Constraints, , 1-33 ()
© Kluwer Academic Publishers, Boston. Manufactured in Théhkigands.

Ordering Constraints over Feature Trees

MARTIN MULLER http://www.ps.uni-sh.de/mmueller
JOACHIM NIEHREN http://www.ps.uni-sh.de/niehren

Programming Systems Lab, Universitat des Saarlandes,
Stuhlsatzenhausweg 3, D-66041 Saarbriicken, Germany

ANDREAS PODELSKI http://www.mpi-sb.mpg.de/podelski

Max-Planck-Institut fur Informatik,
Im Stadtwald, D-66123 Saarbriicken, Germany

Received April 14, 1998; Revised September 6, 1998
Editor: Gert Smolka

Abstract. Feature trees are the formal basis for algorithms manipglatecord like structures in constraint
programming, computational linguistics and in concretpliaptions like software configuration management.
Feature trees model records, and constraints over feares yield extensible and modular record descriptions.
We introduce the constraint system FBf ordering constraints interpreted over feature treesdédrihe view
that feature trees represent symbolic information, thetia < corresponds to the information ordering (“carries
less information than”). We present two algorithms in cuiiee, one for the satisfiability problem and one for
the entailment problem of ET. We show that FT has the independence property. We are thus able to handle
negative conjuncts via entailment and obtain a cubic algorithat decides the satisfiability of conjunctions of
positive and negated ordering constraints over featusstreurthermore, we reduce the satisfiability problem of
Dorre’s weak subsumption constraints to the satisfighilibblem of FT. and improve the complexity bound for
solving weak subsumption constraints fr@mn®°) to O(n).

Keywords: feature constraints, tree orderings, weak subsumptidisfisaility, entailment, complexity

1. Introduction

Feature logic is a formalism for describing record struesjiwhich in turn represent ob-
jects — such as addresses or lexical entries — by the valubsiohttributes. Feature logic
has its origin in the three areas of knowledge represemtatith concept descriptions
frames or Y-terms [13, 34, 35, 1], natural language processing, inqdar approaches
based orunification grammarg26, 24, 45, 43, 39, 42], and constraint (logic) program-
ming [3, 5, 28, 47]. An interesting recent application liassbftware configuration man-
agement, where feature logic is used to denote softwaréwsrand to deduce their mutual
consistency [50, 51].

The first mathematical treatment of record descriptionstivagormalisms ofp-terms[1].

In other approacheg)-terms were calledeature structure$40] or feature termg46]. In
contrast to earlier work, the notidieature structurevas mostly used for designating a
record structure itself [14, 39, 42] rather than a recordcdption. Logical descriptions
of record structures lead to the notionfefture logic[25, 23, 46]. When we call these
descriptiongeature constraintsfeature unification becomes constraint solving.

2 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

Two main approaches to feature logics should be clearlyndjstshed. In computational
linguistics [14, 39, 42], a record structure is traditidgalescribed from an internal per-
spective, i.e. by specifying relationships between itsasodviotivated by constraint pro-
gramming, Smolka proposed an alternative approach [6, 9,148, 7, 9] based on an
external view in which record structures are described kgtions to others. The internal
view was modeled conveniently in termsfehture graphsand constraints with variables
for nodes of a feature graph. In contrast, the external viesd Ito the notion ofeature
trees— instead of more general feature graphs — and feature edmistivith variables for
feature trees. Nevertheless, logical theories based se tiv different views often turned
out to be elementarily equivalent [7, 11, 9].

In this article, we follow the external view based on the ootof feature trees. We intro-
duce and investigate the constraint system: of ordering constraints over feature trees
which extends the system FT of equality constraints ovetufeatrees [6, 11]. Before
presenting these constraint languages, we discuss feegeseand their ordering.

A feature treeis a tree with unordered, labeled edges and labeled nodeseddre labels
are called features; features are functional in that eachfeatures labeling edges de-
parting from the same node are distinct.

In programming, features correspond to wine

record field selectors and node labels to
record field contents. <
An example of a feature tree is displayed \hite Dr.Loosen

on the right. Its root is labeled with the <O %
node labelwine and the edges depart- > %o,
ing at is root are labeled by the features
color andestate.

A feature tree is defined by a tree domain and a labeling fancihe domain of a feature
treet is the set all words labeling a branch from the root @b a node oft. For instance,

the domain of the above tree{s, color, estate, estate country, estate region}.

A feature tree is finite if its tree domain is finite. In genethle domain of a feature tree
may also be infinite in order to model records with cyclic degencies. Notice that every
ground term such asjuare(plus(a,b)) can be considered as a finite feature tree where the
features are just consecutive natural numbers.

QS
Sz
=
%

Germany Mosel

A feature tree can be seen as a carrier of information. ThEg/point gives rise to an or-

dering relation on feature trees in a very natural way thataleinformation ordering In
the framework of feature al-

gebras the same ordering was o wine
called weak subsumption or- % &o* G‘%f
dering [19]. o < © e

. . . . CD
,The information ordering is Dr.Loosen white Dr.Loosen
illustrated by the example to S £
the right: The smaller tree (Joo‘\ ‘%,)
is missing some information

Germany Mosel

about the object it represents,

ORDERING CONSTRAINTS OVER FEATURE TREES 3

namely that this object is a white wine and that the estaterof.Dosen is located at the
Mosel in Germany. In order to have nodes without informatiee allow for unlabeled
nodes depicted with @ Formally, this means that we do not require a labeling fiomaio
be total.

Intuitively, a feature tree; is smaller than a feature trag if T, has fewer edges and node
labels thart,. More precisely, this means that every word of featuresérttbe domain of
11 belongs to the tree domain of and that the partial labeling function of is contained
in the labeling function of». In this case we write; < To.

The feature constraints in the constraint systems FT [6afd fonjunctions of three kinds
of atomic formulas which are built from variablgsfeaturesf and node labela:

X=y (“the treesx andy have the same structure”),
a(x) (“theroot ofx is labeleda”),

x[f]X' (“X is the subtree of accessed via the edge labeled witH).

For instance, the larger tree depicted above is a possihle f@r x in a solution of the con-
straintwine(X) A X[estate]xy A X1 [region]x2 but the smaller one is not. Feature constraints
in FT are modular and extensible in that pieces of informmatian be added feature by
feature. Note also that no constraint in FT can uniquelyrdatee a single feature tree.
For instance, there is no way to express in FT that a feataeehtas no edges at all. This
can, however, be stated in CFT by using arity constraints128

In the constraint system FT, we may constrain the values famdy to be equalx =Y.

In some situationsg(g, in computational linguistics; see below), we may need akeea
constraint onx andy. We may want to express, for example, tyatepresents at least
the information ofx (but possibly more), formallx <y. Or, we may want to say that
andy express compatible information, formakyy. Since this is equivalent to saying that
there exists a common refinement of the informatior ahdy, formally: 3z(x<zA y<2z),
compatibility~ can be reduced to the information orderidg

In this article, we introduce the constraint systemcFaf information ordering constraints
over feature trees. We obtain the systemxFom FT [6] by replacing equalities=y by
more general ordering constrailts'y. The abstract syntax of ordering constraifitin
FT< is defined as follows whepeandx' are variablesf afeatureanda alabel.

o = x<xX | Xf)X | ax) | dAQ

The semantics of ordering constraints is given by integiien over feature trees where
the symbol< is interpreted as information ordering. Throughout thegrapre consider
two cases, either we interprete in the structure of finitéuiestrees or else in the structure
of arbitrary feature trees.

In contrast with the situation in previous feature constraiystems [48, 6, 9], the nodes
of a feature tree in the interpretation domain ofare possibly unlabeled. This fact is
insignificant when only equality constraints are considerEhe first-order theory of FT
does not change when the structure allows for partially lsbéeature trees [13] In
contrast, when ordering constrains y are involved, this choice is significant. The first-
order theories of ordering constraints interpreted in thecture of partially labeled feature

4 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

trees differ from the one interpreted in the structure of ptately labeled feature trees. For
instance, the constraiaiz(z<xA z<y) is valid over partially labeled feature trees but not
over completely labeled trees. This accounts for the faait tiie information orderingt
has a least element, the tree with a single unlabeled nodechtice of partially labeled
trees in the semantics of EThas algorithmic consequences as wigdl, the correctness of
our algorithms depends on it. There also exists a naturahsitn of the notion of partially
labeled feature trees in terms of completely labeled festt@es with a partial ordering on
node labels [29].

Itis clear that FT is as expressive as FT since its ordering is antisymmetrecfafimally
prove that FT is strictly more expressive than FT by showing that no caistin FT can
be equivalent tax< x'.

We present two cubic time algorithms for ETone which solves its satisfiability problem
(“Is ¢ satisfiable in F£?") and one which solves its entailment problem (s~ ¢’
valid in FT<?"). Note carefully that entailment (in contrast to satisfity) becomes much
harder if arity constraints or existential quantificatioe added to the constraint language
FT< [33].

The satisfiability test foFT< can be applied for type inference with record types or ob-
ject types [37], but also for the syntactical treatment afrdination phenomena in natural
language processing [19, 39]. The entailment test mightdedulifor constraint simpli-
fication [41] during record type inference, but it is also neuisite for a possible usage
of FT< in modern constraint programming languages with advanoettal mechanisms
such as delaying, coroutining, synchronization, committeoice and local computation
spaces [2, 5, 47, 38].

We furthermore show that KT has the independence property if the set of features pro-
vided by the signature is infinite. Thanks to the independgmoperty, the entailment test
is sufficient for testing conjunctiorgsA —=¢1 A ... A =0 for satisfiability (namely, by test-
ing that none of the judgmends= ¢; holds for all 1< i < n). We are thus able to handle
negative conjuncts via entailment. We can summarize owrithgnic results by saying
that the satisfiability problem of conjunctions of positased negative ordering constraints
dA-O1A ... A=dy is decidable in time@(nd).

We recall that all our results are worked out for two cases,dtnucture of finite feature
trees and the structure of possibly infinite feature trees.

We reduce the satisfiability problem of Dorre’s weak-suhption constraints [19] over
feature algebras in linear time to the one in&TThereby, our algorithm improves on the
best known satisfiability test for weak subsumption comstsavhich uses quite different
techniques based on finite automata and had(anr)-complexity bound [19].

Plan of the Article. Section 2 surveys related work. Section 3 defines the syntdx a
semantics of constraint system FDf ordering constraints over feature trees. Section 4
presents a closure algorithm deciding the satisfiabiligbpgm of F1<. In Section 5, we
show how to test entailment and prove the independence giyofoe FT<. Section 6
shows that FT is strictly more expressive than FT. Section 7 defines weaksmption
constraints and reduces their satisfiability problem todhe of FT<. Section 8 explains
how to implement the closure algorithm for testing satidfigiin cubic time. Section 9

ORDERING CONSTRAINTS OVER FEATURE TREES 5

completes the correctness proofs for the presented shiigfiaand entailment tests and
Section 10 concludes.

2. Related Work

Ines Constraints. In previous work [32], the authors have introduced the a@mst
system kes, whose constraints are inclusions between first-ordersanterpreted over
nonempty sets of trees; the satisfiability test fardconstraints is cubic. The satisfiability
test for F1c is inspired by the one fonEs. The entailment problems of ETand kesare
different. Intuitively, the entailment problem of ETis less difficult than the one okits
because a constraint 6T< cannot uniquely describe a single feature tree; in contaast
INES constraint can uniquely describe a constructor tree (ireugd term) as a singleton
set. For instance, theits constraintxCa describes the singletofa}. As a consequence,
the implicationxCa — aCx holds in Nes. The entailment problem ofvks constraints
is PSPACE-complete in case of an infinite signature and at IBEXPTIME-hard for
a finite signature [36]. Previously, it was already noted tha& entailment problem of
INEs constraints is coNP-hard [30]. The algorithm given in [1$hiot a complete test of
entailment of kes constraints; the one given in [16] applies to a larger cldsoostraints
for the case of an infinite signature and lies in DEXPTIME.

