
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 24(1), 79–88 (JANUARY 1994)

Fast String Matching using ann-gram
Algorithm

jong yong kim and john shawe-taylor
Department of Computer Science, Royal Holloway and Bedford New College, University

of London, Egham, Surrey TW20 0EX, U.K. (email: johnKdcs.rhbnc.ac.uk)

SUMMARY

Experimental results are given for the application of a new n-gram algorithm to substring
searching in DNA strings. The results confirm theoretical predictions of expected running times
based on the assumption that the data are drawn from a stationary ergodic source. They
also confirm that the algorithms tested are the most efficient known for searches involving
larger patterns.

key words: String searching Pattern matching Boyer–Moore algorithm

INTRODUCTION

Recently an algorithm was developed for the substring search problem with expected
running time provably fast when the text string was drawn from a stationary ergodic
source.1 The theory of ergodic sources was developed by Shannon and others as a
theoretical model of natural language. The model is based on the assumption that
the probabilities of substrings are invariant to shifts of position together with a
regularizing assumption termed metric transitivity which excludes pathological
examples. For more information we would refer the reader to Welsh, who gives an
excellent introduction to the theory.2 In view of this theory it is to be expected that
the complexity results of the algorithm should hold when it is applied to natural
language texts. Kim and Shawe-Taylor3 give experimental results which confirm this
expectation and demonstrate the power of the algorithm in practice. They also
compare their results with the modified Baeza-Yates algorithm,4 and those presented
in a recent paper5 describing improvements of the BM6 and Sunday algorithm.7

An application area of great current interest for string-matching algorithms is that
of DNA sequences. It is certainly not immediately clear whether they can reasonably
be regarded as ergodic sequences. This paper investigates the performance of the
new algorithm on such data and compares it with other known algorithms. The
results are very encouraging, suggesting that the expected running time theoretical
results for ergodic sequences provide a very good estimate of the algorithm’s
performance on DNA sequences. In fact the algorithm provides its most striking
performance on longer pattern strings and small size of alphabet.

0038–0644/94/010079–10$10.00 Received 4 December 1991
 1994 by John Wiley & Sons, Ltd. Revised 25 June 1993

80 j. y. kim and j. shawe-taylor

ALGORITHMS

Existing algorithms

Let pi be the ith character in the pattern stringP = p0, . . ., pm−1 of length m and
let tj be the jth character in the text stringT = t0, . . ., tN−1 of length N . m.

The straightforward method (SF) is the simplest algorithm. The pattern is placed
over the text at its extreme left and scanned to the right for a mismatch. If a
mismatch occurs, the pattern is shifted one position to the right and the scan is
restarted at the leftmost position of the pattern. As theN − M 1 1 positions in the
text are searched, it hasO(mN) worst case time complexity.

The main drawback of the SF algorithm is the backtracking which causes the
quadratic time complexity. The first algorithm to improve on this bound was the
Knuth–Morris–Pratt (KMP) algorithm.8 The matching sequence is the same as the
SF algorithm but it removes the backtracking by using a precomputed tableD2

which indicates how far the pattern should be moved to the right when a mismatch
occurs at a particular position. Hence it reduces the worst-case time complexity to
O(N 1 m) where O(m) is the time to build the tableD2.

The KMP algorithm was improved by Boyer and Moore6 by changing the scanning
direction and adding another shift tableD1. It matches the last character of the
pattern first and then proceeds from right to left through the pattern. The additional
shift table D1 is used to find the index of the first occurrence from the right end of
the pattern for each character in the alphabet. Actual jumps to the right using the
D1 table are usually larger than when testing is started at the left. This makes the
running time faster than the KMP algorithm in practice, although the worst-case
time complexity isO(mN).

