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SUMMARY

Approximate string matching is used for spelling correction and personal name matching. In this paper
we show how to use string matching techniques in conjunction with lexicon indexes to find approximate
matches in a large lexicon. We test several lexicon indexing techniques, includingn-grams and permuted
lexicons, and several string matching techniques, including string similarity measures and phonetic coding.
We propose methods for combining these techniques, and show experimentally that these combinations
yield good retrieval effectiveness while keeping index size and retrieval time low. Our experiments also
suggest that, in contrast to previous claims, phonetic codings are markedly inferior to string distance
measures, which are demonstrated to be suitable for both spelling correction and personal name matching.
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INTRODUCTION

Approximate string matching is used when a query string is similar to but not identical with
desired matches.1,2,3 In personal name matching, a name might be known by its pronounci-
ation rather than its spelling, and data entry errors can lead to the same name being entered
into a database in several forms. In text processing, words can be misspelt; approximate
matching can be used to find the correct form in a dictionary.

When using words for retrieval in document database systems, both personal name match-
ing and spelling correction can be required on the same data. The exact spelling may be
unknown, spelling of a given word can vary, or there may simply be no single accepted
spelling. In theTREC database,4 for example, there are at least six ‘correct’ spellings of Gor-
bachev, not including the feminine forms of these spellings. Spelling in stored documents
can be unreliable; we estimate that around one-fifth of the distinct words in an electronic
form of the Commonwealth Acts of Australia are spelling errors. Moreover, there is no reli-
able way to distinguish between names and other words—the stored documents are English
text, without fields or other meta-information to distinguish one kind of word from another.

In this paper we consider how, given a query string, to find approximate matches in
a large lexicon. Given that a complete search of a lexicon is prohibitively expensive, we
propose that some form of indexing be used to extract likely candidates from the lexicon, in
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a coarsesearch, and that, once retrieved, these candidates be processed more carefully in a
subsequentfine search. How best to combine indexing and approximate matching methods
into coarse and fine searching techniques is the principal problem addressed in this paper.

There are two broad classes of schemes for approximate string matching that could be used
for fine searches: string similarity measures and phonetic coding. String similarity measures
compute a numerical estimate of the similarity between two strings; such computation might
be based on the number of characters they have in common, or the number of steps required
to transform one into another. These measures are often referred to asedit distances.2 These
measures can be used to rank a set of strings—that is, alexicon—with respect to a query
string. Such schemes are generally regarded as appropriate to spelling correction, where
around 80% of human errors are a single insertion, omission, or exchange.2,3 Phonetic
codings, on the other hand, assign a phonetic code to each string; two strings are judged
to be similar if they have the same code, and dissimilar otherwise. Phonetic schemes have
been regarded as appropriate to personal name matching because it is possible for names
that sound similar to have very different written forms.1,5

There are also several candidate coarse search schemes. One scheme would be to bucket
the lexicon strings according to their phonetic code and retrieve the bucket with the same
code as the query string. Another scheme is the use ofn-grams, that is, indexing each string
in a lexicon according to then character substrings it contains. Yet another scheme, which
to our knowledge has not previously been applied to approximate matching, is to ‘permute’
a lexicon by adding to it every rotation of every word and find answers by binary search
in the lexicon that results.

We evaluated several combinations of coarse and fine search techniques with regard to
speed, space overhead and effectiveness—that is, ability to find answers that a human judges
to be correct. The techniques were selected as representative rather than exhaustive. The
evaluation was based on two test lexicons: a large set of personal names and a publicly
available dictionary. Surprisingly, we found edit-distance techniques to be far more effective
(that is, better able to identify good matches) than phonetic techniques for both spelling
correction and personal name matching, with at best only one answer in four correct,
compared with one in two for edit distances. With regard to performance,n-grams work
well for both coarse and fine searching and would usually be preferable to permutation
because they have better update characteristics. A third lexicon, of a 3 Gb text database,
was used to test whether our preferred methods scale up, with excellent results.

TEST DATA

Three test lexicons were used in the approximate string matching experiments described in
the following sections. The first,DICT, is the dictionary distributed with theispell interactive
spelling checker, which is publicly available on Internet. Our version ofDICT contains
113,212 words, at an average of 9·1 letters per word, and so occupies 1,114 Kb including a
one-byte terminator for each string. AlthoughDICT is not perfect—it contains some spelling
errors and there are surprising omissions—it is large, mostly correct, and contains the plural
form and other variants of most words.