Feature Constraints. The constraint system CFT [48] extends FT by arity constsain
of the formx{f1,..., fa}, saying that the denotation @fhas subtrees exactly at the fea-
tures f1 throughf,. CFT subsumes Colmerauer’s rational tree constraint sy&e€ [17]
but provides finer-grained constraints. Complete axionaditins for FT and CFT in case
of an infinite signature have been given in [11] and [9], resipely. Due to complete
axiomatisation, the first-order theory of FT is decidable.

The investigation of ordering constraints over featuredrpresented in this paper is con-
tinued in two follow-up papers. In [31] it is shown how to egps constraints of T< in
second-order monadic logic (S2S or WS2S). Thereby, an ithgoifor solving the entail-
ment problem of FT with existential quantifiers €T< |= ¢ — 3x¢'") was obtained for
afirst time. Later on, it turned out [33] that the entailmerdtgem of FT< with existential
guantifiers is PSPACE-complete (for finite or infinite sigmat, and for finite or possibly
infinite trees). It was also proved in [33] that the first-artleeory of FT< is undecid-
able (in contrast to the first-order theory of FT). The syst€h (sort) extend$=T< by
allowing a partial order on labels [29].

The system EF [49] extends CFT by feature constrafiyg, providing for first-class fea-
tures. The satisfiability problem of EF constraints is shdwitcomplete. Another exten-
sion of FT is the system RFT which features so-called requd#in expressions [8, 10]

(Weak) Subsumption Constraints. The subsumption and the weak subsumption order-
ings can be defined for arbitrary feature algebras [19]. Ini@aar, the structure FT of
feature trees is a feature algebra (called the algebra bffpattions in [19]). As already
proved there, the information ordering on feature treeaddes with the weak subsump-
tion ordering of the feature algebra of feature trees.

The subsumption ordering [21] is a subrelation of the wedlsamption ordering. The

6 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

converse is nottrue. For instance, the weak subsumptiariogldoes hold in the example
given in the picture, whereas the subsumption ordering

does not. This is because the two equal subtrees of = a
the smaller tree — its leaves — are extended in different f/ \g f/ \g
manners when moving from the left to the right. The a a a a
definition of subsumption, however, requires that equal | g
subtrees are extended in the same manner. a

Subsumption constraints have been considered in the daooftexification-based gram-
mars to model coordination phenomena in natural languabel2, 44]. There, one wants
to express that two feature structures representing diftgzarts of speech share common
properties. For example, the analysis of “programming” dimdjuistics” in the phrase

“Feature constraints are good fad programming] andyp linguistics]”

should share (but might refine differently) the informatimmmmon to all noun phrases.
Since the satisfiability of subsumption constraints is wihble [21], Dorre proposed
weak subsumption constraints as a decidable approximatisubsumption constraints.

Independence. A constraint system has the fundameritadependence propertif
negated conjuncts are independent from each other. Thiasrbatdp A =1 A ... A=bn

is satisfiable if and only if there exists<di < n such thath A —¢; is satisfiable. This is
equivalent to thap = ¢1V ...V =, holds if and only if there exists £ i < n such that
¢ = —¢i. The independence property is important since it allowsousse an entailment
test for solving negative constraints.

The constrain systems RT, FT, CFT have the independencenyap case of an infinite
signature [17, 6, 4, 48]. Apart from these, constraint systevith the independence prop-
erty include linear equations over the real numbers [27]nfinite boolean algebras with
positive constraints [22], and set constraints with irget®ns interpreted over nonempty
sets of trees [32, 16, 36].

3. Syntax and Semantics

In this section, we introduce the syntax and semantics adrord constraints over feature
trees. We introduce two systems of ordering constraints < &iid FTQ”— depending on
whether we interpret over finite feature trees or over pdgsitfinite feature trees.

We assume an infinite set gériablesranged over by, y, z, an infinite set¥ of features
ranged over byf.g and an arbitrary set of labels denoted by, b containing at least
two distinct elements. The existence of infinitely many feas is fundamental for inde-
pendence and for our entailment algorithm in Section 5 tokwadt is irrelevant for the
satisfiability test in Section 4.

Feature Trees. A path pis a finite sequence of featuresfn Theempty paths denoted
by € and the free-monoid concatenation of pathand p’ aspp’; we havesp = pe = p.
Given pathgp andg, p' is called aprefix of pif p= p'p” for some pathp”. A tree domain
is a non-empty prefixed-closed set of paths.

ORDERING CONSTRAINTS OVER FEATURE TREES 7

A feature tree is a pair(D, L) consisting of a tree domald and a partial labeling function
L:D — L. Given a feature treg, we write D; for its tree domain and, for its labeling
function. A feature tree is callefihite if its tree domain is finite, anéhfinite otherwise.
Slightly overloading notation, we denote the set of all teatrees by=T< and the set of
all finite feature trees witIPFTl”. If p e Dy we write ast[p] the subtree of at pathp which
is formally defined byDy;5 = {p' | pp € Di} andLyy ={(p,a) | (pP.a) € Lt}

Syntax. An ordering constraint is defined by the following abstract syntax.
¢ == x<y [aX) | Xfly | x~y | o102

An ordering constraint is a conjunction afomic constraintsvhich are eitheatomic or-
dering constraints Xy, labeling constraints &), selection constraints[X]y, or compat-
ibility constraints x-y. Compatibility constraints are needed in our algorithm aad be
expressed by first-order formulae over ordering constsgisge Proposition 1). We iden-
tify ordering constraints up to associativity and commiuitof conjunction,i.e,, we view
an ordering constraint as a multiset of atomic orderingeliag, selection, and compati-
bility constraints. We writep in ¢’ if all conjuncts in$ are contained ip’. Thesize of a
constraintg is defined as the number occurrences of features, node Jainelsariables in

0.

Semantics. We next define the structurég < andFTln of feature trees and finite feature
trees respectively. Throughout the paper, we distingwishdases depending on whether

we interpret ordering constraints BfT< or FTi”. The signatures of both structures contain
the binary relation symbols and~, for every label a unary relation symba(.), and
for every featuref a binary relation symbol [f] .. The domain of the structur€T< is the
set of possibly infinite feature trees (also calléf), and the domain of the structuFér'fé”

is the set of finite feature trees (also caIVédl“). The relation symbols are interpreted as
follows:

1<t |ff Dy, € Dy, al’ldLT1 Cly,

T[flto iff Dy, ={p| fpe Dy} andly, ={(p,b) | (fp,b) € Ly, }
at) iff (g,a) €l

T1~T2 iff Ly, ULy, is a partial function (o, U Dy,)

Notice that the relation- is not transitive! For instance, let be a tree whose root is
labeled witha, andty, a tree whose root is labeled with ande the least tree consisting of
a single unlabeled node. &f# b then it holds that;~e ande~1, but notty~T1y,.

Let ® denote a first-order formula built from ordering constrainith the usual first order
connectives, i.e.P = ¢ | true |false | "D | P = P’ |VXD|IXD | DA D' | DV D' We
denote withV (@), L(®), andF (), respectively, the set of variables occurring freebin
and the set of labels and features occurringin

Suppose thafl is a structure with the same signature tlﬁaﬂ“ andFT<. A solution of®

in 4 is a variable assignmentinto the domain of4 such thatb evaluates to true under
4 anda. We call® satisfiable inZ if there exists a solution fo in 4. A formula® is

8 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

valid in 4 if all variable assignments into the domain#fare solutions ofp. We say that
A4 is amodelof a set of formulas if all its formulas are valid ii. A constraint® entails
@' in 4, written® =4 @' if ® — @' isvalid in Z; ® isequivalento @ in 7 if ® - @' is

valid in 4.

PrROPOSITIONL1 The formulae xy and3z(x<zAy<z) are equivalentinFT< and FT';”.

Proof: If is sufficient to prove the proposition féiT<. Let o be a variable assignment
into FT< which solves the formul@z(x<zAy<z). Sincelqx) ULg(y) C Loz andlgy
is a partial functionlq(x) ULy is also a partial function. Henais a solution ofx~y.
Conversely, ifo is a solution ofk~y thenLg,) ULy is a partial function. Thus, the pair
T =def (Dg(x) UDg(y), Lax) ULa(y)) is @ feature tree and every variable assignneentith
0'(z) =1,0'(x) = 0(x), andd’(y) = o(y) is a solution ok<zAy<z [

4. Satisfiability Test

We present a set of axioms schemes validFdr< and an extended scheme fEﬂﬂ”
which provides for an additional occurs check. We can imgrpoth axiom schemes as
algorithms which solve the satisfiability problems ofiFe'i'ndF'l'ln respectively. Note that
the axiom schemes given here are inspired by those presientieds constraints in [32].

Table 1 contains the axiom schenfds- F5 for FT< and the scheméd&L-F6 for FT"". For
instance, the scheme x represents the infinite set of axioms obtained by choosinteso
variable forx. All axioms are of one of the following formdi, ¢ — ¢’, ord — false. The
last two forms are distinct sindelse is not a constraint.

Scheme$1.1 andF1.2 express the reflexivity and transitivity of the informatiordering;
F2 says that it has the decomposition propeRy.1 states the reflexivity of the compati-
bility relation. F3.2 says that ik has less information thanand the information o and
zis compatible, then the information afandz is also compatible. It follows from the
transitivity of the information ordering thaT< andFTln are models of the axioms i
(see Proposition 1)F3.3 states the symmetry of the compatibility relatidi. expresses
that the compatibility relation has the decomposition tyy Axiom schemé-5 states
that two trees cannot be compatible if they carry distinioela at the root. The last scheme
F6 is a version of the occurs check which holds K but not for FT .

PROPOSITION2 The structure=T< is a model of the axioms il — F5 and the structure
Ffé” a model of the axioms iRl — F6.

Proof: By aroutine check. Since it is the most interesting,ave prove the statement for
the schemé&3.2, i.e. we show that the formubey A y~z — x~zis valid in FT< for all
XY,z The following implications are valid i T<:

X<YAY~z X<YyAJu(y<uAz<u) Proposition 1
— Fu(x<uAz<u) Transitivity
X~z Proposition 1]

ORDERING CONSTRAINTS OVER FEATURE TREES 9

F1.1 x<X

F1.2 x<yAy<z—x<z

F2 X[fIX AxSyAY[fly = X<¥Y

F3.1 X~X

F3.2 x<yAy~zZ— X~Zz

F3.3 X~y — y~X

Fa XfIX Ax~yAY[flY = X~y

F5 a(x) AX~yAb(y) — false fora#b

F6 ALixi[filyize AXip1<Vir1 — false forxny1=x1 (n>1)

Table 1.Axioms of Satisfiability:F1-F5 for FT< andF1-F6 for FTin

We next present a sequence of examples to show the consegughich can be derived
with the given axioms schemes.

EXAMPLE 1 Itis mostimportant that the following axiom scheme can bevdd from the
scheme$3.1, F3.2, andF3.3:

XLZAYLZ — X~y

From x<y A x<z, we can derive~z withF3.1 and thus x-z byF3.2, then z2x viaF3.3.
Another application of 3.2 yields y~x such that x-y follows formF3.3.

EXAMPLE 2 An inconsistency can be raised by two incompatib¥eer bounds. For in-
stance, consider:

a(x) Ax<zAy<zA b(y) — false fora#b

As shown in the previous example, we derivg xrom x<z A y<z by usingF3.1, F3.2,
andF3.3. Hencefalse can be derived witl5.

