
The CMA Evolution Strategy: A Comparing Review

Nikolaus Hansen

CoLab Computational Laboratory, ETH Zürich
ICoS Institute of Computational Science, ETH Zürich
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Summary. Derived from the concept of self-adaptation in evolution strategies, the CMA (Co-
variance Matrix Adaptation) adapts the covariance matrix of a multi-variate normal search
distribution. The CMA was originally designed to perform well with small populations. In
this review, the argument starts out with large population sizes, reflecting recent extensions of
the CMA algorithm. Commonalities and differences to continuous Estimation of Distribution
Algorithms are analyzed. The aspects of reliability of the estimation, overall step size control,
and independence from the coordinate system (invariance) become particularly important in
small populations sizes. Consequently, performing the adaptation task with small populations
is more intricate.

Nomenclature

Abbreviations

CMA Covariance Matrix Adaptation

EDA Estimation of Distribution Algorithm

EMNA Estimation of Multivariate Normal Algorithm

ES Evolution Strategy

(µ/µ{I,W}, λ)-ES, evolution strategy with µ parents, with recombination of all µ
parents, either Intermediate or Weighted, and λ offspring.

OP : IRn → IRn×n,x �→ xxT, denotes the outer product of a vector with itself,
which is a matrix of rank one with eigenvector x and eigenvalue ‖x‖2.

RHS Right Hand Side.

Greek symbols

λ ≥ 2, population size, sample size, number of offspring.

µ ≤ λ parent number, number of selected search points in the population.

N. Hansen: The CMA Evolution Strategy: A Comparing Review, StudFuzz 192, 75–102 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006



76 N. Hansen

µcov, parameter for weighting between rank-one and rank-µ update, see (22).

µeff =
(∑µ

i=1 w2
i

)−1
, the variance effective selection mass, see (5).

σ(g) ∈ IR+, step size.

Latin symbols

B ∈ IRn, an orthogonal matrix. Columns of B are eigenvectors of C with unit
length and correspond to the diagonal elements of D.

C(g) ∈ IRn×n, covariance matrix at generation g.

cii, diagonal elements of C.

cc ≤ 1, learning rate for cumulation for the rank-one update of the covariance
matrix, see (17) and (33).

ccov ≤ 1, learning rate for the covariance matrix update, see (11), (21), (22), and
(34).

cσ < 1, learning rate for the cumulation for the step size control, see (23) and (31).

D ∈ IRn, a diagonal matrix. The diagonal elements of D are square roots of eigen-
values of C and correspond to the respective columns of B.

dii, diagonal elements of D.

dσ ≈ 1, damping parameter for step size update, see (24), (28), and (32).

E Expectation value

f : IRn → IR,x �→ f(x), objective function (fitness function) to be minimized.

fsphere : IRn → IR,x �→ fsphere(x) = ‖x‖2 =
∑n

i=1 x2
i .

g ∈ N, generation counter, iteration number.

I ∈ IRn×n, Identity matrix, unity matrix.

m(g) ∈ IRn, mean value of the search distribution at generation g.

n ∈ N>0, search space dimension, see f .

N (0, I), multi-variate normal distribution with zero mean and unity covariance ma-
trix. A vector distributed according toN (0, I) has independent, (0, 1)-normally
distributed components.

N (m,C) ∼m +N (0,C), multi-variate normal distribution with mean m ∈ IRn

and covariance matrix C ∈ IRn×n. The matrix C is symmetric and positive
definite.

p ∈ IRn, evolution path, a sequence of successive (normalized) steps, the strategy
takes over a number of generations.

wi, where i = 1, . . . , µ, recombination weights, see also (3).
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x(g+1)
k ∈ IRn, k-th offspring from generation g + 1. We refer to x(g+1), as search

point, or object parameters/variables, commonly used synonyms are candidate
solution, or design variables.

x(g+1)
i:λ , i-th best individual out of x(g+1)

1 , . . . ,x(g+1)
λ .

1 Introduction

We assume a search scenario, where we want to minimize an objective function
f : IRn → IR,x �→ f(x).1 The only accessible information on f are function
values of evaluated search points. Our performance measure is the number of func-
tion evaluations needed to reach a certain function value. Many continuous domain
evolutionary algorithms use a normal distribution to sample new search points. In
this chapter, we focus on algorithms with a multi-variate normal search distribution,
where the covariance matrix of the distribution is not restricted to a priori, e.g., not
a diagonal matrix. Estimation of Distribution Algorithms (EDAs) falling into this
class, include the Estimation of Multi-variate Normal Algorithm (EMNA), the Esti-
mation of Gaussian Network Algorithm (EGNA) [15, 16], and the Iterated Density
Estimation Evolutionary Algorithm (IDEA) [4]. Evolution Strategies (ESs) falling
into this class include a (µ/µI, λ)-ES2 with self-adaptation of correlated mutations
[19], and the ES with Covariance Matrix Adaptation (CMA) [10]. Originally, the
CMA was interpreted as derandomized self-adaptation [12]: in contrast to the orig-
inal self-adaptation, where changes of the distribution parameters obey their own
stochastics, in the CMA, changes of the distribution parameters are deterministically
linked to the object parameter variations. In this chapter, we will review the CMA
from a different perspective revealing the close relationship to EDAs like the EMNA.

