
Live Range Splitting in aGraph Coloring Register Allocator?Keith D. Cooper1 and L. Taylor Simpson21 Rice University, Houston, Texas, USA2 Trilogy Development Group, Austin, Texas, USAAbstract. Graph coloring is the dominant paradigm for global registerallocation [8, 7, 4]. Coloring allocators use an interference graph to modelthe conicts that prevent two values from sharing a register. Nodes inthe graph represent live ranges, or values. An edge between two nodesindicates that they are simultaneously live and, thus, cannot share a reg-ister. The allocator tries to construct a k-coloring of the graph, for kequal to the number of registers on the target machine. If it succeeds, itmaps the k colors onto the k registers to produce an allocation. Unfortu-nately, it may not discover a k-coloring. In that case, it spills some liveranges by saving their values to memory. Early coloring allocators spilledlive ranges completely { at each de�nition and use. This approach oftenintroduces more spill code than necessary. In this paper, we present aglobal approach to reducing spill code based on live range splitting.We are not the �rst to study this problem. Bergner et al. describe aheuristic called interference region spilling that reduces the amount ofspill code necessary for spilled live ranges [1]. Briggs experimented withan aggressive form of live range splitting and saw mixed results [3, Chap-ter 6]. This paper presents a more passive form of live range splitting. Theallocator uses splitting as an alternative to spilling. It looks for regionswhere splitting can break the interferences responsible for the spill; it usesestimated costs to choose between splitting the live range and spillingit. We present experimental evidence that this technique is e�ective. Wehave seen reductions in the amount of dynamic spill overhead as high as78% for non-trivial routines. Because our splitting technique chooses be-tween splitting and spilling on the basis of estimated costs, combining itwith Bergner's technique will create an allocator that chooses the betterspill strategy, on a live range by live range basis.1 IntroductionChaitin et al. �rst used graph coloring as a paradigm for register allocation andassignment in a compiler [8, 7]. Coloring allocators operate by building a graphthat shows when two values cannot reside in the same location; we call the graphan interference graph because the values would interfere with each other if they? This work was supported by Darpa through contract Dabt63-95-C-0115 and bythe Trilogy Development Group.



shared a register. The allocator attempts to discover a k-coloring of the graph|that is, an assignment of k colors to the nodes of the graph in such a way that noadjacent nodes have the same color. If it can �nd a k-coloring, for k equal to thenumber of registers on the target machine, it can map the colors into registersand its task is done. If, however, the allocator cannot discover such a coloring,it must select one or more values to store in memory, or spill. It inserts code tospill those values and tries to color the resulting, modi�ed procedure.Chaitin's basic scheme has been improved by other authors. Briggs et al.describe a variation on the coloring heuristic that increases the number of liveranges that can be colored [4, 5]. Bernstein et al. showed that di�erent heuris-tics for choosing spill candidates can improve the results [2]. Even with theseimprovements, some routines still require spill code. The problem is not poorcoloring; these routines simply need more registers than the hardware provides.Once it chooses a live range to spill, Chaitin's original scheme spills the valueeverywhere. It places a store instruction after each de�nition of the value anda load instruction before each use of the value. Local heuristics exist to reducethe number of spill instructions inserted into a single basic block [7, 2]. Thesemethods reduce spills within a block that contains multiple references to thespilled value. They do nothing for problems that arise across multiple blocks.Bergner et al. introduced a technique called interference region spilling thattakes a global approach to reducing the amount of spill code introduced [1].Rather than spill a live range everywhere, their method chooses a color for thelive range and only spills it in areas where that color is unavailable. The allocatorpicks a color for the spilled live range by estimating the costs that would beFig. 1. Example of live range splittingdef l1def l2?use l2?� � �??use l1?� � �?
def l1def l2store l2?load l2use l2?� � �??use l1?� � �?