In contrast to lower boundsipperbounds are always compatible. For instance, the ana-
loguous constraint to above(x) A z<x A z<y A b(y), is satisfiable sincecan be chosen
to denote the least tree consisting of a single unlabeled.nod

ExamPLE 3 The ruleF4 is perhaps the key rule for deriving inconstencies. Thislman
illustrated as follows:

10 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

a(X) AX[gIXA X<ZAY<zAY[glY Ab(Y) — false fora#b

As shown in Example 1, we can deriveyxfrom x<zAy<z by using=3.1, F3.2, andF3.3.
We can now appl¥4 to Xg]x A x~yAy|g]y in order to derive x-y'. Finally, this allows
us to derivefalse from a(x) Ax~y A b(y) via F5.

EXAMPLE 4 The constraint]y A x<y is unsatisfiable irFTln but satisfiable inFT<.
In the first case, we can apply the occurs chBékn order to derivefalse. In the second
case, the occurs check is not valid.

The Algorithm F. In case ofFT<, we defineF to be the set of axiom schemgs-F5,
whereas in case (ﬁTl”, we defineF to be the set of schemé&§ — F6. Both sets induce
a closure algorithm that we also cdll These algorithms input a constraiitand add
iteratively new logical consequencestof) {$} to ¢.

More precisely, every step df inputs a constraing and then terminates witfalse, or
terminates withp, or passes over a constraint of the fogm ¢’ to the next step. Ter-
mination withfalse occurs if there exist$” in ¢ such thatp” — false is an instance of
an axiom scheme if. Termination with¢ happens if no new constraint can be added to
¢. Recursion withp A ¢’ is possible if¢p’ is an instance of an axiom schemeFirwhich
satisfiesV/(¢') C V(9), or if there there exist$” in ¢ for whichd” — ¢’ is an instance of
an axiom scheme if.

If G is a subset of the set of axiom schenfrethen we call a constraint G-closedif no
new consequence can be addedl toy applying an axiom scheme @ (in the way defined
above). We note thdalse is not a constraint and hence cannofelosed.

PropPosSITION3 If ¢ is a constraint of size m then the algoritHirstarted with inputh
terminates in at mog- n? steps (wher&1.1 andF3.1 are applied to variables i only).

Proof: SinceF does not introduce new variables, it may add at m@stew compatibility
constraintsx~y andm? new atomic ordering constraint<y. With respect to not adding
new variables, only the scherh&.1 andF3.3 are critical. Both of these are of the foign
such that their application cannot introduce new variabiedefinition. []

ExamMPLE 5 AlgorithmF terminates in presence of cyclic constraints liké]x. For in-
stance, the following constraint sl — F5-closed but noE6-closed.

X[FIXAXSYAY[FIYAXSXAYSYAX~XA Yoy A XY A YroX

In particular, F2 andF4 do not loop through the cycld #x. This example illustrates the
need of compatibility constraints. Without them one mighhwo apply the following rule
whereby a new variable z is introduced which raises non-ieation:

X[X Ax<y — Fz(y[f]zAX < 2)

Remark. Notice that Table 1 deliberately leaves out the followingesoe that is perfectly
valid in FT< andeé". This is done for simplicity only; it would do no harm adding.

ORDERING CONSTRAINTS OVER FEATURE TREES 11

x<yna(x) — afy)

Definition 1. Let¢ be a constraint. If algorithrh started withp terminates and returns
a constraint (but ndblse) then we call its result thE-closure ofgp and denote it by ¢b).

Note that c{¢) is not defined for alth but alwaysF-closed when defined. Since the def-
inition of F is parametrized by the choice 67T< or FT"”, the definition of cl¢) is also
parametrized by one of these structures. It is not posdimeever, that ¢ip) differs for
FT< andFT™". In the worst case, () exists with respect t&T< but not forFT™. This
happens ifalse can be derived by applyinig to theF-closure of with respect toFT<.

PROPOSITION4 EveryFl —F5-closed constraint is satisfiable in ETand everyr1 — F6-
closed constraint is satisfiable T .

Proof: See Section 9.2. [|

THEOREM1 The satisfiability problem of T< and F'I'ln can be decided (off-line and on-
line) in cubic time in size of the input constraint. Thelosure of a satisfiable constraint
exists and can be computed in cubic time.

Proof: Proposition 2 shows thétis unsatisfiable if algorithm started withp terminates
with false. Proposition 4 proves that is satisfiable ifF started with¢ terminates with

an F-closed constraint. Since terminates for all input constraints (Proposition 3) this
yields an effective decision procedure for testing satidfig and computing thé&-closure

of a satisfiable constraint. The main idea of the complexigopis that one needs at
mostO(n?) steps whera is the size of the input constraint (Proposition 3) each oicivh
can be implemented in tim®(n). The implementation can be organized incrementally
by exploiting the fact that algorithrd leaves unspecified the order in which the axioms
are applied. Hence, we obtain that off-line and on-line clexipy are the same. The
implementation is detailed in Section 8]

5. Entailment, Independence, Negation

In this section, we give a cubic time algorithm for testingeéiment of ordering constraints
over feature trees. Our algorithm is parametrized by a 8irec- eithei=T< or FTl”— and,
depending on the particular parameter, decides entailjpegiments of the forng |= 7.

¢’ ord |:Fﬂn ¢’. The structure chosen is relevant only for a single subneutif the

entailment test, which is the satisfiability test preseimtetie previous section.

We also prove the independence property for the constramguages FI and FTl”.
Based on the independence property, we show how to solveiatigns of positive and
negative ordering constraingsA —¢1 A ... ~¢n, in time O(n®). Note that all results of this
section depend on the existence of infinitely many featurdise given signature.

12 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

. X < . X < . . < X
f f ‘f ‘f
x < ! <y <y <

IN
<

Table 2. The respective graphs of a constraint which suppory| f], X2 f]<y, or X[f]y syntactically.

For the rest of this section, we fix either of the structufds or FT™: we writed = ¢’

! !
rather thanp |= FT. ¢’ orp = FTin ¢'.
We denote withu an atomic constraint, i.eu is always a conjunction free ordering con-
straint (1 ::= x<y | x~y | a(x) | x[f]y). Note that an entailment judgmept= ¢' holds
if and only if the entailment judgmenis=p hold for all atomic constraintg in¢’. Next
we characterize entailment probledi$= p syntactically. For atomic constraingsof the
form x<y, x~y, ora(x), we say that a constraiptsyntactically supports,pwritten¢ + |,
if one of the following holds:

dFa(x) if existsx suchthak'<xAa(xX)in¢
dFx<y if x<yinporx=y
dFx~y if X~yinporx=y

The definition of syntactic support of selection constsigt - x[fly, is slightly more
involved. For its definition, we make use of two simple fornigawoxiliary path constraints
x<y[f] andx?[f]<y. A path constraint of the first form<y|[f] requires that the tree for
have featurd and that its subtree dtbe greater than the tree far A path constraint of
the second fornx?[f]<y reads as follows: if the tree forhas featuref then its subtree
at f is smaller than the tree fgr. We next define the notions of syntactic support for path
constraints and selection constraints; this definitioflustirated graphically in Table 2.

¢ Fx<y[f] if existx,y such thak<x AY[f]X Ay <yin¢d
o - x?[f]l<y if existX,y suchthak<x AX[f]ly AY<yin¢
¢ Fx[fly if ¢Fy<xf]anddFx?fl<y

PROPOSITIONS (CORRECTNES$ For all F-closed constraintsp and atomic con-
straints p:¢ - g implies$ = p.

Proof: The cases fop being of the formsa(x), x<y, or x~y are obvious. Now, we
consider the case thgtis a selection constraint, sayf]y. If ¢ - uthen¢ - y<x[f] and
¢ - x?[f]<yhold. Leta be a solution ofh. Because ob - y<x[f] it holds thatf € Dg
anda(y)<a(x)[f]. The assumptiog - x?[f]<y yieldsa(x)[f]<a(y) if f € Dg(y. We
already know thatf € Dyy is valid; thusa(y)<a(x)[f]<a(y) holds. So far, we have
provedf € Dy anda(y) = a(x)[f], i.e. thata is a solution of[f]y. [|

ORDERING CONSTRAINTS OVER FEATURE TREES 13

We show next that syntactic support is strong enough to cheniae entailment (Proposi-
tion 6) and investigate the complexity of deciding syntastipport (Lemma 2). In combi-
nation with the cubic satisfiability test of the previoustsmt, we obtain a cubic entailment
test (Theorem 3).

The most difficult claim to show is that syntactic support@nplete with respect to en-
tailment: That is, that no atomic constrajnis entailed by a constraigtif pis not already
supported inp. To show this we assume thfadoes not suppop syntactically and define
a solution of¢ that contradictgl. As we show, there even exists a single solution that
contradicts all built from symbols ind at the same timeWe prove this by giving a satis-
fiable formula that strengthergsand entails the negation of all relevarg. We call such
a formulasaturated

LEMMA 1 (EXISTENCE OF ASATURATED FORMULA) For every satisfiable con-
straint ¢, there exists a formul&al¢), called asaturationof ¢, with the following
properties.

1. Sa(¢) is satisfiable.

2. sat9) = ¢.
3. forallpifV(p) CV(¢) and F(n) C F(¢) thend I/ nimpliesSat¢) = —.

Proof: The proofis postponed to the end of Section 9.3.]

THEOREM2 (INDEPENDENCH If the set of features is infinite then both languages FT

and F'I'ln of ordering constraints over feature trees have the indepene property: For
every n> 1 and constraint®, ¢1,...,¢n:

n
if ¢FE=\/¢i then ¢|=¢; forsome je{1,...,n}.
i—1

Proof: Assumep = Vi, ¢i. If ¢ is unsatisfiable we are done. Also,difA ¢; is non-
satisfiable for somg, then:

oE=Vo iff oF \/ ¢

i=1 i=L1i#]

Hence we can, without loss of generality, assumedhatd A ¢; are satisfiable for all,
and thatp is F-closed. If there exists arsuch thath I- i for all atomic constraintg in ¢;,
thend |= ¢; by correctness of syntactic support (Proposition 5) and reedane. Other-
wise, for alli there existgy in ¢; such thath I/ . Let Safd) be the formula postulated by
Lemma 1. Without loss of generality, we can assume W{@t) C V(¢) for all i. Hence
V(W) € V(i) implies Satd) = — by Property 3, such that:

n

sat(¢) = /\ 0.

i=1

14 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

Since Safp) is satisfiable and entais (Properties 1 and 2), this contradicts our assump-
tion thatd = Vi, ¢i. [

EXAMPLE 6 Independence fails in case of a finite set of features. Rastilhtion, assume
F = {f.,g}. If the set of node labels is finite, say= {a,b} then following entailment
judgments holds:

X[Hlzaxglzaylflzayldz = a(x)vb(x) vx<y
But neither of the disjunctions on the right hand side is éedby the left hand side.

ExaMPLE 7 For a finite set of features and an infinite set of node labeks,can still
construct a counter example for independence in caseTef which does however not
apply to FTQ”. In fact, the following counter example applies to all sigias with ¥ =
{f,g} and L # 0:

x(fixaxiglx A yiflyaylgly
ZflzaZglz A x<yAa(y) = oysxvxsz
To see this, notice thaf Kx A x[g]x implies that the tree for x is homogeneously labeled
(i.e., either completely unlabeled or labeled with the sayrabol at all nodes). The same
holds for the trees for y and z. If the tree for x is completeliabeled then Xz follows.
Otherwise, the tree for x must be labeled with a at all nodestduw<y A a(y) such that
the trees for x and y are equal: henc€ y follows.

Independence dfT< or Fﬂ“ depends strongly on the fact that these constraint language
do not provide for existential quantification. This is iltceted by the following example.