The Multi-variate Normal Distribution

Any normal distribution, N (m,C), is uniquely determined by its mean m ∈ IRn

and its symmetric and positive definite covariance matrix C ∈ IRn×n. Covariance
matrices have an appealing geometrical interpretation: they can be uniquely identi-
fied with the (hyper-)ellipsoid {x ∈ IRn |xTC−1x = 1}, as shown in Fig. 1. The
ellipsoid is a surface of equal density of the distribution. The principal axes of the
ellipsoid correspond to the eigenvectors of C, the squared axes lengths correspond
to the eigenvalues. The eigendecomposition is denoted by C = B (D)2 BT, where
columns of B are eigenvectors of C with unit length (B is orthogonal), and the
squared diagonal elements of the diagonal matrix D are the corresponding eigenval-
ues.

The normal distribution N (m,C) can be written in different forms.

N (m,C) ∼ m +N (0,C) ∼ m + BDBTN (0, I) ∼ m + BDN (0, I) (1)

1 In fact, the image needs not to be IR. Any totally ordered set is sufficient.
2 (µ/µI, λ) refers to the non-elitist selection scheme with µ parents, Intermediate recombi-

nation of all µ parents, and λ offspring.
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0, σ2I
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0,D2

)
N (0,C)

Fig. 1. Six ellipsoids, depicting one-σ lines of equal density of six different normal distrib-
utions, where σ ∈ IR+, D is a diagonal matrix, and C is a positive definite full covariance
matrix. Thin lines depict exemplary objective function contour lines

where “∼” denotes equality in distribution and I denotes the identity matrix. If D =
σI, where σ ∈ IR+, C = σ2I and the ellipsoid is isotropic (Fig. 1, left). If B = I,
the ellipsoid is axis parallel oriented (middle). In the coordinate system given by B,
the distribution N (0,C) is uncorrelated.

Objective

The objective of covariance matrix adaptation is, loosely speaking, to fit the search
distribution to the contour lines of the objective function f to be minimized. In Fig. 1
the solid-line distribution in the right figure follows the objective function contour
most suitably, and it is easy to foresee that it will help to approach the optimum the
most. On convex-quadratic objective functions, setting the covariance matrix of the
search distribution to the inverse Hessian matrix is equivalent to rescaling the ellip-
soid function into a spherical one. We assume that the optimal covariance matrix
equals the inverse Hessian matrix, up to a constant factor.3 Consequently, the adapta-
tion mechanism should aim to approximate the inverse Hessian matrix. Choosing a
covariance matrix or choosing a respective affine linear transformation of the search
space is equivalent [7].

Basic Equation

In the CMA evolution strategy, a population of new search points is generated by
sampling a multi-variate normal distribution. The basic equation for sampling the
search points, for generation number g = 0, 1, 2, . . . , reads4

x(g+1)
k ∼ N

(

m(g),
(
σ(g)

)2

C(g)

)

for k = 1, . . . , λ (2)

3 Even though there is good intuition and strong empirical evidence for this statement, a
rigorous proof is missing.

4 Framed equations belong to the final algorithm of a CMA evolution strategy.
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where

∼ denotes the same distribution on the left and right side.

N(m(g), (σ(g))2C(g)) ∼m(g) + σ(g)N(0,C(g)) ∼m(g) +σ(g)B(g)D(g)N (0, I)
is the multi-variate normal search distribution.

x(g+1)
k ∈ IRn, k-th offspring (search point) from generation g + 1.

m(g) ∈ IRn, mean value of the search distribution at generation g.

σ(g) ∈ IR+, “overall” standard deviation, step size, at generation g.

C(g) ∈ IRn×n, covariance matrix at generation g.

λ ≥ 2, population size, sample size, number of offspring.

To define the complete iteration step, the remaining question is, how to calculate
m(g+1), C(g+1), and σ(g+1) for the next generation g + 1. The next three sections
will answer these questions, respectively.

2 Selection and Recombination: Choosing the Mean

The new mean m(g+1) of the search distribution is a weighted average of µ selected
points from the sample x(g+1)

1 , . . . ,x(g+1)
λ :

m(g+1) =
µ∑

i=1

wi x
(g+1)
i:λ (3)

µ∑

i=1

wi = 1, wi > 0 for i = 1, . . . , µ (4)

where

µ ≤ λ is the parent population size, i.e. the number of selected points.

wi=1...µ ∈ IR+, positive weight coefficients for recombination, where w1 ≥ w2 ≥
· · · ≥ wµ > 0. Setting wi = 1/µ, (3) calculates the mean value of µ selected
points.

x(g+1)
i:λ , i-th best individual out of x(g+1)

1 , . . . ,x(g+1)
λ from (2). The index i : λ de-

notes the index of the i-th ranked individual and f(x(g+1)
1:λ ) ≤ f(x(g+1)

2:λ ) ≤
· · · ≤ f(x(g+1)

λ:λ ), where f is the objective function to be minimized.
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Equation (3) implements recombination by taking a weighted sum of µ individ-
uals, and selection by choosing µ < λ and/or assigning different weights wi.

