
Constraints, , 1–33 ()
c Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Ordering Constraints over Feature TreesMARTIN M�ULLER http://www.ps.uni-sb.de/�mmuellerJOACHIM NIEHREN http://www.ps.uni-sb.de/�niehren

Programming Systems Lab, Universität des Saarlandes,
Stuhlsatzenhausweg 3, D-66041 Saarbrücken, GermanyANDREAS PODELSKI http://www.mpi-sb.mpg.de/�podelski

Max-Planck-Institut für Informatik,
Im Stadtwald, D-66123 Saarbrücken, Germany

Received April 14, 1998; Revised September 6, 1998

Editor: Gert Smolka

Abstract. Feature trees are the formal basis for algorithms manipulating record like structures in constraint
programming, computational linguistics and in concrete applications like software configuration management.
Feature trees model records, and constraints over feature trees yield extensible and modular record descriptions.
We introduce the constraint system FT� of ordering constraints interpreted over feature trees. Under the view
that feature trees represent symbolic information, the relation� corresponds to the information ordering (“carries
less information than”). We present two algorithms in cubictime, one for the satisfiability problem and one for
the entailment problem of FT� . We show that FT� has the independence property. We are thus able to handle
negative conjuncts via entailment and obtain a cubic algorithm that decides the satisfiability of conjunctions of
positive and negated ordering constraints over feature trees. Furthermore, we reduce the satisfiability problem of
Dörre’s weak subsumption constraints to the satisfiability problem of FT�and improve the complexity bound for
solving weak subsumption constraints fromO(n5) to O(n3).
Keywords: feature constraints, tree orderings, weak subsumption, satisfiability, entailment, complexity

1. Introduction

Feature logic is a formalism for describing record structures, which in turn represent ob-
jects – such as addresses or lexical entries – by the values oftheir attributes. Feature logic
has its origin in the three areas of knowledge representation with concept descriptions,
frames, or ψ-terms [13, 34, 35, 1], natural language processing, in particular approaches
based onunification grammars[26, 24, 45, 43, 39, 42], and constraint (logic) program-
ming [3, 5, 28, 47]. An interesting recent application lies in software configuration man-
agement, where feature logic is used to denote software versions and to deduce their mutual
consistency [50, 51].
The first mathematical treatment of record descriptions wasthe formalisms ofψ-terms[1].
In other approaches,ψ-terms were calledfeature structures[40] or feature terms[46]. In
contrast to earlier work, the notionfeature structurewas mostly used for designating a
record structure itself [14, 39, 42] rather than a record description. Logical descriptions
of record structures lead to the notion offeature logic[25, 23, 46]. When we call these
descriptionsfeature constraints, feature unification becomes constraint solving.

2 MARTIN M�ULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI
Two main approaches to feature logics should be clearly distinguished. In computational
linguistics [14, 39, 42], a record structure is traditionally described from an internal per-
spective, i.e. by specifying relationships between its nodes. Motivated by constraint pro-
gramming, Smolka proposed an alternative approach [6, 11, 49, 48, 7, 9] based on an
external view in which record structures are described by relations to others. The internal
view was modeled conveniently in terms offeature graphsand constraints with variables
for nodes of a feature graph. In contrast, the external view lead to the notion offeature
trees– instead of more general feature graphs – and feature constraints with variables for
feature trees. Nevertheless, logical theories based on these two different views often turned
out to be elementarily equivalent [7, 11, 9].
In this article, we follow the external view based on the notion of feature trees. We intro-
duce and investigate the constraint systemFT� of ordering constraints over feature trees
which extends the system FT of equality constraints over feature trees [6, 11]. Before
presenting these constraint languages, we discuss featuretrees and their ordering.

A feature treeis a tree with unordered, labeled edges and labeled nodes. The edge labels
are called features; features are functional in that each two features labeling edges de-
parting from the same node are distinct.
In programming, features correspond to
record field selectors and node labels to
record field contents.
An example of a feature tree is displayed
on the right. Its root is labeled with the
node labelwine and the edges depart-
ing at is root are labeled by the features
color andestate.

winewhite Dr:LoosenGermany Moselolor estateountry region
A feature tree is defined by a tree domain and a labeling function. The domain of a feature
treeτ is the set all words labeling a branch from the root ofτ to a node ofτ. For instance,
the domain of the above tree isfε; olor; estate; estate ountry; estate regiong.
A feature tree is finite if its tree domain is finite. In general, the domain of a feature tree
may also be infinite in order to model records with cyclic dependencies. Notice that every
ground term such assquare(plus(a;b)) can be considered as a finite feature tree where the
features are just consecutive natural numbers.

A feature tree can be seen as a carrier of information. This viewpoint gives rise to an or-
dering relation on feature trees in a very natural way that wecall information ordering. In
the framework of feature al-
gebras the same ordering was
called weak subsumption or-
dering [19].
The information ordering is
illustrated by the example to
the right: The smaller tree
is missing some information
about the object it represents,

� wine�Dr:Loosen white Dr:LoosenGermany Moselestate olor estateountry region

ORDERING CONSTRAINTS OVER FEATURE TREES 3
namely that this object is a white wine and that the estate of Dr. Loosen is located at the
Mosel in Germany. In order to have nodes without information, we allow for unlabeled
nodes depicted with a�. Formally, this means that we do not require a labeling function to
be total.
Intuitively, a feature treeτ1 is smaller than a feature treeτ2 if τ1 has fewer edges and node
labels thanτ2. More precisely, this means that every word of features in the tree domain of
τ1 belongs to the tree domain ofτ2 and that the partial labeling function ofτ1 is contained
in the labeling function ofτ2. In this case we writeτ1 � τ2.
The feature constraints in the constraint systems FT [6, 11]are conjunctions of three kinds
of atomic formulas which are built from variablesx, featuresf and node labelsa:

x=y (“the treesx andy have the same structure”),

a(x) (“the root ofx is labeleda”),

x[f ℄x0 (“x0 is the subtree ofx accessed via the edge labeled withf .”).

For instance, the larger tree depicted above is a possible value forx in a solution of the con-
straintwine(x)^ x[estate℄x1^ x1[region℄x2 but the smaller one is not. Feature constraints
in FT are modular and extensible in that pieces of information can be added feature by
feature. Note also that no constraint in FT can uniquely determine a single feature tree.
For instance, there is no way to express in FT that a feature tree has no edges at all. This
can, however, be stated in CFT by using arity constraints [48, 12].
In the constraint system FT, we may constrain the values forx andy to be equal,x = y.
In some situations (e.g., in computational linguistics; see below), we may need a weaker
constraint onx andy. We may want to express, for example, thaty represents at least
the information ofx (but possibly more), formallyx� y. Or, we may want to say thatx
andy express compatible information, formallyx�y. Since this is equivalent to saying that
there exists a common refinement of the information ofx andy, formally: 9z(x�z^y�z),
compatibility� can be reduced to the information ordering�.
In this article, we introduce the constraint system FT� of information ordering constraints
over feature trees. We obtain the system FT� from FT [6] by replacing equalitiesx=y by
more general ordering constraintsx�y. The abstract syntax of ordering constraintsϕ in
FT� is defined as follows wherex andx0 are variables,f a featureanda a label.

ϕ ::= x�x0 j x[f ℄x0 j a(x) j ϕ^ϕ0
The semantics of ordering constraints is given by interpretation over feature trees where
the symbol� is interpreted as information ordering. Throughout the paper, we consider
two cases, either we interprete in the structure of finite feature trees or else in the structure
of arbitrary feature trees.
In contrast with the situation in previous feature constraint systems [48, 6, 9], the nodes
of a feature tree in the interpretation domain of FT� are possibly unlabeled. This fact is
insignificant when only equality constraints are considered: The first-order theory of FT
does not change when the structure allows for partially labeled feature trees [11]1. In
contrast, when ordering constraintsx�y are involved, this choice is significant. The first-
order theories of ordering constraints interpreted in the structure of partially labeled feature

4 MARTIN M�ULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI
trees differ from the one interpreted in the structure of completely labeled feature trees. For
instance, the constraint9z(z�x^ z�y) is valid over partially labeled feature trees but not
over completely labeled trees. This accounts for the fact that the information ordering�
has a least element, the tree with a single unlabeled node. The choice of partially labeled
trees in the semantics of FT� has algorithmic consequences as well;i.e., the correctness of
our algorithms depends on it. There also exists a natural extension of the notion of partially
labeled feature trees in terms of completely labeled feature trees with a partial ordering on
node labels [29].
It is clear that FT� is as expressive as FT since its ordering is antisymmetric. We formally
prove that FT� is strictly more expressive than FT by showing that no constraint in FT can
be equivalent tox�x0.
We present two cubic time algorithms for FT� , one which solves its satisfiability problem
(“Is ϕ satisfiable in FT�?”) and one which solves its entailment problem (“Isϕ ! ϕ0
valid in FT�?”). Note carefully that entailment (in contrast to satisfiablity) becomes much
harder if arity constraints or existential quantification are added to the constraint language
FT� [33].
The satisfiability test forFT� can be applied for type inference with record types or ob-
ject types [37], but also for the syntactical treatment of coordination phenomena in natural
language processing [19, 39]. The entailment test might be useful for constraint simpli-
fication [41] during record type inference, but it is also prerequisite for a possible usage
of FT� in modern constraint programming languages with advanced control mechanisms
such as delaying, coroutining, synchronization, committed choice and local computation
spaces [2, 5, 47, 38].
We furthermore show that FT� has the independence property if the set of features pro-
vided by the signature is infinite. Thanks to the independence property, the entailment test
is sufficient for testing conjunctionsϕ^:ϕ1^ : : :^:ϕn for satisfiability (namely, by test-
ing that none of the judgmentsϕ j= ϕi holds for all 1� i � n). We are thus able to handle
negative conjuncts via entailment. We can summarize our algorithmic results by saying
that the satisfiability problem of conjunctions of positiveand negative ordering constraints
ϕ^:ϕ1^ : : :^:ϕn is decidable in timeO(n3).
We recall that all our results are worked out for two cases, the structure of finite feature
trees and the structure of possibly infinite feature trees.
We reduce the satisfiability problem of Dörre’s weak-subsumption constraints [19] over
feature algebras in linear time to the one in FT� . Thereby, our algorithm improves on the
best known satisfiability test for weak subsumption constraints which uses quite different
techniques based on finite automata and has anO(n5)-complexity bound [19].

Plan of the Article. Section 2 surveys related work. Section 3 defines the syntax and
semantics of constraint system FT� of ordering constraints over feature trees. Section 4
presents a closure algorithm deciding the satisfiability problem of FT� . In Section 5, we
show how to test entailment and prove the independence property for FT� . Section 6
shows that FT� is strictly more expressive than FT. Section 7 defines weak subsumption
constraints and reduces their satisfiability problem to theone of FT� . Section 8 explains
how to implement the closure algorithm for testing satisfiablity in cubic time. Section 9

ORDERING CONSTRAINTS OVER FEATURE TREES 5
completes the correctness proofs for the presented satisfiability and entailment tests and
Section 10 concludes.

2. Related Work

Ines Constraints. In previous work [32], the authors have introduced the constraint
system INES, whose constraints are inclusions between first-order terms interpreted over
nonempty sets of trees; the satisfiability test for INES constraints is cubic. The satisfiability
test for FT� is inspired by the one for INES. The entailment problems of FT� and INES are
different. Intuitively, the entailment problem of FT� is less difficult than the one of INES

because a constraint ofFT� cannot uniquely describe a single feature tree; in contrast, an
INES constraint can uniquely describe a constructor tree (i.e. ground term) as a singleton
set. For instance, the INES constraintx�a describes the singletonfag. As a consequence,
the implicationx�a ! a�x holds in INES. The entailment problem of INES constraints
is PSPACE-complete in case of an infinite signature and at least DEXPTIME-hard for
a finite signature [36]. Previously, it was already noted that the entailment problem of
INES constraints is coNP-hard [30]. The algorithm given in [15] is not a complete test of
entailment of INES constraints; the one given in [16] applies to a larger class of constraints
for the case of an infinite signature and lies in DEXPTIME.