If, say L = {a,b}, then every feature tree is labeled witlor with b unless it is unlabeled.
Therefore, the following entailment judgment holds fordall

¢ = a(x) vV b(x) v unlabeled(x)

Or course, none of the conjuncts of the right hand side isiledtashen choosing the left
hand sidep to bex<x. Furthermore, the formulanlabeled(x) can be expressed with
existential quantification:

unlabeled(x) < Jydz(x~yAa(y) Ax~zAb(z))

Hence, a language of ordering constraints over featurs grtended by existential quan-
tification doesnot have the independence property. This failure can be irgégdras a
first hint to that entailment which existential quantificatis much harder to decide than
without. In fact, the entailment problems BT« and Fﬂnwith existential quantification
are both PSPACE-complete as shown in [33]. N

PrROPOSITIONG6 (CHARACTERIZATION) The notions of entailment and of syntactic sup-
port coincide for atomic constraints, in the sense that i F-closed and p an atomic
constraint therp = piff ¢ - L.

ORDERING CONSTRAINTS OVER FEATURE TREES 15

Proof: Syntactic support semantically corredby Proposition 5. It remains to show that
syntactic support isemantically completé.e., ¢ = pimplies¢ - . So, assumé = L.

If V() € V(9) thenpis of the formx<x or x~x such thatp + p is trivial. Otherwise,
assume/ (1) CV(¢). Now let Satd) be the saturation formula postulated by Lemma 1.
By Property 2 = pimplies Satd) = p. With Property 1, this yields S@l) = —u, and
Property 3 implies - .]

LEMMA 2 Given anF-closed constraing of size n, we can compute a representation of
¢ in time Qn?) that allows for testing syntactic suppdrt- p in time Qn?).

Proof: As a representation for tHe-closed constraing, we can use 4 arrays of size
O(n?), each of which gives access to one form of atomic constraimtsndexing over
variables and features (for details see Section 8). Theagsacan be allocated in time
O(n?) and support a test of membershipitéor an atomic constraint in tim@(1). Hence,
we can check syntactic support for atomic ordering and cdififity constraints in time
O(1). For testingd F a(x), we have to find alk’ with x<x' in ¢ and then to test whether
onex satisfiesa(x') in ¢; this can be done in tim@&(n).
For checkingp - x<y[f], we first compute in tim&®(n) the set of alk’ such thak<x' in ¢.
From this set, we deduce in tin@(n?) the set of ally’ such thaty'[f]x in ¢ for some
X computed above. Finally, we check in tin@¥n) whethery'<yin ¢ for at least one
y. The procedures for testiny- x?[f]<y and¢ + x[f]y can be organized in analogy.
[|

THEOREM 3 (ENTAILMENT) If the set of features is infinite, then entailment judgments
of the form¢ =7 ¢’ and¢ |:F-rfin ¢’ can be tested in cubic time in the sizepof ¢'.
<

Proof: Letn be the size ofh A ¢’. To decidep = ¢, we first test whether or nd is
satisfiable, and return its-closure c{¢) in case of satisfiability. By Theorem 1 this can
be done in timeD(n%). If ¢ is not satisfiable then entailment holds trivially. Otheswyiit
suffices to test whether(@) |= ¢’ holds. According to Proposition 6 this is equivalent to
that cl¢) - pholds for allp in¢’. Since there ar®(n) suchu each of which can be tested
in time O(n?) by Lemma 2, syntactic support for gllin ¢’ is decidable in timeD(nd).
Hence, the overall time for testing entailment is aB®?).]

COROLLARY 1 (NEGATION) The satisfiability inFT< or FT‘;” of conjunctions of positive

and negative ordering constraints of the fogm —¢1 A ... A =¢k can be tested in time
O(n®) where n is the size of the considered formula.

Proof: If ¢ is non-satisfiable the@ A (/\ik:lﬂcbi) is trivially non-satisfiable. By Proposi-
tion 1, satisfiability ofp is decidable in time(n®) wheren is the size ofp. Now assume
¢ to be satisfiable. By Theorem 2 on independerdx:a,(/\}‘:lﬁq)i) is non-satisfiable if
and only if ¢ |= ¢; for some 1< i < k. This is equivalent to saying that, for some
pin¢; implies$ = . By Proposition 6 it thus suffices to tet- p for all pin ¢; and all
1<i <k Overall, there ar©(n) suchy’s to be tested for syntactic support. By Lemma
2, - pcan be tested in tim@(n?) such that the total complexity sums up to ti@én?3).

]

16 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

6. Expressiveness

We show thaFT< is strictly more expressive thafr [6, 11] but does not generalize CFT
[48, 12] in that it cannot express conjunctions of arity andising constraints.

The constraint systerT is the language of equality constraints interpreted in thecture
of completely labeled feature trees. A constrajraf FT has the following form:

n:=x=ylalx |xay|[nAan’

As for ordering constraints, we can distinguish two case$ ", we interpret over finite
feature trees and iRT over possibly infinite ones. For simplicity, we only considg in
this section; our results, however, hold #6F" in analogy.

The constraint syster®@FT extendsFT by arity constraints. Ararity constrainthas the
form x{f1,..., fn} and holds ifx denotes a tree which has direct subtrees exactly at the
featuresf; throughfp.

In the light of the complete axiomatization of the first-ardleeories ofFT and CFT[11,
12] (which apply for infinite sets of features and labels) weefy permit ourselves to
interpret constraints of T over partially labeled feature trees (rather than over detefy
labeled ones). When doing so, every constrairftbtan trivially be expressed iRT<.

In order to be precise, we define what it means for a formulexjoressa predicate on
feature trees. Our definition is well known in mathematiogiits and was investigated for
feature logics by Backofen [7]: An-ary predicateP is ann-ary relation between feature
trees. We writeP(ty,...,Tn) if (T1,...,Tn) € P. We denote a formul® with free variables
X1,-..,X% by ®(Xq, ..., %) whereby an ordering on the variables®is fixed.

Definition 2. An n-ary predicate? is expressed by a formul@(xy, ..., xn) with free
variables«y, ..., X, if for all feature treeq1,...,Tn:

there exists a solution of ®(x1,...,Xn)

P(1y,...,Tn) holds iff { such thabi(xy) = Ta. ... G (%) — T

PROPOSITION7 There is no constraint iff T< which expresses the fact that a variable x
denotes the least feature tregi.e., if a# b then there is no constraint equivalent to:

x{} Ax~yAx~zAa(y) Ab(z)
Proof: If ¢ were such an ordering constraintfeT< then¢ as well as its--closure would
entailx<y for all variablesy. This contradicts Proposition 6 for all thogavith y ¢ V (¢)

andx #y (because ifp - x<y thenx =y orx,y € V(¢)). Trivially, a variabley ¢ V()
exists sinc&/(¢) is finite.]

LEMMA 3 If nis a constraint ofFTthen n = x<y holds iff n = y<x s valid.

Proof: Letn be a constraint of T and letd be the ordering constraint obtained from
n by replacing all equalitieg=y in n by an ordering constrai<y A y<x. Hence, for

ORDERING CONSTRAINTS OVER FEATURE TREES 17

all x,y it holds thatx<y in ¢ iff y<xin¢. Since the closure algorithin preserves this
property of¢, it also holds for dl¢). Thus, the claim follows from Proposition 6 again.
|

PROPOSITIONS If X #y then there is no equality constraint BT equivalentto xXy.

Proof: This follows immediately from Lemma 3 and Propositi []

7. Weak Subsumption Constraints

We next compare the constraint langudgk: to the system of weak subsumption con-
straints as introduced in [19]. We show that the satisfighgroblem of weak subsump-
tion constraints is subsumed by the oneffdk . Here, interpretation over possibly infinite
feature trees is crucial.

Syntax and Semantics. Following [19], a weak subsumption constraint is an ordgrin
constraintd without compatibility constraints. Since the latter regton is not crucial
we here consider weak subsumption constraints extendadcaihpatibility constraints in
order to simplify our comparison.

Weak subsumption constraints are interpreted over the chall feature algebras, each
of which induces a weak subsumption ordering (see belowfeaiure algebrag with
features¥ and node label€ consists of a sefom™ that is called thedomainof 4, a
unary relationa(.)? ondom~” for every node labeh € £, and a binary relationf]%. on
dom™ for every featuref € F2. The relations of a feature algehfasatisfy the following
properties for alx, o, a” € dom?, node labels, a1, ay € £, and feature$ € F:

1. ifa[f]?a’ anda[f]?a” thena’ = o
2. ifay(a)? anday(a)? thena; = ap

In the literature [46, 19] a slightly different notion of fiese algebra was considered that
we callfeature algebras with constantere. We will give a formal comparison at the end
of the section.

Again overloading notation, |efT be the structure of feature trees with featugesand
node labelsZ, but with a restricted signature in which the relation syfsbo and~ are
not provided.

PrROPOSITION9 The structureT of feature trees is a feature algebra.

Proof: Property 1 of a feature algebra follows fréit and property 2 fron5.]

Given a feature algebrd, we define the weak subsumption orderidg as follows. A
simulation for4 is a binary relatiom\ C dom? x dom™ that satisfies the following prop-
erties for all labels, featuresf, and all elementsy, a», af, o} € dom™:

1. Ifai0a,, a(ap)? thena(az)?.

18 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

2. If oqQaz, as[f]a) then existr) : o[f]7a) andaAas,.

Theweak subsumption ordering? of 4 is the greatest simulation relation fgt. The
weak subsumption relation of induces a compatibility relation”? through:

ai~Ta, iff existsa such thati;<?a anda,<?a

A feature algebraZ induces a structure with the same signaturé=aig in which < is
interpreted as the weak subsumption order®, ~ as the compatibility relation~*.,
a(.) asa(.)?, and.[f]. as.[f]?..

PROPOSITION10 (DORRE[20]) The structure=T< coincides with the structure induced
by the feature algebr&T.

Proof: Itis sufficient to prove that the weak subsumptioreoing of the feature algebra
FT coincides with the information ordering oiT<. The proof in the case of feature
algebras with constants can be found in [20] on page 24 (Satm6Satz 7). There, the
structure of feature trees has been called algebra of patiifuns. We recall the proof for
sake of completeness. The information ordering is a sirfardor FT< due to the axioms
in F1 — F5 and hence smaller than the weak subsumption orderirfgifaf Conversely,
we show that every simulation ofiT< is smaller than its information ordering. L&t
be a simulation and, 1o feature trees such thaiAt,. We have to show that; < To.
This is equivalent td, C Dy, andLy, C L, and can be proved by induction on paths.
[|

THEOREM4 An ordering constraing is satisfiable ovefFT< if and only if¢ is satisfiable
over the structure induced by some feature algefra

Proof: If ¢ is satisfiable inFT< then it is satisfiable in the structure inducedm¥(which
is FT<). Conversely, every structure induced by a feature algistaanodel of the axioms
in F1 —F5. Thus, if¢ is satisfiable in such a structure then it is equivalent té an F5-
closed constraint (and nétlse) and hence satisfiable oveil< .]

Alternative Notions of Feature Algebras. In the literature [46, 19] a restricted notion
of feature algebras has been considered that wdeszgllire algebras with constarits the
sequel. The notion of a feature algebra with constants lemdsrestricted satisfiability
problem. This shows that the presented results propergneithe results in [19].

A feature algebra with constanis a feature algebra with satisfies the following additional
property for all labelsa and featuref:

if a(a)” then noto[f] 7o’

This means that nodes labels behave like constants in tdmeder to handle this new
property we consider the following mapping of weak subsuamptonstraints over. and
F to weak subsumption constraints owerand ¥ U {label} wherelabel is a new feature
not contained irffF .