The second lexicon,NAMES, is a set of distinct personal names compiled from student
records and a bibliographic database.NAMES contains 31,763 words, at an average of 6·8
characters per word, and so occupies 242 Kb including a one-byte terminator for each string.
Most of the entries inNAMES are surnames, but, owing to data entry errors in the original
databases, there are many given names and a fair number of misspelt names. Some of the
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data was supplied without indication of case or spacing, so for uniformity we suppressed
spaces and diacritical marks and folded all uppercase letters to lowercase; for example, ‘Van
Der Haufen’ was transformed to ‘vanderhaufen’.

The third lexicon,TREC, is the distinct words occurring in the 3 GbTREC document
collection,4 a heterogeneous set of newspaper articles, regulations, journal articles and patent
applications. This lexicon consists of 1,073,727 words and occupies 9,933 Kb, at an average
of 9·3 characters per string including a terminator.

Note that, in the context of database systems, lexicons with errors are the norm—it is not
common for control to be exercised over the words entered into a database. Moreover, it is
often impossible to even distinguish between names and other text; consider, for example,
the lexicon of a database of newspaper articles.

To compare the performance of the different matching techniques we decided to use test
query sets and relevance judgements to determine retrieval effectiveness. This methodol-
ogy is widely used in information retrieval for the similar task of evaluating methods for
identifying the closeness of correspondence between documents and a query,6 and has been
used to evaluate approximate string matching methods.2,5 Relevance judgements are a hu-
man assignment of a binary value (‘match’ or ‘doesn’t match’) to each ‘query, potential
match’ pair; in the context of approximate string matching, every lexicon entry is a potential
match. For a given matching technique, relevance judgements are used to computerecall
(the proportion of correct matches that have been identified) andprecision (the proportion
of correct matches amongst the retrieved strings). For example, to a surname database the
query person might yield the answerspierson, persson, persoon, persin, perron,
pehrson and pearson. If four of these (the second, fourth, six and seventh, say) sound
sufficiently similar to be judged relevant, precision is 57%; if a further six answers are
known to be in the database, recall is 40%. Recall and precision figures are combined into
a single measure of effectiveness by averaging precision at 0%, 10%,. . . , 100% recall.6

Loosely speaking, an effectiveness of 50% means that every second returned answer is
correct.

The test query set used forDICT was the Kukich set of 170 human-generated spelling
errors.3 The answers are the correct spelling corresponding to each of these errors. The test
query set used forNAMES was a random selection of 48 of the names. Because we did
not have the resources to manually compare every query term with every entry inNAMES,
for each query term we merged the output of several matching techniques and manually
evaluated the top 200 responses. We found an average of 6·4 matches per query.

For TREC, we did not have the resources needed for the necessary relevance judgements
and so could not estimate effectiveness for this collection. We could, however, examine
space and cpu time, using the same query set as forNAMES.

APPROXIMATE STRING MATCHING

In this section we review approximate matching techniques and experimentally compare
them on our test databases.

String similarity measures

One class of approximate string matching techniques are the string similarity measures. A
simple form of string similarity measure is an edit-distance such as the number of single
character insertions and deletions needed to transform one string into another. For two
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strings s and t of length m and n, respectively, the minimal such edit distance can be
determined by computingedit(m,n) with the recurrence relation shown in Figure1, in
which the functiond(a, b) returns 0 ifa andb are identical, and 1 otherwise.2 For example,
the edit distance betweenhordes and lords is 2 and the distance betweenwater and
wine is 3.

edit(0,0) = 0
edit(i,0) = i
edit(0, j) = j
edit(i, j) = min[edit(i− 1, j) + 1,

edit(i, j − 1) + 1,
edit(i− 1, j − 1) + d(si, tj)]

Figure 1. Recurrence relation for minimal edit distance

There are also more sophisticated versions of edit distance that consider moves, operations
on blocks of letters and allocation of different costs to each kind of transformation.2,7 For
example, if the expression

edit(i− 2, j − 2) + d(si, tj−1) + d(si−1, tj) + 1

is added as an argument to the call tomin, then the resultingmodified editallows for
transposition of characters with a cost of 1, the same cost as an insertion, deletion, or
substitution. This modifiededit can be regarded as more powerful than the original, but is
more expensive to compute.