def l1store l1def l2?use l2?� � �?load l1?use l1?� � �?Original Spill l2 entirely Split l1 across l2



incurred for each color; it selects the color with the smallest estimated cost.In this paper, we explore another global method to reducing spill code, calledlive range splitting. Chaitin-style allocators use maximal-length live ranges asthe basic unit of allocation. It has long been recognized that breaking a liverange into smaller pieces may allow some, or all, of the subsequent pieces to becolored [13, 9]. Chow used this observation in his priority-based coloring scheme;when his allocator encountered a live range that could not be kept in a register, itbroke it into smaller pieces. Briggs experimented with an aggressive form of liverange splitting in his Chaitin-style allocator [3, Chapter 6]. Prior to coloring, hisaggressive splitting broke every live range into smaller parts; he added severalmechanisms to the allocator that could recombine the smaller pieces when doingso would not cause a spill. The method produced both large gains and largelosses; sometimes, it aggressively inserted splits that were both unneeded andbeyond its power to remove.Our approach overcomes these di�culties by being more passive. When theallocator selects a live range l as a candidate for spilling, our method considerssplitting the live range as an alternative to spilling it. We look for a color wheresplitting will succeed|that is, either all live ranges of that color can be splitaround l, or l can be split around all live ranges of that color. If such a color exists,and the estimated cost of splitting is less than the cost of spilling l everywhere,we perform the splitting instead of spilling. Because it compares the estimatedcost of splitting and spilling, our method can easily be combined with Bergner'smethod. The resulting allocator would either split live ranges to reduce spillcosts, or perform interference region spilling to reduce spill costs. It would choosebetween these alternatives on a live range by live range basis.1.1 ExampleTo understand the bene�ts of live range splitting, consider the code on the leftside of Figure 1. If only one register is available for either l1 or l2, one of themmust be spilled. The \spill everywhere" method would place spill code inside oneof the loops. Assume that the spilling heuristic chose l2; the middle column showsthe result of spilling l2 entirely. Notice that a load instruction gets inserted intothe loop. A second problem with this choice is that the two small live rangesthat result from spilling still interfere with l1. The next round of spilling will stillneed to address the underlying problem; in a spill-everywhere scheme, l1 will bespilled. Splitting l1 across l2, shown in the right column, produces a much betterresult. All the spills occur outside the loop. To split l1 across l2, we insert astore for l1 before each de�nition of l2, and a load of l1 after each death of l2.Normally, a live range dies after its last use. The exception occurs in thepresence of control-ow { the ow may branch to one path where a value is liveand to another path where the value is dead. Intuitively, the death occurs alongthe second edge. In our example, l2 dies along the edge that exist the �rst loop,so we insert a load for l1 in the successor block.Splitting in this way lets us allocate l1 and l2 to the same register, withoutinserting spill code inside the loop. In the example, l1 is split across l2 because l1



Fig. 2. Briggs' allocator- renumber - build - coalesce#  ? - spill costs - simplify - select -$�spill code'?completely contains l2. To let the allocator detect this situation, we introduce anew data structure called the containment graph. Section 3 describes this graphin detail. Section 4 explains how to insert the code that splits a live range.2 Briggs' AllocatorBecause our live range splitting procedure is an extension of a Briggs-style allo-cator, we will �rst provide an overview of that allocator. Figure 2 shows a owchart of a Briggs-style allocator [4]. It is composed of seven major phases:Renumber The symbolic registers in the routine are renamed to create liveranges. A live range is a collection of de�nitions that reach a common use.Briggs accomplishes this renumbering by converting the routine to prunedstatic single assignment form [12] and then combining all names mentionedin each �-node.Build The interference graph contains a node for each live range and an edgebetween each pair of live ranges that are simultaneously live. The graph isrepresented by both a triangular bit matrix and a collection of adjacencylists. We build the graph by traversing the instructions in the routine; ateach de�nition, we add an edge between the de�ned name and all live rangesthat are currently live.Coalesce If the source and destination of a copy do not otherwise interfere,the two live ranges can be assigned the same register, and the copy can beremoved. When two live ranges are coalesced, we add an edge between thenew live range and each neighbor of the two live ranges. This approach maybe overly conservative, so we repeat the build and coalesce phases until nomore coalescing is possible.Spill costs We estimate the cost of spilling each live range by counting the in-structions (weighted by instruction cost and by loop nesting depth) requiredto spill that live range. The e�ect of any local heuristic to reduce the numberof loads is included in the estimated spill cost for each live range.Simplify Coloring is a two step process. During the �rst phase, we repeatedlyremove a node with degree less than k from the interference graph, and pushit onto the coloring stack. If the process reaches a point where no such nodeexists, a live range is chosen heuristically to be a spill candidate. Simplify