ORDERING CONSTRAINTS OVER FEATURE TREES 19

[a()]=Fy(xlabellyAaly)) [X[fly][=x[fly [x<y[=x<y
[x~yl=x~y (oA T=I6IA['T

PrROPOSITION11 A constraint¢ is satisfiable in the structure induced by some feature
algebra if and only iff ¢] is satisfiable in the structure induced by some feature atgeb
with constants.

Proof: If[$]is satisfiable over a feature algebfavith constants and featur&su {label }
then¢ is satisfiable over the feature algelffa< with features¥. Given a solutioro’ of
[¢]over4 a solutiono of ¢ overFT< can be defined as follows where we wijitg. .. f,]?
for [fi]%o...o[fy)if f1... fnE F*.

Do(x) {p | existsa in the domain of: ¢’(x)[p]*a andp € F*}

Loy = {(p,a) | existsa in the domain of4 : ¢’ (x)[p label]*a anda(a)?}

Conversely, leth be satisfiable for some feature algelsta Then¢ is satisfiable inFT<

by Theorem 4. We define a feature algebra with const&fts" and show thaf ¢] is
satisfiable oveFT®°". The labels and features B*°"are £ and ¥ U {label}, respectively.
The domain ofFT®°" contains all feature trees without labeled inner nodes, where a
labeled inner nodef 1 is a pathp such thatp € Dy, existsa with (p, a) € L; and existsf
with pf € D;. The selection and labeling relationsfT®" are those of T < restricted to
trees without labeled inner nodes. Obviou$yc" satisfies all three axioms of a feature
algebra with constants. Now letbe a solution ofp in the structure induced hff. Then
the variable assignmest mappingx on d’(x) as given below is a solution ¢] in the
structure induced by Te",

Dg'(xy = DgxyU{plabel | existsae L:(p,a) € Ly }
{(plabel, @) | (p,a) € Lg(x } N

LO-I (x)

8. Implementing the Closure Algorithm

We present an implementation of the closure algorithfor testing satisfiability, thereby
proving the complexity statement left open in the proof oe®tem 1. Recall that the
algorithm F computes the closure of a constraint whenever it exists veiipect to the
axioms schemes in Table i — F5 in case ofFT< andF1 — F6 for FT™.

PrROPOSITION12 The closure algorithnk can be implemented (fdfT< and Ffi”, on-

line and off-line) such that it terminates in time(i8) where n is the size of the input
constraint.

Proof: We organize the algorithm as a reduction relation genaa-store-pairs delse.
An agendadis a finite multiset of atomic constraints andtarea constraint satisfying the
following conditions:

20 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

1. Foreveryxandf there exists at most one varialylsuch tha| f]y belongs tap.
2. For every there exists at most one node labeduch thag(x) belongs to the store.
3. Every constraint belongs to the store at most once.

The first condition is crucial since it allows us to store s&te constraints[f]y in a table

of quadratic size. The idea is that we never have to add twetcaintsx] f]y, andx[f]y.

to the store. Instead, we add the first of these constrainsstpke consequencgs<y, and
y2<y1 which are derivable witht2.

Let ¢o be the input constraint. Initially, the agenda containsadimic constraints g
(which may be fed incrementally in the online case). Thaahitore contains the con-
straint A{x<x | x € V(¢o)} A A{X~x|x € V(do)}. Reduction preserves the invariant
that the conjunction of the agenda-store pair is alwapmapletdn that all one-step conse-
guences of the store with respecttdo either belong to the store itself or the agenda. Also,
all agenda-store pairs computed by the algorithm startéddyiare equivalent (when con-
sidered as a conjunction of constraints).

The algorithm terminates false is derived or if the agenda becomes empty. In the first
case, the input constraith is proved unsatisfiable, and in the second one, the final store
contains arF-closed constraint equivalent §oy. It may happen, however, that the final
store differs from the--closure ofdg since the store does not contain atomic constraints
multiply; more importantly, it also does not contain allesgtion constraints belonging to
$o. However, the atomic constraintsdd which are missing in the final store can be added
to it a posteriori without losingr -closedness.

Reduction can be implemented by iteratively executing tlewing sequence of instruc-
tions, which we calthe loopin the sequel:

1. Select and delete an atomic constraifitom the agenda. Ifiis already in the store
then skip.

2. If pis not already in the store then do the following:

(A) For every rule schemé of the form¢ — [/, compute all instances of the form
UA ¢ — W such thath’ belongs to the store. For all theggedo the following: Test
whethen! is new, meaning that # [andp’ does not belong to the agenda nor to
the store. Iff is new then add it to the agenda, otherwise skip.

(B) If there exists a scheme fhwhich has an instance of the fon ¢ — false such
that is in the store then returfalse and exit the loop.

3. If pis an atomic ordering, labeling, or compatibility constitethen addu to the store.
If nis a selection constrainf f]y such that the store does not contgjii|z for all z,
then addu to the store; otherwise skip.

We first discuss the necessary data structures for implengeagenda-store pairs in the
off-line case, where the input constraipg is completely known at start time. Then we
argue how to lift the result to the on-line case.

ORDERING CONSTRAINTS OVER FEATURE TREES 21

The Off-line Case. Letn be the size of the input constraipg, ny be the number of its
variables anahs be the number of its features. The agenda can be implememtédisat
it provides for the following operations in tim@(1).

e select and delete an atomic constraint from the agenda.
e add an atomic constraint to the agenda.

e test membership of atomic ordering, labeling, or compktybiconstraints in the
agenda.

A simple stack or queue is sufficient for ensuring the first twquirements. The third
requirement can be satisfied by using three additional afi@ymemorizing respectively
the atomic ordering, labeling, or compatibility consttaim the agenda.

The store can be implemented by using four arrays: An arrasjzafn, for labeling con-
straintsa(x) indexed byx (at most one per variable), a table of sixe n for the selection
constraint|f]y indexed byx and f (at most one per variabbeand featuref), and two
tables of sizen for the constraints<y andx~y respectively. The store can support the
following operations all in timeéd(1):

e givenx test whether there existssuch that the store containgx); in case of success
return the unique node labalwith this property.

e givenxandf test whether there exisyssuch thak|f]y belongs to the store. In case of
success, return the unique variapleith this property.

e testthe membership aKy or x~y in the store.

The initialization phase of the algorithm needs ti®@?) for allocating the tables for store
and agenda and tinf@(n) for adding the start-up constraints to the agenda and the.sto
After initialization, every atomic constraiptis added at most once to the agenda. Since no
new variable is created, a complete run of the algorithm clhaa most 2 n? constraints

of the formsx<y andx<y to the agenda. This means that the loop is traversed at most
O(n?) many times.

We next verify that each run of the loop needs at most i®@). Once this its shown, it
follows that the overall run time of the algorithm is boundsdO(n®). For example, let

us compute all possible applications of schdfe? for transitivity x<y A y<z — x<zto

an atomic constraini<v. We may either instantiate<y or y<zto u<v. Both cases are
symmetric. In the first case, we have to findasluch thatv<z belongs to the store. This
needs timé&(ny). From the latter set of variables, we have to filter out alkéwfor which
u<zis new, i.e. neither in the agenda, nor in the store, nor egua u. Again this can

be done in timeéD(ny). Last not least, we add all new ordering constraints to tlemeg in
time O(ny).

The arguments for the remaining rules schemes are simikeepxor the occurs check
schemé-6 (which is only needed foFﬂ“). In the off-line case, we can perform the occurs
check a posteriori, by a simple graph reachability testeiatively, we can introduce new
reachability formulas of the form~~+ y. A reachability formulax ~» y is supported by a

22 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

constraintp if ¢ contains a conjunction of the forfy_; xi[fi]yi+1 A Xi+1<yit+1 such that
x1 = xandynt1 =Y. Support of reachability formulas can be administratedharfity when
using a table of siz&(n?).

The On-line Case. In an on-line algorithm, we can feed the input constrginpiece-
wise to the agenda. Note that our algorithm is already indeago the order in which
primitive constraints are picked from the agenda. The &ultil complication is that the
numbern, andns of symbols in$ are not known statically. However, by replacing the
static tables and arrays by dynamically extensible haslegale can still guarantee the
complexity estimations on the access operations [18]. Nuwdé an on-line implemen-
tation of the occurs check cannot be done a posteriori. Aremental occurs check
can, however, be implemented based on the reachabilityuiasx ~» y. So, the al-
gorithm has arincrementaltime complexity ofO(n®), both in case o T< and Fﬂ”.

]

9. Proofs

We prove the completeness of the satisfiability and entaitrtests presented in section
4 and 5. In particular, we show that evefyclosed constraint is satisfiable according to
Proposition 4 and that all of them can be saturated as postuilaLemma 1.

9.1. Path Reachability

In both proofs we need the following notion. For all paghend two variables, y we define

a path constrainof the formx<y[p| generalizing the path constraix<y[f] and atomic
constrainty/<x. A variable assignment into FT< (resp.FTl”) is a solution o<y[p] in
the respective structure ff € Dy(x) anda(y)<a(x)[p]. We generalize the judgments for
syntactic support defined so far ¢ot y<x[p], which we read asy'is reachable fronx
over pathpin ¢”:

o Fy<xe if y<xin¢
o Fy<x(f] if Xflying,
¢ Fy<xpq if ¢Fz<x[p]andd y<Zq] for somez.
We also need path constraints of the faa(w[p]) a solution of which is a variable assign-

menta satisfying(p,a) € Lq(x. Again, we need a notion of syntactic suppit a(x[p])
which reads as "the node labeels reachable i from x over pathp”:

dFa(x[p) if ¢Fy<x/p|]anda(y)in ¢ for somey,
Forexample, ifp is the constraimk<yAa(y) AX[fluAx[g]zAZ[f]xAb(z) then the following

reachability propositions holdh - x<y[e], ¢ F z<X[g], ¢ F x<y[gf], b - x<X[gf], etc, as
well as¢ - a(y[e]), ¢ F b(x[g]), ¢ F b(x[gfg]), etc

ORDERING CONSTRAINTS OVER FEATURE TREES 23

LEMMA 4 If ¢ F z<x[fp|] holds then there exist variable$ ¥ such thatd F X' <x]e],
X[fly € ¢, and¢ - z<y'[p].

9.2. Completeness of the Satisfiability Test
We next prove the following proposition stated without grmoSection 4.

PrROPOSITION4 EveryF1 — F5 closed constraint is satisfiable over ETeveryF1 —F6
closed constraint is satisfiable ovEﬂg”.

Proof: The proofis in four steps elaborated in this sectibinst, we define a syntactic
property of a constraint, called path consistency. Secaedargue that a path consistent
constraint is satisfiable if i§1 — F2-closed (Lemma 5). Third, we show that &&-F5-
closed constraint is path consistent (Lemma 6). In the tagt sve verify that the solution
constructed in step two is finite fé16-closed constraints. []

DEFINITION (PATH CONSISTENCY) We call a constraing path consistentthe following
two conditions hold for all x, y, p, a, and b.

1. If¢ Fa(x[p]) andd - b(x[p]) then a=b.
2. If¢Faxp)), x~yind, andd - b(y[p]) then a=b.

Apparently, condition 2 implies condition 1 fé13.1-closed constraints. We require the
first condition nevertheless, since we which to split thegpinto two lemmas (Lemma 5
and Lemma 6) where we assume oRly-F2-closedness for the first lemma.

LEMMA 5 EveryF1-F2-closed and path consistent constragnts satisfiable inFT<; if
¢ is F6-closed in addition then it is also satisfiablefi .

Furthermore, the following variable assignmemt, (.) is the least solution of aR-closed
constraintp. For all x € V(¢):

Duinyo = {0 y<x[p] or some ¥
Lmin¢(X) = {(p7 a)‘q)'_a(x[p])}

Proof: Letp beF1-F2-closed and path consistent. The first condition of pathisterscy
implies thaﬂ_min¢(x) is a partial function. Thusing(x) is a feature tree ifFT<.