A related class of technique is used by the approximate string matchers, such asagrep,7

which report strings as matching if they are identical but for at mostK errors, whereK is
specified by the user. That is, matching is binary, with no ranking of the returned strings.

Other distance measures are based onn-gram similarities, where ann-gram of a string
s is any substring ofs of some fixed lengthn. A simple such measure is to choosen and
count the number ofn-grams two strings have in common. That is, the similarity between
stringss and t is given by

gram-count(s, t) = |Gs ∩Gt| ,
whereGx is the set ofn-grams in stringx. For example, withn = 2, the similarity of
hordes andlords is 2, because both contain the 2-gramsor andrd, and the similarity of
water andwine is 0. At first glance it might seem that this measure ignores the importance
of character ordering within strings, but since the majority of words and names do not
contain repeated characters, the importance of ordering is largely retained. For largern,
ordering is more strongly enforced; few words, for example, would containbes andest
but notbest.

However, simply countingn-grams does not allow for length differences between strings;
for example,water has exactly as manyn-grams in common with itself as it does with
waterline. To address this problem, Ukkonen8 has proposed ann-gram distance that can
be defined as

gram-dist(s, t) =
∑

g∈Gs∪Gt

|s[g] − t[g]| ,
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where x[g] is the number of occurrences ofn-gram g in string x. For example,
gram-dist(hordes, lords) is 5 if n is 2 or 3.

Ukkonen’s function allows for strings to contain repeated occurrences of the samen-
gram; however, in our test data sets, less than 2% of strings contain a repeated 2-gram and
almost none contain a repeated 3-gram. Assuming that neithers nor t contains a repeated
n-gram, Ukkonen’sgram-dist function can be expressed as

gram-dist′(s, t) = |Gs| + |Gt| − 2|Gs ∩Gt|.
As shown later, this form is useful for retrieval, as|Gs ∩ Gt| can be computed from an
inverted index and|Gs| is a trivial function on the length ofs. Even where a string contains
a repeatedn-gram, the error introduced by this approximation is small.

Readers who are familiar with information retrieval may wonder whether document rank-
ing techniques, such as the cosine measure,6 can be applied to the problem of approximate
matching withn-grams. Although these problems are superficially similar, there is an im-
portant respect in which they differ: the more effective document ranking techniques factor
out document length, to allow documents of very different lengths to be ranked as similar.
For words, this behaviour is undesirable. The cosine measure would, for example, regard a
word as being as similar to any one of itsn-grams as it is to itself.

Phonetic methods

The other major class of approximate string matching schemes are the phonetic methods.
Of these, by far the oldest is theSoundexmethod of Odell and Russell, first patented in
1918.2 Soundexuses codes based on the sound of each letter to translate a string into a
canonical form. These codes are shown in TableI. TheSoundexalgorithm itself, in Figure2,
transforms all but the first letter of each string into the code, then truncates the result to be
at most four characters long.

Table I. Soundexphonetic codes

Code Characters
0 a e h i o u w y
1 b f p v
2 c g j k q s x z
3 d t
4 l
5 m n
6 r

For example,king andkhyngge reduce tok52, butknight reduces tok523 while night
reduces ton23—strings that are more different than the original forms. Conversely, very
different strings can transform to the same code, such aspulpit andphlebotomy.

The Soundexalgorithm is designed to bucket together names of similar pronounciation,∗
but, as the above examples show, is fairly crude, and for this reason adaptations toSoundex
have been proposed. One of the more ambitiousSoundexvariants is Gadd’sPhonix
algorithm.9,10

∗ Presumably to simplify management of personnel records in a filing cabinet, in which the time required for any kind of
comprehensive search is prohibitive.
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1. Replace all but the first letter ofs by its phonetic code.
2. Eliminate any consecutive repetitions of codes.
3. Eliminate all occurrences of code 0 (that is, eliminate vowels).
4. Return the first four characters of the resulting string.

Figure 2. The Soundex algorithm

Phonix is similar to Soundexin that letters are mapped to a set of codes, but, prior to
this mapping, letter-group transformations are applied. For example,gn, ghn, andgne are
mapped ton, the sequencetjV (whereV is any vowel) is mapped tochV if it occurs at the
start of a string, andx is transformed toecs. Altogether about 160 of these transformations
are used. These transformations provide a certain degree of context for the phonetic coding
and allow, for example,c ands to be distinguished, which is not possible underSoundex.
The Phonix codes are shown in TableII . The first stage of thePhonix algorithm—the
letter-group substitutions—can be regarded as a separate algorithm, and is included as
partial Phonix in our experiments.

