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SUMMARY

Kitrace is a software tool that allows dynamic interactive measurement of UNIX kernel performance to
much greater precision than that available from kernel profiling. Developers can measure, to microsecond
resolution, the time required by a complex kernel activity, including time spent waiting for I/O activity or
user processes.Kitrace has also proven useful for debugging, especially in situations where traditional
breakpointing would be undesirable or would change the behavior of the kernel.
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INTRODUCTION

Traditionally, operating-systems performance measurement has been a difficult and indirect
task. Profilers such asgprof,1 while simple to implement and widely available, suffer from
statistical inaccuracies2 and cannot identify queueing or I/O delays. Object-code modifiers3,4

are clumsy to use and difficult to target precisely. Hardware analyzers,5,6 while powerful,
are expensive and limited to special installations. One of the most flexible techniques is
software-based trace collection,7,8,9,10,11,12,13,14,15 but the inconvenience of inserting trace state-
ments has hampered the usefulness of this method.

This is especially unfortunate because of the size and complexity of modern operating
system kernels. Kernel performance and reliability have a direct impact on the performance
and reliability of the overall system, so that the need for good tools is even greater than
that of many user-level programs.

We have developed a new tool,kitrace,∗ which complements profiling andad hoc
measurement by allowing precise interactive measurements of running kernels. A user-level
interface allows tracepoints to be set at (nearly) any kernel instruction. When a tracepoint
is reached, precise timing information is captured in a trace buffer, together with a few
variables selected by the user to aid in analysis. The user-level interface program prints the
buffer and allows easy modification of tracepoints based on experimental results.

Althoughkitrace was not specifically designed as a debugging tool, it has also proven
very useful for that purpose, especially when analyzing timing-dependent problems, because
of its minimal impact on kernel behavior.
∗ For kernel interactive trace, and pronouncedKIH-trace.
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INTERACTIVE KERNEL TRACING

Kitrace is a tool that falls between profiling and special-purpose code in the measurement
spectrum. Like profiling, it provides generalized facilities that may be used on a running
kernel at any time. Like special-purpose code, it allows precise and detailed measurements
that are limited to the areas of interest. In addition, although it was not developed for
that purpose,kitrace has proved to be a useful adjunct to traditional methods of kernel
debugging.

Overview

The kitrace package is divided into a user-level control program and a small amount
of kernel support code. When the user requests a tracepoint, the control program uses the
UNIX memory-access device (/dev/kmem) to insert a trap instruction into the kernel at the
appropriate point, and to record trace-control information in a dedicated structure.

When a tracepoint is reached, the kernel support code captures the program counter, the
current time (to microsecond resolution, if the hardware supports it), and, if requested, a
small amount of relevant data. It places all of this information into a trace buffer in kernel
space, and resumes normal kernel execution by single-stepping past the trapped instruction,
using a standard technique discussed below. Our performance measurements, presented
later, show that the entire process takes only a few tens of microseconds on modern CPU’s.
The low cost of tracing means that measurement rarely has an impact on the software being
examined, and the tracing cost can be quantified precisely enough to be taken into account
in analysis.

After data has been collected, the user-level control program reads the trace buffer, again
using /dev/kmem, and prints it in a standard format. The control program can also clear
the trace buffer, delete or modify tracepoints, and perform high-level operations such as
temporarily stopping all tracing. All operations on/dev/kmem are carefully ordered to avoid
race conditions that might crash the kernel or cause trace data to be lost.

UNIX kernel internals

The examples in this paper are chosen from actual measurements made on the UNIX kernel
running the Ficus operating system,16,17 which is a modified version of SunOS 4.1.1, on a
Sparcstation IPC. Sincekitrace is designed for kernel development, its use presupposes
familiarity with the code being measured. For those readers unfamiliar with the aspects of
the UNIX kernel used in our examples, a brief summary is in order.

System calls

Although any instruction in the kernel, with the exception of those involved in the tracing
process itself, can be traced, for simplicity most of the examples trace the behavior of the
sync system call, which causes dirty memory buffers to be written to disk and network file
systems. This operation is useful for demonstrations because it can be invoked by any user
and it causes both disk and network I/O. In the kernel, the first instruction of the system
call is found at the label_sync. Some of the examples trace other instructions internal to
the _sync routine. These instructions are discussed as part of the examples.

A few examples and measurements use other calls. Theopen andclose calls perform



KITRACE: PRECISE INTERACTIVE MEASUREMENT OF OPERATING SYSTEMS KERNELS 3

Table I. Interactive trace commands

clear Clear the trace buffer
print Print the trace buffer
printclear Print and then clear the trace buffer
follow Print and clear repeatedly
freeze Freeze tracing
unfreeze Unfreeze tracing
list List currently-set tracepoints
delete addresses Delete tracepoints
trace address [options]. . . Set tracepoints
status Report tracing status
help Print a help message
quit Exit kitrace

the standard file operations associated with those verbs. They were chosen to illustrate how
kitrace can be used to examine some types of user-process behavior. Thegetpid call
allows a user process to discover its system-assigned process ID, or PID. Because this call
simply returns an integer to the caller, it can be easily executed many times in succession
to collect statistical performance data on the overhead introduced bykitrace.