If ¢ is alsoF6-closed then it is not possible that—- x<x[p|] holds for some patlp # «.
Hence, for all,y, p with ¢ - y<x[p] it holds that the length g is bounded by the number
of variables ing (since for each prefig of p there must be a distinct variaktesuch that
¢ - z<x(q)). Thus, if¢ is F6-closed thenminy (x) belongs toF T,

We next verify thatmin,, is a solution ofp in FT< i.e. thatmin, is a solution of all atomic
constraints inp:

24 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

e Lety<xin¢. Forallz if ¢ F z<y[p] thend F z<x[p|] by the definition of syntactic
support. ThUSDm;%(y) C Diing (v FOr allaif ¢ - a(y[p]) thend I a(x[p]) by the
definition of syntactic support. Thulsmi%(y) C Lmi%(x), i.e., ming (Y) <ming (X).

e Considerx|f]y in$. We prove the following equivalences for @l z, andb:
¢ Fz<x(fp] iff ¢Fz<ylp] and ¢ Fb(Xfp]) iff ¢t b(yp])

The first equivalence implieB iy, (y) = {p| fpe Dmin¢(x)} and the second one is
equivalent tol iy, (y) = {(p,b) | (fp,b) € Lmi%(x)}. We start by proving the first
equivalence. Ifh - z<y[p] thend - z<x[f p] sincex[f]y in ¢. Suppose - z<x[f p.
By Lemma 4 there existe andy’ such that

o-X<xe], X[flying, ¢Fz<y[p].

TheF1.2-closedness af and¢ F X' <x[g] impliesxX<x in ¢. TheF2-closedness en-
suresy' <y in ¢ such thatp - z<y[p| holds. We now prove the second equivalence
above. If¢ - b(x[f p]) then there existgsuch thath - z<x[f p] andb(z) € ¢. The first
equivalence implie$ + z<y[p] and thusp - b(y[p]). The converse is analogous.

e Leta(x) in ¢. Reflexivity (F1.1-closedness) implies<xin¢. Thus¢ - a(x[g]) and
hence(g, a) € Lmi%(x).

e Letx~yin ¢. We have to show that the sle,t,i%(x) U Lmin¢(y) is a partial function. If
(p,a) € Lmi%(x) and(p, b) € Lmi%(y) thend + a(x[p]) and¢ F b(y[p]). The second
condition of path consistency fgrimpliesa=b.]

LEMMA 6 EveryF3-F5-closed constraint is path consistent.

Proof: Letd beF3,F4, F5-closed. As mentioned before, the first condition of pathsiten
tency follows from the second one aR8l.1-closedness. The proof of the second condition
is by induction on pathg. We assume, y, a, andb such thath - a(x[p]), x~y in ¢, and

¢ - b(y[p)). If p=g¢, then there exist,m> 0,X,...,%n, Y1,.-.Ym Such that:

a(xXn) AXn<Xn_1A... AXp<Xin¢,
and b(ym) AYm<Ym-1A...Ay1<yin¢.

F3-closedness implies thath~ymin ¢ (F3.2 yieldsx~yiin ¢, ..., X~ymin¢. There-
fore yn~xin¢ by F3.3-closedness, and hengg~x1in ¢, ..., ym~X,in ¢ by F3.2-
closedness.) HencE5-closedness implies = b.

In the case = gp/, Lemma 4 yields the existencexf y, X, andy'such that:

¢ - x'<xle], X[gXind, ¢FalXp]),
and ¢ -y <yle], Y[dlying, ¢FDb(Hp]).

Sincex~yin¢$ we havex'~y in ¢ by F3-closedness (as above). Thur-closedness
implies X~y in ¢ such thata=Db follows by induction hypothesis (from - a(X[p']), ¢ -
b(¥p']) andx~y in ¢). n

ORDERING CONSTRAINTS OVER FEATURE TREES 25

Lemmas 5 and 6 yield a further result on entailment which magptits own interest.

COROLLARY 2 Let¢ be anF-closed constraint. Thed |= 3y(x[fly) if and only if there
exists a variable z such that- z<x[f].

Proof: Assume tha$ - z<x[f] does not hold for alz. According to Lemmas 6 and
5n it holds for the least solutioming of anF-closed constraint that ¢ Dmin¢(x). Hence

o [~ 3y (X[f]y). u
9.3. Saturation

We prove the existence of a saturated formula@gaas postulated in Lemma 1. This
formula contradicts all (relevant) atomic constraints @eotailed by simultaneously.

We construct S&b) by means of two operatofg andl"; on constraints. The operatbs

is such that™»(¢) disentails all atomic constraints of the formsx~y, x<y, anda(x)
(but not selection constraints) which are not syntactycglipported inp (Lemma 9). The
operatoi 1 is necessary to also disentail selection constraints.rGveonstraing, 1 ()
extendsh such thaf >(I1(¢)) disentails all relevan. In a sensel 1 is a “preprocessor
for .

DEFINITION OF "1 Let be a constraint. For all e V(¢) and fe F(¢) let ws be a
fresh variable. Depending on this choice of variables, wigngéé 1(¢) to be the following
F-closure whenever it exists afielse otherwise.

ri@) = cl@rA{Xflwr | xeV($)and feF(9)})

DEFINITION OF ', Let ¢ be a constraint. Letiyand v be distinct fresh variables,1a
and & be distinct labels, and for every pair of variableyx V (¢) and f € L(¢) let w be
a fresh variable and letsfand f,, be fresh features. We define a first-order formitdéd)
depending ony Vo, a1, &, fx, fxy, and y as follows:

Fa(d) = & A AXEdw A =3V (YIRY) |9 /X<y, X,y €V()} (1)
A A {Xfxylva A Ylfylva | @ 17 x~y, X,y € V(9)} (2)
AN N{x~v1 A x~vp|forallael: ¢t/a(x), xeV(p)} (3)

A ag(vi) Aaz(va) (4)

ExamMPLE 8 For illustration of 1 andl", consider the constraini equal to Xf]xA y<x
which does not entail[X]y if we assume ¥ y. The constraing can beF-closed forFT<
(but not forFTl”) by adding the following trivial atomic constraintsay A y~X A X~X A
y~y A X< X A y<y which we omit for sake of simplicity. In order to disentdil]y we first

26 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

computel 1(¢) by adding xf]vxs and yf]w+ to ¢ and computing thé -closure. Now,
I1(¢) is (up to trivial and compatibility constraints):

F1(0) X[FIXAYSXAX[Fves AY[vyt A
1 =
Vyf SVxf AV f SXAXSVxp AY<Vy A Vyi<IX

Observe thaf 1(¢) does not containy <y; thatis,l1 (¢ I v <y. Nowl (I 1(¢)) disen-
tails v <y due to clausél) which asserts thatyy allows selection at feature,f while 'y
does not (sincexy| fu, |V, A ﬂEz(vyf[nyf]z) in2(F1())). Hencel 2(I1(¢)) also dis-
entails X fly.

Note that Example 8 does also illustrates why a two step atidur procedure is needed:
The key idea is that the featufg, allows to contradict entailment aff]y forally e V(¢)
such thatp 7 x[f]y. This featurefy,, is introduced in the second step on the basis of the
variablevys which is added freshly in the first step.

LEMMA 7 (PROPERTIES OH ;) Let¢ be anF-closed (and hence satisfiable) constraint.
ThenTl1(9) is satisfiable and satisfies the following two properties dratomic con-
straints J, variables y and features f:

(P1) If ¢ &, and M) S V(¢), thenl1(¢) i .
(P2) Ifx,yeV(¢), f € F(¢), andd 7 x[f]y, thenl1(¢) 7 y<vxs or F1(¢) 7 wxr<y.

Proof: We first show thaF () is satisfiable and then show (P1) and (P2). For prov-
ing the satisfiability of1(¢), we give an inductive construction 6f(¢) and show that
all constraints in this construction are satisfiable. bhebe the cardinality of the set
V ={ws |xeV(p), fe€F(d)} and fix an enumerationar : {1,...,n} =V, i.e. var

is a function that is one-to-one and onto. Then, we consiteifallowing sequence of
constraints for K i < n:

o = ¢

di = cl(di—1 AX[f]vks) if var(i) = wt

Of course, we have to show that all of the above closures.e¥isto then, apparently,
it follows thatl"1(¢) = ¢,. We show the existence of the closures in the definitior;of
by induction oni. For the induction step, we assume foxQ@ < n with var(i) = v that
di_1 exists, and show that the constraftdefined below ig--closed. Sinceh; contains
di A X[f]vks this shows that the closure(h_1 A X[f]vs) exists.

i = e A X[FIvir A Vs <Vt A Vi~V (4.1)
AN Nz8 Wt | 6 z<X[f]} (4.2)
A Mui<z| i1 b xAfl<z) (43)
A N Wxf~zZAZ~vs | ex.y i diog E x?fl<yandy~z in¢j_1} (4.4)

>

MMVxf~ZAZ~vgs | ex.y: di-1 F z<y[f] andy~x in§i_1} (4.5)

ORDERING CONSTRAINTS OVER FEATURE TREES 27

It is clear thatd; is contained inb;, hence it suffices to show that; is F-closed. Ther-
closedness af; is proved by a case distinction over the rules schemés ive have only
to consider those instances of schemeis imhich contains the new variablgs. For sake
of readability, we allow us to also denote variables witia w.

F1.1 Reflexivity of the ordering relation holds sineg <vy¢ in §; by clause (4.1).

F1.2 We assumai<vin §; andv<win ¢; and show thau<win $;. We make a case

F2

distinction depending on which of the variables, w equalvys.

If u,v,w# vz, thenF1l.2-closedness dfij_1 yieldsu<w in ¢j_1. Thusu<w in ¢;.

If u=w=w¢, thenu<w in@; iff v <ws in §j, and this follows from clause (4.1).
If u=v=vys, thenu<w in ¢; iff vxs<w in ¢;, and this follows fromv<w in ¢;.

If v=w= s, thenu<win §; iff u<wys in ¢j, and this follows formu<v in ¢;.

If u=ws andv,w# v¢, thenv<vin$; and hence;_ 1 F x?[f]<v by clause (4.3).

By F1.2-closedness dffi_1 (transitivity) it follows that;_1 - x?[f]|<wand hence,
by clause (4.3) againg:<w in ¢j, i.e. u<w in ; .

If w= vy andu,v # vxs. This case is symmetric to the previous one when using
clause (4.2) instead of clause (4.3).

If v= s and u,w# vy, then, by clauses (4.2) and (4.8),.1 F u<x[f] and¢i_1 -
x?[f]<w. By F-closedness op;_1 (transitivity and descenf1.2 andF?2) it fol-
lows thatu<w in ¢;_1 and hencai<w in ¢;.

We assumel[g]u’ in §;, u<v in §; andv[g]V' in §; and shows/ <V in ¢;. If u,v,Uu'.V €
V(¢i_1) then this follows from thé-2-closedness of;_;. Otherwise, at least one of
these variables,v,u',V is equal to the new variablg;:. Sincex|f]v is the only
selection constraint added ¢g_, it follows thatvys ¢ {u,v}. Hencews € {U,V'}.

If ¢ =U, thenx=uandg= f.

If vgs =V, thenu'<V' in ¢; follows from theF1.1-closedness af; (reflexivity).
If vei #V, thendi_1 - x?[f]<V and hence it follows from clause (4.3) that
Vi<V in §j, i.e. U<V in §;.
If ¢ =V, thenx=vandg=f.
If vys = U/, thenu'<V in ¢; follows from theF1.1-closedness dfi (reflexivity).