Table II. Phonix phonetic codes

Code Characters
0 a e h i o u w y
1 b p
2 c g j k q
3 d t
4 l
5 m n
6 r
7 f v
8 s x z

As originally described,Phonix is expensive to evaluate, as each of the letter-group
transformations are applied in turn. There are however close approximations toPhonix that
can be evaluated much more efficiently.5

There are other techniques for approximate string matching,2 as well as spelling and OCR
correction techniques3 and name matching techniques.1 However, the techniques described
in this section are typical of the techniques that apply to approximate matching of queries
against a large lexicon.

Effectiveness

The effectiveness of the approximate string matching techniques already described can
be compared forNAMES and DICT, the test collections for which we have queries and
relevance judgements. We compared effectiveness by using each technique to order the
whole of each collection with respect to each query, then compute recall-precision figures
for each ordering.

The results are given in TableIII. Each recall-precision figure is an average across the set
of queries. The linesedit, modifiededit, gram-distandgram-countare as already described
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and as can be seen the first three are about equally effective, withedit slightly better for
name matching and the other two better for spelling correction. Althoughgram-count is
less effective, its performance is at least acceptable.

Table III. Recall-precision of approximate
string matching techniques

NAMES DICT
Technique Precision (%)
edit 63·7 39·9
Modified edit 61·2 45·5
gram-dist 61·5 45·5
gram-count 55·9 21·7
agrep 32·8 21·5
Soundex 27·4 4·5
Phonix 25·0 3·3
Modified Soundex+edit 32·9 9·1
PartialPhonix+edit 60·7 36·1

The approximate matching utilityagrep was also tested, by applying it to the test files
with combinations of parameters and selecting the best results. This utility does not rank
answers and therefore cannot be subjected to quite the same experimental methodology as
the edit distances. Results are shown in the table. Performance is not particularly good, but
it should be noted thatagrep is not designed for this application.

The lines labelledSoundexandPhonix are the standard definitions of these methods as
given above. Both are practically useless for spelling correction; but this is not so surprising,
as they are not designed for this task. More seriously, both are also poor at personal name
matching. Curiously, for bothNAMES andDICT we foundPhonix to be worse thanSoundex,
despite the fact that it is some seventy years more recent and is explicitly designed as a
Soundexreplacement.

We believe thatSoundexand Phonix are unlikely to perform well on any test set. The
notion of phonetic coding is attractive because distinct letters can conflate to the same
sound, but these schemes allocate the same code to letters that can represent different
sounds; and even where the letters of a code sound similar, that does not imply that words
containing them are likely to be confused with one another—considermad and not, for
example. Moreover, in our test collections we have found very few cases of words with
the same pronounciation but no common spelling, but many cases of words with the same
pronounciation and similar spelling; so that, statistically at least, we would expect edit-
distance methods to perform better than phonetic methods.

We also experimented with a variant of theSoundexalgorithm, in which the codes were
not truncated to four letters, but instead kept at their original length. In conjunction with
edit, this method provides a mix of similarity methods, but is significantly worse thanedit
applied to the original strings.

Similarly, partial Phonix with edit—that is, using the letter-group transformations of
phonix then comparing strings with theedit function—is less effective than usingedit
alone. Experience with English suggests that there are circumstances in which the letter-
group transformations would bring together different spellings of names with the same
pronounciation, but our experiments indicate that such instances are swamped by cases in
which the letter-group transformations introduce noise.

Throughout the rest of the paper we concentrate onedit, gram-count, gram-dist, Soundex,
modifiedSoundexand partialPhonix, as they are representative of the different techniques
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discussed in this section. It would be possible to incorporate theagrep string comparison
technique as a fine search mechanism, but due to its relatively weak performance as a
ranking tool we did not pursue this option; we do however consider its performance in the
context of the coarse search schemes.

COARSE SEARCH TECHNIQUES

Where approximate matches to a query term are to be found in a large lexicon, some
form of indexing must be used. Without indexing, a complete search of the lexicon is
required for each query term, an impractical solution in most situations. An index is a fixed
assignment of a binary value to each ‘property, item’ pair, indicating whether the indexed
item possesses the property. For example, the itemwater includes amongst its properties
that it hasSoundexcodew36, contains 2-gramat and is at edit-distance 3 from the item
wine. It is unlikely to be feasible to index each term in a lexicon according to its edit-
distance from every possible string. However, other methods—Soundexcodes,n-grams and
generalization ofn-grams to arbitrary length substrings—present possibilities for indexing
items in a lexicon and are thus candidate coarse search techniques.