The new version of the KMP and BM algorithm was obtained by searching for
the last block ofn characters in the pattern. It was analysed theoretically by KMP8

and Schaback,9 and implemented practically by Horspool10 where n is 1 and by
Baeza-Yates4 where n . 1. This idea uses anan size of table to store the jump
value, wherea is the size of alphabet. The entry in the table is calculated using
shift instructions. The theoretical average running time isO(Nlog m/m) where the
size n is O(log m). The size of the table for the Baeza-Yates algorithm is in this
caseO(alog m). If we require t bits to represent a character in the alphabet, the size
of the table isV(mt). Hence the set-up time for the algorithm isV(mt 1 mlog m).
This gives an overall complexity ofV(mt 1 mlog m 1 Nlog m/m). For t . 1 this is
larger than that reported for then-gram algorithm1 which has overall complexity of
O((N/m 1 m)log m). The difference in set-up times becomes significant with larger
pattern sizes, as our results will show.

The last previously-published algorithm we consider was described by Sunday.7

In this algorithm, any scanning ordering can be considered and the tableD2 is
adjusted according to the new ordering. The other tableD1 is calculated based on
the text characterc beyond the end of the pattern string, and thus each shift value
of the D1 table is actually one greater than the BMD1 table. For a mismatch, the
current mismatched position and the characterc determine the entries in theD1 and
D2 tables rather than the character on the current position as in the BM algorithm.
In practical experiments Sunday suggested two different ways of ordering: one in
terms of alphabet frequency and the other by the distance between repeated characters

81fast string matching

in the pattern. They are called the optimal shift algorithm (OM) and maximal shift
algorithm (MS), respectively. Sunday conjectured the worst-case time complexity to
be O(m1 N) regardless of the ordering chosen. Later Hume and Sunday5 classified
a large range of substring-matching algorithms using three components,skip loop,
match and shift, and gave performance comparisons for these combinations.

Improved algorithms

Our algorithm usingn-grams is a natural extension of the BM algorithm. It is
also very similar in approach to the Baeza-Yates algorithm.4 An n-gram is a substring
of length n. In an ergodic source for mostn-grams, the probability that they can be
found in a sequence falls off exponentially withn. By searching forn-grams rather
than single characters as in the BM algorithm we can significantly reduce the
probability of finding a false match in the pattern. The size ofn is chosen depending
on the size of the pattern and the entropy of the background language. Then-gram
statistics of an ergodic source are treated by Welsh2 and experimental results for
natural languages are given by Ching.11

From then-gram viewpoint, theD1 table is just auni-gram table. If we increase
the size ofn, we will require a table of sizean. Clearly for large size of alphabet
and n, this will be unacceptably large, giving a significant initialization time and a
space problem. We overcome this limitation using a new data structure called a
reverse n-gram treewhich is a trie structure. It is well known12 that the number of
nodes in a trie is of the order of the number of entries stored. In our case this will
be O(m). Each node has sizeO(a) = O(2t). Hence the size of the data structure is
O(m2t), which is asymptotically significantly smaller than theV(mt) space requirement
of the Baeza-Yates algorithm.

Data structure

Let s = s1s2 . . . sm be a one-dimensional string over some alphabetA. The reverse
of the strings is the stringst = smsm−1 . . . s1. Let I = (i1, i2, . . ., in−1) be a sequence
of (n − 1) integers where 0, i j11 , ij , m. We define then-gram setg(s,I) for the
string s as

{ gkugk = sk−i1
sk−i2

% sk−in−1
sk, 1 # k # m}

Wheneveri , 1, si is set to the special character $P/ A.
Let P = {(g1, k1), (g2, k2), . . ., (gm, km)} be a set ofm pairs of ann-gram and its

position in the strings. The treeT(P) is a trie (digital search tree13) generated from
the setP, as follows:

1. Each edge is labelled with a characterx P A < {$}, and the edges leaving the
same node have distinct characters.

2. Each internal node including the root is labelled withD.
3. Each complete path from the root to a leaf corresponds togr for somen-gram

g of P. The leaf corresponding togr is labelled with max {kiugi = g}.
4. For eachn-gram g of P, gr determines a path from the root to a leaf node.