pushes the spill candidate onto the stack, and optimistically hopes that itcan receive a color during the select phase.3Select We assign colors to live ranges in the order they are popped from thecoloring stack and put back into the interference graph. If no color is availablefor a live range, it is marked for spilling.4 If we are able to assign a colorto every live range, this corresponds to a valid allocation, and the algorithmterminates.Spill code If any live ranges are marked for spilling, we must update the codeto keep these values in memory and repeat the entire allocation process. Thisphase traverses the instructions in the same manner as the spill costs phase.The di�erence is that it actually inserts load and store instructions forany live range marked for spilling.3 The Containment GraphChaitin �rst observed that spilling a live range does not break all its interferences{ this is one of the reasons that we must repeat the coloring process after spillcode is inserted. In fact, spilling merely breaks a live range into multiple tiny liveranges. The middle column of Figure 1 depicts this situation. The allocator hasspilled l2 entirely, producing two short live ranges|one at the de�nition and oneat the use. Both these live ranges still interfere with l1. If, on the other hand,the allocator had spilled l1, the live ranges at l1's de�nition and use would notinterfere with l2. This occurs because l1 contains l2.More formally, spilling a live range li does not break the interference withany live range lj that is live at either a de�nition or a use of li. If, on the otherhand, li and lj interfere, but lj is not live at a de�nition or a use of li, thenli contains lj and the allocator should consider splitting li around lj . To detectthis situation, we introduce a new data structure called the containment graph.The containment graph is a directed analog of the interference graph. Nodes inthe containment graph represent live ranges. An edge from lj to li in the graphindicates that li is live at a de�nition or use of lj. In other words, if the allocatorspills lj , the edges leaving lj in the interference graph correspond to edges in theinterference graph that will remain unbroken by the spill.5 The allocator usesthe graph to determine when one live range is wholly contained in another. Werepresent the containment graph as a square bit matrix. It is twice as large asthe triangular bit matrix used for the interference graph, but we do not requirethe adjacency list representation of the containment graph.3 Chaitin's algorithm always spilled the chosen spill candidate. Briggs' method letsthe select phase see if a color is available. If no color is available when the spillcandidate is popped from the stack in select, it is left uncolored and it is spilled.4 An uncolored live range must have been chosen as a spill candidate in simplify. SeeBriggs et al. for a detailed discussion of this point [4, 5].5 In other words, the tiny live ranges left at de�nitions and uses of lj will continue tointerfere with li if and only if hlj ; lii is an edge in the containment graph.



Fig. 3. Examples of the containment graphl1defuse l2defuse dl1 dl2� l1defuse l2defuse dl1 dl2�� �6 l1defuseuse l2defuse dl1 dl2�� �6Figure 3 shows some examples that illustrate the utility of the containmentgraph. In the left column, l2 is not live at either the de�nition or the use ofl1. Therefore, there is no edge from l1 to l2. In the middle column, l1 and l2overlap so there is an edge in the containment graph in both directions. Theright column is similar to the left column except that there is a use of l1 whilel2 is live. Therefore, there is an edge in both directions.These examples illustrate how we can use the containment graph for liverange splitting. If there is no edge in the interference graph between l1 and l2,then either l1 and l2 do not interfere or l2 is completely contained inside l1.Therefore, we can split l1 across l2 if and only if l1 and l2 interfere and there isno edge from l1 to l2 in the containment graph. Figure 4 shows the algorithm forbuilding the containment graph; it is very similar to the algorithm for buildingthe interference graph.The primary drawback to using the containment graph is the space requiredto hold the bit-matrix. Two di�erent facts should moderate this problem.1. The containment graph contains all the information found in the interferencegraph. Thus, we do not need the lower-triangular bit-matrix form of theinterference graph. If the edge hli; lji is the interference graph, then one orboth of hli; lji and hlj ; liimust be in the containment graph. The containmentgraph is no harder to build than the lower-triangular bit-matrix.2. A bit matrix may be space ine�cient for the containment graph. A recentstudy of techniques for building the interference graph showed that a closedhash table implementation can use less space for su�ciently large graphs [11].The containment graph should reach that threshold much earlier than thelower-triangular bit-matrix.Taken together, these suggestions should reduce the space impact of buildingthe containment graph rather than an undirected interference graph.For clarity of exposition, we describe the algorithm as if it must build thegraphs separately, and at di�erent times. However, the implementor can easilyuse a single graph and build it during the build phase of the original Chaitin-Briggs scheme.