Throughout this paper, index sizes are shown as a percentage of the original lexicon size,
so that a 200 Kb index forNAMES would have size 82·6%; the CPU times are average
per query, on a Sun Sparc 10 Model 512; and effectiveness is average per query. In the
experiments, the lexicon was in lexicographical order, the top 50 words were returned in
response to each query and the lexicon was held in memory. Holding the lexicon in memory
is desirable because it improves document retrieval efficiency and permits high-performance
compression of stored documents.11,12 We consider the consequences of storing the lexicon
on disk later.

N-gram indexing

Several authors have considered the use ofn-grams for lexicon indexing.8,13,14,15,16 Zobel,
Moffat, and Sacks-Davis have described ann-gram lexicon indexing scheme, based on
compressed inverted files,17 that is both fast and compact.18 In this scheme, an ordinal
number is associated with each string in the lexicon, and associated with eachn-gram is a
postings list, that is, a list of the ordinal numbers of the words containing thatn-gram. The
compression reduces the size of the index from around three times the size of the indexed
lexicon to around half to twice the size of the indexed lexicon, depending on choice ofn.
To find the strings that match a pattern, the postings lists for then-grams in the pattern are
retrieved and intersected—matching strings must contain all of the pattern’sn-grams. Some
of the retrieved strings will be false matches, which can be eliminated by direct comparison
with the pattern.

The samen-gram index can be used for approximate string matching, but a different query
evaluation mechanism must be used: some matches will not contain all of then-grams in
the query string, so strings containing any of the queryn-grams should be considered. Thus,
to find matches, the union of the postings lists of the queryn-grams is required. This union
process should, for each strings, count how many of the postings lists refer tos—that is,
computinggram-count(q, s), whereq is the query string. For our data sets andn = 1, the
most efficient structure for holding these counts is an array with one element per lexicon
entry, since, for our test data, on average over half of the lexicon contains at least one of
the query’sn-grams. For the more practical cases ofn ≥ 2, a dynamic structure such as a
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Table IV. Performance ofn-gram coarse search strategies (Index size: as percentage
of original lexicon size)

NAMES DICT
Index size CPU Effective Index size CPU Effective

Technique (%) (ms) (%) (%) (ms) (%)
n
2 94·3 57·5 55·5 72·2 174·2 22·2
3 137·6 21·5 50·4 92·5 79·4 19·9
4 242·2 16·9 47·5 127·2 66·1 16·3

answers
(n = 2)

10 94·3 57·5 51·3 72·2 171·4 21·7
100 94·3 60·0 56·1 72·2 163·1 21·3

1,000 94·3 111·3 55·9 72·2 228·8 21·4
10,000 94·3 542·9 55·9 72·2 888·5 21·4

hash table is preferable.
To increase precision, an extran-gram is created for the start and end of each word; for

example, the 3-grams ofwater are|wa, wat, ate, ter, ander|.
Once thegram-count(q, s) values have been accrued, a structure such as a heap can be

used to identify theA = 50 strings with highest count, for presentation to the user. The
performance of this strategy is shown in the first block of TableIV.∗ These results show a
clear trade-off between index size and speed, and, to a lesser extent, speed and effectiveness.
The decrease in time for largen is because inverted file entries become substantially shorter,
from an average of thousands of identifiers per entry forn = 2 to an average of tens of
identifiers per entry forn = 4. That the lexicons were sorted has, for approximate matching,
a minimal effect on evaluation time, but, as a consequence of the compression regime, does
reduce index size by 25–35 per cent.

Note that the sizes ofn-gram indexes include three components: the postings entries; the
n-grams and pointers from them to the postings entries; and an array of pointers mapping
each ordinal string number to a string location.

The times achieved compare well with those of the utilityagrep, which, for the options
that achieved the best effectiveness, required an average of 240 ms onNAMES and 1,860 ms
on DICT to search the files for matches. These times were achieved, however, without the
use of indexes.

We considered several refinements to the basicn-gram algorithm. The number of answers
returned has a pronounced effect on both speed and effectiveness. A small number of
matches can usually be returned very quickly indeed, because the cost of sorting the heap
becomes insignificant. On the other hand, for a large number of matches the sorting cost
can dominate. This is illustrated in the second block of TableIV, in which we vary the
number of answers returned for 2-grams.