For example, for the strings = cababcbab, n = 3 and I = (2,1), the setP(s,I) is

82 j. y. kim and j. shawe-taylor

{($$c,1), ($ca,2), . . ., (cba,8), (bab,9)}. Figure 1 shows the reversetri -gram tree
T(P(s,I)) for the strings. Given the treeT(P) for a sequence

P = {(g1,k1), (g2,k2), . . ., (gm,km)}

we define an operationL(T(P),g) for an n-gram g. This operation follows the path
determined bygr from the root ofT(P) as far as possible and then returns the value
stored at the last node reached. ThusL(T(P),g) returns D or max{kiugi = g}. Note
that L(T(P),g) can be computed inO(n) time. In the above example,L(T(P),g)
returns the rightmost position 9 ofs for g = bab, the position 2 forg = xca where
a suffix of g occurs as a prefix ofs, and D for g = cbb.

As the final step to complete the data structureT(P(p,I)), we adjust node values
of the tree and remove the unnecessary subtrees, searching through the tree using
breadth-first search (BFS).13

Let the value stored at the noden after constructingT(P(p,I)) be v(n), and the
value stored at the present node ofn be f(n). As the operationL(T(P),gi) indicates,
v(n) is in the set {D,ki}. Let E(n) be the set of labels directed from the noden.
Note that the BFS runs through the setE(n). For each noden, the shift valuev(n)
is computed by Algorithm 1 which at the same time removes all the subtrees starting
from edges labelled with $.

Algorithm 1: tree adjustment. Perform BFS ofT(P(p,I)). For eachn encountered do

Case 1. Ifv(n) is D then
Case 1.1. Ifn is the root thenv(n):= m.
Case 1.2. Ifn is not the root then

Case 1.2.1. If $P E(n) then v(n) := m.
Case 1.2.2. If $P/ E(n) then v(n) := f(n) 1 1.

Case 2. If 1# v(n) , m then
Case 2.1. If 1# v(n) , m then v(n) := m − v(n) 1 n.
Case 2.2. Ifv(n) = m then v(n) := 0.

Figure 2 shows the complete reversetri -gram tree computed fromFigure 1 by

Figure 1. Skeleton of a reversen-gram tree

83fast string matching

Algorithm 1 where the dotted rectangle represents the subtrees that were removed.
The resulting tree will be denoted byTs(P(p,I)). For example, the rootv(n1) is set
to 9 by Case 1.1 of Algorithm 1, andv(n2) to 9 by Case 1.2.1 and then the subtree
of n2 shown in the dotted rectangle is removed. In reality, as the leaf nodes satisfying
v(n) , n will be removed, Algorithm 1 does not consider these nodes in Case 2.
The internal nodev(n3) is set to 10 by Case 1.2.2, andv(n4) to 0 by Case 2.2
because the node corresponds to the rightmostn-gram of the stringp.

n-gram algorithm

Algorithm 2: text-searching n-gram algorithm.The first stage of the algorithm is
to build the data structureTs = Ts(P(p,I)) for the patternp where I is taken as the
set (n − 1, . . ., 2, 1). Then-gram algorithm searches for the pattern as follows.
Initially the text is checked leftward from the positionm where m is the pattern
size. Suppose now that after a number of iterations, the rightmost character of the
pattern is in the text positiont (initially t = m as indicated above). For then-gram
g which begins at the text positiont − n 1 1, L(Ts, g) is computed and used as a
shift value. If this shift value is zero, a repeated search loop is entered which
compares the remaining leftward characters of the pattern with their corresponding
positions in the text, hence detecting a possible match. For a mismatch, theD2 table
may be used for a possible maximal shift value, or we can simply move the pattern
one position to the right. L

We will now show thatL(Ts,g) returns the shift value, the sum of the backtracking
distance (number of characters tested minus one) and the maximum safe jump value
for the pattern.Figure 3 shows the pattern position relative to the text before and
after movement, and the shift value as a black rod. We consider cases according to
the value l of the backtracking distance or the size of the suffix of then-gram
which occurs in the pattern.

Case 1. l= 0, that is, the suffix is an empty string.
In this case the pattern does not include the character in positiont and thus

the whole pattern can be safely moved beyond positiont. The path terminates at

Figure 2. Reversetri-gram tree

84 j. y. kim and j. shawe-taylor

Figure 3. Movement of pattern

the root. The shift valuem is found in the root node which is set by Case 1.1
of Algorithm 1.
Case 2.1 # l , n.