Internal kernel routines

The examples also make use of several other routines which are available only internally
to the kernel. Some of these are invoked by the_sync routine to flush buffers to various
file systems. All of these routines have names of the formxxx_sync, wherexxx is indi-
cates a filesystem type. Many filesystem types do not do any actual work. Important types
includespec, which handles meta-data such as block-location information for the hard-disk
filesystem,ufs, which handles file contents for the hard-disk filesystem, andnfs, which
implements Sun’s Network File System.18

Primary disk scheduling is carried out by the_sdstrategy subroutine, which is re-
sponsible for initiating I/O to disk drives and for ordering the I/O queue to optimize head
movement. This routine may be called at any time, regardless of whether the disk is busy.
If necessary, it must queue requests for future execution. However, if the queue becomes
too long, it is permissible to suspend the caller until space becomes available.

All disk interrupts are handled by the routine_sdintr. Although there are rare instances
when interrupts signal something other than disk completion, the examples in this paper
assume that every entry to_sdintr represents completion of a disk I/O. The interrupt
routine will notify and schedule any process that is waiting for I/O completion, and will
initiate the next disk I/O if any requests are pending.

Features

The user-level interface to the package is a single program namedkitrace. This program
supports both a command-line and an interactive mode; all features are available in both
modes. Examples in this paper will use the less-cryptic interactive syntax. The interactive
commands are summarized in TableI.
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(kitrace) trace sync

(kitrace) print

_sync Nov 10 10:31:36.565348 ( )

_sync Nov 10 10:31:49.423993 ( 12.858645)

_sync Nov 10 10:32:10.157718 ( 20.733725)

Figure 1. Simple tracing of thesync system call

Simple tracing

In its simplest form,kitrace can be used to set a tracepoint and later print the results.
For example, we can use thetrace command to set tracepoints at the kernelsync system
call, wait a few seconds for some activity to take place, and useprint to show the times
of the observed operations. This is illustrated in Figure1.∗ In this example, the tracepoint
is named symbolically. Tracepoints can also be specified in hexadecimal, or as the sum
of one or more symbolic or hexadecimal values.Kitrace always attempts to look up a
non-numeric value symbolically first, and if possible reinterprets it as hexadecimal if the
symbol cannot be found. Hexadecimal interpretation can always be forced by prepending
the sequence0x to a value.

In the basic output, we see the names of the tracepoints reached (only one in this case),
the times they were executed, and the elapsed time between successive traces.

Thus, we can see that threesync calls were made, at intervals ranging from about 12 to
20 seconds, while we were waiting to type theprint command.

Data capture

Frequently, it is desirable to capture more than just the time of a tracepoint. Thetrace
command supports a number of options, summarized in TableII , to allow data collection.

For example, thePID option to thetrace command causeskitrace to record the ID
of the currently-running process when the trace is captured.

Figure 2 shows how we can use thePID option to learn which UNIX processes are
executing thesync calls.†

Note that previous entries in the trace buffer have not been removed. New entries are
appended to the buffer until an explicitclear command is issued. It is not possible to add
new information to old entries, so we still do not know the process ID’s of the programs
that did the first threesyncs. But we can now see that five subsequentsyncs were done
by three different processes. In this case, we used theps command to learn that process
216 is theupdate daemon that performs async approximately every 30 seconds.

More information can be captured than just the PID, although the need to keep the
mechanism lightweight limits the user to collecting at most a small number, currently 3, of
items selected from the list in TableII .

For example, on the machine used to generate these examples, the work ofsync is
actually done by making indirect calls to a number of routines listed in a table. Since the
∗ In all examples in this paper, system activity was generated by another process after tracepoints were set and before the
print command was issued. This activity generated the trace data displayed by theprint command.

† In this and some subsequent examples, the output has been edited to simplify the presentation. Actualkitrace output will
differ slightly in appearance. Completely omitted lines are indicated by ellipses.
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Table II. Options to thetrace command

PSR Collect Program Status Register
ALLREGS Collect all registers
REG name Collect the named processor register
CONST value Record a constant value
STACK offset Collect a value from the stack
FRAME offset Collect a value from the stack frame
LOC address Collect the contents of a memory location
PID Record the current process ID
FREEZE Halt tracing after this tracepoint
LATEFREEZE count Halt tracing aftercountmore tracepoints
UNFREEZE Restart tracing at this tracepoint
ONLYPID pid Cause this entry to apply to only one process
BASE Base time differences from this tracepoint
ADJACENT Base time differences on adjacent tracepoints

pointer to the called routine is held in registerg1, we can discover the identities of these
routines by using theREG option to capture this register, in both symbolic and hexadecimal
form, at the point of the indirect call (sync+50), as shown in Figure3.

Here we see the complex process thatsync initiates. We can also tell, based on the
elapsed times, that most of the time is spent inufs_sync (because of the long interval
between the entry to it and the entry to the next routine), and thatnfs_sync is the last
routine that does any significant work. The elapsed times recorded for most of the remaining
routines are so close to the overhead of a tracepoint, analyzed below, that we can conclude
even without looking at the code that they must be stubs.

Besides the process ID and machine registers (including the processor status word),
kitrace also allows the user to capture data from the stack, the current stack frame, or
a fixed location in memory. There is currently no facility for following pointers, but the
effect of pointer-following can usually be achieved by capturing a register at an appropriate
point in the code being examined.

Control facilities

Sometimes it is necessary to set tracepoints in heavily-used routines such asopen. In such
cases, the trace buffer quickly fills with clutter, making it difficult to separate useful data
from noise, and possibly causing traces to be lost due to buffer overruns.Kitrace provides
several features to deal with this problem.