Owolabi and McGregor have also described approximate string matching withn-gram
indexing, using a form of signature file.16 We have experimented with our techniques on
the hardware they used (a Sun 3) and appear to have markedly better performance, but note
∗ Speed improvements of over 30 per cent above those achieved here have been measured for an implementation of this

indexing scheme incorporated into themg database system,19 indicating that our results too could be improved with a
production implementation.
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that Owolabi and McGregor do not indicate how many matches are returned.
We also considered two optimizations shown to be valuable in the context of exact pattern

matching.18 First, to save processing time, once the number of candidate strings had fallen
below a fixed threshold the longer postings lists were not processed—thus increasing the
number of false matches but potentially decreasing costs overall, because for exact string
matching the cost of false match checking is low and no sorting is required. Second, to save
index space, strings were grouped into blocks that were indexed as if they were a single
string, again increasing the number of false matches. This optimization can also reduce
processing time, as the length (and therefore decompression cost) of each postings list is
reduced. We have conducted preliminary experiments applying both of these optimizations
to approximate pattern matching, but neither performed satisfactorily.

Permuted lexicons

Then-gram indexing technique is a form of fixed-length substring search; other structures
provide access to lexicons via substrings of arbitrary length. One such structure is the
‘permuted lexicon’ scheme,20 in which the lexicon is extended to contain the rotated form
of every word. For example, the rotations ofwine arewine|, ine|w, ne|wi, e|win and
|wine. An efficient representation of the permuted lexicon is an array of pointers into
the original lexicon, one pointer to each character position (including the one-byte string
terminators). A pointer into the middle of a word is interpreted as a pointer to a rotated
form of the word; for a example, a pointer to then in wine denotes the stringne|wi. The
array of pointers is sorted on the rotated forms, allowing patterns to be found by binary
search. The disadvantages of this scheme are that the lexicon itself must be held in memory,
to allow binary search and that the lexicon should be static, because sorting the array of
pointers is expensive. However, the use of binary search means that this scheme should be
fast.

We propose that a permuted lexicon be used to find approximate matches as follows.
Binary search can be used to find the locations of the|q| + 1 rotations of query stringq,
then the strings in the neighbourhood of these locations can be returned as matches. For
example, the immediate neighbours of rotations ofwine include rotations ofwaistline
andswine. Strings should be weighted according to their proximity to each of the locations.
The performance of this scheme is shown in the second block of TableV. As can be seen,
indexes are large and effectiveness is somewhat low, but matches are found quickly.

Table V. Performance of permuted index coarse search strategy. (Index
size: as percentage of original lexicon size)
NAMES DICT

Index size CPU Effective Index size CPU Effective
(%) (ms) (%) (%) (ms) (%)

237·5 2·1 44·5 262·6 2·6 8·1

Another substring access structure is the trie,21,22 which, however, has the disadvantage
of high space overheads. For either of our test data sets, a trie index would require at least
two pointers per character of lexicon—an overhead of at least five to six bytes per byte of
lexicon with even an optimal representation—so we have not pursued the use of tries in
our experiments.
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Phonetic coding

Another class of candidate for the coarse search scheme, and indeed a traditional choice for
this task, are codings such as theSoundexmethod. However, they have marked limitations.
In particular, matching is binary, with no notion of proximity; and the codes are highly
generalized and do not reflect any special characteristics of particular lexicons. Performance
of standardSoundexis shown in TableVI. Although fast and space-efficient, these results
show that the method of bucketing words according to phonetic codes is easily the worst
we used for finding matches.

However, phonetic coding can easily be combined withn-grams, by using postings lists
derived from encoded strings. This approach discards the ‘bucketing’ aspect of phonetic
coding and thus the need to truncate after a fixed number of characters. Such an approach
is therefore suited to the modifiedSoundexalgorithm and to partialPhonix, in which there
is no truncation. Results are shown in TableVI. Overall there seems to be no reason to use
Soundex, modifiedSoundex, or partialPhonix in conjunction withn-grams, whenn-grams
work better by themselves.