Feature Constraints. The constraint system CFT [48] extends FT by arity constraints
of the formxf f1; : : : ; fng, saying that the denotation ofx has subtrees exactly at the fea-
tures f1 through fn. CFT subsumes Colmerauer’s rational tree constraint system RT [17]
but provides finer-grained constraints. Complete axiomatizations for FT and CFT in case
of an infinite signature have been given in [11] and [9], respectively. Due to complete
axiomatisation, the first-order theory of FT is decidable.
The investigation of ordering constraints over feature trees presented in this paper is con-
tinued in two follow-up papers. In [31] it is shown how to express constraints ofFT� in
second-order monadic logic (S2S or WS2S). Thereby, an algorithm for solving the entail-
ment problem of FT� with existential quantifiers (“FT� j= ϕ !9xϕ0”) was obtained for
a first time. Later on, it turned out [33] that the entailment problem of FT� with existential
quantifiers is PSPACE-complete (for finite or infinite signatures, and for finite or possibly
infinite trees). It was also proved in [33] that the first-order theory of FT� is undecid-
able (in contrast to the first-order theory of FT). The systemFT�(sort) extendsFT� by
allowing a partial order on labels [29].
The system EF [49] extends CFT by feature constraintsx[y℄z, providing for first-class fea-
tures. The satisfiability problem of EF constraints is shownNP-complete. Another exten-
sion of FT is the system RFT which features so-called regularpath expressions [8, 10]

(Weak) Subsumption Constraints. The subsumption and the weak subsumption order-
ings can be defined for arbitrary feature algebras [19]. In particular, the structure FT of
feature trees is a feature algebra (called the algebra of path functions in [19]). As already
proved there, the information ordering on feature trees coincides with the weak subsump-
tion ordering of the feature algebra of feature trees.

The subsumption ordering [21] is a subrelation of the weak subsumption ordering. The

6 MARTIN M�ULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI
converse is not true. For instance, the weak subsumption ordering does hold in the example
given in the picture, whereas the subsumption ordering
does not. This is because the two equal subtrees of
the smaller tree – its leaves – are extended in different
manners when moving from the left to the right. The
definition of subsumption, however, requires that equal
subtrees are extended in the same manner.

a � a

a a a a

a

f g f g

g

Subsumption constraints have been considered in the context of unification-based gram-
mars to model coordination phenomena in natural language [21, 19, 44]. There, one wants
to express that two feature structures representing different parts of speech share common
properties. For example, the analysis of “programming” and“linguistics” in the phrase

“Feature constraints are good for [NP programming] and [NP linguistics]”

should share (but might refine differently) the informationcommon to all noun phrases.
Since the satisfiability of subsumption constraints is undecidable [21], Dörre proposed
weak subsumption constraints as a decidable approximationof subsumption constraints.

Independence. A constraint system has the fundamentalindependence propertyif
negated conjuncts are independent from each other. This means thatϕ^:ϕ1^ : : :^:ϕn

is satisfiable if and only if there exists 1� i � n such thatϕ^:ϕi is satisfiable. This is
equivalent to thatϕ j= ϕ1_ : : :_:ϕn holds if and only if there exists 1� i � n such that
ϕ j= :ϕi . The independence property is important since it allows us to use an entailment
test for solving negative constraints.
The constrain systems RT, FT, CFT have the independence property in case of an infinite
signature [17, 6, 4, 48]. Apart from these, constraint systems with the independence prop-
erty include linear equations over the real numbers [27], orinfinite boolean algebras with
positive constraints [22], and set constraints with intersections interpreted over nonempty
sets of trees [32, 16, 36].

3. Syntax and Semantics

In this section, we introduce the syntax and semantics of ordering constraints over feature
trees. We introduce two systems of ordering constraints – FT� andFTfin� – depending on
whether we interpret over finite feature trees or over possibly infinite feature trees.
We assume an infinite set ofvariablesranged over byx;y;z, an infinite setF of features
ranged over byf ;g and an arbitrary setL of labels denoted bya;b containing at least
two distinct elements. The existence of infinitely many features is fundamental for inde-
pendence and for our entailment algorithm in Section 5 to work. It is irrelevant for the
satisfiability test in Section 4.

Feature Trees. A path pis a finite sequence of features inF . Theempty pathis denoted
by ε and the free-monoid concatenation of pathsp and p0 as pp0; we haveεp = pε = p.
Given pathsp andq, p0 is called aprefix of pif p= p0p00 for some pathp00. A tree domain
is a non-empty prefixed-closed set of paths.

ORDERING CONSTRAINTS OVER FEATURE TREES 7
A feature treeτ is a pair(D; L) consisting of a tree domainD and a partial labeling function
L : D * L. Given a feature treeτ, we writeDτ for its tree domain andLτ for its labeling
function. A feature tree is calledfinite if its tree domain is finite, andinfinite otherwise.
Slightly overloading notation, we denote the set of all feature trees byFT� and the set of
all finite feature trees withFTfin� . If p2Dτ we write asτ[p℄ the subtree ofτ at pathp which
is formally defined byDτ[p℄ = fp0 j pp0 2 Dτg andLτ[p℄ = f(p0; a) j (pp0; a) 2 Lτg.
Syntax. An ordering constraintϕ is defined by the following abstract syntax.

ϕ ::= x�y j a(x) j x[f ℄y j x�y j ϕ1^ϕ2

An ordering constraint is a conjunction ofatomic constraintswhich are eitheratomic or-
dering constraints x�y, labeling constraints a(x), selection constraints x[f ℄y, or compat-
ibility constraints x�y. Compatibility constraints are needed in our algorithm andcan be
expressed by first-order formulae over ordering constraints (see Proposition 1). We iden-
tify ordering constraints up to associativity and commutativity of conjunction,i.e., we view
an ordering constraint as a multiset of atomic ordering, labeling, selection, and compati-
bility constraints. We writeϕ in ϕ0 if all conjuncts inϕ are contained inϕ0. Thesize of a
constraintϕ is defined as the number occurrences of features, node labels, and variables in
ϕ.

Semantics. We next define the structuresFT� andFTfin� of feature trees and finite feature
trees respectively. Throughout the paper, we distinguish two cases depending on whether
we interpret ordering constraints ofFT� or FTfin� . The signatures of both structures contain
the binary relation symbols� and�, for every labela a unary relation symbola(:), and
for every featuref a binary relation symbol: [f ℄ : . The domain of the structureFT� is the
set of possibly infinite feature trees (also calledFT�), and the domain of the structureFTfin�
is the set of finite feature trees (also calledFTfin�). The relation symbols are interpreted as
follows:

τ1�τ2 iff Dτ1 � Dτ2 andLτ1 � Lτ2

τ1[f ℄τ2 iff Dτ2 = fp j f p2 Dτ1g andLτ2 = f(p; b) j (f p; b) 2 Lτ1g
a(τ) iff (ε; a) 2 Lτ

τ1�τ2 iff Lτ1[Lτ2 is a partial function (onDτ1 [Dτ2)

Notice that the relation� is not transitive! For instance, letτa be a tree whose root is
labeled witha, andτb a tree whose root is labeled withb, and� the least tree consisting of
a single unlabeled node. Ifa 6= b then it holds thatτa�� and��τb but notτa�τb.
Let Φ denote a first-order formula built from ordering constraints with the usual first order
connectives, i.e.:Φ ::= ϕ j true j false j :Φ j Φ ! Φ0 j 8x Φ j 9x Φ j Φ ^ Φ0 j Φ_Φ0. We
denote withV(Φ), L(Φ), andF(Φ), respectively, the set of variables occurring free inΦ,
and the set of labels and features occurring inΦ.

Suppose thatA is a structure with the same signature thanFTfin� andFT� . A solution ofΦ
in A is a variable assignmentα into the domain ofA such thatΦ evaluates to true under
A andα. We callΦ satisfiable inA if there exists a solution forΦ in A . A formula Φ is

8 MARTIN M�ULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI
valid inA if all variable assignments into the domain ofA are solutions ofΦ. We say that
A is amodelof a set of formulas if all its formulas are valid inA . A constraintΦ entails
Φ0 in A , writtenΦ j=A Φ0 if Φ !Φ0 is valid inA ; Φ is equivalentto Φ0 in A if Φ$Φ0 is
valid inA .

PROPOSITION1 The formulae x�y and9z(x�z^y�z) are equivalent inFT� andFTfin� .

Proof: If is sufficient to prove the proposition forFT� . Let σ be a variable assignment
into FT� which solves the formula9z(x�z^y�z). SinceLσ(x) [Lσ(y) � Lσ(z) andLσ(z)
is a partial function,Lσ(x) [Lσ(y) is also a partial function. Henceσ is a solution ofx�y.
Conversely, ifσ is a solution ofx�y thenLσ(x) [Lσ(y) is a partial function. Thus, the pair
τ =de f (Dσ(x)[Dσ(y); Lσ(x)[Lσ(y)) is a feature tree and every variable assignmentσ0 with
σ0(z) = τ, σ0(x) = σ(x), andσ0(y) = σ(y) is a solution ofx�z^y�z.

4. Satisfiability Test

We present a set of axioms schemes valid forFT� and an extended scheme forFTfin�
which provides for an additional occurs check. We can interpret both axiom schemes as
algorithms which solve the satisfiability problems of FT�andFTfin� respectively. Note that
the axiom schemes given here are inspired by those presentedfor INES constraints in [32].

Table 1 contains the axiom schemesF1 - F5 for FT� and the schemesF1-F6 for FTfin� . For
instance, the schemex�x represents the infinite set of axioms obtained by choosing some
variable forx. All axioms are of one of the following forms:ϕ, ϕ ! ϕ0, or ϕ ! false. The
last two forms are distinct sincefalse is not a constraint.
SchemesF1:1 andF1:2 express the reflexivity and transitivity of the information ordering;F2 says that it has the decomposition property.F3:1 states the reflexivity of the compati-
bility relation. F3:2 says that ifx has less information thany and the information ofy and
z is compatible, then the information ofx andz is also compatible. It follows from the
transitivity of the information ordering thatFT� andFTfin� are models of the axioms inF2
(see Proposition 1).F3:3 states the symmetry of the compatibility relation.F4 expresses
that the compatibility relation has the decomposition property. Axiom schemeF5 states
that two trees cannot be compatible if they carry distinct labels at the root. The last schemeF6 is a version of the occurs check which holds forFTfin� but not forFT� .

PROPOSITION2 The structureFT� is a model of the axioms inF1�F5 and the structure
FTfin� a model of the axioms inF1�F6.

Proof: By a routine check. Since it is the most interesting one, we prove the statement for
the schemeF3:2, i.e. we show that the formulax�y^ y�z! x�z is valid in FT� for all
x;y;z. The following implications are valid inFT� :

x�y^y�z $ x�y^9u(y�u^z�u) Proposition 1! 9u(x�u^z�u) Transitivity$ x�z Proposition 1

ORDERING CONSTRAINTS OVER FEATURE TREES 9F1:1 x�xF1:2 x�y^y�z! x�zF2 x[f ℄x0 ^x�y^y[f ℄y0! x0�y0F3:1 x�xF3:2 x�y^y�z! x�zF3:3 x�y! y�xF4 x[f ℄x0 ^x�y^y[f ℄y0! x0�y0F5 a(x)^x�y^b(y)! false for a 6= bF6 Vn
i=1xi [fi ℄yi+1 ^ xi+1�yi+1 ! false for xn+1 = x1 (n� 1)

Table 1.Axioms of Satisfiability:F1-F5 for FT� andF1-F6 for FTfin�
We next present a sequence of examples to show the consequences which can be derived
with the given axioms schemes.

EXAMPLE 1 It is most important that the following axiom scheme can be derived from the
schemesF3:1, F3:2, andF3:3:

x�z^y�z! x�y

From x�y^x�z, we can derive z�z withF3:1 and thus x�z byF3:2, then z�x via F3:3.
Another application ofF3:2 yields y�x such that x�y follows formF3:3.

EXAMPLE 2 An inconsistency can be raised by two incompatiblelower bounds. For in-
stance, consider:

a(x) ^ x�z^ y�z^ b(y)! false for a 6= b

As shown in the previous example, we derive x�y from x�z^ y�z by usingF3:1, F3:2,
andF3:3. Hence,false can be derived withF5.

In contrast to lower bounds,upperbounds are always compatible. For instance, the ana-
loguous constraint to above,a(x) ^ z�x^ z�y^ b(y), is satisfiable sincez can be chosen
to denote the least tree consisting of a single unlabeled node.

EXAMPLE 3 The ruleF4 is perhaps the key rule for deriving inconstencies. This canbe
illustrated as follows:

10 MARTIN M�ULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI
a(x)^x[g℄x^ x�z^y�z^y[g℄y0 ^ b(y0)! false for a 6= b

As shown in Example 1, we can derive x�y from x�z^y�z by usingF3:1, F3:2, andF3:3.
We can now applyF4 to x[g℄x^ x�y^ y[g℄y0 in order to derive x�y0. Finally, this allows
us to derivefalse from a(x)^x�y0 ^ b(y0) via F5.

EXAMPLE 4 The constraint x[f ℄y ^ x�y is unsatisfiable inFTfin� but satisfiable inFT� .
In the first case, we can apply the occurs checkF6 in order to derivefalse. In the second
case, the occurs check is not valid.