Per-process control.Suppose, for example, that we are interested in examining the behav-
ior of the open andclose system calls in various situations. It is easy to write a program
to exercise the calls, but so many other programs also use them that it is difficult to separate
out the relevant data or prevent trace buffer overruns. Figure4 shows how we can use the
ONLYPID option to limit tracing to a selected process by giving its ID.

Here, we can see the process traced did a singleopen, followed by four quickcloses.
(In this case, the program being traced was/bin/sh, so it is probable that thecloses were
associated with afork. This could be verified by further tracing if desired.)

Trace freezing.Another frequent requirement is to enable or disable the kernel tracing
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(kitrace) trace sync PID

kitrace: Tracepoint at _sync already exists, updating

(kitrace) print

_sync Nov 10 10:31:36.565348 ( )

_sync Nov 10 10:31:49.423993 (12.858645)

_sync Nov 10 10:32:10.157718 (20.733725)

_sync Nov 10 10:32:19.577274 (09.419556) pid 7705

_sync Nov 10 10:32:25.929029 (06.351755) pid 216

_sync Nov 10 10:32:57.725656 (31.796627) pid 216

_sync Nov 10 10:33:28.274735 (30.549079) pid 7735

_sync Nov 10 10:33:30.226706 (01.951971) pid 216

Figure 2. Capturing process ID’s

process on a global basis. Thefreeze command will halt all trace collection until an
unfreeze command is issued. This feature can be used to limit the collected data to the
duration of an experiment.

Freezing can also be enabled and disabled dynamically under the control of selected
tracepoints. For example, thesync command traced above may require disk or network
access. If we want to trace the behavior of disk operations, we cannot use theONLYPID
option because disk interrupts are not associated with a particular process. Instead, we can
useFREEZE andUNFREEZE to enable tracing only for the duration of thesync, increasing
the probability of catching only relevant data. An illustration of this appears in Figure5. We
can see that thesync operation rapidly makes a large number of calls to the disk strategy
routinesdstrategy. In fact, there are so many calls that internal queuing limits are reached
and the first I/O operation completes (sdintr) before all I/O has been scheduled. We do
not see the completion of all of these operations, because thesync call itself completes

(kitrace) trace sync+50 REG g1

(kitrace) clear

(kitrace) print

_sync 10:33:36.342703 ( ) pid 7759

_sync+50 10:33:36.342803 (0.000100) g1=f80a2424 (_spec_sync)

_sync+50 10:33:36.400674 (0.057871) g1=f80beb90 (_ufs_sync)

_sync+50 10:33:38.117703 (1.717029) g1=f802ad28 (_nfs_sync)

_sync+50 10:33:38.135095 (0.017392) g1=f80922e0 (_rf_sync)

_sync+50 10:33:38.135175 (0.000080) g1=f80a8b04 (_tmp_sync)

_sync+50 10:33:38.135221 (0.000046) g1=f8008e18 (_hsfs_sync)

_sync+50 10:33:38.135266 (0.000045) g1=f80e0540 (_null_sync)

_sync+50 10:33:38.135375 (0.000109) g1=f80f47f0 (_flfs_sync)

_sync+50 10:33:38.135422 (0.000047) g1=f810f484 (_fpfs_sync)

...

_sync+50 10:33:38.135563 (0.000047) g1=f811a51c (_umap_sync)

_sync+50 10:33:38.135615 (0.000052) g1=f80e29fc (_select_sync)

Figure 3. Capturing registers in symbolic form
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(kitrace) delete sync sync+50

(kitrace) clear

(kitrace) trace open ONLYPID 7372 close ONLYPID 7372

(kitrace) print

_open Nov 10 10:33:45.673123 ( )

_close Nov 10 10:33:45.673836 ( 00.000713)

_close Nov 10 10:33:45.673999 ( 00.000163)

_close Nov 10 10:33:45.674163 ( 00.000164)

_close Nov 10 10:33:45.674336 ( 00.000173)

Figure 4. Limiting tracing to a specific process ID

(sync+70) before all scheduled I/O takes place.
Incidentally, this trace also allows us to evaluate the effectiveness of the disk head-

scheduling algorithm by recording the elapsed times of a sequence of write operations. If
the scheduling is effective, the times will be consistent and close to the minimum cited in
the manufacturer’s specifications. If it is ineffective, inconsistent times across the possible
range of seek times should be observed.

(kitrace) freeze

(kitrace) clear

(kitrace) delete open close

(kitrace) trace sync UNFREEZE

(kitrace) trace sync+50 REG g1

(kitrace) trace sync+70 FREEZE

(kitrace) trace sdstrategy PID sdintr

(kitrace) print

_sync 10:33:59.771442 ( ) UNFREEZE

_sync+50 10:33:59.771539 (.000097) g1=f80a2424 (_spec_sync)

_sdstrategy 10:33:59.819478 (.047939) pid 7840

_sdstrategy 10:33:59.820051 (.000573) pid 7840

_sdstrategy 10:33:59.820297 (.000246) pid 7840

_sdstrategy 10:33:59.820627 (.000330) pid 7840

...

_sync+50 10:33:59.842798 (.000287) g1=f80beb90 (_ufs_sync)

_sdstrategy 10:33:59.843206 (.000408) pid 7840

_sdintr 10:33:59.862006 (.018800)

_sdintr 10:33:59.869592 (.007586)

_sdintr 10:33:59.887792 (.018200)

_sdintr 10:33:59.897314 (.009522)

...

_sdstrategy 10:34:01.697801 (.000476) pid 7840

_sdintr 10:34:01.705756 (.007955)

...