If vi #U, then ¢i_1 - U<x[f] and hence it follows from clause (4.2) that
U <w;s in §j, i.e.u<vin ¢;.

F3.1 Reflexivity of the compatibility relation holds sineg;~vy in §; by clause (4.1).

F3.2 Assumeu<vin ¢; andv~w in ¢;. We have to show that~w in ¢;.

If u,v,w# vz, thenu~w in ¢; follows from F-closedness of;_1.
If u=v=wvy, thenv~win ¢ iff vxs~w in §; iff u~w in ;.
If u=w=vs, thenu~w in ¢; follows from clause (4.1).

28 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

If v=w=ws andu# s, then, by clause (4.2p;_1 - u<x[f]. By F-closedness
of ¢i_1 we havex~xin¢i_1 and hence, by clause (4.9)~v: in ;. Hence
u~v in ¢;.

If u=wxs andv,w# v, then by clause (4.3)$;_1 F x?[f]<v and hence, by
clause (4.4)yxi~w in §;, i.e u~w in §;.

If w=w; andu,v # vs, thenv~w is equal tov~vyx; and could have been added by
clause (4.4) or clause (4.5).

(4.4) Then, by clause (4.4), existssuch thath;_; F x?[f|<V andv ~v in ¢;_1.
By F3.2 andF3.3-closedness of;_; it holds thatv~uin¢$;_; and hence
u~Vxs in §; by clause (4.4) again, i.e~w in §;.

(4.5) Then, by clause (4.5), exists such thath;_1 - v<X[f] andX ~x in d;_1.
By F1.2-closedness dfij_; (transitivity), i—1 - u<x'[f] so thatu~vys in §;
by clause (4.5) again, i.e~w in ;.

If v= vy andu,w# vys, thenwi~w could have been added by clause (4.4) or
clause (4.5). The argumentis similar to the previous one.

F3.3 Symmetry of the compatibility relation holds since wheerea compatibility con-
straint is added in either (4.1), (4.2), or (4.3) then alssitmmetric variant is added.

F4 We assumelg]u’ in §;, u~v in §;, andv[g]V in §; and shows'<V in ¢;. Because of
the F4-closedness af;_; this holds trivially ifu,v,u’,V € V(¢j_1). Otherwise, there
exists at least one of these variables which is equal to tievagiablevy;. Since
X[f]wks is the unique selection constraint addedpto; it follows that vyt ¢ {u,v}.
Henceyy: € {U',V'}. We can assume without loss of generality that= U’ since due
to symmetry £3.3-closedness dafij_1) it holds thatv~u in ¢;_1 such that the rles af
andv can be exchanged. So we assuige= U, x=u, andg = f.

If vg¢ =V, thenu'~V € §; follows from theF3.1-closedness df; (reflexivity).

If v #V, then ¢;_1 F V<V[f] and x~vin¢;_1. Sinced; 1 is F3.3-closed we
also havev~x in ¢;_3. Hence it follows from clause (4.5) thag: <V in §;, i.e.
u<vin é.

F5 The clash axioni5 does not apply t@; for two reasons: No compatibility constraint
y~z has been added #y_; for some variabley,z € V(¢i_1), and no labeling con-
straint has been added for the new varialle

F6 For the case oFﬂ“, we show that if; is not F6-closed thenp;_; is also notF6-
closed. Suppose théf is notF6-closed. Hence, there exists a cyclic constraint of the
form /\'J-‘:lxj [filYi+1 A Xj+1<Yj+1in §i wherexq 1 =x1 andn > 1. If Xj,yj € V(di_1)
forall 1< j <n+1then, of coursap;_1 is notF6-closed and we are done. Otherwise,
there exists K j < n+ 1 such thay; = v¢ (it is not possible thax; = vy+ since not
Vxt[g]z in§; for all Z). We can assume without loss of generality thayalire distinct
(otherwise there exists a shorter cyclefinwhich can be considered instead). Hence,
the index;j with yj = vxs is unique. Without loss of generality, we can assyjraen+ 1
(since we can shift the indexes of the variables in the cydtedm the definition of

ORDERING CONSTRAINTS OVER FEATURE TREES 29

$i and the fact thatn 1<y in ; it follows that®;_1 F Xn1<Xy[fn]. The definition
of syntactic support together wiffiL.1 — F1.2-closedness dfi;_1 yields the existence
of x, andyj,_; such thatn; 1<Y;, 1 A Xy[fa]Yni1 A X, <Xnin ¢i_1. This implies the
existence of the following cycle i3 which shows tha$;_; is notF6-closed:

n—2

(/\ Xi[Fi1Yie1 A Xj11<Yj1) A (na[faalyn A X0<Yn) A ([falYnis A Xnr1<Yni1)
j=1

Now we check properties (P1) and (P2) claimed in Lemma 7, bpttontraposition.

(P1) Assume thaf 1(¢) - 1, andV () C V(d). We show thath - p by case distinction
over the forms of atomic constrairyts

p=Xx<yorp=x~y: If [1(¢)Fpthenpinl1(¢) orx=y. If x=y, then trivially ¢ +
p. Otherwise, ifuin1(¢). FromV (u) C V(¢) and the concrete representation of
I1(¢) coming withl"1($) = ¢, we can deducp in . Henced F .

p=a(x): If F1(¢)F a(x) thenthere exists a variabtesuch thag(xX) AX <x in [1(¢).
Since labeling constraints are not added by the closureatiparone obtains that
a(X') in ¢. The assumptiolV () C V() givesx € V(¢) and hence/(xX'<x) C
V(0). As already proved in the previous case, this impligsx' <x. Hence, we
concludep + a(x).

p=x[fly: If F1(¢) F x[f]y then there exist variablesu’ andv,v such that:

F1(¢) - W forall W € {u<x x<v,y<u’,v<y},
andu[f]u AV[fIV inT1(¢).

By assumptionx,y € V(i) C V(). Also u,v e V() holds sincel 1(d) = dn
contains no selection constraint of the fozpf|v wherez; ¢ V(9).

In the casal,v € V(¢), it follows easily thath - x[f]y. We can without loss of
generality assume that, V' € V(). To see why, suppose &V (). Thenu' = vy¢
by construction of 1(¢) = ¢n: Let var(vys) =i. Then by Clause (4.2);_1 F
y<u[f] which means that there must exist variables’/ € V(¢;_1) such that
y<w Aw[flwW Aw<xind;_1. Hence, we can replacgw for u,u’ above and
obtain the same situation up to renaming. By induction ameg(v,s) we find a
replacement fou' in V(). The argument fov is dual.

(P2) Assume thaf'1(¢) F z<vys andl1(¢) F v <zfor some variablex € V(¢) andf €
F(¢). Then by clauses (4.2) and (4.3) there must exist variabiési, u' € V(I'1(9))
suchthaf 1(¢) Fz<x[f] andl1(¢) F x?[f]<z By definition of syntactic support these
assumptions imply 1(¢) F x[f]zand hence, by case (1) abode; X[f]z.]

LEMMA 8 (I, PRESERVESSATISFIABILITY) If ¢ is F-closed, therz(¢) is satisfiable.

Proof: Letdr be the constraint part &%(¢) (i.e., the conjunction of all atomic constraints
in 2(¢) but without the negative formulas added by clause (1). lbisdifficult to show

30 MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

that ¢r is F-closed up to trivial constraintx£x andx~x) and symmetric compatibility
constraints. Note in particular, that each fresh featiyreccurs only once i 2(¢) (and
hence neithelf2 norF4 apply), and that the fresh featurkg occur exactly twice i 2(¢),
namely in selections atandy, for which neitherx~y nor, by F3.1-closedness af, x<y
ory<xoccuring.

Hencemin,_ as defined in Lemma 5 of Section 9.2 is a solutiogef It suffices to check
thatmin,_ also satisfies the negated selection constraints addedunelL) of ['2(¢).
Assume—-3y (y[fx]y') in T2(¢), hence also(fx]vx in T2(¢p) and$ I/ x<y. F-closedness
of ¢ andd I/ x<y imply that¢ F x<y[e]. Sincefx has a unique occurrencelin(¢), this
implies thatpr - v <y[fy], and hencdy ¢ Dmin¢r (y)- [|

LEMMA 9 (T2 CONTRADICTS NON-SELECTIONCONSTRAINTS) Let$ be anF-closed
constraint and let p be an atomic constraint of the foryxx<y, or a(x) with x, y € V(¢).
Thenl2(¢) = —p if and only ifd & .

Proof: 1fI2(¢) = —pthend I pby Lemma 8 and correctness of syntactic support. For
the inverse direction we inspect the definitiomo{¢).

Clause (1) Ifp I/ x<y, thenl »(¢) disentailsx<y by forcingx to have a featuré whichy
must not have.

Clause (2) If¢ I/ x~y, thenl»(¢) disentailsx~y by forcingx andy to have a common
featurefyy such that the subtrees aindy at fyy are incompatible.

Clauses (3) and (4) B t/ a(x), thenl(¢) disentailsa(x) for every sorta by forcingx to
be consistent with two trees with distinct label. [|

DEFINITION (SATURATION) Let ¢ be anF-closed constraint. By Lemma 7y(d) is
satisfiable such that we can define a satura&a{$) of ¢ by Sa{d)=geil 2(I 1(D)).

LEMMA 10 (SATURATION CHARACTERIZES SYNTACTIC ENTAILMENT) Let ¢ be an
F-closed constraint and p an atomic constraint such thgi\C V (¢) and F(p) C F(¢).
Thend I/ p impliesSa{¢) = —p.

Proof: Letd be anF-closed constraint angdan atomic constraint such thétp) C V()
andF(p) C F(¢). Suppose thap t/ . Hencel 1(¢) t/ pu by Property (P1) of Lemma 7.
If wis not a selection constraint thén(M1(¢)) = —p by Lemma 9 and/ () C V(d).
Otherwise, letu = x[f]y for somex,y € V(¢) and f € F(¢). Hence,[1(d) I/ wi<y or
I1(¢) ¥ y<wxs by Property (P2) of Lemma 7. By Lemma 9, eitiexT'1(¢)) = Wi <y
or2(F1(¢)) = —y<wxs holds, and hence again(ri(¢)) = -]

Proof of Lemma 1: We check that $&} has the three postulated properti€d) The
saturation formula S&p) entailsd by construction(2) Lemmas 7 and 8 prove that $dj
is satisfiable.(3) By Lemma 10, Sdth) contradicts all atomic constraingswith V() C
V(¢) andF () C F(¢) thatd does not support syntactically.

ORDERING CONSTRAINTS OVER FEATURE TREES 31

10. Conclusion

We have presented the constraint syst€f of ordering constraints over feature trees. We
have shown that the satisfiability problemfif< and its entailment problem can be solved
in cubic time and have given correct and complete algoritfanisoth. We have proved the
independence property &fT<, which implies that conjunctions of positive and negative
ordering constrainty A -¢1 A ... A =0, can also be tested for satisfiability in cubic time.
Finally, we have shown that our satisfiability test for pwsitFT< constraints improves
the known complexity of the satisfiability problem for wealbsumption constraints from
O(n®) to O(nd).

Acknowledgments

We would like to thank Jochen Dorre, Gert Smolka, and Radfifen for discussions on
the topic of this paper. We thank Kartin Erk for having chetkiee final manuscript. We

would also like to acknowledge the many helpful remarks ef tbferees. The research
reported in this paper has been supported by the Esprit Wo&roup CCL Il (EP 22457)

and the Deutsche Forschungsgemeinschaft DFG through tBe3%8 at the Universitat

des Saarlandes.

Notes

1. The proof given in [11] assumes infinite sets of featuresrasde labels. We conjecture (and this should not
be too difficult to prove) that the first-order theory of FT is@completely axiomatizable for finite signatures.