The Algorithm F. In case ofFT� , we defineF to be the set of axiom schemesF1-F5,
whereas in case ofFTfin� , we defineF to be the set of schemesF1�F6. Both sets induce
a closure algorithm that we also callF. These algorithms input a constraintϕ and add
iteratively new logical consequences ofF[fϕg to ϕ.
More precisely, every step ofF inputs a constraintϕ and then terminates withfalse, or
terminates withϕ, or passes over a constraint of the formϕ^ ϕ0 to the next step. Ter-
mination with false occurs if there existsϕ00 in ϕ such thatϕ00 ! false is an instance of
an axiom scheme inF. Termination withϕ happens if no new constraint can be added to
ϕ. Recursion withϕ^ϕ0 is possible ifϕ0 is an instance of an axiom scheme inF which
satisfiesV (ϕ0)�V (ϕ), or if there there existsϕ00 in ϕ for whichϕ00! ϕ0 is an instance of
an axiom scheme inF.
If G is a subset of the set of axiom schemesF then we call a constraintϕ G-closedif no
new consequence can be added toϕ by applying an axiom scheme inG (in the way defined
above). We note thatfalse is not a constraint and hence cannot beF-closed.

PROPOSITION3 If ϕ is a constraint of size m then the algorithmF started with inputϕ
terminates in at most2�m2 steps (whereF1:1 andF3:1 are applied to variables inϕ only).

Proof: SinceF does not introduce new variables, it may add at mostm2 new compatibility
constraintsx�y andm2 new atomic ordering constraintsx�y. With respect to not adding
new variables, only the schemeF1:1 andF3:3 are critical. Both of these are of the formϕ
such that their application cannot introduce new variablesby definition.

EXAMPLE 5 AlgorithmF terminates in presence of cyclic constraints like x[f ℄x. For in-
stance, the following constraint isF1�F5-closed but notF6-closed.

x[f ℄x^ x�y^y[f ℄y^x�x^y�y^x�x^y�y^x�y^y�x

In particular, F2 andF4 do not loop through the cycle x[f ℄x. This example illustrates the
need of compatibility constraints. Without them one might wish to apply the following rule
whereby a new variable z is introduced which raises non-termination:

x[f ℄x0 ^x�y!9z(y[f ℄z^x0�z)
Remark. Notice that Table 1 deliberately leaves out the following scheme that is perfectly
valid in FT� andFTfin� . This is done for simplicity only; it would do no harm adding.

ORDERING CONSTRAINTS OVER FEATURE TREES 11
x�y^a(x)! a(y)

Definition 1. Let ϕ be a constraint. If algorithmF started withϕ terminates and returns
a constraint (but notfalse) then we call its result theF-closure ofϕ and denote it by cl(ϕ).
Note that cl(ϕ) is not defined for allϕ but alwaysF-closed when defined. Since the def-
inition of F is parametrized by the choice ofFT� or FTfin� , the definition of cl(ϕ) is also
parametrized by one of these structures. It is not possible,however, that cl(ϕ) differs for
FT� andFTfin� . In the worst case, cl(ϕ) exists with respect toFT� but not forFTfin� . This
happens iffalse can be derived by applyingF6 to theF-closure ofϕ with respect toFT� .

PROPOSITION4 EveryF1�F5-closed constraint is satisfiable in FT� and everyF1�F6-
closed constraint is satisfiable inFTfin� .

Proof: See Section 9.2.

THEOREM 1 The satisfiability problem ofFT� andFTfin� can be decided (off-line and on-
line) in cubic time in size of the input constraint. TheF-closure of a satisfiable constraint
exists and can be computed in cubic time.

Proof: Proposition 2 shows thatϕ is unsatisfiable if algorithmF started withϕ terminates
with false. Proposition 4 proves thatϕ is satisfiable ifF started withϕ terminates with
an F-closed constraint. SinceF terminates for all input constraints (Proposition 3) this
yields an effective decision procedure for testing satisfiability and computing theF-closure
of a satisfiable constraint. The main idea of the complexity proof is that one needs at
mostO(n2) steps wheren is the size of the input constraint (Proposition 3) each of which
can be implemented in timeO(n). The implementation can be organized incrementally
by exploiting the fact that algorithmF leaves unspecified the order in which the axioms
are applied. Hence, we obtain that off-line and on-line complexity are the same. The
implementation is detailed in Section 8

5. Entailment, Independence, Negation

In this section, we give a cubic time algorithm for testing entailment of ordering constraints
over feature trees. Our algorithm is parametrized by a structure – eitherFT� or FTfin� – and,
depending on the particular parameter, decides entailmentjudgments of the formϕ j=FT�
ϕ0 or ϕ j=FTfin� ϕ0. The structure chosen is relevant only for a single subroutine of the

entailment test, which is the satisfiability test presentedin the previous section.

We also prove the independence property for the constraint languages FT� and FTfin� .
Based on the independence property, we show how to solve conjunctions of positive and
negative ordering constraintsϕ^:ϕ1^ : : ::ϕn in time O(n3). Note that all results of this
section depend on the existence of infinitely many features in the given signature.

12 MARTIN M�ULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI: � y x � : x � : : � x

x � : : � y : � y � :f f f f

Table 2. The respective graphs of a constraint which supportsx�y[f ℄, x?[f ℄�y, or x[f ℄y syntactically.

For the rest of this section, we fix either of the structuresFT� or FTfin� ; we write ϕ j= ϕ0
rather thanϕ j=FT� ϕ0 or ϕ j=FTfin� ϕ0.
We denote withµ an atomic constraint, i.e.µ is always a conjunction free ordering con-
straint (µ ::= x�y j x�y j a(x) j x[f ℄y). Note that an entailment judgmentϕ j=ϕ0 holds
if and only if the entailment judgmentsϕ j=µ hold for all atomic constraintsµ in ϕ0. Next
we characterize entailment problemsϕ j= µ syntactically. For atomic constraintsµ of the
form x�y, x�y, or a(x), we say that a constraintϕ syntactically supports µ, writtenϕ ` µ,
if one of the following holds:

ϕ ` a(x) if existsx0 such thatx0�x^a(x0) in ϕ

ϕ ` x�y if x�y in ϕ or x= y

ϕ ` x�y if x�y in ϕ or x= y

The definition of syntactic support of selection constraints, ϕ ` x[f ℄y, is slightly more
involved. For its definition, we make use of two simple forms of auxiliary path constraints,
x�y[f ℄ andx?[f ℄�y. A path constraint of the first formx�y[f ℄ requires that the tree fory
have featuref and that its subtree atf be greater than the tree forx. A path constraint of
the second formx?[f ℄�y reads as follows: if the tree forx has featuref then its subtree
at f is smaller than the tree fory. We next define the notions of syntactic support for path
constraints and selection constraints; this definition is illustrated graphically in Table 2.

ϕ ` x�y[f ℄ if exist x0;y0 such thatx�x0^y0[f ℄x0^y0�y in ϕ

ϕ ` x?[f ℄�y if exist x0;y0 such thatx�x0^x0[f ℄y0^y0�y in ϕ

ϕ ` x[f ℄y if ϕ ` y�x[f ℄ andϕ ` x?[f ℄�y

PROPOSITION5 (CORRECTNESS) For all F-closed constraintsϕ and atomic con-
straints µ:ϕ ` µ impliesϕ j= µ.

Proof: The cases forµ being of the formsa(x), x�y, or x�y are obvious. Now, we
consider the case thatµ is a selection constraint, sayx[f ℄y. If ϕ ` µ thenϕ ` y�x[f ℄ and
ϕ ` x?[f ℄�y hold. Letα be a solution ofϕ. Because ofϕ ` y�x[f ℄ it holds thatf 2 Dα(x)
andα(y)�α(x)[f ℄. The assumptionϕ ` x?[f ℄�y yields α(x)[f ℄�α(y) if f 2 Dα(x). We
already know thatf 2 Dα(x) is valid; thusα(y)�α(x)[f ℄�α(y) holds. So far, we have
proved f 2 Dα(x) andα(y) = α(x)[f ℄, i.e. thatα is a solution ofx[f ℄y.

ORDERING CONSTRAINTS OVER FEATURE TREES 13
We show next that syntactic support is strong enough to characterize entailment (Proposi-
tion 6) and investigate the complexity of deciding syntactic support (Lemma 2). In combi-
nation with the cubic satisfiability test of the previous section, we obtain a cubic entailment
test (Theorem 3).
The most difficult claim to show is that syntactic support is complete with respect to en-
tailment: That is, that no atomic constraintµ is entailed by a constraintϕ if µ is not already
supported inϕ. To show this we assume thatϕ does not supportµ syntactically and define
a solution ofϕ that contradictsµ. As we show, there even exists a single solution that
contradicts allµ built from symbols inϕ at the same time. We prove this by giving a satis-
fiable formula that strengthensϕ and entails the negation of all relevantµ’s. We call such
a formulasaturated.

LEMMA 1 (EXISTENCE OF ASATURATED FORMULA) For every satisfiable con-
straint ϕ, there exists a formulaSat(ϕ), called a saturationof ϕ, with the following
properties.

1. Sat(ϕ) is satisfiable.

2. Sat(ϕ) j= ϕ.

3. for all µ if V(µ)�V(ϕ) and F(µ)� F(ϕ) thenϕ 6` µ impliesSat(ϕ) j= :µ.

Proof: The proof is postponed to the end of Section 9.3.

THEOREM 2 (INDEPENDENCE) If the set of features is infinite then both languages FT�
andFTfin� of ordering constraints over feature trees have the independence property: For
every n� 1 and constraintsϕ;ϕ1; : : : ;ϕn:

if ϕ j= n_
i=1

ϕi then ϕ j= ϕ j for some j2 f1; : : : ;ng:
Proof: Assumeϕ j= Wn

i=1 ϕi . If ϕ is unsatisfiable we are done. Also, ifϕ^ϕ j is non-
satisfiable for somej, then:

ϕ j= n_
i=1

ϕi iff ϕ j= n_
i=1;i 6= j

ϕi :
Hence we can, without loss of generality, assume thatϕ andϕ^ϕi are satisfiable for alli,
and thatϕ is F-closed. If there exists ani such thatϕ ` µ for all atomic constraintsµ in ϕi ,
thenϕ j= ϕi by correctness of syntactic support (Proposition 5) and we are done. Other-
wise, for alli there existsµi in ϕi such thatϕ 6` µi. Let Sat(ϕ) be the formula postulated by
Lemma 1. Without loss of generality, we can assume thatV(ϕi) �V(ϕ) for all i. Hence
V(µi)�V(ϕi) implies Sat(ϕ) j= :µi by Property 3, such that:

Sat(ϕ) j= n̂

i=1

:ϕi :

14 MARTIN M�ULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI
Since Sat(ϕ) is satisfiable and entailsϕ (Properties 1 and 2), this contradicts our assump-
tion thatϕ j=Wn

i=1 ϕi .

EXAMPLE 6 Independence fails in case of a finite set of features. For illustration, assume
F = f f ;gg. If the set of node labels is finite, sayL = fa;bg then following entailment
judgments holds:

x[f ℄z^x[g℄z^y[f ℄z^y[g℄z j= a(x)_b(x)_x�y

But neither of the disjunctions on the right hand side is entailed by the left hand side.

EXAMPLE 7 For a finite set of features and an infinite set of node labels, we can still
construct a counter example for independence in case ofFT� which does however not
apply toFTfin� . In fact, the following counter example applies to all signatures withF =f f ;gg andL 6= /0:

x[f ℄x^x[g℄x ^ y[f ℄y^y[g℄y
z[f ℄z^z[g℄z ^ x�y^a(y) j= y�x_x�z

To see this, notice that x[f ℄x^ x[g℄x implies that the tree for x is homogeneously labeled
(i.e., either completely unlabeled or labeled with the samesymbol at all nodes). The same
holds for the trees for y and z. If the tree for x is completely unlabeled then x�z follows.
Otherwise, the tree for x must be labeled with a at all nodes due to x�y^a(y) such that
the trees for x and y are equal: hence y�x follows.

Independence ofFT� or FTfin� depends strongly on the fact that these constraint languages
do not provide for existential quantification. This is illustrated by the following example.
If, sayL = fa;bg, then every feature tree is labeled witha or with b unless it is unlabeled.
Therefore, the following entailment judgment holds for allϕ.

ϕ j= a(x)_b(x)_unlabeled(x)
Or course, none of the conjuncts of the right hand side is entailed when choosing the left
hand sideϕ to be x�x. Furthermore, the formulaunlabeled(x) can be expressed with
existential quantification:unlabeled(x)$9y9z(x�y^a(y)^x�z^b(z))
Hence, a language of ordering constraints over feature trees extended by existential quan-
tification doesnot have the independence property. This failure can be interpreted as a
first hint to that entailment which existential quantification is much harder to decide than
without. In fact, the entailment problems ofFT� andFTfin� with existential quantification
are both PSPACE-complete as shown in [33].

PROPOSITION6 (CHARACTERIZATION) The notions of entailment and of syntactic sup-
port coincide for atomic constraints, in the sense that ifϕ is F-closed and µ an atomic
constraint thenϕ j= µ iff ϕ ` µ.