_sync+70 10:34:01.870146 (.000053) FREEZE

Figure 5. Automatically freezing and unfreezing tracing
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(kitrace) delete sync+50

(kitrace) trace sync UNFREEZE PID sync+70 LATEFREEZE 50

kitrace: Tracepoint at _sync already exists, updating

kitrace: Tracepoint at _sync+0x70 already exists, updating

(kitrace) freeze

(kitrace) clear

(kitrace) print

_sync 10:34:11.641381 ( ) UNFREEZE pid 7875

_sdstrategy 10:34:11.689315 (0.047934) pid 7875

_sdstrategy 10:34:11.689890 (0.000575) pid 7875

...

_sdintr 10:34:11.709694 (0.001417)

_sdintr 10:34:11.717275 (0.007581)

...

_sync+70 10:34:13.669994 (0.016060) LATEFREEZE

_sdintr 10:34:13.677172 (0.007178)

_sdintr 10:34:13.686267 (0.009095)

...

_sdintr 10:34:14.182041 (0.032128)

_sdintr 10:34:14.221724 (0.039683)

...

Figure 6. Freezing trace capture after a delay

There is also aLATEFREEZE option, which delays freezing by a certain number of traces
in a manner similar to the delayed triggering of hardware logic analyzers. This could be
used, for example, to attempt to capture the completion times of more of the disk I/O’s
caused bysync operation, as in Figure6. This shows a few of the many rapid disk I/O’s
(presumably writes) that complete within a short time after thesync operation returns to
the caller.

Time base selection.In all the above examples,kitrace gave time differences between
adjacent traces. Sometimes it is more useful to see differences from some base time. For
example, the frequent calls to_sdstrategy in the above traces make it difficult to see the
total amount of time spent doing disk I/O. It might be more useful to know the total time
elapsed between the beginning of thesync operation and the completions of the various
disk I/O’s. While this could be done by hand, by subtracting timestamps,kitrace provides
a time-base facility to ease the task. TheBASE option informskitrace that a tracepoint
should serve as a base for calculation of future time intervals. Figure7 uses this feature to
show that thesync operation itself took over two seconds just to finish scheduling disk I/O,
and that rapid disk operations continued for another 65 ms after that, without risking an
overfull trace buffer due to unrelated disk activity. Although some of them are not shown in
the figure, there were only 23 I/O completions recorded in this interval in the example, so
that in fact freezing never took effect. Because of the long delay (over 5 seconds) between
the last write completion (_sdintr) and the next call to_sync, we can be sure that we
have observed all I/O resulting from thesync.
Kitrace also provides anADJACENT option, which can be applied to a tracepoint to cancel

the constant time base and return to printing time differences between adjacent traces.
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(kitrace) clear

(kitrace) trace sync BASE UNFREEZE

kitrace: Tracepoint at _sync already exists, updating

(kitrace) print

_sync 10:34:55.254005 ( ) UNFREEZE BASE

_sdstrategy 10:34:55.301865 (0.047860) pid 7915

_sdstrategy 10:34:55.302434 (0.048429) pid 7915

...

_sdintr 10:34:55.343381 (0.089376)

_sdintr 10:34:55.350939 (0.096934)

...

_sdstrategy 10:34:57.495028 (2.241023) pid 7915

_sync+70 10:34:57.511464 (2.257459) LATEFREEZE

_sdintr 10:34:57.528244 (2.274239)

_sdintr 10:34:57.556774 (2.302769)

...

_sdintr 10:34:58.154117 (2.900112)

_sync 10:35:03.663681 (8.409676) UNFREEZE BASE

...

Figure 7. Modifying the time base

Other tracing options.Kitrace offers several other options that can be applied to trace-
points:

1. PSR collects the processor status register, in a manner analogous to theREG option.
2. ALLREGS collects all processor registers. This can be useful in some circumstances,

but slows trace collection noticeably.
3. CONST value stores a constant value that was specified in thetrace command. This

can be useful to distinguish traces generated by differenttrace commands targeted
at a single instruction.

4. STACK offsetcollects a word from the processor stack at a given offset. This can be
used to determine return addresses or arguments.

5. FRAME offsetcollects a word from the specified offset within the current stack frame.
This can be used to examine local variables.

6. LOC addresscollects a word from the specified address. This can be used to record
the value of a global variable at a given time.

Other commands

Most of the commands provided in interactive mode (trace, print, delete, clear,
freeze, andunfreeze) have already been discussed. In addition,kitrace provides the
following commands:

1. list lists the current tracepoints, one per line, including all options that were specified
when they were set.

2. printclear is equivalent toprint followed byclear, except that it guarantees that
no traces will be lost between the two operations.
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3. follow is equivalent to typingprintclear whenever there is at least one trace in
the buffer. It is useful for avoiding buffer overruns in situations where there is a lot
of data to be collected.

4. quit exits fromkitrace.

Implementation

Kitrace is implemented with a small add-on kernel package and a larger user-level
interface program. The kernel code is designed to be as minimal as possible, with the bulk
of the complexity kept in the user-level program for ease of maintenance.

Kernel code

The kernel support is divided into a small amount of machine-dependent assembly code
and a larger machine-independent C routine. The assembly code has been implemented (at
various times) on a Motorola 68010,19 an Intel 80386,20 and a SPARC.21 The implementation
described here is for the SPARC, since that is the most recent and most complex version
of kitrace. The SPARC version also supports dynamic loading of the kernel code, so that
kitrace can be used on an unmodified kernel.