The measure

µeff =

(
µ∑

i=1

w2
i

)−1

(5)

can be paraphrased as variance effective selection mass. From the definition of wi we
derive 1 ≤ µeff ≤ µ, and µeff = µ for equal recombination weights, i.e. wi = 1/µ
for all i = 1 . . . µ. Usually, µeff ≈ λ/4 indicates a reasonable setting of wi. A typical
setting would be wi ∝ µ− i + 1, and µ ≈ λ/2.

3 Adapting the Covariance Matrix

In this section, the update of the covariance matrix, C, is derived. We will start out es-
timating the covariance matrix from a single population of one generation (Sect. 3.1).
For small populations this estimation is unreliable and an adaptation procedure has
to be invented (Sect. 3.2). The adaptation procedure takes into account more than one
generation and can be further enhanced by exploiting dependencies between succes-
sive steps (Sect. 3.3).

3.1 Estimating the Covariance Matrix

For the moment we assume that the population contains enough information to reli-
ably estimate a covariance matrix from the population.5 For the sake of convenience
we assume σ(g) = 1 in this section. For σ(g) 
= 1 the discussion holds except for a
constant factor.

Referring to (2), we can (re-)estimate the original covariance matrix C(g) from
the sample population, x(g+1)

1 . . .x(g+1)
λ , by

C(g+1)
emp =

1
λ− 1

λ∑

i=1



x(g+1)
i − 1

λ

λ∑

j=1

x(g+1)
j







x(g+1)
i − 1

λ

λ∑

j=1

x(g+1)
j





T

.

(6)
The empirical covariance matrix C(g+1)

emp is an unbiased estimator of C(g): assuming

the x(g+1)
i , i = 1 . . . λ, to be random variables (rather than a realized sample), we

have that E
[
C(g+1)

emp

∣
∣C(g)

]
= C(g). Consider now a slightly different approach to

get an estimator for C(g).

5 To re-estimate the covariance matrix, C, from a N (0, I) distributed sample such that
cond(C) < 10 a sample size λ ≥ 4n is needed. The condition number of the ma-

trix C is defined via the Euclidean norm: cond(C)
def
= ‖C‖ × ‖C−1‖, where ‖C‖ =

sup‖x‖=1 ‖Cx‖. For the covariance matrix C holds cond(C) = λmax
λmin

≥ 1, where λmax

and λmin are the largest and smallest eigenvalue of C.
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C(g+1)
λ =

1
λ

λ∑

i=1

(
x(g+1)

i −m(g)
)(

x(g+1)
i −m(g)

)T

(7)

The matrix C(g+1)
λ is an unbiased maximum likelihood estimator of C(g). The re-

markable difference between (6) and (7) is the reference mean value. For C(g+1)
emp it

is the mean of the actually realized sample. For C(g+1)
λ it is the true mean value of

the distribution, m(g) (see (2)). Therefore, the estimators C(g+1)
emp and C(g+1)

λ can be

interpreted differently: while C(g+1)
emp estimates the distribution variance within the

sampled points, C(g+1)
λ estimates variances of sampled steps, x(g+1)

i −m(g). For
the CMA the second approach is chosen.

Equation (7) re-estimates the original covariance matrix. To “estimate” a “better”
covariance matrix (7) is modified and the same, weighted selection mechanism as in
(3) is used [8].

C(g+1)
µ =

µ∑

i=1

wi

(
x(g+1)

i:λ −m(g)
)(

x(g+1)
i:λ −m(g)

)T

(8)

The matrix C(g+1)
µ is an estimator for the distribution of selected steps, just as C(g+1)

λ

is an estimator of the original distribution of steps before selection. Sampling from
C(g+1)

µ tends to reproduce selected, ı.e. successful steps, giving a justification for
what a “better” covariance matrix means.

We compare (8) with the EMNAglobal approach [15, 16], where

C(g+1)
EMNAglobal

=
1
µ

µ∑

i=1

(
x(g+1)

i:λ −m(g+1)
)(

x(g+1)
i:λ −m(g+1)

)T

, (9)

and m(g+1) = 1
µ

∑µ
i=1 x(g+1)

i:λ . The subtle difference is, again, the choice of the

reference mean value.6 Equation (8) estimates selected steps while in (9) the vari-
ance within the selected population is estimated. Equation (8) always reveals larger
variances than (9), because the reference mean value in (9) is the minimizer for the
variances. Moreover, in most conceivable selection situations (9) decreases the vari-
ances.