ORDERING CONSTRAINTS OVER FEATURE TREES 15
Proof: Syntactic support issemantically correctby Proposition 5. It remains to show that
syntactic support issemantically complete, i.e., ϕ j= µ impliesϕ ` µ. So, assumeϕ j= µ.
If V(µ) 6� V(ϕ) thenµ is of the formx�x or x�x such thatϕ ` µ is trivial. Otherwise,
assumeV(µ) �V(ϕ). Now let Sat(ϕ) be the saturation formula postulated by Lemma 1.
By Property 2,ϕ j= µ implies Sat(ϕ) j= µ. With Property 1, this yields Sat(ϕ) 6j= :µ, and
Property 3 impliesϕ ` µ.

LEMMA 2 Given anF-closed constraintϕ of size n, we can compute a representation of
ϕ in time O(n2) that allows for testing syntactic supportϕ ` µ in time O(n2).
Proof: As a representation for theF-closed constraintϕ, we can use 4 arrays of size
O(n2), each of which gives access to one form of atomic constraints, by indexing over
variables and features (for details see Section 8). These arrays can be allocated in time
O(n2) and support a test of membership toϕ for an atomic constraint in timeO(1). Hence,
we can check syntactic support for atomic ordering and compatibility constraints in time
O(1). For testingϕ ` a(x), we have to find allx0 with x�x0 in ϕ and then to test whether
onex0 satisfiesa(x0) in ϕ; this can be done in timeO(n).
For checkingϕ` x�y[f ℄, we first compute in timeO(n) the set of allx0 such thatx�x0 in ϕ.
From this set, we deduce in timeO(n2) the set of ally0 such thaty0[f ℄x0 in ϕ for some
x0 computed above. Finally, we check in timeO(n) whethery0�y in ϕ for at least one
y0. The procedures for testingϕ ` x?[f ℄�y andϕ ` x[f ℄y can be organized in analogy.

THEOREM 3 (ENTAILMENT) If the set of features is infinite, then entailment judgments
of the formϕ j=FT� ϕ0 andϕ j=FTfin� ϕ0 can be tested in cubic time in the size ofϕ ^ ϕ0.
Proof: Letn be the size ofϕ^ϕ0. To decideϕ j= ϕ0, we first test whether or notϕ is
satisfiable, and return itsF-closure cl(ϕ) in case of satisfiability. By Theorem 1 this can
be done in timeO(n3). If ϕ is not satisfiable then entailment holds trivially. Otherwise, it
suffices to test whether cl(ϕ) j= ϕ0 holds. According to Proposition 6 this is equivalent to
that cl(ϕ) ` µ holds for allµ in ϕ0. Since there areO(n) suchµ each of which can be tested
in time O(n2) by Lemma 2, syntactic support for allµ in ϕ0 is decidable in timeO(n3).
Hence, the overall time for testing entailment is alsoO(n3).
COROLLARY 1 (NEGATION) The satisfiability inFT� or FTfin� of conjunctions of positive
and negative ordering constraints of the formϕ^:ϕ1^ : : :^:ϕk can be tested in time
O(n3) where n is the size of the considered formula.

Proof: If ϕ is non-satisfiable thenϕ^ (^k
i=1:ϕi) is trivially non-satisfiable. By Proposi-

tion 1, satisfiability ofϕ is decidable in timeO(n3) wheren is the size ofϕ. Now assume
ϕ to be satisfiable. By Theorem 2 on independence,ϕ^ (^k

i=1:ϕi) is non-satisfiable if
and only if ϕ j= ϕi for some 1� i � k. This is equivalent to saying that, for somei,
µ in ϕi impliesϕ j= µ. By Proposition 6 it thus suffices to testϕ ` µ for all µ in ϕi and all
1� i � k. Overall, there areO(n) suchµ’s to be tested for syntactic support. By Lemma
2, ϕ ` µ can be tested in timeO(n2) such that the total complexity sums up to timeO(n3).

16 MARTIN M�ULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI
6. Expressiveness

We show thatFT� is strictly more expressive thanFT [6, 11] but does not generalize CFT
[48, 12] in that it cannot express conjunctions of arity and ordering constraints.
The constraint systemFT is the language of equality constraints interpreted in the structure
of completely labeled feature trees. A constraintη of FT has the following form:

η ::= x=y j a(x) j x[a℄y j η ^ η0
As for ordering constraints, we can distinguish two cases: In FTfin, we interpret over finite
feature trees and inFT over possibly infinite ones. For simplicity, we only consider FT in
this section; our results, however, hold forFTfin in analogy.
The constraint systemCFT extendsFT by arity constraints. Anarity constrainthas the
form xf f1; : : : ; fng and holds ifx denotes a tree which has direct subtrees exactly at the
featuresf1 through fn.
In the light of the complete axiomatization of the first-order theories ofFT andCFT [11,
12] (which apply for infinite sets of features and labels) we freely permit ourselves to
interpret constraints ofFT over partially labeled feature trees (rather than over completely
labeled ones). When doing so, every constraint ofFT can trivially be expressed inFT� .
In order to be precise, we define what it means for a formula toexpressa predicate on
feature trees. Our definition is well known in mathematical logics and was investigated for
feature logics by Backofen [7]: Ann-ary predicateP is ann-ary relation between feature
trees. We writeP (τ1; : : : ;τn) if (τ1; : : : ;τn)2 P . We denote a formulaΦ with free variables
x1; : : : ;xn by Φ(x1; : : : ;xn) whereby an ordering on the variables ofΦ is fixed.

Definition 2. An n-ary predicateP is expressed by a formulaΦ(x1; : : : ;xn) with free
variablesx1; : : : ;xn if for all feature treesτ1; : : : ;τn:

P (τ1; : : : ;τn) holds iff

�
there exists a solutionα of Φ(x1; : : : ;xn)
such thatα(x1) = τ1; : : : ;α(xn) = τn

PROPOSITION7 There is no constraint inFT� which expresses the fact that a variable x
denotes the least feature tree�, i.e., if a 6= b then there is no constraint equivalent to:

xfg^x�y^x�z^a(y)^b(z)
Proof: If ϕ were such an ordering constraint ofFT� thenϕ as well as itsF-closure would
entailx�y for all variablesy. This contradicts Proposition 6 for all thosey with y =2V(ϕ)
andx 6= y (because ifϕ ` x�y thenx = y or x;y 2 V(ϕ)). Trivially, a variabley 62 V(ϕ)
exists sinceV(ϕ) is finite.

LEMMA 3 If η is a constraint ofFT then η j= x�y holds iff η j= y�x is valid.

Proof: Letη be a constraint ofFT and letϕ be the ordering constraint obtained from
η by replacing all equalitiesx=y in η by an ordering constraintx�y^ y�x. Hence, for

ORDERING CONSTRAINTS OVER FEATURE TREES 17
all x;y it holds thatx�y in ϕ iff y�x in ϕ. Since the closure algorithmF preserves this
property ofϕ, it also holds for cl(ϕ). Thus, the claim follows from Proposition 6 again.

PROPOSITION8 If x 6= y then there is no equality constraint ofFT equivalent to x�y.

Proof: This follows immediately from Lemma 3 and Proposition 6.

7. Weak Subsumption Constraints

We next compare the constraint languageFT� to the system of weak subsumption con-
straints as introduced in [19]. We show that the satisfiability problem of weak subsump-
tion constraints is subsumed by the one forFT� . Here, interpretation over possibly infinite
feature trees is crucial.

Syntax and Semantics. Following [19], a weak subsumption constraint is an ordering
constraintϕ without compatibility constraints. Since the latter restriction is not crucial
we here consider weak subsumption constraints extended with compatibility constraints in
order to simplify our comparison.
Weak subsumption constraints are interpreted over the class of all feature algebras, each
of which induces a weak subsumption ordering (see below). Afeature algebraA with
featuresF and node labelsL consists of a setdomA that is called thedomainof A , a
unary relationa(:)A on domA for every node labela2 L, and a binary relation:[f ℄A : ondomA for every featuref 2 F 2. The relations of a feature algebraA satisfy the following
properties for allα;α0;α00 2 domA , node labelsa;a1;a2 2 L, and featuresf 2 F :

1. if α[f ℄Aα0 andα[f ℄Aα00 thenα0 = α00
2. if a1(α)A anda2(α)A thena1 = a2

In the literature [46, 19] a slightly different notion of feature algebra was considered that
we callfeature algebras with constantshere. We will give a formal comparison at the end
of the section.
Again overloading notation, letFT be the structure of feature trees with featuresF and
node labelsL, but with a restricted signature in which the relation symbols� and� are
not provided.

PROPOSITION9 The structureFT of feature trees is a feature algebra.

Proof: Property 1 of a feature algebra follows fromF2 and property 2 fromF5.

Given a feature algebraA , we define the weak subsumption ordering�A as follows. A
simulation forA is a binary relation∆ � domA �domA that satisfies the following prop-
erties for all labelsa, featuresf , and all elementsα1, α2, α0

1, α0
2 2 domA :

1. If α1∆α2; a(α1)A thena(α2)A .

18 MARTIN M�ULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI
2. If α1∆α2; α1[f ℄Aα0

1 then existsα0
2 : α2[f ℄Aα0

2 andα0
1∆α0

2.

The weak subsumption ordering�A of A is the greatest simulation relation forA . The
weak subsumption relation onA induces a compatibility relation�A through:

α1�Aα2 iff exists α such thatα1�Aα andα2�Aα

A feature algebraA induces a structure with the same signature asFT� in which� is
interpreted as the weak subsumption ordering�A , � as the compatibility relation:�A :,
a(:) asa(:)A , and:[f ℄: as:[f ℄A :.
PROPOSITION10 (DÖRRE [20]) The structureFT� coincides with the structure induced
by the feature algebraFT.

Proof: It is sufficient to prove that the weak subsumption ordering of the feature algebra
FT coincides with the information ordering onFT� . The proof in the case of feature
algebras with constants can be found in [20] on page 24 (Satz 6and Satz 7). There, the
structure of feature trees has been called algebra of path functions. We recall the proof for
sake of completeness. The information ordering is a simulation for FT� due to the axioms
in F1�F5 and hence smaller than the weak subsumption ordering ofFT� . Conversely,
we show that every simulation onFT� is smaller than its information ordering. Let∆
be a simulation andτ1, τ2 feature trees such thatτ1∆τ2. We have to show thatτ1 � τ2.
This is equivalent toDτ1 � Dτ2 andLτ1 � Lτ2 and can be proved by induction on paths.

THEOREM 4 An ordering constraintϕ is satisfiable overFT� if and only ifϕ is satisfiable
over the structure induced by some feature algebraA .

Proof: If ϕ is satisfiable inFT� then it is satisfiable in the structure induced byFT (which
is FT�). Conversely, every structure induced by a feature algebrais a model of the axioms
in F1�F5. Thus, ifϕ is satisfiable in such a structure then it is equivalent to anF1�F5-
closed constraint (and notfalse) and hence satisfiable overFT� .

Alternative Notions of Feature Algebras. In the literature [46, 19] a restricted notion
of feature algebras has been considered that we callfeature algebras with constantsin the
sequel. The notion of a feature algebra with constants leadsto a restricted satisfiability
problem. This shows that the presented results properly extend the results in [19].
A feature algebra with constantsis a feature algebra with satisfies the following additional
property for all labelsa and featuref :

if a(α)A then notα[f ℄Aα0
This means that nodes labels behave like constants in terms.In order to handle this new
property we consider the following mapping of weak subsumption constraints overL and
F to weak subsumption constraints overL andF [flabelg wherelabel is a new feature
not contained inF .

ORDERING CONSTRAINTS OVER FEATURE TREES 19[[a(x) ℄℄ = 9y(x[label℄y^a(y)) [[x[f ℄y ℄℄ = x[f ℄y [[x�y ℄℄ = x�y[[x�y ℄℄ = x�y [[ϕ^ϕ0 ℄℄ = [[ϕ ℄℄^ [[ϕ0 ℄℄
PROPOSITION11 A constraintϕ is satisfiable in the structure induced by some feature
algebra if and only if[[ϕ ℄℄ is satisfiable in the structure induced by some feature algebra
with constants.

Proof: If [[ϕ ℄℄ is satisfiable over a feature algebraA with constants and featuresF [flabelg
thenϕ is satisfiable over the feature algebraFT� with featuresF . Given a solutionσ0 of[[ϕ ℄℄ overA a solutionσ of ϕ overFT� can be defined as follows where we write[f1 : : : fn℄A
for [f1℄A Æ : : :Æ [fn℄A if f1 : : : fn 2 F �.