A suffix of the n-gram occurs in the pattern. Depending on whether it contains
a prefix of the pattern as its own suffix or not, one of the following two cases
is examined.

Case 2.1. A prefix(s) of the pattern is a suffix of the n-gram.
The two common substrings must be aligned not to miss a next possible

match. Therefore if the shift value is calculated based on the beginning ofs,
this is the sum of the pattern sizem rightward and the backtracking distance
l − l′ leftward wherel′ is the size of the prefixs. At first the pattern sizem is
set in the node corresponding tosr by Case 1.2.1 of Algorithm 1 and then the
backtracking distancel − l′ is added by successive evaluations of Case 1.2.2.
Case 2.2. No prefix of the pattern is a suffix of the n-gram.

L(Ts,g) returns the shift valuem 1 l for the pattern to be beyond then-gram.
For this shift value, Case 1.1 of Algorithm 1 setsm in the root node and then

85fast string matching

this value is increased by 1 by Case 1.2.2 whenever the path goes down to the
next node. Hence in all it is the same as the backtracking distancel plus m.

Case 3. n, that is, the suffix is the whole n-gram.

Case 3.1. The n-gram occurs at the end of the pattern.
L(Ts,g) returns the shift value 0 which is set forgm by Case 2.2 of Algorithm

1. This shift value differentiatesgm from other gs, makes the pattern stay at
the current text position in the repeated search loop and causes the remaining
leftward characters of the pattern to be checked for a possible match.
Case 3.2. The n-gram occurs somewhere other than the end of the pattern.

L(Ts,g) returns the shift value to align the rightmost occurrence with then-
gram taking into account the backtracking distancen as given in Case 2.1 of
Algorithm 1.

We have verified the correctness of the algorithm, because the shift value for
each case is found correctly in the reversen-gram tree, and the cases considered
above deal with all the possible situations that can occur as a result of the
tree searching.

If we take the sizen the same as the pattern size, the tree becomes areverse
suffix treeof the pattern, whose leaves all have a jump value equal to the pattern
size plus appropriate backtracking distance (equivalent to the depth of the leaf in
the tree). The only exception is the leaf corresponding to the pattern itself which
has a shift value 0 differentiating it from the others and indicating a complete match.
The internal nodes are set using Algorithm 1. The searching stage is also the same
as in then-gram algorithm, except that in Case 3.1 no additional comparisons need
to be made leftwards from then-gram as a complete matching has already been
detected. In this algorithm the character comparisons have been completely replaced
by tree searching. By simply following a path in the tree, we determine whether
the pattern occurs in the text at the current position, or we obtain a maximum jump
value to continue the substring matching from a new position.

Baeza-Yates algorithm

The Baeza-Yates algorithm4 is called ablock searching algorithm. By preprocessing
the pattern, it initializes anuAun size arrayB indexed by all possiblen-grams given by

B[g] = min{ iui = m − n 1 1 or (0 , i , m − n 1 1 andgm−i−n11 = g)}

The searching stage for the pattern follows the same order as the BM algorithm,
but for a mismatch it only looks up the entry of the array corresponding to the
block of the lastn characters to find out the number of positions to be moved. The
original version was coded inefficiently, since for a mismatch it had to retry the
same characters twice, once for comparisons and then for looking up the array (see
source code in Reference4). We have implemented the latter first, and only if the
jump value is 0 do the additional character comparisons need to be made. This is
achieved by setting 0 as the jump value for the last block of the pattern.

The large space requirement can be modified by masking (bitwise AND operation)
and shifting the ASCII code. For example, DNA data consists of (A,C,G,T) and a
space or line-feed character. If we mask the ASCII code with the bits (00000111)

86 j. y. kim and j. shawe-taylor

the three residual bits still uniquely define the character, and thus we can economize
in space and initial time, though it is stilluAulog m or O(m3) in this example. In
general the space and initial time requirement will beV(mt) where t is the number
of bits required to represent each character.