A tracepoint is created (by the user-level program) by filling in an entry in a control table
and replacing the traced opcode with a trap or breakpoint instruction. The control table
encodes information about what data should be recorded when the tracepoint is reached,
data needed to continue execution after the trace is collected, and an active flag that is
used to avoid race conditions in the algorithms described below. When a traced instruction
is executed, the trap causes the processor to jump to the assembly code, which stores all
registers, sets up a C environment, and calls the machine-independent part of the kernel
support. The machine-independent code then searches the control table (based on the address
of the traced instruction) and collects data based on the requests in the control entry.

One critically important datum that is always collected is the current time in microseconds.
The precise timing provided bykitrace requires a high-resolution timer, supporting a
granularity of 10µs or better, that can be read with low overhead. Many kernels provide
a subroutine that will provide this information. On other machines, it has been necessary
to write a special routine for this purpose. Usually, since the periodic clock interrupt is
generated by a simple clock/counter chip, it is possible to read the current count from the
chip and convert this into a sufficiently accurate time measurement.

Once the data has been collected, the C routine returns to the assembly code. Since the
opcode that was replaced by the trap still needs to be executed, it is re-inserted in its
original location and executed in a single-step mode appropriate to the processor. After
single-stepping, the assembly code regains control and can then reinsert the trap so that
tracing will occur the next time the traced instruction is executed. Finally, normal kernel
execution is resumed.

An alternative to single-stepping the traced instruction would be to branch to a specially-
constructed instruction sequence in a temporary buffer. This sequence could emulate the
effects of the traced instruction, usually by duplicating it, and then jump back to the in-
struction following it in sequence. On most processors, this would be more efficient than
single-stepping, which necessarily introduces an extra trap sequence. We have not imple-
mented this option due to its increased complexity, but it is an interesting direction for
future research.



KITRACE: PRECISE INTERACTIVE MEASUREMENT OF OPERATING SYSTEMS KERNELS 11

User-level code

The user-level part ofkitrace consists of a single C program that interfaces to the kernel
via /dev/kmem and the symbol table from the bootable kernel,/vmunix. The kernel code
maintains certain global variables that make it possible to locate and manipulate the trace
tables. These include pointers to the trace control and trace data buffers, a monotonically-
increasing counter of the number of traces, and verification information that allows the
user-level code to be sure it is compatible with the kernel version.

Tracepoint control.Tracing is controlled by the previously-mentioned array of structures
that describe tracepoints. To set a tracepoint,kitrace first fills in a new entry in this table
and writes it to kernel space. It then rewrites the kernel variable that records the number of
entries in the table, making the new entry visible to the kernel code. Note that there is no
possibility of race conditions here, since the table entry exists before it becomes visible to
the kernel, and the table entry will not be needed because there is no trap instruction yet.
Once the control table has been updated,kitrace replaces the traced opcode with a trap
instruction. This enables tracing at the given location.

If it is necessary to update a current tracepoint, a five-step process is followed to prevent
races:

1. Replace the breakpoint instruction at the trace location with the original opcode.
2. Clear the active bit in the flags word (this is a single memory operation, so it cannot

cause a race).
3. Rewrite the entire control entry.
4. Set the active bit.
5. Replace the breakpoint instruction.

This operation can cause traces to be lost; we have found this to be acceptable in our
usage. If lost traces were a problem, it would be a simple matter to prevent them through
a more complex procedure involving creating a duplicate control entry before the original
is modified.

Trace deletion proceeds in a similar race-free fashion. First the trap instruction is replaced
with the original opcode, making the control-table entry superfluous. Control-table entries
following the deleted one are then packed downwards. To avoid races, each entry is copied
from its old position to the new one using a three-step process:

1. Clear the active bit of the entry being replaced. This will cause the kernel to ignore
this entry when searching the control table. No traces will be lost because there is still
an active copy of the replaced entry in some other (earlier) slot in the table.

2. Write the new entry to the deactivated table slot, being sure that the new entry also
has a clear active bit.

3. Set the active bit in the replacement entry.

Note that, after this process has executed for a particular control-table entry, there will
be two copies of that entry in the table. This does not cause problems because the entries
are identical and the kernel will simply obey the entry it finds first.

Trace buffer manipulation.Manipulation of the trace buffer proceeds in a similar fash-
ion. The kernel fills the buffer in a circular manner, overwriting old entries if necessary.
Each entry contains the address traced, the time the trace was collected, a copy of the
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control-table information indicating what data was collected, and the captured data itself.
A monotonically-increasing counter,kit_count, indicates the number of traces captured
since the last boot. Taking this counter modulo the buffer size gives a pointer to the oldest
trace record, which is also the next to be collected. The user-level interface program also
maintains a count of traces seen,kit_last_count. This counter is stored in the kernel so
that it will persist across invocations of the interface program, but it is never modified by
the kernel.

The print command readskit_count and the trace buffer. It then rereads the trace
counter and compares it to the first value read. If the two values are equal, no traces have
been collected while the buffer was being read, so it is known to be in a consistent state.
If kit_count exceedskit_last_count, there are printable traces in the buffer. If the
difference between the two counters is greater than the buffer size, a warning is printed
indicating that traces are lost. The trace buffer contains enough information to correctly
print results even if the tracepoint has since been deleted, so printing is simply a matter of
formatting the appropriate entries.