Figure 2 demonstrates the estimation results on a linear objective function for
λ = 150, µ = 50, and wi = 1/µ. While (8) increases the expected variance in
direction of the gradient (where the selection takes place, here the diagonal), given
ordinary settings for parent number µ and recombination weights w1, . . . , wn, (9)
decreases this variance! Therefore, (9) is highly susceptible to premature conver-
gence, in particular with small parent populations, where the population cannot be
expected to bracket the optimum at any time. However, for large values of µ in large
populations with large initial variances, the impact of the different reference mean
value can be marginal.

6 Taking a weighted sum,
∑µ

i=1 wi . . . , instead of the mean, 1
µ

∑µ
i=1 . . . , is an appealing,

but less important, difference.
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(a)

(b)
sampling estimation new distribution

Fig. 2. Estimation of the covariance matrix on flinear(x) = −
∑2

i=1 xi to be minimized.
Contour lines (dotted) indicate that the strategy should move toward the upper right corner.
(a) Estimation of C

(g+1)
µ according to (8), where wi = 1/µ; (b) estimation of C

(g+1)
EMNAglobal

according to (9). Left: sample of λ = 150 N (0, I) distributed points. Middle: the µ = 50
selected points (dots) determining the entries for the estimation equation (solid straight lines),
and the estimated covariance matrix (ellipsoid). Right: search distribution of the next gen-
eration. Given wi = 1/µ, (a) increases the expected variance in gradient direction for all
µ < λ/2, while (b) decreases this variance for any µ < λ

To ensure C(g+1)
µ is a reliable estimator implementing (2), (3), and (8), the vari-

ance effective selection mass µeff (cf. (5)) must be large enough: to get condition
numbers smaller than ten for C(g)

µ on fsphere(x) =
∑n

i=1 x2
i , to our experience,

µeff ≈ 10n is needed. The next step is to circumvent this restriction on µeff .

3.2 Rank-µ-Update

To achieve fast search (opposite to more robust or more global search), e.g. competi-
tive performance on fsphere, the population size λ must be small. Because µeff ≈ λ/4
also µeff must be small and we may assume, e.g., µeff ≤ 1 + lnn. Then, it is not
possible to get a reliable estimator for a good covariance matrix from (8) alone. As a
remedy, information from previous generations is added. For example, after a suffi-
cient number of generations, the mean of the estimated covariance matrices from all
generations,

C(g+1) =
1

g + 1

g∑

i=0

1

σ(i)2
C(i+1)

µ (10)
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becomes a reliable estimator for the selected steps. To make C(g)
µ from different

generations comparable, the different σ(i) are incorporated. (Assuming σ(i) = 1,
(10) resembles the covariance matrix from EMNAi [16].)

In (10), all generation steps have the same weight. To assign recent generations
a higher weight, exponential smoothing is introduced. Choosing C(0) = I to be the
unity matrix and a learning rate 0 < ccov ≤ 1, then C(g+1) reads

C(g+1) = (1− ccov)C(g) + ccov
1

σ(g)2
C(g+1)

µ

= (1− ccov)C(g) + ccov

µ∑

i=1

wi OP

(
x(g+1)

i:λ −m(g)

σ(g)

)

(11)

where

ccov ≤ 1 learning rate for updating the covariance matrix. For ccov = 1, no prior
information is retained and C(g+1) = 1

σ(g)2 C
(g+1)
µ . For ccov = 0, no learning

takes place and C(g+1) = C(0).

OP : IRn → IRn×n,x �→ xxT, denotes the outer product of a vector with itself.

This covariance matrix update is called rank-µ-update [9], because the sum of outer
products in (11) is of rank min(µ, n) (with probability one). Note that this sum can
even consist of a single term, if µ = 1.

The factor 1/ccov can be interpreted as the backward time horizon. Because (11)
expands to the weighted sum

C(g+1) = (1− ccov)g+1C(0) + ccov

g∑

i=0

(1− ccov)g−i 1

σ(i)2
C(i+1)

µ , (12)

the backward time horizon, ∆g, where about 63% of the overall weight is summed
up, is defined by

ccov

g∑

i=g+1−∆g

(1− ccov)g−i ≈ 0.63 ≈ 1− 1
e

. (13)

Resolving the sum yields

(1− ccov)∆g ≈ 1
e

, (14)

and resolving for ∆g, using the Taylor approximation for ln, yields

∆g ≈ 1
ccov

. (15)

That is, approximately 37% of the information in C(g+1) is older than 1/ccov gener-
ations, and, according to (14), the original weight is reduced by a factor of 0.37 after
approximately 1/ccov generations.
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The choice of ccov is crucial. Small values lead to slow learning, too large values
lead to a failure, because the covariance matrix degenerates. Fortunately, a good
setting seems to be largely independent of the function to be optimized.7 A first order
approximation for a good choice is ccov ≈ µeff/n2. Therefore, the characteristic time
horizon for (11) is roughly n2/µeff .