Table VI. Performance of phonetic coarse search strategies (Index size: as percentage of
original lexicon size)
NAMES DICT

Index size CPU Effective Index size CPU Effective
Technique (%) (ms) (%) (%) (ms) (%)
Soundex 56.8 16.7 26.9 37.1 60.8 5.4

modifiedSoundex
n = 2 58.2 62.1 31.0 42.0 207.4 6.6
n = 3 69.9 21.8 31.6 45.5 80.9 8.9
n = 4 80.5 16.9 31.6 48.2 59.0 9.5

partial Phonix
n = 2 92.1 61.5 50.0 70.8 170.8 16.3
n = 3 131.2 24.4 47.2 88.7 75.8 18.9
n = 4 221.7 18.3 45.4 119.2 60.3 17.6

Phonetic coding could be incorporated into the permuted lexicon scheme, by storing,
together with each string, its encoded form. Because the performance of the permuted
lexicon andn-gram indexes were similar for strings that were not encoded, and because
the phonetic codes were not particularly successful withn-grams, we have not pursued this
combination.

The indexing techniques described in this section allocate weights to strings on the basis
of index information only (number of matchingn-grams, physical proximity). In the next
section we consider how to refine the weighting using the strings themselves.

FINE SEARCH TECHNIQUES

Usingn-gram coarse search techniques, every string is allocated agram-countvalue. The
strings with non-zerogram-countare candidates for processing by a fine search scheme,
but the number to be processed needs to be kept small, to avoid processing the bulk of
the lexicon at each query. A simple heuristic is to enlarge the heap that is used to extract
the highestgram-countvalues, and hope that ifA answers are required they will occur in
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Table VII. Performance of thegram-dist fine search strategy

NAMES DICT
CPU Effective CPU Effective

Technique (ms) (%) (ms) (%)
no coding
n = 2 62·9 61·1 173·8 45·1
n = 3 26·0 52·4 74·1 39·5
n = 4 18·5 49·1 63·2 31·1

modifiedSoundex
n = 2 62·1 32·1 193·6 8·1
n = 3 26·5 32·2 72·8 7·6
n = 4 19·8 30·3 57·4 7·3

partial Phonix
n = 2 68·8 53·1 178·2 29·9
n = 3 28·7 47·7 81·9 26·1
n = 4 24·0 45·7 65·8 20·6

among thekA highestgram-countvalues, for somek. For example, suppose 50 answers
are required andk = 5. A heap of size 250 will only cost around 30% more to maintain
than a heap of size 50, and maintaining the larger heap is far more efficient than returning to
the structure ofgram-countvalues to find further answers. We have used an enlarged heap
in the experiments described below, arbitrarily choosingk = 3 since, for most techniques,
performance was about as good ask = 10 and better thank = 1 or k = 2.

Given that then-gram coarse search computesgram-count(q, s) = |Gs ∩ Gq| and that
|Gq| is known, only |Gs| is required to give the modified formgram-dist′ of Ukkonen’s
measure. If the strings are held in memory their lengths can be computed on the fly, as
we chose to do in our experiments; alternatively, lengths could be precomputed and stored,
at a cost of around four bits per string. Results are shown in TableVII for gram-dist for
n = 2, 3, and 4; for no phonetic coding; forSoundex; and for partialPhonix. The times
shown include coarse and fine searching, and space is as in Tables, V andVI.

The most startling feature of these results is the massive improvement in effectiveness
for DICT. The other features are the continued poor performance of the phonetic codes and
the further evidence that index size, speed and effectiveness trade off against each other.

If the strings of the lexicon are available in memory, thekA strings with highgram-count
can be processed with an edit-distance measure. Results for theedit function are shown in
TableVIII . This table also includes results for permuted lexicon indexing, in which thekA
nearest neighbours are processed withedit.

The major difference between the use ofedit and gram-dist is that the former adds
considerably to retrieval cost; and, in the ‘no coding’ case, althoughedit is better for
NAMES, it is worse forDICT.

As the results show, there is little advantage to using phonetic coding. It does reduce
index size, but at a marked cost to retrieval effectiveness. The results also show that there
is little reason to use permuted lexicons. Although they give excellent performance for exact
matching,18,20 the results above show that, for approximate matching, they have speed and
retrieval effectiveness similar to that of 3-grams, but with indexes that are about twice as
large. That is, their greater speed for coarse ranking is overwhelmed by the cost of fine
ranking. Moreover, permuted lexicons are expensive to update and require that the lexicon
be held in memory.