EXPERIMENTS

As shown in the complexity analysis, the larger the pattern size, the faster then-
gram algorithm will run. In such a condition the block-searching algorithms are
superior to the BM-type algorithms. Therefore, we experimented with then-gram
algorithm together with the block-searching algorithm (the modified Baeza-Yates
algorithm described in the previous section) for large pattern sizes. The results are
compared with a BM-type algorithmuf.rev.gd2 which is the fastest algorithm for
long patterns among those improved by Hume and Sunday.5

The block-searching algorithm was implemented very efficiently using a direct
array index to calculate the jump value, while then-gram algorithm uses the indirect
pointer instruction in searching through the tree. Thus even though the latter searches
a smaller fraction of text, it is always slower than the former when comparing user
times. To overcome this weakness of then-gram algorithm, each level of the reverse
tree is modified to hold an index of sizeab where a is the alphabet size andb a
block size less thann. The source code of then-gram algorithm can easily be
modified if the code of the block-searching algorithm is used to calculate the index
and care is taken about resetting the shift value based on a block instead of a
single character.

We sought 200 random patterns in 1·85 Mb of DNA data on a Sun4 workstation
during low system workload. InTable I, the test results are given as the searching
time (preprocessing time) averaged in seconds taken in seeking 200 random patterns
in the same text data chosen for each size with no overlapping. These patterns also
did not overlap with the patterns of different sizes. We searched for each size in
the same text 40 times and the total time taken was divided by the number of runs.

In Table I, n-gram stands for the modifiedn-gram algorithm, BM foruf.rev.gd2,
and blocki for the modified Baeza-Yates algorithm. The block sizes of block1, block2

and block3 are 4, 5 and 6, respectively. We did not consider block sizes over 6

Table I. Searching time (preprocessing time) of DNA in seconds on Sun4 between algorithms

Pattern size Algorithm
n-gram block1 block2 block3 BM

300 4·12(3·76) 4·81(2·88) 4·05(2·79) 4·80(22·10) 14·57(0·55)
500 2·56(4·46) 3·60(2·91) 2·57(2·94) 2·87(22·15) 12·76(0·95)
750 1·85(5·26) 3·06(3·04) 1·88(3·07) 1·95(22·31) 11·22(1·25)

1000 1·48(6·02) 2·83(3·10) 1·57(3·10) 1·54(22·58) 10·36(1·71)
1500 1·15(7·22) 2·61(3·24) 1·30(3·31) 1·16(22·71) 9·65(2·54)
2000 1·02(8·63) 2·58(3·40) 1·20(3·65) 1·01(22·86) 9·24(3·54)
2500 0·95(9·78) 2·62(3·71) 1·18(3·83) 0·93(23·41) 8·93(4·14)
3000 0·92(11·05) 2·61(3·79) 1·18(4·09) 0·91(23·51) 8·50(5·05)
3500 0·90(12·16) 2·66(3·99) 1·18(4·23) 0·89(23·85) 8·37(5·79)
4000 0·92(13·23) 2·67(4·15) 1·20(4·54) 0·91(23·98) 8·11(6·68)

87fast string matching

because the size of the table is greater than that of the searched text. However,n
of the n-gram algorithm can be extended flexibly without too much overhead. We
take n to be 7, of which the block size for the first level is 5 and for the next
levels is 1.Table II shows the ratio for blocki/n-gram of the number of characters
searched for calculating the jump value under column A and the ratio for comparing
characters for a complete match under column B.

Tables I and II show that the fast running time of the block-searching algorithm
compared with then-gram algorithm is mostly obtained through its efficient use of
machine instructions. The optimal algorithm for a given size of pattern depends on
the size of n and the block size. The preprocessing time of the block-searching
algorithm is mostly spent in initializing the table; for example, the table occupies
260 K for block3. For patterns of size greater than 4000 the searching time is slower
than for smaller sizes. This is caused by the fact that the increased ratio of the
number of character comparisons for a complete match is more than the decreased
ratio of the searched characters to find the jump value. On the whole then-gram
algorithm shows fast searching time with the preprocessing time increasing slowly.