Even for the learning rate ccov = 1, adapting the covariance matrix cannot be
accomplished within one generation. The effect of the original sample distribution
does not vanish until a sufficient number of generations. Assuming fixed search costs
(number of function evaluations), a small population size λ allows a larger number
of generations and therefore usually leads to a faster adaptation of the covariance
matrix.

3.3 Cumulation: Utilizing the Evolution Path

We have used the selected steps, (x(g+1)
i:λ −m(g))/σ(g), to update the covariance

matrix in (11). Because OP(x) = xxT = OP(−x), the sign of the steps in (11)
is irrelevant – that is, the sign information is not used for calculating C(g+1). To
exploit this information, the so-called evolution path is introduced [10, 12].

We call a sequence of successive steps, the strategy takes over a number of gener-
ations, an evolution path. An evolution path can be expressed by a sum of consecutive
steps. This summation is referred to as cumulation. To construct an evolution path,
the step size σ is disregarded. For example, an evolution path of three steps can be
constructed by the sum

m(g+1) −m(g)

σ(g)
+

m(g) −m(g−1)

σ(g−1)
+

m(g−1) −m(g−2)

σ(g−2)
. (16)

Again, we use exponential smoothing as in (11), to construct the evolution path,
pc ∈ IRn, starting with p(0)

c = 0.

p(g+1)
c = (1− cc)p(g)

c +
√

cc(2− cc)µeff
m(g+1) −m(g)

σ(g)
(17)

where

p(g)
c ∈ IRn, evolution path at generation g.

cc ≤ 1. Again, 1/cc is the backward time horizon of the evolution path pc (compare
(15)). A time horizon between

√
n and n is reasonable.

The factor
√

cc(2− cc)µeff is a normalization constant for p(g)
c . For cc = 1 and

µeff = 1, the factor reduces to one, and p(g+1)
c = (x(g+1)

1:λ −m(g))/σ(g). The factor
is chosen, such that

7 We use the sphere model fsphere(x) =
∑

i x2
i to empirically find a good setting for the

parameter ccov, dependent on n and µeff . The setting found was applicable to any non-noisy
objective function we had tried so far.
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p(g+1)
c ∼ N (0,C) (18)

if

p(g)
c ∼ x(g+1)

i:λ −m(g)

σ(g)
∼ N (0,C) for all i = 1, . . . , µ . (19)

To derive (18) from (19) and (17) remark that

(1− cc)2 +
√

cc(2− cc)
2

= 1 and
µ∑

i=1

wiNi(0,C) ∼ 1
√

µeff
N(0,C) . (20)

The (rank-one) update of the covariance matrix C(g) via the evolution path
p(g+1)

c reads [10]

C(g+1) = (1− ccov)C(g) + ccovp(g+1)
c p(g+1)

c

T
. (21)

An empirically validated choice for the learning rate in (21) is ccov ≈ 2/n2. For
cc = 1 and µ = 1, (21) and (11) are identical.

Using the evolution path for the update of C is a significant improvement of
(11) for small µeff , because correlations between consecutive steps are exploited.
The leading signs of steps, and the dependencies between consecutive steps, play a
significant role in the resulting evolution path p(g+1)

c . For cc ≈ 3/n the number of
function evaluations needed to adapt a nearly optimal covariance matrix on cigar-like
objective functions becomes O(n).

As a last step, we combine (11) and (21).

3.4 Combining Rank-µ-Update and Cumulation

The final CMA update of the covariance matrix combines (11) and (21), where µcov

determines their relative weighting.

C(g+1) = (1− ccov)C(g) +
ccov

µcov
p(g+1)

c p(g+1)
c

T

︸ ︷︷ ︸
rank-one update

+ ccov

(

1− 1
µcov

)

×
µ∑

i=1

wi

(
x(g+1)

i:λ −m(g)

σ(g)

)(
x(g+1)

i:λ −m(g)

σ(g)

)T

︸ ︷︷ ︸
rank-µ update

(22)

where

µcov ≥ 1. Choosing µcov = µeff is most appropriate.

ccov ≈ min(µcov, µeff , n2)/n2.



86 N. Hansen

Equation (22) reduces to (11) for µcov → ∞ and to (21) for µcov = 1. The
equation combines the advantages of (11) and (21). On the one hand, the information
within the population of one generation is used efficiently by the rank-µ update.
On the other hand, information of correlations between generations is exploited by
using the evolution path for the rank-one update. The former is important in large
populations, the latter is particularly important in small populations.

4 Step Size Control

We know two reasons to introduce a step size control in addition to the adaptation
rule of (22) for C(g).

1. The optimal overall step length cannot be well approximated by (22), in particu-
lar if µeff is chosen larger than one. For example, on fsphere(x) =

∑n
i=1 x2

i , the
optimal step size σ equals approximately µ

√
fsphere(x)/n, given C(g) ≈ I and

µeff = µ � n [2, 17]. This dependency on µ cannot be realized by (11), and is
also not well approximated by (22).