Dσ(x) = fp j existsα in the domain ofA : σ0(x)[p℄Aα andp2 F �g
Lσ(x) = f(p; a) j existsα in the domain ofA : σ0(x)[p label℄Aα anda(α)Ag

Conversely, letϕ be satisfiable for some feature algebraA . Thenϕ is satisfiable inFT�
by Theorem 4. We define a feature algebra with constantsFTcon and show that[[ϕ ℄℄ is
satisfiable overFTcon. The labels and features ofFTcon areL andF [flabelg, respectively.
The domain ofFTcon contains all feature treesτ without labeled inner nodes, where a
labeled inner nodeof τ is a pathp such thatp2 Dτ, existsa with (p; a) 2 Lτ and existsf
with p f 2 Dτ. The selection and labeling relations ofFTcon are those ofFT� restricted to
trees without labeled inner nodes. Obviously,FTcon satisfies all three axioms of a feature
algebra with constants. Now letσ be a solution ofϕ in the structure induced byA . Then
the variable assignmentσ0 mappingx on σ0(x) as given below is a solution of[[ϕ ℄℄ in the
structure induced byFTcon.

Dσ0(x) = Dσ(x)[fp label j existsa2 L : (p; a) 2 Lσ(x)g
Lσ0(x) = f(p label; a) j (p; a) 2 Lσ(x)g

8. Implementing the Closure Algorithm

We present an implementation of the closure algorithmF for testing satisfiability, thereby
proving the complexity statement left open in the proof of Theorem 1. Recall that the
algorithmF computes the closure of a constraint whenever it exists withrespect to the
axioms schemes in Table 1,F1�F5 in case ofFT� andF1�F6 for FTfin� .

PROPOSITION12 The closure algorithmF can be implemented (forFT� andFTfin� , on-
line and off-line) such that it terminates in time O(n3) where n is the size of the input
constraint.

Proof: We organize the algorithm as a reduction relation on agenda-store-pairs orfalse.
An agendais a finite multiset of atomic constraints and astorea constraintϕ satisfying the
following conditions:

20 MARTIN M�ULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI
1. For everyx and f there exists at most one variabley such thatx[f ℄y belongs toϕ.

2. For everyx there exists at most one node labela such thata(x) belongs to the store.

3. Every constraint belongs to the store at most once.

The first condition is crucial since it allows us to store selection constraintsx[f ℄y in a table
of quadratic size. The idea is that we never have to add two constraintsx[f ℄y1 andx[f ℄y2

to the store. Instead, we add the first of these constraints plus the consequencesy1�y2 and
y2�y1 which are derivable withF2.
Let ϕ0 be the input constraint. Initially, the agenda contains allatomic constraints inϕ0

(which may be fed incrementally in the online case). The initial store contains the con-
straint

Vfx�x j x 2 V(ϕ0)g ^ Vfx�x j x 2 V(ϕ0)g. Reduction preserves the invariant
that the conjunction of the agenda-store pair is alwayscompletein that all one-step conse-
quences of the store with respect toF do either belong to the store itself or the agenda. Also,
all agenda-store pairs computed by the algorithm started with ϕ0 are equivalent (when con-
sidered as a conjunction of constraints).
The algorithm terminates iffalse is derived or if the agenda becomes empty. In the first
case, the input constraintϕ0 is proved unsatisfiable, and in the second one, the final store
contains anF-closed constraint equivalent toϕ0. It may happen, however, that the final
store differs from theF-closure ofϕ0 since the store does not contain atomic constraints
multiply; more importantly, it also does not contain all selection constraints belonging to
ϕ0. However, the atomic constraints ofϕ0 which are missing in the final store can be added
to it a posteriori without losingF-closedness.
Reduction can be implemented by iteratively executing the following sequence of instruc-
tions, which we callthe loopin the sequel:

1. Select and delete an atomic constraintµ from the agenda. Ifµ is already in the store
then skip.

2. If µ is not already in the store then do the following:

(A) For every rule schemeF of the formϕ ! µ0, compute all instances of the form
µ^ϕ0! µ0 such thatϕ0 belongs to the store. For all theseµ0 do the following: Test
whetherµ0 is new, meaning thatµ 6= µ0 andµ0 does not belong to the agenda nor to
the store. Ifµ0 is new then add it to the agenda, otherwise skip.

(B) If there exists a scheme inF which has an instance of the formµ^ϕ! false such
thatϕ is in the store then returnfalse and exit the loop.

3. If µ is an atomic ordering, labeling, or compatibility constraint then addµ to the store.
If µ is a selection constraintx[f ℄y such that the store does not containx[f ℄z for all z,
then addµ to the store; otherwise skip.

We first discuss the necessary data structures for implementing agenda-store pairs in the
off-line case, where the input constraintϕ0 is completely known at start time. Then we
argue how to lift the result to the on-line case.

ORDERING CONSTRAINTS OVER FEATURE TREES 21
The Off-line Case. Let n be the size of the input constraintϕ0, nv be the number of its
variables andnf be the number of its features. The agenda can be implemented such that
it provides for the following operations in timeO(1).� select and delete an atomic constraint from the agenda.� add an atomic constraint to the agenda.� test membership of atomic ordering, labeling, or compatibility constraints in the

agenda.

A simple stack or queue is sufficient for ensuring the first tworequirements. The third
requirement can be satisfied by using three additional arrays for memorizing respectively
the atomic ordering, labeling, or compatibility constraints in the agenda.
The store can be implemented by using four arrays: An array ofsizenv for labeling con-
straintsa(x) indexed byx (at most one per variable), a table of sizenv �nl for the selection
constraintsx[f ℄y indexed byx and f (at most one per variablex and featuref), and two
tables of sizen2

v for the constraintsx�y andx�y respectively. The store can support the
following operations all in timeO(1):� givenx test whether there existsa such that the store containsa(x); in case of success

return the unique node labela with this property.� givenx and f test whether there existsy such thatx[f ℄y belongs to the store. In case of
success, return the unique variabley with this property.� test the membership ofx�y or x�y in the store.

The initialization phase of the algorithm needs timeO(n2) for allocating the tables for store
and agenda and timeO(n) for adding the start-up constraints to the agenda and the store.
After initialization, every atomic constraintµ is added at most once to the agenda. Since no
new variable is created, a complete run of the algorithm can add at most 2�n2

v constraints
of the formsx�y andx�y to the agenda. This means that the loop is traversed at most
O(n2) many times.
We next verify that each run of the loop needs at most timeO(n). Once this its shown, it
follows that the overall run time of the algorithm is boundedby O(n3). For example, let
us compute all possible applications of schemeF1:2 for transitivityx�y^ y�z! x�z to
an atomic constraintu�v. We may either instantiatex�y or y�z to u�v. Both cases are
symmetric. In the first case, we have to find allz such thatv�z belongs to the store. This
needs timeO(nv). From the latter set of variables, we have to filter out all thosez for which
u�z is new, i.e. neither in the agenda, nor in the store, nor equalto v�u. Again this can
be done in timeO(nv). Last not least, we add all new ordering constraints to the agenda in
timeO(nv).
The arguments for the remaining rules schemes are similar except for the occurs check
schemeF6 (which is only needed forFTfin�). In the off-line case, we can perform the occurs
check a posteriori, by a simple graph reachability test. Alternatively, we can introduce new
reachability formulas of the formx; y. A reachability formulax; y is supported by a

22 MARTIN M�ULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI
constraintϕ if ϕ contains a conjunction of the form

Vn
i=1xi [fi ℄yi+1 ^ xi+1�yi+1 such that

x1 = x andyn+1 = y. Support of reachability formulas can be administrated on the fly when
using a table of sizeO(n2

v).
The On-line Case. In an on-line algorithm, we can feed the input constraintϕ0 piece-
wise to the agenda. Note that our algorithm is already insensitive to the order in which
primitive constraints are picked from the agenda. The additional complication is that the
numbernv andnf of symbols inϕ are not known statically. However, by replacing the
static tables and arrays by dynamically extensible hash tables we can still guarantee the
complexity estimations on the access operations [18]. Notethat an on-line implemen-
tation of the occurs check cannot be done a posteriori. An incremental occurs check
can, however, be implemented based on the reachability formulas x; y. So, the al-
gorithm has anincrementaltime complexity ofO(n3), both in case ofFT� andFTfin� .

9. Proofs

We prove the completeness of the satisfiability and entailment tests presented in section
4 and 5. In particular, we show that everyF-closed constraint is satisfiable according to
Proposition 4 and that all of them can be saturated as postulated in Lemma 1.

9.1. Path Reachability

In both proofs we need the following notion. For all pathsp and two variablesx;y we define
a path constraintof the formx�y[p℄ generalizing the path constraintx�y[f ℄ and atomic
constraintsy�x. A variable assignmentα into FT� (resp.FTfin�) is a solution ofx�y[p℄ in
the respective structure ifp 2 Dα(x) andα(y)�α(x)[p℄. We generalize the judgments for
syntactic support defined so far toϕ ` y�x[p℄, which we read as “y is reachable fromx
over pathp in ϕ”:

ϕ ` y�x[ε℄ if y�x in ϕ

ϕ ` y�x[f ℄ if x[f ℄y in ϕ;
ϕ ` y�x[pq℄ if ϕ ` z�x[p℄ andϕ ` y�z[q℄ for somez:

We also need path constraints of the forma(x[p℄) a solution of which is a variable assign-
mentα satisfying(p;a) 2 Lα(x). Again, we need a notion of syntactic supportϕ ` a(x[p℄)
which reads as ”the node labela is reachable inϕ from x over pathp”:

ϕ ` a(x[p℄) if ϕ ` y�x[p℄ anda(y) in ϕ for somey;
For example, ifϕ is the constraintx�y^a(y)^x[f ℄u^x[g℄z^z[f ℄x^b(z) then the following
reachability propositions hold:ϕ ` x�y[ε℄, ϕ ` z�x[g℄, ϕ ` x�y[g f ℄, ϕ ` x�x[g f ℄, etc., as
well asϕ ` a(y[ε℄), ϕ ` b(x[g℄), ϕ ` b(x[g f g℄), etc.

ORDERING CONSTRAINTS OVER FEATURE TREES 23
LEMMA 4 If ϕ ` z�x[f p℄ holds then there exist variables x0;y0 such thatϕ ` x0�x[ε℄,
x0[f ℄y0 2 ϕ, andϕ ` z�y0[p℄.
9.2. Completeness of the Satisfiability Test

We next prove the following proposition stated without proof in Section 4.

PROPOSITION4 EveryF1�F5 closed constraint is satisfiable over FT� ; everyF1�F6
closed constraint is satisfiable overFTfin� .

Proof: The proof is in four steps elaborated in this section.First, we define a syntactic
property of a constraint, called path consistency. Second,we argue that a path consistent
constraint is satisfiable if isF1�F2-closed (Lemma 5). Third, we show that anF3-F5-
closed constraint is path consistent (Lemma 6). In the last step, we verify that the solution
constructed in step two is finite forF6-closed constraints.

DEFINITION (PATH CONSISTENCY) We call a constraintϕ path consistentif the following
two conditions hold for all x, y, p, a, and b.

1. If ϕ ` a(x[p℄) andϕ ` b(x[p℄) then a= b.

2. If ϕ ` a(x[p℄), x�y in ϕ, andϕ ` b(y[p℄) then a= b.

Apparently, condition 2 implies condition 1 forF3:1-closed constraints. We require the
first condition nevertheless, since we which to split the proof into two lemmas (Lemma 5
and Lemma 6) where we assume onlyF1-F2-closedness for the first lemma.

LEMMA 5 EveryF1-F2-closed and path consistent constraintϕ is satisfiable inFT� ; if
ϕ is F6-closed in addition then it is also satisfiable inFTfin� .
Furthermore, the following variable assignmentminϕ(:) is the least solution of anF-closed
constraintϕ. For all x2 V (ϕ):

Dminϕ(x) = fp j ϕ ` y�x[p℄ for some yg
Lminϕ(x) = f(p; a) j ϕ ` a(x[p℄)g

Proof: Letϕ beF1-F2-closed and path consistent. The first condition of path consistency
implies thatLminϕ(x) is a partial function. Thusminϕ(x) is a feature tree inFT� .