CONCLUSIONS

The BM algorithm calculates a shift value by using the information traced back
from the substring matched before a mismatch occurs. The block-searching algorithm
calculates a shift by using the last fixed-size block, whereas then-gram algorithm
obtains its shift value from the position where then-gram first occurs in the pattern
from the right or a suffix of then-gram as a prefix of the pattern.

In practice, the competitiveness of all algorithms of BM type reduces as the length
of the pattern grows. Hence, although their running time improves with longer
patterns, they examine too few characters at each stage to be able to take full
advantage of a large pattern size. In contrast the Baeza-Yates algorithm comes into
its own when searching for a long pattern, but suffers from a heavy initial time and
space requirement ofV(mt) as demonstrated in the experimental results. Then-gram
algorithm is flexible and the size ofn can be adapted for a given alphabet and
pattern size. In addition its space and time requirements increase gradually with the

Table II. Ratio of the searched characters (blocki/n-gram) of DNA data

Pattern size Algorithm
block1 block2 block3

A B A B A B

300 1·215 1·244 1·074 1·050 1·159 1·015
500 1·496 1·121 1·127 1·030 1·142 1·014
750 1·824 1·080 1·193 1·021 1·131 1·005

1000 2·167 1·060 1·263 1·013 1·125 1·003
1500 2·800 1·037 1·401 1·006 1·127 1·001
2000 3·507 1·029 1·551 1·006 1·138 1·004
2500 4·080 1·023 1·690 1·004 1·151 1·001
3000 4·606 1·023 1·826 1·007 1·167 1·001
3500 5·246 1·016 1·970 1·003 1·186 0·997
4000 5·689 1·019 2·097 1·008 1·205 1·001

88 j. y. kim and j. shawe-taylor

pattern size. It can also incorporate the block-search algorithm into the tree by using
a block at the first level to cover the most frequently occurringl-grams and extending
l to the size of then-grams in the next levels. In this way we can reduce the
expensive pointer operation and get fast searching time while sacrificing only a little
more space and setup time.

REFERENCES

1. J. Shawe-Taylor, ‘Fast string matching in a stationary ergodic source’,Technical Report No CSD-TR-
633, RHBNC, University of London, 1990.

2. D. Welsh,Codes and Cryptography, Oxford University Press, 1988.
3. John Yong Kim and John Shawe-Taylor, ‘Fast expected string matching using ann-gram algorithm’,

Technical Report No CSD-TR-91-16, RHBNC, University of London, 1991.
4. R. Baeza-Yates, ‘Improved string matching’,Software—Practice and Experience,19, 257–271 (1989).
5. A. Hume and D. M. Sunday, ‘Fast string searching’,Software—Practice and Experience,21, 1221–

1248 (1991).
6. R. S. Boyer and J. S. Moore, ‘A fast string searching algorithm’,Commun. ACM,20, (10), 762–

772 (1977).
7. D. M. Sunday, ‘A very fast substring search algorithm’,Comm. ACM,33, (8), 132–142 (1990).
8. D. E. Knuth, J. H. Morris and V. R. Pratt, ‘Fast pattern matching in strings’,SIAM. J. Comput.,6,

(2), 323–350 (1977).
9. R. Schaback, ‘On the expected sublinearity of the Boyer–Moore algorithm’,SIAM J. Computing,17,

(4), 648–658 (1988).
10. N. Horspool, ‘Practical fast searching in strings’,Software—Practice and Experience,10, 501–506 (1980).
11. Y. S. Ching, ‘n-gram statistics for natural language understanding and text processing’,IEEE Trans.

Pattern Analysis and Machine Intelligence,1, 164–172 (1979).
12. D. E. Knuth,The Art of Computer Programming, Vol. 3,Addison-Wesley, 1973.
13. A. V. Aho, J. E. Hopcroft and J. D. Ullman,The Design and Analysis of Computer Algorithms,

Addison-Wesley, Reading, MA, 1974.

	SUMMARY
	INTRODUCTION
	ALGORITHMS
	Existing algorithms
	Improved algorithms
	Data structure
	Baeza-Yates algorithm

	EXPERIMENTS
	CONCLUSIONS