2. The largest reliable learning rate for the covariance matrix update in (22) is too
slow to achieve competitive change rates for the overall step length. To achieve
optimal performance on fsphere with an evolution strategy, the overall step length
must decrease by a factor of approximately exp(0.202) ≈ 1.22 within n function
evaluations, as can be derived from progress formulas [2, p. 229]. That is, the
time horizon for the step length change must be proportional to n or shorter.
From the learning rate ccov in (22) it follows that the adaptation is too slow to
perform competitively on fsphere whenever µeff � n. This can be validated
by simulations even for moderate dimensions, say, n ≥ 10 and small µeff , say,
µeff ≤ 1 + lnn.

To control the step size σ(g) we utilize an evolution path, i.e. a sum of successive
steps (see page 84). The method is denoted cumulative path length control, cumula-
tive step size control, or cumulative step size adaptation. The length of an evolution
path is exploited, based on the following reasoning.

• If the evolution path is long, the single steps are pointing to similar directions.
Loosely speaking, they are correlated. Because the steps are similar, the same
distance can be covered by fewer but longer steps in the same directions – con-
sequently the step size should be increased.

• If the evolution path is short, single steps cancel each other out. Loosely speak-
ing, they are anti-correlated. If steps annihilate each other, the step size should
be decreased.

• In the desired situation, the steps are approximately perpendicular in expectation
and therefore uncorrelated.
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To define “long” and “short”, we compare the length of the evolution path with its
expected length under random selection.8 Under random selection consecutive steps
are independent and therefore uncorrelated. If selection biases the evolution path to
be longer then expected, σ will be increased, and, vice versa. If selection biases the
evolution path to be shorter than expected, σ will be decreased. In the ideal situation,
selection does not bias the length of the evolution path at all.

Because, in general, the expected length of the evolution path p(g+1)
c from (17)

depends on its direction (compare (18)), a conjugate evolution path is constructed:

p(g+1)
σ = (1− cσ)p(g)

σ +
√

cσ(2− cσ)µeff C(g)−
1
2 m(g+1) −m(g)

σ(g)
(23)

where

p(g)
σ ∈ IRn is the conjugate evolution path at generation g.

cσ < 1. Again, 1/cσ is the backward time horizon of the evolution path (compare
(15)). For small µeff , a time horizon between

√
n and n is reasonable.

√
cσ(2− cσ)µeff is a normalization constant, see (17).

C(g)−
1
2 def= B(g)D(g)−1

B(g)T, where C(g) = B(g)
(
D(g)

)2
B(g)T is an eigende-

composition of C(g), where B(g) is an orthonormal basis of eigenvectors, and
the diagonal elements of the diagonal matrix D(g) are square roots of the corre-
sponding positive eigenvalues.

For C(g) = I, (23) replicates (17), because C(g)−
1
2 = I then. The transformation

C(g)−
1
2 re-scales the step m(g+1) − m(g) within the coordinate system given by

B(g). The single factors of the transformation C(g)−
1
2 = B(g)D(g)−1

B(g)T can be
read as follows (from right to left):

B(g)T rotates the space such that the columns of B(g), i.e. the principle axes of the
distributionN(0,C(g)), rotate into the coordinate axes. Elements of the resulting
vector relate to projections onto the corresponding eigenvectors.

D(g)−1
applies a (re-)scaling such that all axes become equally sized.

B(g) rotates the result back into the original coordinate system. This last transfor-
mation ensures that directions of consecutive steps are comparable.

Consequently, the transformation C(g)−
1
2 makes the expected length of p(g+1)

σ

independent of its direction, and for any sequence of realized covariance matri-
ces C(g)

g=0,1,2,... we have under random selection p(g+1)
σ ∼ N (0, I), given p(0)

σ ∼
N (0, I) [6].

To update σ(g), we “compare” ‖p(g+1)
σ ‖ with its expected length E‖N (0, I) ‖,

that is
8 Random selection means that the index i : λ (compare (3)) is independent of the value of
x

(g+1)
i:λ for all i = 1, . . . , λ, e.g. i : λ = i.
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ln σ(g+1) = lnσ(g) +
cσ

dσ

(
‖p(g+1)

σ ‖
E‖N (0, I) ‖ − 1

)

, (24)

where

dσ ≈ 1, damping parameter, scales the change magnitude of ln σ(g). The factor
cσ/dσ is based on in-depth investigations of the algorithm [6].

E‖N (0, I) ‖ =
√

2 Γ(n+1
2 )/Γ(n

2 ) ≈ √n + O(1/n), expectation of the Euclidean
norm of a N (0, I) distributed random vector.