2. Afeature algebra is not an algebra since its featureséeepreted as partial but not total functions

References

1. Hassan Ait-Kaci. An algebraic semantics approach teffleetive resolution of type equationBheoretical
Computer Scien¢el5:293-351, 1986.

2. Hassan Ait-Kaci and R. Nasr. LOGIN: A logic programmiagduage with built-in inheritancelournal
on Lisp and Symbolic Computatiop:51-89, 1989.

3. Hassan Ait-Kaci and Roger Nasr. LOGIN: A logic programgiianguage with built-in inheritancelhe
Journal of Logic Programming3(3):185-215, 1986.

4. Hassan Ait-Kaci and Andreas Podelski. Entailment asdrdailment of order-sorted feature constraints.
In Andrei Voronkov, editorProceedings of the International Conference on Logic Programming and
Automated Reasoningolume 698 oLecture Notes in Artificial Intelligencgages 1-18. Springer-Verlag,
Berlin, July 1993.

5. Hassan Ait-Kaci and Andreas Podelski. Towards a measfitife. The Journal of Logic Programming
16(3 — 4):195-234, July, August 1993.

6. Hassan Ait-Kaci, Andreas Podelski, and Gert Smolka. aiuie-based constraint system for logic pro-
gramming with entailmentTheoretical Computer Sciencg&22(1-2):263—-283, January 1994.

7. Rolf Backofen. Expressivity and Decidability of First-order Languagesp\¥eature Trees Doctoral
Dissertation. Universitat des Saarlandes, Technisckelféa, D-66041 Saarbriicken, 1994.

8. Rolf Backofen. Regular path expressions in feature lagpeirnal of Symbolic Computatipa 7:421-455,
1994.

32

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

MARTIN MULLER, JOACHIM NIEHREN, AND ANDREAS PODELSKI

Rolf Backofen. A complete axiomatization of a theory wigature and arity constraintsThe Journal
of Logic Programming 24(1 — 2):37-71, 1995. Special Issue onComputational uistigs and Logic
Programming.

Rolf Backofen. Controlling functional uncertainty. Volfgang Wahlster, editorProceedings ofl2h
European Conference on Artificial Intelligengeages 557-561. John Wiley & Sons, Ltd, 1996.

Rolf Backofen and Gert Smolka. A complete and recursiatuire theoryTheoretical Computer Science
146(1-2):243-268, July 1995.

Rolf Backofen and Ralf Treinen. How to win a game with tees$. In Jean-Pierre Jouannaud, editst,
International Conference on Constraints in Computatiohabics Lecture Notes in Computer Science,
vol. 845, pages 320-335, Muinchen, Germany, September $pihger-Verlag.

Ronald J. Brachman and Hector J. Levesque. The tragtadfilsubsumption in frame-based description
languages. IiProceedings of the National Conference on Atrtificial Ingelhce pages 34-37, August 1984.
Bob CarpentefThe Logic of Typed Feature Structures - with Applicationsidfication Grammars, Logic
Programs and Constraint ResolutioNumber 32 in Cambridge Tracts in Theoretical Computer i8e
Cambridge University Press, Cambridge, England, 1992.

Witold Charatonik and Andreas Podelski. The indepeoelgaroperty of a class of set constraints. In
Eugene C. Freuder, editd?roceedings of the™ International Conference on Principles and Practice of
Constraint Programmingvolume 1118 ot.ecture Notes in Computer Scienpages 76-90, 1996.

Witold Charatonik and Andreas Podelski. Set conssabvith intersection. IrProceedings of the 12
IEEE Symposium on Logic in Computer Scienmges 352-361, Warsaw, Poland, 1997. IEEE Computer
Society Press.

Alain Colmerauer. Equations and inequations on finigtiafinite trees. In ICOT, editoProceedings of
the 29 International Conference on Fifth Generation Computern&ys pages 85-99. Omsha Ltd., Tokyo
and North-Holland, Amsterdam, 1984.

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Edhelm Meyer Auf Der Heide, Hans Rohnert, and
Robert E. Tarjan. Dynamic perfect hashing: Upper and lowaimiols. SIAM Journal of Computing
23(4):738-761, August 1994.

Jochen Dorre. Feature-logic with weak subsumptiorsicaimts. In M. A. Rosner C. J. Rupp and R. L.
Johnson, editorsConstraints, Languages, and Computatichapter 7, pages 187-203. Academic Press,
1994.

Jochen Daorrefreature-Logik und SemiunifikatioNumber 128 in DISKI - Dissertationen zur Kinstlichen
Intelligenz. Infix Verlag, Sankt Augustin, July 1996. In Gen.

Jochen Dorre and William C. Rounds. On subsumption and-gnification in feature algebrasournal

of Symbolic Computatiori3:441-461, 1992.

R. Helm, K. Marriott, and M. Odersky. Constraint-baseeny optimization for spatial databases. 16"
Annual IEEE Symposium on the Principles of Database Syieages 181-191, May 1991.

Mark Johnson Attribute-Value Logic and the Theory of GrammaXumber 16 in CSLI Lecture Notes.
Center for the Study of Language and Information, 1988.

Ronald M. Kaplan and Joan Bresnan. Lexical-functiomalmgnar: A formal system for grammatical
representation. In J. Bresnan, editdbhe Mental Representation of Grammatical Relatjgreges 173—
281. The MIT Press, Cambridge, MA, 1982.

Robert T. Kasper and William C. Rounds. A logical sentanior feature structures. Proceedings of the
Annual Meeting of the Association of Computational Linticss pages 257-265, 1986.

Martin Kay. Functional grammar. In C. Chiarello et atliter, Proceedings of the's Annual Meeting of
the Berkeley Linguistics Societyages 142—158, 1979.

J. Lassez and K. McAloon. Applications of a canonicalféor generalized linear constraints. Pmoceed-
ings of the & International Conference on Fifth Generation Computert&ys pages 703-710, December
1988.

Kuniaki Mukai. Partially specified terms in logic progmaning for linguistic analysis. IfProceedings of
the @" International Conference on Fifth Generation Computert@ys Tokyo, Japan, 1988. ICOT.

Martin Muller. Ordering constraints over feature sð ordered sorts. In P. Lopez, Suresh Manandhar,
and Werner Nutt, editorsComputational Logic and Natural Language Understandibgcture Notes in
Artificial Intelligence. Springer-Verlag, Berlin, to appe Available ahttp://www.ps.uni-sb.de/
“mmueller/papers/cinlp.ps.Z .

Martin Muller and Joachim Niehren. Entailment for senstraints is not feasible. Technical report, Pro-
gramming Systems Lab, Universitat des Saarlandes, 19®7-//www.ps.uni-sbh.de/Papers/
abstracts/inesinfeas.html

ORDERING CONSTRAINTS OVER FEATURE TREES 33

31. Martin Muller and Joachim Niehren. Ordering constimiaver feature trees expressed in second-order
monadic logic. In Tobias Nipkow, editotnternational Conference on Rewriting Techniques and Ap-
plications volume 1379 ofLecture Notes in Computer Sciengeages 196-210, Tsukuba, Japan, 1998.
Springer-Verlag, Berlin.

32. Martin Miller, Joachim Niehren, and Andreas Podelskiclusion constraints over non-empty sets of
trees. In Michel Bidoit and Max Dauchet, editoRroceedings of the Theory and Practice of Software
Developmentvolume 1214 of_ecture Notes in Computer Sciengmges 345-356, Lille, France, April
1997. Springer-Verlag, Berlin.

33. Martin Muller, Joachim Niehren, and Ralf Treinen. Thestforder theory of ordering constraints over
feature trees. IfProceedings of the BIEEE Symposium on Logic in Computer Scienmges 432-443.
IEEE Computer Society Press, 1998.

34. Bernhard NebelReasoning and Revision in Hybrid Representation Systeshsme 422 ofLecture Notes
in Artificial Intelligence Springer-Verlag, Berlin, 1990.

35. Bernhard Nebel and Gert Smolka. Representation andmegswith attributive descriptions. In K.H.
Blasius, U.Hedtstiick, and C.-R. Rollinger, editdg®rts and Types in Atrtificial Intelligenceolume 418
of Lecture Notes in Artificial Intelligencepages 112-139. Springer-Verlag, Berlin, 1990.

36. Joachim Niehren, Martin Muller, and Jean-Marc Tallientailment of atomic set constraints is PSPACE-
complete, December 199&ww.ps.uni-sb.de/Papers/abstracts/atomic:98.html

37. Jens Palsberg. Efficient inference of object typesRroceedings of the!® IEEE Symposium on Loglc in
Computer Scien¢gpages 186-185. IEEE Computer Society Press, 1994.

38. Andreas Podelski and Gert Smolka. Operational sensaoticonstraint logic programs with coroutining.
In Leon Sterling, editorProceedings of the 12 International Conference on Logic Programmjmpges
449-463, Kanagawa, Japan, 13—-18 June 1995. The MIT Prasbridge, MA.

39. Carl Pollard and lvan Saglead-Driven Phrase Structure Grammatudies in Contemporary Linguistics.
Cambridge University Press, Cambridge, England, 1994.

40. Carl J. Pollard and Ivan A. Sadnformation-based Syntax and Semantics, VolINumber 13 in CSLI
Lecture Notes. Center for the Study of Language and InfaonaStanford University, 1987. Distributed
by University of Chicago Press.

41. Francois Pottier. Simplifying subtyping constrainta Proceedings of the ACM SIGPLAN International
Conference on Functional Programmingpges 122-133. ACM Press, New York, May 1996.

42. William C. Rounds. Feature logics. In Johan van BenthathAlice ter Meulen, editorsiHandbook of
Logic and Languagepages 475-533. Elsevier Science Publishers B.V. (Norttahitd), 1997. Part 2:
General Topics.

43. Steward ShiebeAn Introduction to Unification-based Approaches to Gramm@8LI Lecture Notes No.
4. Center for the Study of Language and Information, 1986.

44. Steward ShieberParsing and Type Inference for Natural and Computer LangsadSRI International
Technical Note 460, Stanford University, March 1989.

45. Steward Shieber, Hans Uszkoreit, Fernando Pereiralah Robinson, and M. Tyson. The formalism
and implementation of PATR-II. In Joan Bresnan, ediResearch on Interactive Acquisition and Use of
Knowledge SRI International, Menlo Park, California, 1983.

46. Gert Smolka. Feature constraint logics for unificaticengmars.The Journal of Logic Programming.2(1
—2):51-87, 1992.

47. Gert Smolka. The Oz Programming Model. In Jan van Leeueditor, Computer Science Todayolume
1000 ofLecture Notes in Computer Sciengages 324—-343. Springer-Verlag, Berlin, 1995.

48. Gert Smolka and Ralf Treinen. Records for logic prograngm The Journal of Logic Programming
18(3):229-258, April 1994.

49. Ralf Treinen. Feature constraints with first-classuezg. In Andrzej M. Borzyszkowski and Stefan
Sokotowski, editors)nternational Symposium on Mathematical Foundations ofm@uater Sciencevol-
ume 711 ofLecture Notes in Computer Scienpages 734—-743, Gdahsk, Poland, 30 August—3 September
1993. Springer-Verlag, Berlin.

50. Andreas Zeller and Gregor Snelting. Handling versiots #lerough feature logic. In W. Schéafer and
P. Botella, editorsProceedings of the!s European Software Engineering Conferenesiume 989 ol_ec-
ture Notes in Computer Sciengeages 191-204, Sitges, Spain, September 1995. Sprirgigy/Berlin.

51. Andreas Zeller and Gregor Snelting. Unified versionihgpaigh feature logic. ACM Transactions on
Software Engineering and Methodolog(4):398-441, October 1997.