If ϕ is alsoF6-closed then it is not possible thatϕ ` x�x[p℄ holds for some pathp 6= ε.
Hence, for allx;y; p with ϕ ` y�x[p℄ it holds that the length ofp is bounded by the number
of variables inϕ (since for each prefixq of p there must be a distinct variablez such that
ϕ ` z�x[q℄). Thus, ifϕ is F6-closed thenminϕ(x) belongs toFTfin� .
We next verify thatminϕ is a solution ofϕ in FT� i.e. thatminϕ is a solution of all atomic
constraints inϕ:

24 MARTIN M�ULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI� Let y�x in ϕ. For all z, if ϕ ` z�y[p℄ thenϕ ` z�x[p℄ by the definition of syntactic
support. Thus,Dminϕ(y) � Dminϕ(x). For all a if ϕ ` a(y[p℄) thenϕ ` a(x[p℄) by the
definition of syntactic support. Thus,Lminϕ(y) � Lminϕ(x), i.e., minϕ(y)�minϕ(x).� Considerx[f ℄y in ϕ. We prove the following equivalences for allp, z, andb:

ϕ ` z�x[f p℄ iff ϕ ` z�y[p℄ and ϕ ` b(x[f p℄) iff ϕ ` b(y[p℄)
The first equivalence impliesDminϕ(y) = fp j f p 2 Dminϕ(x)g and the second one is
equivalent toLminϕ(y) = f(p; b) j (f p; b) 2 Lminϕ(x)g. We start by proving the first
equivalence. Ifϕ ` z�y[p℄ thenϕ ` z�x[f p℄ sincex[f ℄y in ϕ. Supposeϕ ` z�x[f p℄.
By Lemma 4 there existsx0 andy0 such that

ϕ ` x0�x[ε℄; x0[f ℄y0 in ϕ; ϕ ` z�y0[p℄:
TheF1:2-closedness ofϕ andϕ ` x0�x[ε℄ impliesx0�x in ϕ. TheF2-closedness en-
suresy0�y in ϕ such thatϕ ` z�y[p℄ holds. We now prove the second equivalence
above. Ifϕ ` b(x[f p℄) then there existszsuch thatϕ ` z�x[f p℄ andb(z) 2 ϕ. The first
equivalence impliesϕ ` z�y[p℄ and thusϕ ` b(y[p℄). The converse is analogous.� Let a(x) in ϕ. Reflexivity (F1:1-closedness) impliesx�x in ϕ. Thusϕ ` a(x[ε℄) and
hence(ε; a) 2 Lminϕ(x).� Let x�y in ϕ. We have to show that the setLminϕ(x) [Lminϕ(y) is a partial function. If(p; a) 2 Lminϕ(x) and(p; b) 2 Lminϕ(y) thenϕ ` a(x[p℄) andϕ ` b(y[p℄). The second
condition of path consistency forϕ impliesa= b.

LEMMA 6 EveryF3-F5-closed constraint is path consistent.

Proof: Letϕ beF3;F4;F5-closed. As mentioned before, the first condition of path consis-
tency follows from the second one andF3:1-closedness. The proof of the second condition
is by induction on pathsp. We assumex, y, a, andb such thatϕ ` a(x[p℄), x�y in ϕ, and
ϕ ` b(y[p℄). If p= ε, then there existn;m� 0, x1; : : : ;xn, y1; : : :ym such that:

a(xn)^xn�xn�1^ : : : ^ x1�x in ϕ ;
and b(ym)^ym�ym�1^ : : : ^ y1�y in ϕ :F3-closedness implies thatxn�ym in ϕ (F3:2 yields x�y1 in ϕ, : : :, x�ym in ϕ. There-

fore ym�x in ϕ by F3:3-closedness, and henceym�x1 in ϕ, : : :, ym�xn in ϕ by F3:2-
closedness.) Hence,F5-closedness impliesa= b.
In the casep= gp0, Lemma 4 yields the existence ofx0, y0, x̃, andỹ such that:

ϕ ` x0�x[ε℄; x0[g℄x̃ in ϕ ; ϕ ` a(x̃[p0℄) ;
and ϕ ` y0�y[ε℄; y0[g℄ỹ in ϕ ; ϕ ` b(ỹ[p0℄) :

Sincex�y in ϕ we havex0�y0 in ϕ by F3-closedness (as above). Thus,F4-closedness
implies x̃�ỹ in ϕ such thata=b follows by induction hypothesis (fromϕ ` a(x̃[p0℄), ϕ `
b(ỹ[p0℄) andx̃�ỹ in ϕ).

ORDERING CONSTRAINTS OVER FEATURE TREES 25
Lemmas 5 and 6 yield a further result on entailment which may be of its own interest.

COROLLARY 2 Let ϕ be anF-closed constraint. Thenϕ j= 9y(x[f ℄y) if and only if there
exists a variable z such thatϕ ` z�x[f ℄.
Proof: Assume thatϕ ` z�x[f ℄ does not hold for allz. According to Lemmas 6 and
5n it holds for the least solutionminϕ of anF-closed constraint thatf 62 Dminϕ(x). Hence
ϕ 6j= 9y(x[f ℄y).
9.3. Saturation

We prove the existence of a saturated formula Sat(ϕ) as postulated in Lemma 1. This
formula contradicts all (relevant) atomic constraints notentailed byϕ simultaneously.
We construct Sat(ϕ) by means of two operatorsΓ1 andΓ2 on constraints. The operatorΓ2

is such thatΓ2(ϕ) disentails all atomic constraintsµ of the formsx�y, x�y, anda(x)
(but not selection constraints) which are not syntactically supported inϕ (Lemma 9). The
operatorΓ1 is necessary to also disentail selection constraints. Given a constraintϕ, Γ1(ϕ)
extendsϕ such thatΓ2(Γ1(ϕ)) disentails all relevantµ. In a sense,Γ1 is a “preprocessor”
for Γ2.

DEFINITION OF Γ1 Let ϕ be a constraint. For all x2 V(ϕ) and f 2 F(ϕ) let vx f be a
fresh variable. Depending on this choice of variables, we defineΓ1(ϕ) to be the followingF-closure whenever it exists andfalse otherwise.

Γ1(ϕ) = cl(ϕ^^fx[f ℄vx f j x2V(ϕ) and f 2 F(ϕ)g)
DEFINITION OF Γ2 Let ϕ be a constraint. Let v1 and v2 be distinct fresh variables, a1

and a2 be distinct labels, and for every pair of variables x;y2V(ϕ) and f2 L(ϕ) let vx be
a fresh variable and let fx and fxy be fresh features. We define a first-order formulaΓ2(ϕ)
depending on v1;v2;a1;a2; fx; fxy, and vx as follows:

Γ2(ϕ) = ϕ ^ Vfx[fx℄vx ^ :9y0 (y[fx℄y0) j ϕ 6` x�y; x;y2V(ϕ)g (1)^ Vfx[fxy℄v1 ^ y[fxy℄v2 j ϕ 6` x�y; x;y2V(ϕ)g (2)^ Vfx�v1 ^ x�v2 j for all a 2 L : ϕ 6` a(x); x2V(ϕ)g (3)^ a1(v1)^a2(v2) (4)
EXAMPLE 8 For illustration of Γ1 andΓ2 consider the constraintϕ equal to x[f ℄x^y�x
which does not entail x[f ℄y if we assume x6= y. The constraintϕ can beF-closed forFT�
(but not forFTfin�) by adding the following trivial atomic constraints: x�y^ y�x^ x�x^
y�y^ x�x^ y�y which we omit for sake of simplicity. In order to disentail x[f ℄y we first

26 MARTIN M�ULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI
computeΓ1(ϕ) by adding x[f ℄vx f and y[f ℄vy f to ϕ and computing theF-closure. Now,
Γ1(ϕ) is (up to trivial and compatibility constraints):

Γ1(ϕ) = 8<: x[f ℄x^y�x^x[f ℄vx f ^y[f ℄vy f^
vy f�vx f ^vx f�x^x�vx f ^y�vx f ^vy f�x

Observe thatΓ1(ϕ) does not contain vx f�y; that is,Γ1(ϕ 6` vx f�y. NowΓ2(Γ1(ϕ)) disen-
tails vx f�y due to clause(1) which asserts that vx f allows selection at feature fvx f while y
does not (since vx f [fvx f ℄vvx f ^ :9z(vy f [fvy f ℄z) in Γ2(Γ1(ϕ))). Hence,Γ2(Γ1(ϕ)) also dis-
entails x[f ℄y.

Note that Example 8 does also illustrates why a two step saturation procedure is needed:
The key idea is that the featurefvx f allows to contradict entailment ofx[f ℄y for all y2V(ϕ)
such thatϕ 6` x[f ℄y. This featurefvx f is introduced in the second step on the basis of the
variablevx f which is added freshly in the first step.

LEMMA 7 (PROPERTIES OFΓ1) Let ϕ be anF-closed (and hence satisfiable) constraint.
ThenΓ1(ϕ) is satisfiable and satisfies the following two properties forall atomic con-
straints µ, variables x;y and features f :

(P1) If ϕ 6` µ, and V(µ)�V(ϕ), thenΓ1(ϕ) 6` µ.

(P2) If x;y2V(ϕ), f 2 F(ϕ), andϕ 6` x[f ℄y, thenΓ1(ϕ) 6` y�vx f or Γ1(ϕ) 6` vx f�y.

Proof: We first show thatΓ1(ϕ) is satisfiable and then show (P1) and (P2). For prov-
ing the satisfiability ofΓ1(ϕ), we give an inductive construction ofΓ1(ϕ) and show that
all constraints in this construction are satisfiable. Letn be the cardinality of the set
V = fvx f j x 2 V(ϕ); f 2 F(ϕ)g and fix an enumerationvar : f1; : : : ;ng ! V, i.e. var
is a function that is one-to-one and onto. Then, we consider the following sequence of
constraints for 1� i � n:

ϕ0 = ϕ
ϕi = cl(ϕi�1^x[f ℄vx f) if var(i) = vx f

Of course, we have to show that all of the above closures exist. If so then, apparently,
it follows thatΓ1(ϕ) = ϕn. We show the existence of the closures in the definition ofϕi

by induction oni. For the induction step, we assume for 0< i � n with var(i) = vx f that
ϕi�1 exists, and show that the constrainteϕi defined below isF-closed. Sinceeϕi contains
ϕi ^x[f ℄vx f this shows that the closure cl(ϕi�1^x[f ℄vx f) exists.eϕi = ϕi�1 ^ x[f ℄vx f ^vx f�vx f ^vx f�vx f (4:1)^ Vfz�vx f j ϕi�1 ` z�x[f ℄g (4:2)^ Vfvx f�z j ϕi�1 ` x?[f ℄�zg (4:3)^ Vfvx f�z^z�vx f j ex. y : ϕi�1 ` x?[f ℄�y andy�z in ϕi�1g (4:4)^ Vfvx f�z^z�vx f j ex. y : ϕi�1 ` z�y[f ℄ andy�x in ϕi�1g (4:5)

ORDERING CONSTRAINTS OVER FEATURE TREES 27
It is clear thateϕi is contained inϕi , hence it suffices to show thatvx f is F-closed. TheF-
closedness ofeϕi is proved by a case distinction over the rules schemes inF. We have only
to consider those instances of schemes inF which contains the new variablevx f . For sake
of readability, we allow us to also denote variables withu;v;w.F1:1 Reflexivity of the ordering relation holds sincevx f�vx f in eϕi by clause (4.1).F1:2 We assumeu�v in eϕi and v�w in eϕi and show thatu�w in eϕi . We make a case

distinction depending on which of the variablesu;v;w equalvx f .

If u;v;w 6= vx f , thenF1:2-closedness ofϕi�1 yieldsu�w in ϕi�1. Thusu�w in eϕi .

If u= w= vx f , thenu�w in eϕi iff vx f�vx f in eϕi , and this follows from clause (4.1).

If u= v= vx f , thenu�w in eϕi iff vx f�w in eϕi , and this follows fromv�w in eϕi .

If v= w= vx f , thenu�w in eϕi iff u�vx f in eϕi , and this follows formu�v in eϕi .

If u= vx f and v;w 6= vx f , thenvx f�v in eϕi and henceϕi�1 ` x?[f ℄�v by clause (4.3).
By F1:2-closedness ofϕi�1 (transitivity) it follows thatϕi�1` x?[f ℄�w and hence,
by clause (4.3) again,vx f�w in eϕi , i.e. u�w in eϕi .

If w= vx f and u;v 6= vx f . This case is symmetric to the previous one when using
clause (4.2) instead of clause (4.3).

If v= vx f and u;w 6= vx f , then, by clauses (4.2) and (4.3),ϕi�1 ` u�x[f ℄ andϕi�1 `
x?[f ℄�w. By F-closedness ofϕi�1 (transitivity and descent,F1:2 andF2) it fol-
lows thatu�w in ϕi�1 and henceu�w in eϕi .F2 We assumeu[g℄u0 in eϕi , u�v in eϕi andv[g℄v0 in eϕi and showu0�v0 in eϕi . If u;v;u0;v0 2

V(ϕi�1) then this follows from theF2-closedness ofϕi�1. Otherwise, at least one of
these variablesu;v;u0;v0 is equal to the new variablevx f . Sincex[f ℄vx f is the only
selection constraint added toϕi�1, it follows thatvx f =2 fu;vg. Hence,vx f 2 fu0;v0g.
If vx f = u0, thenx= u andg= f .

If vx f = v0, thenu0�v0 in eϕi follows from theF1:1-closedness ofeϕi (reflexivity).