For ‖p(g+1)
σ ‖ = E‖N (0, I) ‖ the second summand in (24) is zero, and σ(g) is un-

changed, while σ(g) is increased for ‖p(g+1)
σ ‖ > E‖N (0, I) ‖, and σ(g) is decreased

for ‖p(g+1)
σ ‖ < E‖N (0, I) ‖. The step size change is unbiased on the log scale, be-

cause E
[
ln σ(g+1)

∣
∣σ(g)

]
= lnσ(g) for p(g+1)

σ ∼ N (0, I). The role of unbiasedness
is discussed in Sect. 6.

We show that successive steps taken by m(g) are approximately C(g)−1
-

conjugate. Equations (23) and (24) adapt σ such that the length of p(g+1)
σ

equals approximately E‖N (0, I) ‖. Starting from (E‖N (0, I) ‖)2 ≈ ‖p(g+1)
σ ‖

2
=

p(g+1)
σ

T
p(g+1)

σ = RHSTRHS of (23) and assuming that the expected squared length

of C(g)−
1
2 (m(g+1) −m(g)) is unchanged by selection we get

p(g)
σ

T
C(g)−

1
2 (m(g+1) −m(g)) ≈ 0 , (25)

and (

C(g)
1
2 p(g)

σ

)T

C(g)−1
(
m(g+1) −m(g)

)
≈ 0 . (26)

Given 1/ccov � 1 and (25) we assume that p(g−1)
σ

T
C(g)−

1
2 (m(g+1) −m(g)) ≈ 0

and derive
(
m(g) −m(g−1)

)T

C(g)−1
(
m(g+1) −m(g)

)
≈ 0 . (27)

That is, consecutive steps taken by the distribution mean become approximately

C(g)−1
-conjugate.

Because σ(g) > 0, (24) is equivalent to

σ(g+1) = σ(g) exp

(
cσ

dσ

(
‖p(g+1)

σ ‖
E‖N (0, I) ‖ − 1

))

(28)

The length of the evolution path is an intuitive and empirically well validated good-
ness measure for the overall step length. For µeff > 1 it is the best measure to our
knowledge. Nevertheless, it fails to adapt nearly optimal step sizes on very noisy
objective functions [3].
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5 Simulations

The complete algorithm of the CMA evolution strategy is summarized in Appen-
dix A, where all (default) parameter settings are given. We show single simulation
runs of the CMA-ES on the test functions from Table 1, where n = 8.9 All func-

Table 1. Convex-quadratic test functions. y = Ox, where O is an orthogonal matrix

Function cond(H) fstop Initial interval

fsphere(x) = 1
2

∑n
i=1 x2

i 1 10−9 [0.1, 0.3]n

felli(x) = 1
2

∑n
i=1 106 i−1

n−1 y2
i 106 10−9 [0.1, 0.3]n

fcigtab(x) = 1
2

(
y2
1 + 104∑n−1

i=2 y2
i + 108y2

n

)
108 10−9 [5, 25]n

ftwoax(x) = 1
2

(∑�n/2�
i=1 y2

i + 106∑n
i=�n/2�+1 y2

i

)
106 10−9 [5, 25]n

tions are convex-quadratic and can be written in the form f(x) = 1
2 xTHx, where

H is the positive definite Hessian matrix. For each function we run an axis parallel
version and a randomly oriented version. In the axis parallel version the Hessian is
diagonal, because we choose O = I (see Table 1). For the randomly oriented version
each column of O is uniformly distributed on the unit hypersphere [12], fixed for
each run. The matrix O defines the coordinate system where the Hessian is diago-
nal. On fsphere, instead of O, we set B(0) to an arbitrary orthogonal matrix in the
“randomly oriented” version. Furthermore, the diagonal elements of D(0) are set to

dii = 10−3+3 i−1
n−1 and C(0) = B(0)D(0)D(0)B(0)T. That is, the condition number

of C(0) equals to 106 and C has to become spherical (condition number one) during
the adaptation (see Fig. 3). Further settings and initial values for the CMA-ES are
according to Fig. 7 and Table 2 in Appendix A.

By tracking eigenvalues and variances of the covariance matrix we can pursue,
whether the objective of the covariance matrix adaptation is achieved, to approxi-
mate the inverse Hessian matrix of the objective function up to a constant factor.
Eigenvalues of the Hessian correspond to the coefficients in Table 1 ({1, . . . , 1} for

fsphere, {106 i−1
n−1 | i = 1, . . . , n} for felli, {1, 104, 108} for fcigtab, and {1, 106} for

ftwoax).
The runs are shown in Fig. 3–6. The bottom figures show the square root of the

eigenvalues of the covariance matrix, that is the lengths of the principal axes of the
distribution ellipsoid, corresponding to diagonal elements, dii, of D. After about
3500, 3500, 4000, and 5000 function evaluations, respectively, the adaptation has
taken place and the axes lengths dii reflect the square root of the inverse eigenvalues
of the Hessian, properly. Notice the striking connection between the matching of the
lengths of the axes and the slope of the function value graph. Apart from effects of

9 For exhaustive investigations of the CMA-ES on larger test function sets see [6, 8, 9, 11, 12]
and for scale-up investigation up to n = 320 see [12].
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(a) fsphere, B(0) = I
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(b) fsphere, B(0) randomly oriented

Fig. 3. Two runs on fsphere, where the initial covariance matrix, C(0), is not spher-
ical Above: function value (thick line), σ (lower graph),

√
cond(C) (upper graph).