4 Computing Split Costs and Inserting Split CodeThe containment graph tells the allocator when it is possible to split one liverange across another. The next step is to determine when this splitting is prof-itable. Estimating the cost of splitting is similar to estimating spill costs. Wecompute the number of load and store instructions required to split acrosseach live range. It takes a store before each de�nition and a load after eachdeath. De�nitions are easy to identify; deaths require a bit more e�ort. We cantraverse the instructions in each block in reverse order and follow the e�ect thateach instruction has on the live set. Initially, the live set is the liveOut set for theblock. At each instruction, we remove any de�ned live ranges and add any usedlive ranges. When a live range, l, is added to the set for the �rst time, we haveidenti�ed a death of l. Deaths can also occur at branch points in the control-owgraph. The example in Figure 5 illustrates how this can happen. The live rangeis de�ned in block B1 and used in B3. Clearly, the use in B3 is a death, but thevalue also dies if ow of control transfers from B1 to B2. In this situation, wethink of the death as occurring along the edge. Formally, the set of live rangesthat die along an edge hi; ji is liveOuti � liveInj .The algorithm is shown in Figure 6. The range array keeps an estimate ofthe number of loads and stores required to split around each live range. Theestimates are weighted by nesting depth. When we choose a color to split aroundthe live range, we multiply these estimates by the cost of each instruction.Once we have selected which live ranges to split (see Section 5), we mustinsert the necessary load and store instructions. The routine to insert thesplit code follows exactly the same logic as the cost calculation,n except that itinserts the code for any live ranges marked for splitting. Whenever we encountera death of a live range, l, we insert a load for any live range that is split aroundl. Similarly, when we encounter a de�nition of l, we insert a store instructionfor any live range that is split around l.Fig. 4. Building the containment graphbuildContainmentGraph()Allocate the square bit matrixFor each block blive  liveOutbFor each instruction, i, in b in reverse orderFor each live range, l, de�ned in iFor each m 2 liveAdd edge hl;mi to containment graphUpdate the live setFor each live range, l, used in iFor each m 2 liveAdd edge hl;mi to containment graph



5 Finding a ColorThe previous sections explained how we determine if one live range can be splitaround another and how we estimate the cost of splitting around each live range.When a live range, l, is chosen for spilling during the select phase, we attemptto split one or more live ranges across l. The goal is to �nd a color which canbe made available to hold l. We group all the neighbors of l by color and lookfor a color such that all the neighbors can be split across l. We total the cost ofsplitting each neighbor.6 We also check for a color where l can be split acrossall those neighbors. If a color is found whose split cost is less than the cost ofspilling l entirely, we assign l that color and record which live ranges will be splitaround l (or which live ranges to split l around).Figure 7 shows the algorithm used to �nd a color. The �ndColor routine willbe called from select whenever a live range, l, is chosen for spilling. We look fora color to assign l by splitting. First we try to split the color around l, then wetry to split l around the color. At each point, we keep track of the color withthe smallest estimated cost. If a color is found for l, we assign it to colors[l] sothat other neighbors of l colored later will not receive that color.We will explain how the process works when applied to the example in Fig-ure 1. First, assume that l1 is removed from the stack and assigned a color, c.When l2 is removed from the stack, it cannot receive a color, so we search for acolor to split around l2. The color c is assigned to neighbor l1, and there is noedge in the containment graph from l1 to l2, so the splitting is possible. Sincethe cost of the split is less than the cost of spilling l2 entirely, we choose color cfor l2.In the alternative scenario, l2 is removed from the stack before l1. When l1is removed from the stack, it cannot receive a color so we search for color tosplit around l1 and for a color to split l1 around. We will discover that l1 can besplit around the color of l2. In other words, our algorithm will split l1 around l2regardless of which live range is assigned a color �rst.6 For normal live ranges, this is the cost of a store instruction before each de�nitionand a load instruction after each death. However, if a live range is rematerializ-able [5], we need only restore its value after each death.Fig. 5. Death along an edge in the CFGdefB1 ������ HHHHHjB2 useB3