If kit_count changes between the two times it is read, then new traces were added to
the buffer while it was being read. There is no way for the user-level program to know
whether it captured the old or the new values of these buffer entries, so it assumes that they
are in an unknown state and refuses to print them. A future print operation will be certain
to capture the new values and print them correctly. An important detail occurs when the
trace buffer has overflowed (indicated bykit_count exceedingkit_last_count by more
than the buffer size). In this case, even though all of the traces in the buffer are valid, the
ones representing the difference between the two values ofkit_count cannot be printed
because there is no way to determine whether a particular entry is old or new (or even a
mix). However, the buffer-clearing algorithm will not remove unprinted new entries, so this
is not a serious drawback.

To clear the trace buffer, the user-level code simply writes its copy of the last-trace-
entry pointer,kit_count, into the last-entry-seen pointer,kit_last_count. If clearing is
combined with printing, this ensures that only those traces that have been printed will be
marked as having been seen, becausekit_count was collected before the trace buffer was
read.

Thefollow command is implemented as a loop, alternating buffer-print and buffer-clear
operations. Although this monopolizes the CPU (since there is no way to pause until the
kernel has made new trace entries), we have found that appropriate priority adjustment with
the nice command still makesfollow a useful tool.

Performance

It is very easy to usekitrace to measure its own performance. Figure8 shows how
tracepoints on successive instructions can be used to measure the overhead introduced by
kitrace. In this measurement. performed on a Sun IPC workstation, a single tracepoint
requires from 45 to 77µs, including the execution time of the instruction traced. The
variability is due partly to clock inaccuracies, and partly to the waykitrace handles
register windows on the SPARC, discussed below. Note that our performance-measurement
method is not itself dependent on kernel internals. Any short sequence of instructions can
be used to measure the performance ofkitrace, so long as there are no branches into or
out of the middle of the sequence.

Figure 8 shows that the impact of adding a tracepoint to an execution path is minimal.
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(kitrace) delete sdstrategy sdintr sync+70

(kitrace) list

_sync UNFREEZE BASE

(kitrace) clear

(kitrace) unfreeze

(kitrace) trace sync sync+4 sync+8 sync+0xc sync+10

kitrace: Tracepoint at _sync already exists, updating

(kitrace) print

_sync Nov 10 10:35:45.165061 ( )

_sync+4 Nov 10 10:35:45.165138 ( 00.000077)

_sync+8 Nov 10 10:35:45.165183 ( 00.000045)

_sync+c Nov 10 10:35:45.165240 ( 00.000057)

_sync+10 Nov 10 10:35:45.165285 ( 00.000045)

_sync Nov 10 10:35:47.262426 ( 02.097141)

_sync+4 Nov 10 10:35:47.262502 ( 00.000076)

_sync+8 Nov 10 10:35:47.262547 ( 00.000045)

_sync+c Nov 10 10:35:47.262604 ( 00.000057)

_sync+10 Nov 10 10:35:47.262649 ( 00.000045)

Figure 8. Measurement of the cost of tracepoints

Nevertheless, it is best to factor the cost of tracing into any analysis, as large numbers of
tracepoints can introduce a noticeable delay of their own. Fortunately, the repeatability of
kitrace’s measurement overhead makes it easy to calculate a correction based on the total
number of traces collected.

Figure9 gives histograms showing the distributions of timings measured for the first four
instructions of thegetpid system call on the same Sun IPC workstation. In each figure,
the mean of the samples is indicated by a small cross near the top of the graph. Table III
gives estimates of the standard deviations and 99 per cent confidence intervals for each of
these instructions.

There are several reasons for the timing variations shown in the graphs in Figure9:

1. Variations in the execution times of the instructions themselves (these are negligible
on the SPARC).

2. Operating-system support overhead, such as the cost of spilling SPARC register win-
dows.

3. Inaccuracies in clock readings.22

Table III. Means, 99 per cent confidence intervals, and stan-
dard deviations for the costs of four tracepoints

Instruction Mean (µs) Standard Deviation (µs)
First 42·06±0·29 5·04
Second 42·15±0·03 0·53
Third 50·83±0·04 0·73
Fourth 43·82±0·04 0·63
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Figure 9. Timing observations for first four instructions ofgetpid

4. Interrupts that occur between two instructions (these are made more likely by the
fact that interrupts are turned off during trace collection, effectively increasing the
execution time of the instructions and thus the probability of being interrupted).

Of these, item2 is the cause of most variations, in particular the occasional large variation
seen in the first instruction ofgetpid, seen in the histogram and also in the large standard
deviation of the sample time for this instruction.
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SPARC register spilling

On many architectures, it is a simple matter to set up a C environment as part of trace
collection. The usual process involves saving a few registers on the kernel stack, which
is always in memory, and loading a new frame pointer. The SPARC processor, however,
requires a much more complicated process, detailed in Appendix D of reference 20. The
SPARC features a ‘register window’ architecture, where a small portion of a large register
file provides the accessible machine registers, called theregister window. A current window
pointer identifies the portion of the register file currently in use. When a trap or subroutine
call occurs, the current window pointer is decremented to point to a new part of the register
file. This saves the overhead of preserving registers on the stack. At a later time, the original
registers can be restored by incrementing the current window pointer.

When there is no more room in the register file, awindow overflowtrap occurs and a
register spilling algorithm is invoked. At this time, one or more sets of machine registers
are copied to the stack to make room for new register windows. This can be a complex
process, since there is no guarantee that the virtual memory reserved for this purpose is
mapped or even resident. At a later date, when the current window pointer is incremented
to point to an empty window, awindow underflowtrap occurs and causes the appropriate
registers to be reloaded.