If vx f 6= v0, then ϕi�1 ` x?[f ℄�v0 and hence it follows from clause (4.3) that
vx f�v0 in eϕi , i.e. u0�v0 in eϕi .

If vx f = v0, thenx= v andg= f .

If vx f = u0, thenu0�v0 in eϕi follows from theF1:1-closedness ofeϕi (reflexivity).

If vx f 6= u0, then ϕi�1 ` u0�x[f ℄ and hence it follows from clause (4.2) that
u0�vx f in eϕi , i.e. u0�v0 in eϕi .F3:1 Reflexivity of the compatibility relation holds sincevx f�vx f in eϕi by clause (4.1).F3:2 Assumeu�v in eϕi andv�w in eϕi . We have to show thatu�w in eϕi .

If u;v;w 6= vx f , thenu�w in eϕi follows fromF-closedness ofϕi�1.

If u= v= vx f , thenv�w in eϕi iff vx f�w in eϕi iff u�w in eϕi .

If u= w= vx f , thenu�w in eϕi follows from clause (4.1).

28 MARTIN M�ULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI
If v= w= vx f and u 6= vx f , then, by clause (4.2)ϕi�1 ` u�x[f ℄. By F-closedness

of ϕi�1 we havex�x in ϕi�1 and hence, by clause (4.5),u�vx f in eϕi . Hence
u�v in eϕi .

If u= vx f and v;w 6= vx f , then by clause (4.3),ϕi�1 ` x?[f ℄�v and hence, by
clause (4.4),vx f�w in eϕi , i.eu�w in eϕi .

If w= vx f and u;v 6= vx f , thenv�w is equal tov�vx f and could have been added by
clause (4.4) or clause (4.5).

(4.4) Then, by clause (4.4), existsv0 such thatϕi�1 ` x?[f ℄�v0 andv0�v in ϕi�1.
By F3:2 andF3:3-closedness ofϕi�1 it holds thatv0�u in ϕi�1 and hence
u�vx f in eϕi by clause (4.4) again, i.e.u�w in eϕi .

(4.5) Then, by clause (4.5), existsx0 such thatϕi�1 ` v�x0[f ℄ andx0�x in ϕi�1.
By F1:2-closedness ofϕi�1 (transitivity),ϕi�1 ` u�x0[f ℄ so thatu�vx f in eϕi

by clause (4.5) again, i.e.u�w in eϕi .

If v= vx f and u;w 6= vx f , then vx f�w could have been added by clause (4.4) or
clause (4.5). The argument is similar to the previous one.F3:3 Symmetry of the compatibility relation holds since when ever a compatibility con-

straint is added in either (4.1), (4.2), or (4.3) then also its symmetric variant is added.F4 We assumeu[g℄u0 in eϕi , u�v in eϕi , andv[g℄v0 in eϕi and showu0�v0 in eϕi . Because of
theF4-closedness ofϕi�1 this holds trivially if u;v;u0;v0 2V(ϕi�1). Otherwise, there
exists at least one of these variables which is equal to the new variablevx f . Since
x[f ℄vx f is the unique selection constraint added toϕi�1 it follows that vx f =2 fu;vg.
Hence,vx f 2 fu0;v0g. We can assume without loss of generality thatvx f = u0 since due
to symmetry (F3:3-closedness ofϕi�1) it holds thatv�u in ϕi�1 such that the rles ofu
andv can be exchanged. So we assumevx f = u0, x= u, andg= f .

If vx f = v0, thenu0�v0 2 eϕi follows from theF3:1-closedness ofeϕi (reflexivity).

If vx f 6= v0, then ϕi�1 ` v0�v[f ℄ and x�v in ϕi�1. Since ϕi�1 is F3:3-closed we
also havev�x in ϕi�1. Hence it follows from clause (4.5) thatvx f�v0 in eϕi , i.e.
u0�v0 in eϕi .F5 The clash axiomF5 does not apply toeϕi for two reasons: No compatibility constraint

y�z has been added toϕi�1 for some variablesy;z2 V(ϕi�1), and no labeling con-
straint has been added for the new variablevx f .F6 For the case ofFTfin� , we show that ifeϕi is notF6-closed thenϕi�1 is also notF6-
closed. Suppose thateϕi is notF6-closed. Hence, there exists a cyclic constraint of the
form

Vn
j=1x j [f j ℄y j+1^ x j+1�y j+1 in eϕi wherexn+1 = x1 andn� 1. If x j ;y j 2V(ϕi�1)

for all 1� j � n+1 then, of course,ϕi�1 is notF6-closed and we are done. Otherwise,
there exists 1� j � n+1 such thaty j = vx f (it is not possible thatx j = vx f since not
vx f [g℄z in eϕi for all z). We can assume without loss of generality that ally j are distinct
(otherwise there exists a shorter cycle ineϕi which can be considered instead). Hence,
the indexj with y j = vx f is unique. Without loss of generality, we can assumej = n+1
(since we can shift the indexes of the variables in the cycle). From the definition of

ORDERING CONSTRAINTS OVER FEATURE TREES 29eϕi and the fact thatxn+1�vx f in ϕi it follows thatϕi�1 ` xn+1�xn[fn℄. The definition
of syntactic support together withF1:1�F1:2-closedness ofϕi�1 yields the existence
of x0n andy0n+1 such thatxn+1�y0n+1 ^ x0n[fn℄y0n+1 ^ x0n�xn in ϕi�1: This implies the
existence of the following cycle inϕi�1 which shows thatϕi�1 is notF6-closed:(n�2̂

j=1

x j [f j ℄y j+1 ^ x j+1�y j+1) ^ (xn�1[fn�1℄yn ^ x0n�yn) ^ (x0n[fn℄y0n+1 ^ xn+1�y0n+1)
Now we check properties (P1) and (P2) claimed in Lemma 7, bothby contraposition.

(P1) Assume thatΓ1(ϕ) ` µ, andV(µ) � V(ϕ). We show thatϕ ` µ by case distinction
over the forms of atomic constraintsµ.

µ= x�y or µ= x�y: If Γ1(ϕ) ` µ thenµ in Γ1(ϕ) or x= y. If x= y, then triviallyϕ `
µ. Otherwise, ifµ in Γ1(ϕ). FromV(µ)�V(ϕ) and the concrete representation of
Γ1(ϕ) coming withΓ1(ϕ) = ϕn, we can deduceµ in ϕ. Henceϕ ` µ.

µ= a(x): If Γ1(ϕ)`a(x) then there exists a variablex0 such thata(x0)^x0�x in Γ1(ϕ).
Since labeling constraints are not added by the closure operation one obtains that
a(x0) in ϕ. The assumptionV(µ) � V(ϕ) givesx 2 V(ϕ) and henceV(x0�x) �
V(ϕ). As already proved in the previous case, this impliesϕ ` x0�x. Hence, we
concludeϕ ` a(x).

µ= x[f ℄y: If Γ1(ϕ) ` x[f ℄y then there exist variablesu;u0 andv;v0 such that:

Γ1(ϕ) ` µ0 for all µ0 2 fu�x;x�v;y�u0;v0�yg;
andu[f ℄u0^v[f ℄v0 in Γ1(ϕ):

By assumption,x;y 2 V(µ) � V(ϕ). Also u;v 2 V(ϕ) holds sinceΓ1(ϕ) = ϕn

contains no selection constraint of the formz1[f ℄v wherez1 =2V(ϕ).
In the caseu0;v0 2 V(ϕ), it follows easily thatϕ ` x[f ℄y. We can without loss of
generality assume thatu0;v0 2V(ϕ). To see why, supposeu0 62V(ϕ). Thenu0= vu f

by construction ofΓ1(ϕ) = ϕn: Let var(vu f) = i. Then by Clause (4.2)ϕi�1 `
y�u[f ℄ which means that there must exist variablesw;w0 2 V(ϕi�1) such that
y�w0 ^w[f ℄w0 ^w�x in ϕi�1. Hence, we can replacew;w0 for u;u0 above and
obtain the same situation up to renaming. By induction overvar(vu f) we find a
replacement foru0 in V(ϕ). The argument forv0 is dual.

(P2) Assume thatΓ1(ϕ) ` z�vx f andΓ1(ϕ) ` vx f�z for some variablex2V(ϕ) and f 2
F(ϕ). Then by clauses (4.2) and (4.3) there must exist variablesy;y0;u;u0 2V(Γ1(ϕ))
such thatΓ1(ϕ)` z�x[f ℄ andΓ1(ϕ)` x?[f ℄�z. By definition of syntactic support these
assumptions implyΓ1(ϕ) ` x[f ℄zand hence, by case (1) above,ϕ ` x[f ℄z.

LEMMA 8 (Γ2 PRESERVESSATISFIABILITY) If ϕ is F-closed, thenΓ2(ϕ) is satisfiable.

Proof: LetϕΓ be the constraint part ofΓ2(ϕ) (i.e., the conjunction of all atomic constraints
in Γ2(ϕ) but without the negative formulas added by clause (1). It is not difficult to show

30 MARTIN M�ULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI
that ϕΓ is F-closed up to trivial constraints (x�x andx�x) and symmetric compatibility
constraints. Note in particular, that each fresh featurefx occurs only once inΓ2(ϕ) (and
hence neitherF2 norF4 apply), and that the fresh featuresfxy occur exactly twice inΓ2(ϕ),
namely in selections atx andy, for which neitherx�y nor, byF3:1-closedness ofϕ, x�y
or y�x occur inϕ.
HenceminϕΓ as defined in Lemma 5 of Section 9.2 is a solution ofϕΓ. It suffices to check
thatminϕΓ also satisfies the negated selection constraints added in clause(1) of Γ2(ϕ).
Assume:9y0(y[fx℄y0) in Γ2(ϕ), hence alsox[fx℄vx in Γ2(ϕ) andϕ 6` x�y. F-closedness
of ϕ andϕ 6` x�y imply thatϕ ` x�y[ε℄. Since fx has a unique occurrence inΓ2(ϕ), this
implies thatϕΓ ` vx�y[fx℄, and hencefx 62 DminϕΓ (y).
LEMMA 9 (Γ2 CONTRADICTS NON-SELECTIONCONSTRAINTS) Let ϕ be anF-closed
constraint and let µ be an atomic constraint of the form x�y, x�y, or a(x) with x;y2V(ϕ).
ThenΓ2(ϕ) j= :µ if and only ifϕ 6` µ.

Proof: If Γ2(ϕ) j= :µ thenϕ 6` µ by Lemma 8 and correctness of syntactic support. For
the inverse direction we inspect the definition ofΓ2(ϕ).
Clause (1) Ifϕ 6` x�y, thenΓ2(ϕ) disentailsx�y by forcingx to have a featurefx whichy

must not have.

Clause (2) Ifϕ 6` x�y, thenΓ2(ϕ) disentailsx�y by forcing x andy to have a common
featurefxy such that the subtrees ofx andy at fxy are incompatible.

Clauses (3) and (4) Ifϕ 6` a(x), thenΓ2(ϕ) disentailsa(x) for every sorta by forcingx to
be consistent with two trees with distinct label.

DEFINITION (SATURATION) Let ϕ be anF-closed constraint. By Lemma 7,Γ1(ϕ) is
satisfiable such that we can define a saturationSat(ϕ) of ϕ by Sat(ϕ)=defΓ2(Γ1(ϕ)).
LEMMA 10 (SATURATION CHARACTERIZESSYNTACTIC ENTAILMENT) Let ϕ be anF-closed constraint and µ an atomic constraint such that V(µ)�V(ϕ) and F(µ) � F(ϕ).
Thenϕ 6` µ impliesSat(ϕ) j= :µ.

Proof: Letϕ be anF-closed constraint andµ an atomic constraint such thatV(µ)�V(ϕ)
andF(µ) � F(ϕ). Suppose thatϕ 6` µ. HenceΓ1(ϕ) 6` µ by Property (P1) of Lemma 7.
If µ is not a selection constraint thenΓ2(Γ1(ϕ)) j= :µ by Lemma 9 andV(µ) � V(ϕ).
Otherwise, letµ = x[f ℄y for somex;y 2 V(ϕ) and f 2 F(ϕ). Hence,Γ1(ϕ) 6` vx f�y or
Γ1(ϕ) 6` y�vx f by Property (P2) of Lemma 7. By Lemma 9, eitherΓ2(Γ1(ϕ)) j= :vx f�y
or Γ2(Γ1(ϕ)) j= :y�vx f holds, and hence againΓ2(Γ1(ϕ)) j= :µ.

Proof of Lemma 1: We check that Sat(ϕ) has the three postulated properties.(1) The
saturation formula Sat(ϕ) entailsϕ by construction.(2) Lemmas 7 and 8 prove that Sat(ϕ)
is satisfiable.(3) By Lemma 10, Sat(ϕ) contradicts all atomic constraintsµ with V(µ) �
V(ϕ) andF(µ)� F(ϕ) thatϕ does not support syntactically.