Fig. 6. Computing split costs and inserting split codesplitCosts()buildContainmentGraph()For each block bweight  10depth(b)live  liveOutbFor each successor, s, of bdeaths liveOutb � liveInsFor each m 2 deathsrange[m]:loads range[m]:loads+ 10depth(s)For each instruction, i, in b in reverse orderFor each live range, l, de�ned in irange[l]:stores range[l]:stores+ weightFor each live range, l, used in iif l 62 liverange[l]:loads range[l]:loads+weightUpdate the live setsplitCode()For each block blive  liveOutbFor each successor, s, of bdeaths liveOutb � liveInsFor each m 2 deathsFor each live range, l, split around mif rematerializable(l)Insert a load-immediate for lelseInsert a load for lFor each instruction, i, in b in reverse orderFor each live range, l, de�ned in iFor each live range, s, split around lif :rematerializable(s)Insert a store sFor each live range, l, used in iif l 62 liveFor each live range, s, split around lif rematerializable(s)Insert a load-immediate for selseInsert a load for sUpdate the live set



Fig. 7. Finding a color for splitting�ndColor(l)bestCost range[l]:costsplitFound  FALSEFor each color c/* Try to split c around l */splitOK  TRUEcost 0For each neighbor, n, of l with colors[n] = cif hn; li 2 containment graphsplitOK  FALSEelse if rematerializable(n)cost cost+ range[l]:loads� rematCostelsecost cost+ range[l]:stores� storeCost +range[l]:loads� loadCostif splitOK and cost < bestCostbestCost costbestColor  csplitDir  splitAroundNamesplitFound  TRUE/* Try to split l around c */splitOK  TRUEcost 0For each neighbor, n, of l with colors[n] = cif hl; ni 2 containment graphsplitOK  FALSEelse if rematerializable(l)cost cost+ range[n]:loads� rematCostelsecost cost+ range[n]:stores� storeCost +range[n]:loads� loadCostif splitOK and cost < bestCostbestCost costbestColor  csplitDir  splitAroundColorsplitFound  TRUEif splitFoundcolors[l] bestColorif splitDir = splitAroundNameFor each neighbor, n, of l with colors[n] = bestColorMark n to be split around lelseFor each neighbor, n, of l with colors[n] = bestColorMark l to split around n



