δvδz) is recorded.

4. Move the probe to position TIP + (δx, 0, 0). The difference between  and the new position of the
probe tip in image space (δuδx, δvδx) is recorded.
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5. These perturbations (δz, δx), (δuδz, δvδz), and (δuδx, δvδx) are substituted back into equation (2) to
find the image Jacobian.

The resulting Jacobian approximation, J, may be applied in the following manner. Ifdesired is

the desired location for the probe tip in image space and  is the observed position of the probe tip in
image space, we can compute:

(4)

Where  is an image space vector which represents the difference between the desired tip posi-

tion and the observed tip position.  can be converted into a 3D vector inW by:

(5)

 can be used to approximate a position inW where the probe tip might project to desired.

This position, , can be fed to the CMM controller as the next desired position. Since the image

Jacobian is not uniform over the entire imaged region,  is only a very rough approximation to the
desired location.   If the system only makes these error correcting moves, it is unlikely to converge to the
desired solution. This is especially true when the initial error is large. Instead, the control algorithm
updates its error estimate as soon as new image information becomes available. Afterδt, the time interval
necessary to process a new image, the probe tip travels to some new position, TIPi. Since the probe
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Figure 7.  Projection of original 3D points onto the image plane using the
calculated calibration matrix. Results are overlaid on original LED data

points. The coordinates are in pixels.
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started moving from TIP to , TIPi must lie between TIP and . Instead of proceeding to

, the system can use the knowledge that TIP travels to TIPi and that it observed  move to

. The system calculates a new  based on these results and applies the associated  to TIPi. The low
gain associated with the image Jacobian-based correction causes the system to be overdamped. It con-
verges to the desired location without oscillation. Convergence is subject to many restrictions. First, the
region where servoing is to take place should be fairly planar. Perspective projection of a plane preserves
order making our initial estimate of the Jacobian sufficient. Second, the sign of the Jacobian must not
change in the region. Third, the Jacobian must be well conditioned in the region. As long as the general
sign of the image Jacobian is correct, the desired position will be achieved. Espiau et al. [5] have shown
that convergence is guaranteed if the signs of the image Jacobian are correct and that the performance of
the system increases as the approximation approaches the ideal value.

In our experiments, the time required to acquire the image Jacobian is about three seconds. The
system makes three assumptions regarding the vision/probe/CMM system for these experiments. First,
the perturbations must be observable by the imaging system. Second, the vectors which result from these
perturbations must not be collinear.   The cross product of the two initial position changes made to
recover Eq. (3) must be non-zero. Third, the surface or object on which the servoing takes places must be
relatively planar.

To test the usability of the image Jacobian, we devised a few experiments to determine how it per-
forms under different conditions. In the first experiment, visually servoing to a point, the user indicates a
position in image space where he would like the CMM to place the probe tip. Before the experiment is
run, the NGIS system makes a guarded move to the part surface. The guarded move is in the -Y direction.
Once contact has been established, the system is put into surface compliance mode. We have imple-
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mented a surface compliance scheme which allows the system move in the X and Z directions, while
maintaining a constant Y probe displacement. The CMM uses proportional error control to maintain this
displacement. The user interface sends the command VISUAL SERVO TO PT giving the (u, v) position
in image space as a parameter.

Figure 8 (LEFT shows the initial starting position of the probe as seen from the user interface.
The small square on the probe tip indicates the position of the probe tracker in image space. As the probe
moves in 3D, the square tracks the position of the probe in image space. The probe starts at image loca-
tion (57, 114). The system estimates the image Jacobian at that spot. The user then clicks on position (96,
143). Figure 8 (RIGHT) is a trace of the probe tracker in image space. Figure 8 (TOP) shows (u, v), the
probe’s position in image space, plotted against time. Figure 8 (BOTTOM) shows the actual x, y, z posi-
tion of the probe tip center in 3D plotted against time. In both graphs, the trajectory taken by the probe
was fairly smooth and free of errors. At time 35, the probe velocity decreases. We implemented a probe
velocity constraint which reduced the robot velocity when the probe approached within 10 pixels of the
desired position. This was originally used with a much slower system to keep the probe from oscillating
when it reached the goal position. In the future, we will examine more sophisticated control. During the
entire operation, the system maintained probe contact with the surface of the part as seen by the flat line
for Y in figure 8 (BOTTOM).

In experiment 2, the system started, once again, with the probe making a guarded move to the sur-
face of the part. The user then clicked in several locations in the vision user interface indicating a path for
the probe to follow. Figure 9 (LEFT)   shows the starting image of the CMM with small arrows indicating
the scan path for the CMM. Figure 9 (RIGHT) is trace of the path taken by the probe over the entire path.
Figure 9 (TOP) shows (u, v), the probe’s position in image space, plotted against time. Figure 9 (BOT-
TOM) shows the actual x, y, z position of the probe tip center in 3D over time. In both graphs, the trajec-
tory taken by the probe once again was smooth and free of errors. During the entire scanning operation,
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the system maintained probe contact with the surface of the part.

Finally, in experiment 3 we repeated experiment 1 except in this case the camera system was
rotated approximately 15 degrees from the position where the image Jacobian was calculated. Figure 10
(LEFT) shows the initial configuration of the probe system as viewed from the rotated camera. Figure 10
(TOP), (BOTTOM) and (RIGHT) are similar to their counterparts in experiment 1. Even though the
camera position was disturbed, the system compensated for the disturbance and performed the desired
VISUAL SERVO TO PT operation.

6.  Conclusion and Future Research

Our system demonstrates that vision may be used to guide the acquisition of precise CMM mea-
surements. We have shown that vision does not need to be calibrated with 3D space to be useful. We have
demonstrated that an uncalibrated vision system adds flexibility to a measurement task. When coupled
with an appropriate control strategy, uncalibrated vision may be used to direct CMM movement with
almost no set-up time. We have begun to investigate how the internet may be used to advance CMM tech-
nology. In particular, we have addressed the issue of internet-based CMM control and the use of internet-
safe CMM control strategies. We will continue to develop new sensor-servoed scanning techniques with
an ultimate goal of transferring these new technologies to manufacturing plants.
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