This architecture introduces a large variation into the overhead ofkitrace tracepoints,
because the contents of the register file are dependent on the execution history of the
processor. For example, if there have recently been several nested subroutine calls without
corresponding returns, the register file will be full and a window overflow will occur when
the kitrace trap is reached and on every subroutine call involved in tracing. This will
cause at least a few microseconds to be lost while registers are copied to the stack, and can
potentially cause a much larger delay if the appropriate stack page needs to be mapped or
even paged in.

Conversely, if a deeply-nested set of subroutines has just terminated, the register file will
be almost completely empty, and the tracing code will be able to execute faster because it
will not have to spill any registers at all.

These effects can be seen in the large standard deviation shown in Table III for the first
instruction ofgetpid. The second through fourth instructions have much smaller standard
deviations because the register spilling does not need to be repeated for tracepoints which
occur so close together.

Multi-machine tracing

One advantage ofkitrace is that it collects very precise timestamps. This naturally leads
to the idea of usingkitrace to analyze operations on multiple machines. For example, one
could watch a client machine issue an NFS operation, follow the progress of that operation
on a server, and then observe the resulting behavior of the client.

Unfortunately, this is more easily said than done. It is quite straightforward to take two
traces and combine them (usingsort) into a single output file; if necessary, the output lines
can also be tagged with the identity of the machine that originally generated them. It is only
slightly more difficult to write anawk or perl script that recalculates the time-difference
field. However, the two traces will only be combined correctly if the clocks on the two
machines are very precisely synchronized.

In most modern networks, clocks are kept synchronized using the Network Time Protocol23
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Figure 10. Display of misaligned operations

or a similar method. However, these protocols do not generally synchronize beyond an ac-
curacy of a few milliseconds, and machines must be up for a significant time (as much as
several hours) to achieve good synchronization. We have found that this level of perfor-
mance is inadequate for synchronizing most client/server traces.

The ideal solution to this problem, of course, would be to achieve better automated time
synchronization.Kitrace often requires synchronization to the level of a single Ethernet
delay, which (for short packets and fast processors) can be as little as 100µs. Some recent
researchers22,24 have reported improvements on NTP which can achieve accuracies in these
ranges, but their work was not available to us whenkitrace was being developed.

Instead, we have chosen anad hocsolution based on our knowledge of the problem. The
idea is to have the client site perform one or more operations that will be clearly identifiable
on the server. In general, almost anything will do that is not part of the main test and that
does not regularly happen in background, such as thelink operation. By matching these
operations and their listed times, it is possible to calculate an approximate clock differential
between the two machines. A simpleawk script can then adjust the clock in one of the
trace files before they are combined.

For many purposes, however, even this process is not sufficient. The method assumes
exact simultaneity for two operations which are actually separated in time, and relies on
the premise that the error introduced by this assumption is less than the synchronization
accuracy required. Often, the processing involved on both sides of the network connection is
variable enough to invalidate this premise. One solution would be to add a special-purpose
synchronization operation that performed a remote call to the server with as little overhead
as possible. However, we do not wish to modify the kernel any more than absolutely
necessary.

Instead, we have found that it is possible to synchronize clocks empirically. After using
the above method to achieve approximate synchronization, the collected data files from
client and server are fed into a TCL25,26 program that displays each operation as a shaded
rectangle (see Figure10). When the clock offset is incorrect, the rectangles will overlap.
A correct offset will produce nesting rectangles (see Figure11), where the time taken by a
server-side operation is a proper subset of the time needed on the client. By dragging with
the mouse, the rectangles can be made to nest, and the TCL program will then print the
associated offset. We have found that this method is easy to use and allows clocks to be
aligned to within a few hundred microseconds.

Debugging

Kitrace was designed as a performance-measurement tool, but it has also proved use-
ful in kernel debugging. Although basic breakpoint-and-step debuggers continue to be the
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Figure 11. Display of time-aligned operations

mainstay of daily bug-finding, the ability to dynamically collect information without signif-
icantly disturbing the kernel has complemented these debuggers in a very handy way. The
following kitrace features, unavailable with traditional debugging tools, can be useful in
finding kernel problems:

1. The ability to examine kernel behavior without significantly affecting timing.
2. The ability to collect data about infrequent events over a long period, for later analysis.
3. The ability to enable tracing when some unusual event occurs. (TheLATEFREEZE

option is often useful for this.)
4. The ability to examine the relative timing of events involved in race conditions.

Kitrace is also useful for quick non-intrusive peeks at the behavior of kernel code.
A tracepoint can be set, examined, and deleted without the overhead of invoking a full-
scale debugger. This is often preferable to halting the kernel, setting a breakpoint, and thus
disrupting all other work in progress on the machine.

LESSONS

Kitrace has proven to be a far more useful tool than originally expected. As it has been
used and ported to various machines, the implementation has been improved and simplified.
Nevertheless, there are still a few flaws:

1. The current version is unabashedly assembly-oriented. Although it has knowledge of
kernel symbols, the user is forced to spend a good deal of time disassembling code
to determine the proper location of tracepoints,∗ which registers to collect, and the
offsets of critical variables in the stack frame.

2. It is easy to accidentally crash the kernel by misusing the tool (e.g., setting a tracepoint
in data space).

3. Since we have chosen to place the burden of avoiding race conditions entirely on the
user-level program to improve portability and performance, errors in this code can
have an adverse effect on the reliability of results reported bykitrace.