Fig. 8. Splitting allocator-renumber - build - coalesce� �? - spill costs -split costs - simplify - select -?6�nd color$�spill code�split code'?6 Putting It TogetherFigure 8 shows a ow chart for our new splitting allocator. Three new phasesare added to the Briggs-style allocator.Split costs We estimate the cost of splitting around each live range by countinga store instruction before each de�nition and a load instruction aftereach death. During this phase, we also build the containment graph.7 Thiscomputation could easily be folded into the spill costs phase of the Briggs-style allocator, but we show it as a separate phase for clarity. We do notbuild the containment graph during the Build phase because it is not neededduring the Build/Coalesce loop.Find color When a live range, l, is chosen for spilling during the select phase, itcalls the �ndColor routine. This phase selects a color for the live range basedon the cost of splitting that color across l or the cost of splitting l acrossthat color. If a color is found, l is assigned that color and the appropriatelive ranges are marked for splitting.Split code We must insert the load and store instructions according to theselections made by the �ndColor routine. This process could easily be foldedinto the spill code phase of the Briggs-style allocator, but we show it as aseparate phase for clarity.7 ExperimentsTo assess the impact of our technique, we have implemented it in our experimen-tal Fortran compiler. The compiler is centered around our intermediate language,called ILOC (pronounced \eye-lock"). ILOC is a pseudo-assembly language for aRISC machine with an arbitrary number of symbolic registers. load and storeoperations are provided to access memory, and all computations operate on sym-bolic registers. The front end translates Fortran into ILOC. The optimizer trans-forms the ILOC, and hands the results to the register allocator. The back endproduces code instrumented to count the number of spill instructions executed.7 If the implementor is using a single graph to represent both the interference graphand the containment graph, it will already have been built.



Table 1. Allocating for 32 integer + 32 oat registers (dynamic spill operations)Briggs Splits % Bergnerfield 191870 174725 8.94 186191smooth 52260 51338 1.76 38499init 50301 50107 0.39 50303vslv1p 28121 5980 78.73 23035parmvr 3456 1108 67.94 3378radf4 382 372 2.62 297radb4 382 376 1.57 301energy 296 295 0.34 292radb2 172 146 15.12 114radf2 163 143 12.27 108fftb 128 128 0.00 128fftf 128 128 0.00 128radf5 123 132 -7.32 96radb5 123 118 4.07 82putb 43 44 -2.33 38getb 26 22 15.38 20rffti1 24 19 20.83 20slv2xy 11 9 18.18 11pdiag 6 0 100.00 6Our initial interest in this problem arose from several studies in which weexamined code that resulted from automatic application of aggressive programtransformations [10, 6, 14]. As these techniques become more widely applied,compilers will need to deal with their consequences. For this study, we focusedon routines from the program wave5 in the SPEC95 benchmark suite. Theseroutines had been transformed by the insertion of advisory prefetch instructionsintended to improve cache behavior [14]. The transformations increased registerpressure to the point where spilling was a recognizable performance problem,even on a machine with thirty-two integer and thirty-two oating-point registers.Table 1 shows the results of our experiment. The Briggs column shows thenumber of spill instructions executed when the code is allocated using the Briggs-style allocator. Our version of the Briggs-style allocator includes optimistic col-oring, rematerialization, and biased coloring [4, 5]. The Splits column shows thespill code executed using our splitting allocator. The Bergner column shows howBergner et al.'s interference region spilling performs on the same code.In some cases, splitting produces a drastic reduction in the number of op-erations introduced for spilling. We reduced the spill overhead of vslv1p andparmvr by 78.73% and 67.94%, respectively. The improvement in field is thelargest in absolute terms. For the pdiag routine, we reduced the dynamic spilloverhead by 100%. This does not mean that we removed all the spill code fromthe routine; we simply placed the spill code on paths that were not exercised bythis set of input data.