FINDING APPROXIMATE MATCHES IN LARGE LEXICONS 343

Table VIII. Performance of theedit fine search strategy

NAMES DICT
Technique CPU Effective CPU Effective

(ms) (%) (ms) (%)
no coding
n = 2 66·0 66·6 178·4 41·3
n = 3 29·4 62·7 82·4 38·1
n = 4 22·7 60·6 68·1 33·8
modifiedSoundex
n = 2 64·6 32·0 196·1 9·4
n = 3 26·3 32·2 86·6 8·9
n = 4 19·0 31·9 53·5 9·5
partial Phonix
n = 2 70·4 60·4 185·2 31·6
n = 3 36·0 59·0 82·9 30·8
n = 4 27·5 58·7 67·1 27·7
permuted lexicon 42·9 63·6 42·4 40·2

SCALING UP

We now consider how well the performance of these techniques scales up for use with the
TREC lexicon. Results are given in TableIX. The figures forn-grams are forgram-dist
fine search and 100 answers—that is, the most successful of the schemes identified in the
previous section. The permuted lexicon figures are with edit distance fine search and 100
answers. Because we do not have relevance judgements forTREC, we are only able to
present figures for speed and time.

Table IX. Performance of search techniques
on TREC. (Index size: as percentage of

original lexicon size)
Index size CPU

Technique (%) (ms)
n-grams
n = 2 87·6 1,735·0
n = 3 115·4 335·0
n = 4 162·2 183·3
permuted lexicons 300·0 111·9

As can be seen, the times compare well to those of the smaller lexicon, particularly
for n = 4. We see no reason, therefore, why our techniques could not be applied to a
lexicon of almost any size.

PRACTICAL CONSIDERATIONS

In our experiments we assumed that lexicons and their indexes are stored in memory. For
many systems this will be a reasonable assumption, given the performance gains to be made
and given that even the lexicon of theTREC collection occupies less than 10 Mb.

However, for ann-gram index, storing the index and lexicon on disk does not imply a
large performance penalty. Typically only five or six disk accesses are required to fetch the
postings lists and perhaps five to twenty disk accesses to fetch the top 50 answers, making
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the assumption that there will typically be some lexicographic clustering amongst similar
words. Even if the lexicon is updated by addition of entries at the end, occasional rebuilds
should maintain good clustering. The main problem presented by storage on disks is fine
searching. Use ofedit would be out of the question, as it requires access tokA strings.
Similarly, gram-dist requires access tokA of the |Gs| values, but these values could be
explicitly stored in memory, at a cost of around four bits per lexicon entry.

The mapping from ordinal number to location of lexicon entry also has to be considered.
On disk, another five to ten accesses would be required. In memory, this mapping would
occupy around three bytes per string.

Another practical issue is cost of update; in a text database, new words will be added to
the lexicon as records are inserted or changed. It is best for a new word to be added at the
end (that is, allocated the ordinal number following the highest allocated previously), as
insertion of a word will change the numbers of other words in the structure and require an
index rebuild. (Note that the lexicon entries do not have to be stored in the order implied
by their ordinal numbers.) Update of ann-gram index following addition of a word to the
end of a lexicon is straightforward, only requiring that a few bits be added to the end of
the postings lists of the word’sn-grams.

Storing words out of lexicographic order increases index size, however, because com-
pression performance is reduced, so it would be advantageous to occasionally rebuild the
n-gram index. Given that even theTREC index can be built in around four minutes on a
Sparc 10, such rebuilds would not be onerous.

CONCLUSIONS

We have shown thatn-gram indexing provides an excellent coarse search mechanism for
identifying approximate matches in a large lexicon. By varyingn, the index can be kept
small or query evaluation can be fast, with smalln giving better effectiveness. Moreover,
n-gram indexes present no difficulties with regard to update.
N -gram indexes should, however, be used in conjunction with a fine search mechanism,

which for spelling correction can more than double effectiveness. Then-gram string distance
proposed by Ukkonen is a suitable fine search mechanism, because it is effective and simple
to compute. It has the added advantage that it can be adapted to a lexicon that is stored on
disk, while other edit distances may not have this flexibility.

The most dramatic aspect of our results is that they demonstrate that phonetic coding is a
poor string matching mechanism. It can provide some speed and space advantages for coarse
search, but at low effectiveness, even for personal name matching. For fine search, the speed
advantage is lost. Unless there are most unusual constraints on the matching mechanism,
string similarity based onn-grams is the approximate string matching technique of choice.
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