4. Thefollow command is implemented using a CPU polling loop, which causes the
program to interfere significantly with the behavior of the kernel being traced when
this command is used.

5. The user-level/kernel interface is dependent on the quality and reliability of the
/dev/kmem driver.

6. Because the user- and kernel-level code rewrites instruction opcodes, kernel text-space
write protection must be disabled in kernels that supportkitrace capabilities. This

∗ The info line command ofgdb is very helpful with this.
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introduces a slight risk of failing to catch certain types of pointer errors.
7. Some types of multi-machine tracing require more accurate clock synchronization than

can be achieved without special-purpose hardware.

The lack of source-level access could be cured by folding in appropriate code taken from a
debugger such asgdb.27 The risk of crashing the kernel is fundamentally insoluble, although
adding a source-level interface would probably help the problem. The clock-synchronization
problem cannot be solved generally without further research. The remaining difficulties
could be alleviated by rewriting the kernel support as a device driver. However, this would
increase the entanglement of the code with the kernel, with a related impact on the ability
of the program to trace those kernel routines (right now,kitrace tries very hard to use as
little of the kernel as possible, so that tracepoints can be set in a wide range of locations).
We have not yet decided whether to go forward with the driver idea.

RELATED WORK

Kernel tracing facilities

Kitrace is most closely related to the idea of building trace calls into an operating-
systems kernel at compile time. However,kitrace is so much more convenient that it
is typically used in a very different way. Built-in tracing implementations are limited to
collecting information at preselected points. The only interactive control lies in the ability
to dynamically enable selected tracepoints. An expensive kernel recompilation and reboot is
needed to add a previously-unanticipated trace. In addition, built-in tracing implementations
tend to be more heavyweight thankitrace.

On the other hand, the source-level coding of built-in kernel tracing offers data-collection
power thatkitrace cannot match. Also, kernels can be shipped to naive end users with
a few carefully-selected built-in tracepoints ready to be enabled if performance problems
arise.

These differences makekitrace appropriate for low-level kernel development, while
built-in tracing is more suitable to production environments. For the developer who is
intimately familiar with the kernel, the ease of setting up and and modifying experiments
far outweighs the more limited functionality, while the end user will place far more value
on the convenience of pre-specified tracepoints.

Profiling

As mentioned earlier, profiling has long been a popular tool for kernel performance mea-
surement. However, we believe that profiling is a very limited technique, and have found
that kitrace is useful in a much wider variety of circumstances.

Profiling has two major drawbacks for kernel tuning: it is a statistical technique,2 and
it is inherently limited to examining only CPU performance. While the former drawback
can be minimized by methods such as the use of large samples, the latter is inescapable.
Profiling is invaluable for locating ‘hot spots,’ and can sometimes be used to identify lock
contention, but it is of no help whatsoever in examining delays caused by paging, queuing,
excessive I/O, or scheduling conflicts. Even when dealing with CPU hot spots, we have
found that it is often best to locate the offending routines with a profiler and then use
kitrace to analyze the internal behavior of the algorithm. The interactive flexibility of
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kitrace makes tracing of small sections of code simpler and quicker than the alternative
of breaking a routine into small pieces and recompiling for another profiling run.

Hardware analyzers

The features and capabilities ofkitrace are very close to those available from some
hardware-based analyzers.5,6 Hardware analysis generally offers even more power and can
display more detailed information thankitrace. Balanced against these strengths are the
lower convenience and higher cost of a hardware-based approach.

FUTURE WORK

As mentioned above, one of the biggest flaws inkitrace is the lack of source-level tracing
support. We have considered integrating code fromgdb to allow specification of tracepoints
on a source-line basis, and to allow collection of arbitrary source-program data. However,
this is a nontrivial change. The symbolic-debugging routines are very complex, so that it
would not be easy to integrate them. Also, the current kernel support is very limited in
its ability to collect data (it cannot even follow a pointer, let alone the sort of chain of
pointer-offset-index tuples that would be needed for a general data-collection facility). For
these reasons, we have decided not to pursue a source-level interface at present.

Other possible improvements would be the device-driver conversion and the improved
single-stepping method alluded to above, a graphical trace-display tool similar to Trace-
view28,29 and a generalized time-synchronization facility, either automatic or graphical (the
current TCL-based program is specialized to a particular client-server problem that we
needed to investigate).

One final idea of interest would be the extension ofkitrace capabilities to user-level
processes. Although the vagaries of schedulers make the precise time-measurement facilities
of kitrace less interesting than for the kernel, many of the other advantages of the tool
would be equally applicable to user-level debugging. We believe that it would not be difficult
to provide such a capability, although it would require more extensive kernel modifications
than those needed by the current tool.

HISTORY

Kitrace was originally written for a Sun-2 workstation in the summer of 1985, to analyze
performance problems in a mini-supercomputer kernel. That version was developed in a
couple of days, taking advantage of the friendly architecture of the 68000 and the availability
of kernel sources. Most of the important features of the current version were added over
the following month.

The original version was lost with the collapse of the company for which it had been
developed. A complete rewrite was done a few years later, when the need for the facility
became critical. This version was then ported to the SPARC∗ and the remaining features
described here were added.

The SunOS 4.1.1 version for the SPARC was implemented without reference to kernel
source code, so that it will be free of licensing problems. This version is publicly available
∗ The SPARC, not incidentally, was by far the most difficult port yet done, requiring two full weeks just to get the assembly

code to run.
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via anonymousftp from ftp.cs.ucla.edu, in the directorypub/ficus/geoff/kitrace.
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