Unfortunately, we did see an increase in the amount of spill code for two rou-tines. Two situations can produce this problem. First, the estimated spill costsmay not accurately reect the true cost at run time. This is the case for both theradf5 and putb routines in our test. Second, spill decisions change the problemseen by subsequent passes of the allocator. This can produce signi�cantly di�er-ent allocations. In other words, when we cycle around the main loop in Figure 2or 8, we insert di�erent spill code. Therefore, the next attempt at coloring willhave a di�erent interference graph.Comparing splitting against interference region spilling, it is clear that eachtechnique has its strengths. Splitting outperforms ir spilling on field andvslv1p, while ir spilling wins on smooth. We believe that the two techniquesare complimentary; an allocator that trades o� the cost of splitting against thecost of ir spilling should produce the better code for each example, moderated,of course, by the fact that the comparison is based on estimated costs ratherthan actual costs.8 Summary and ConclusionsGlobal techniques for the reduction of spill code can reduce the number of mem-ory operations introduced by the register allocator. The potential for live rangesplitting to reduce spill code has long been recognized; the details of how to im-plement it in a Chaitin-style register allocator have not. In this paper, we showedthat a relatively passive approach to splitting can produce dramatic positive re-sults. The technique is easy to add to an existing Briggs-style allocator. Becauseour splitting algorithm chooses between splitting and spilling on the basis ofcosts, it can be combined with Bergner's interference region spilling to create anallocator that captures the improvements of both techniques.9 AcknowledgementsThis work was supported by darpa through Army contract dabt63-95-C-0115.The work described in this paper has been done as part of the Massively ScalarCompiler Project at Rice University. The many people who have contributed tothat project deserve our gratitude. Preston Briggs of Tera Computer Companyhas acted as a sounding board for many of our ideas in this area. Tim Harveydid much of the implementation work that supports this e�ort; without hispatient support, this work would not have been done. Nat McIntosh providedthe test code that we used in this experiment. Peter Bergner of The Universityof Minnesota deserves our gratitude for helping us understand the details of hiswork on interference region spilling.References1. Peter Bergner, Peter Dahl, David Engebretsen, and Matthew O'Keefe. Spill codeminimization via interference region spilling. SIGPLAN Notices, 32(6):287{295,



June 1997. Proceedings of the ACM SIGPLAN '97 Conference on ProgrammingLanguage Design and Implementation.2. David Bernstein, Dina Q. Goldin, Martin C. Golumbic, Hugo Krawczyk, YishayMansour, Itai Nahshon, and Ron Y. Pinter. Spill code minimization techniquesfor optimizing compilers. SIGPLAN Notices, 24(7):258{263, July 1989. Proceed-ings of the ACM SIGPLAN '89 Conference on Programming Language Design andImplementation.3. Preston Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice Univer-sity, April 1992.4. Preston Briggs, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Coloringheuristics for register allocation. SIGPLAN Notices, 24(7):275{284, July 1989.Proceedings of the ACM SIGPLAN '89 Conference on Programming Language De-sign and Implementation.5. Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization. SIG-PLAN Notices, 27(7):311{321, July 1992. Proceedings of the ACM SIGPLAN '92Conference on Programming Language Design and Implementation.6. Steve Carr. Memory-Hierarchy Management. PhD thesis, Rice University, De-partment of Computer Science, September 1992.7. Gregory J. Chaitin. Register allocation and spilling via graph coloring. SIGPLANNotices, 17(6):98{105, June 1982. Proceedings of the ACM SIGPLAN '82 Sympo-sium on Compiler Construction.8. Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Mar-tin E. Hopkins, and Peter W. Markstein. Register allocation via coloring. Com-puter Languages, 6(1):47{57, January 1981.9. Fred C. Chow and John L. Hennessy. Register allocation by priority-based col-oring. SIGPLAN Notices, 19(6):222{232, June 1984. Proceedings of the ACMSIGPLAN '84 Symposium on Compiler Construction.10. Keith D. Cooper, Mary W. Hall, and Linda Torczon. An experiment with inlinesubstitution. Software { Practice and Experience, 21(6):581{601, June 1991.11. Keith D. Cooper, Timothy J. Harvey, and Linda Torczon. How to build an inter-ference graph. Software{Practice and Experience (to appear), 1997. Available onthe web at http://softlib.rice.edu/MSCP/publications.html.12. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. KennethZadeck. An e�cient method of computing static single assignment form. In Con-ference Record of the Sixteenth Annual ACM Symposium on Principles of Program-ming Languages, pages 25{35, Austin, Texas, January 1989.13. Janet Fabri. Automatic storage optimization. SIGPLAN Notices, 14(8):83{91,August 1979. Proceedings of the ACM SIGPLAN '79 Symposium on CompilerConstruction.14. Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and evaluation ofa compiler algorithm for prefetching. SIGPLAN Notices, 27(9):62{75, September1992. In Proceedings of the Fifth International Conference on Architectural Supportfor Programming Languages and Operating Systems.This article was processed using the LaTEX macro package with LLNCS style