ORDERING CONSTRAINTS OVER FEATURE TREES 31
10. Conclusion

We have presented the constraint systemFT� of ordering constraints over feature trees. We
have shown that the satisfiability problem ofFT� and its entailment problem can be solved
in cubic time and have given correct and complete algorithmsfor both. We have proved the
independence property ofFT� , which implies that conjunctions of positive and negative
ordering constraintsϕ ^ :ϕ1 ^ : : : ^ :ϕn can also be tested for satisfiability in cubic time.
Finally, we have shown that our satisfiability test for positive FT� constraints improves
the known complexity of the satisfiability problem for weak subsumption constraints from
O(n5) to O(n3).
Acknowledgments

We would like to thank Jochen Dörre, Gert Smolka, and Ralf Treinen for discussions on
the topic of this paper. We thank Kartin Erk for having checked the final manuscript. We
would also like to acknowledge the many helpful remarks of the referees. The research
reported in this paper has been supported by the Esprit Working Group CCL II (EP 22457)
and the Deutsche Forschungsgemeinschaft DFG through the SFB 378 at the Universität
des Saarlandes.

Notes

1. The proof given in [11] assumes infinite sets of features and node labels. We conjecture (and this should not
be too difficult to prove) that the first-order theory of FT is also completely axiomatizable for finite signatures.

2. A feature algebra is not an algebra since its features are interpreted as partial but not total functions

References

1. Hassan Aı̈t-Kaci. An algebraic semantics approach to theeffective resolution of type equations.Theoretical
Computer Science, 45:293–351, 1986.

2. Hassan Aı̈t-Kaci and R. Nasr. LOGIN: A logic programming language with built-in inheritance.Journal
on Lisp and Symbolic Computation, 2:51–89, 1989.

3. Hassan Aı̈t-Kaci and Roger Nasr. LOGIN: A logic programming language with built-in inheritance.The
Journal of Logic Programming, 3(3):185–215, 1986.

4. Hassan Aı̈t-Kaci and Andreas Podelski. Entailment and disentailment of order-sorted feature constraints.
In Andrei Voronkov, editor,Proceedings of the 4th International Conference on Logic Programming and
Automated Reasoning, volume 698 ofLecture Notes in Artificial Intelligence, pages 1–18. Springer-Verlag,
Berlin, July 1993.

5. Hassan Aı̈t-Kaci and Andreas Podelski. Towards a meaningof life. The Journal of Logic Programming,
16(3 – 4):195–234, July, August 1993.

6. Hassan Aı̈t-Kaci, Andreas Podelski, and Gert Smolka. A feature-based constraint system for logic pro-
gramming with entailment.Theoretical Computer Science, 122(1–2):263–283, January 1994.

7. Rolf Backofen. Expressivity and Decidability of First-order Languages over Feature Trees. Doctoral
Dissertation. Universität des Saarlandes, Technische Fakultät, D–66041 Saarbrücken, 1994.

8. Rolf Backofen. Regular path expressions in feature logic. Journal of Symbolic Computation, 17:421–455,
1994.

32 MARTIN M�ULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI
9. Rolf Backofen. A complete axiomatization of a theory withfeature and arity constraints.The Journal

of Logic Programming, 24(1 – 2):37–71, 1995. Special Issue onComputational Linguistics and Logic
Programming.

10. Rolf Backofen. Controlling functional uncertainty. InWolfgang Wahlster, editor,Proceedings of12th

European Conference on Artificial Intelligence, pages 557–561. John Wiley & Sons, Ltd, 1996.
11. Rolf Backofen and Gert Smolka. A complete and recursive feature theory.Theoretical Computer Science,

146(1–2):243–268, July 1995.
12. Rolf Backofen and Ralf Treinen. How to win a game with features. In Jean-Pierre Jouannaud, editor,1st

International Conference on Constraints in ComputationalLogics, Lecture Notes in Computer Science,
vol. 845, pages 320–335, München, Germany, September 1994. Springer-Verlag.

13. Ronald J. Brachman and Hector J. Levesque. The tractability of subsumption in frame-based description
languages. InProceedings of the National Conference on Artificial Intelligence, pages 34–37, August 1984.

14. Bob Carpenter.The Logic of Typed Feature Structures - with Applications toUnification Grammars, Logic
Programs and Constraint Resolution. Number 32 in Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge, England, 1992.

15. Witold Charatonik and Andreas Podelski. The independence property of a class of set constraints. In
Eugene C. Freuder, editor,Proceedings of the 2nd International Conference on Principles and Practice of
Constraint Programming, volume 1118 ofLecture Notes in Computer Science, pages 76–90, 1996.

16. Witold Charatonik and Andreas Podelski. Set constraints with intersection. InProceedings of the 12th

IEEE Symposium on Logic in Computer Science, pages 352–361, Warsaw, Poland, 1997. IEEE Computer
Society Press.

17. Alain Colmerauer. Equations and inequations on finite and infinite trees. In ICOT, editor,Proceedings of
the 2nd International Conference on Fifth Generation Computer Systems, pages 85–99. Omsha Ltd., Tokyo
and North-Holland, Amsterdam, 1984.

18. Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer Auf Der Heide, Hans Rohnert, and
Robert E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM Journal of Computing,
23(4):738–761, August 1994.

19. Jochen Dörre. Feature-logic with weak subsumption constraints. In M. A. Rosner C. J. Rupp and R. L.
Johnson, editors,Constraints, Languages, and Computation, chapter 7, pages 187–203. Academic Press,
1994.

20. Jochen Dörre.Feature-Logik und Semiunifikation. Number 128 in DISKI - Dissertationen zur Künstlichen
Intelligenz. Infix Verlag, Sankt Augustin, July 1996. In German.

21. Jochen Dörre and William C. Rounds. On subsumption and semi-unification in feature algebras.Journal
of Symbolic Computation, 13:441–461, 1992.

22. R. Helm, K. Marriott, and M. Odersky. Constraint-based query optimization for spatial databases. In10th

Annual IEEE Symposium on the Principles of Database Sytems, pages 181–191, May 1991.
23. Mark Johnson.Attribute-Value Logic and the Theory of Grammar. Number 16 in CSLI Lecture Notes.

Center for the Study of Language and Information, 1988.
24. Ronald M. Kaplan and Joan Bresnan. Lexical-functional grammar: A formal system for grammatical

representation. In J. Bresnan, editor,The Mental Representation of Grammatical Relations, pages 173–
281. The MIT Press, Cambridge, MA, 1982.

25. Robert T. Kasper and William C. Rounds. A logical semantics for feature structures. InProceedings of the
Annual Meeting of the Association of Computational Linguistics, pages 257–265, 1986.

26. Martin Kay. Functional grammar. In C. Chiarello et al., editor, Proceedings of the 5th Annual Meeting of
the Berkeley Linguistics Society, pages 142–158, 1979.

27. J. Lassez and K. McAloon. Applications of a canonical form for generalized linear constraints. InProceed-
ings of the 5th International Conference on Fifth Generation Computer Systems, pages 703–710, December
1988.

28. Kuniaki Mukai. Partially specified terms in logic programming for linguistic analysis. InProceedings of
the 6th International Conference on Fifth Generation Computer Systems, Tokyo, Japan, 1988. ICOT.

29. Martin Müller. Ordering constraints over feature trees with ordered sorts. In P. Lopez, Suresh Manandhar,
and Werner Nutt, editors,Computational Logic and Natural Language Understanding, Lecture Notes in
Artificial Intelligence. Springer-Verlag, Berlin, to appear. Available athttp://www.ps.uni-sb.de/
˜mmueller/papers/clnlp.ps.Z .

30. Martin Müller and Joachim Niehren. Entailment for set constraints is not feasible. Technical report, Pro-
gramming Systems Lab, Universität des Saarlandes, 1997.http://www.ps.uni-sb.de/Papers/
abstracts/inesInfeas.html .

ORDERING CONSTRAINTS OVER FEATURE TREES 33
31. Martin Müller and Joachim Niehren. Ordering constraints over feature trees expressed in second-order

monadic logic. In Tobias Nipkow, editor,International Conference on Rewriting Techniques and Ap-
plications, volume 1379 ofLecture Notes in Computer Science, pages 196–210, Tsukuba, Japan, 1998.
Springer-Verlag, Berlin.

32. Martin Müller, Joachim Niehren, and Andreas Podelski.Inclusion constraints over non-empty sets of
trees. In Michel Bidoit and Max Dauchet, editors,Proceedings of the Theory and Practice of Software
Development, volume 1214 ofLecture Notes in Computer Science, pages 345–356, Lille, France, April
1997. Springer-Verlag, Berlin.

33. Martin Müller, Joachim Niehren, and Ralf Treinen. The first-order theory of ordering constraints over
feature trees. InProceedings of the 13th IEEE Symposium on Logic in Computer Science, pages 432–443.
IEEE Computer Society Press, 1998.

34. Bernhard Nebel.Reasoning and Revision in Hybrid Representation Systems, volume 422 ofLecture Notes
in Artificial Intelligence. Springer-Verlag, Berlin, 1990.

35. Bernhard Nebel and Gert Smolka. Representation and reasoning with attributive descriptions. In K.H.
Bläsius, U.Hedtstück, and C.-R. Rollinger, editors,Sorts and Types in Artificial Intelligence, volume 418
of Lecture Notes in Artificial Intelligence, pages 112–139. Springer-Verlag, Berlin, 1990.

36. Joachim Niehren, Martin Müller, and Jean-Marc Talbot.Entailment of atomic set constraints is PSPACE-
complete, December 1998.www.ps.uni-sb.de/Papers/abstracts/atomic:98.html .

37. Jens Palsberg. Efficient inference of object types. InProceedings of the 9th IEEE Symposium on Logic in
Computer Science, pages 186–185. IEEE Computer Society Press, 1994.

38. Andreas Podelski and Gert Smolka. Operational semantics of constraint logic programs with coroutining.
In Leon Sterling, editor,Proceedings of the 12th International Conference on Logic Programming, pages
449–463, Kanagawa, Japan, 13–18 June 1995. The MIT Press, Cambridge, MA.

39. Carl Pollard and Ivan Sag.Head-Driven Phrase Structure Grammar. Studies in Contemporary Linguistics.
Cambridge University Press, Cambridge, England, 1994.

40. Carl J. Pollard and Ivan A. Sag.Information-based Syntax and Semantics, Vol. 1. Number 13 in CSLI
Lecture Notes. Center for the Study of Language and Information, Stanford University, 1987. Distributed
by University of Chicago Press.

41. François Pottier. Simplifying subtyping constraints. In Proceedings of the ACM SIGPLAN International
Conference on Functional Programming, pages 122–133. ACM Press, New York, May 1996.

42. William C. Rounds. Feature logics. In Johan van Benthem and Alice ter Meulen, editors,Handbook of
Logic and Language, pages 475–533. Elsevier Science Publishers B.V. (North Holland), 1997. Part 2:
General Topics.

43. Steward Shieber.An Introduction to Unification-based Approaches to Grammar. CSLI Lecture Notes No.
4. Center for the Study of Language and Information, 1986.

44. Steward Shieber.Parsing and Type Inference for Natural and Computer Languages. SRI International
Technical Note 460, Stanford University, March 1989.

45. Steward Shieber, Hans Uszkoreit, Fernando Pereira, J. Alan Robinson, and M. Tyson. The formalism
and implementation of PATR-II. In Joan Bresnan, editor,Research on Interactive Acquisition and Use of
Knowledge. SRI International, Menlo Park, California, 1983.

46. Gert Smolka. Feature constraint logics for unification grammars.The Journal of Logic Programming, 12(1
– 2):51–87, 1992.

47. Gert Smolka. The Oz Programming Model. In Jan van Leeuwen, editor,Computer Science Today, volume
1000 ofLecture Notes in Computer Science, pages 324–343. Springer-Verlag, Berlin, 1995.

48. Gert Smolka and Ralf Treinen. Records for logic programming. The Journal of Logic Programming,
18(3):229–258, April 1994.

49. Ralf Treinen. Feature constraints with first-class features. In Andrzej M. Borzyszkowski and Stefan
Sokołowski, editors,International Symposium on Mathematical Foundations of Computer Science, vol-
ume 711 ofLecture Notes in Computer Science, pages 734–743, Gdańsk, Poland, 30 August–3 September
1993. Springer-Verlag, Berlin.

50. Andreas Zeller and Gregor Snelting. Handling version sets through feature logic. In W. Schäfer and
P. Botella, editors,Proceedings of the 5th European Software Engineering Conference, volume 989 ofLec-
ture Notes in Computer Science, pages 191–204, Sitges, Spain, September 1995. Springer-Verlag, Berlin.

51. Andreas Zeller and Gregor Snelting. Unified versioning through feature logic.ACM Transactions on
Software Engineering and Methodology, 6(4):398–441, October 1997.