Middle:
√
diag(C), index annotated. Below: square root of the eigenvalues of C, i.e.

diag(D) = [d11, . . . , dnn], versus number of function evaluations

different x(0) and different random seeds, the upper and lower figures are equivalent
for the axis parallel (a) and the randomly oriented version (b).

On axis parallel functions, the principal axes of the search distribution should
become axis parallel after the adaptation has taken place. The middle figures show
the square root of the diagonal elements of the covariance matrix,

√
cii. The elements√

cii align to the principal axes lengths dii in the left figures. That means, the search
ellipsoid becomes axis parallel oriented (apart from subspaces of equal eigenvalues,
where the final orientation is irrelevant). The final ordering of the

√
cii reflects the

ordering of the coefficients in the objective function. In contrast, the ordering of the
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(a) axis parallel felli
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(b) randomly oriented felli

Fig. 4. Two runs on felli Above: function value (thick line), σ (lower graph),
√
cond(C)

(upper graph). Middle:
√
diag(C), index annotated. Below: square root of the eigenval-

ues of C, i.e. diag(D) = [d11, . . . , dnn], versus number of function evaluations

√
cii on the randomly oriented functions is arbitrary. The course of

√
cii depends on

the given coordinate system and therefore is remarkably different between (a) and
(b). After the adaptation has taken place, in all cases the optimum is approached as
fast as with an isotropic search distribution on fsphere.

All the data give clear evidence that the inverse Hessian is well approximated.
A measure for “well” can be derived from the runs on fsphere (Fig. 3): the final
condition number of C is smaller than five.
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(a) axis parallel fcigtab
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(b) randomly oriented fcigtab

Fig. 5. Two runs on fcigtab Above: function value (thick line), σ (lower graph),√
cond(C) (upper graph). Middle:

√
diag(C), index annotated. Below: square root

of the eigenvalues of C, i.e. diag(D) = [d11, . . . , dnn], versus number of function
evaluations

6 Discussion

In effect, the CMA-ES transforms any ellipsoid function into a spherical function. It
is highly competitive on a considerable number of test functions [6, 8, 9, 11, 12] and
was successfully applied to real world problems.10 We discuss a few basic design
principles.

10 To our knowledge a few dozen successful applications have been published up to now, see
http://www.icos.ethz.ch/software/evolutionary computation/cmaapplications.pdf
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(a) axis parallel ftwoax
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Fig. 6. Two runs on ftwoax Above: function value (thick line), σ (lower graph),√
cond(C) (upper graph). Middle:

√
diag(C), index annotated. Below: square root

of the eigenvalues of C, i.e. diag(D) = [d11, . . . , dnn], versus number of function
evaluations

Change Rates

A great deal of differences between continuous domain EDAs with multiple depen-
dencies and the CMA-ES can be found in the change rates of distribution parameters.
We refer to a change rate as the expected parameter change per sampled search point,
given a certain selection situation. The CMA-ES separately controls change rates for
the mean value of the distribution, m, the covariance matrix, C, and the step size, σ.

• The change rate for the mean value m, given a fixed sample distribution, is deter-
mined by the parent number and the recombination weights. The larger µeff , the
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smaller the possible change rate of m is. This is consistent with most EDAs. In-
terestingly, an explicit control parameter for the change rate for m is proposed in
the Stochastic Hill Climbing with Learning by Vectors of Normal Distributions
[18] and in the Population Based Incremental Learning for continuous domain
(PBILc) [20], and even an adaptive control parameter is proposed in [21].

• The change rate of the covariance matrix C is explicitly controlled by the learn-
ing rate ccov and detached from parent number and population size. The learning
rate reflects the model complexity. An incremental update of distribution para-
meters from the selected population, similar to CMA, was already proposed in
Population Based Incremental Learning (PBIL) [1] and expanded to continuous
domain [5, 18, 20]. In contrast to CMA, these algorithms do not consider covari-
ances. In EMNAa [15], both, mean and covariances are incrementally updated,
but the change rates are equal for m and C.

• The change rate of the step size σ is independent from the change rate of C. The
chosen time constant ensures a fast change of the overall step length in particular
with small population sizes.

Invariance

Invariance properties of a search algorithm denote identical behavior on a set of ob-
jective functions. Invariances are highly desirable: they imply uniform performance
on classes of functions and therefore allow for generalization of empirical results.
Translation invariance should be taken for granted in continuous domain optimiza-
tion. Further invariances to linear transformations of the search space are desirable.
The CMA-ES and the EMNA approaches exhibit the following invariances.

• Invariance against order preserving (i.e. strictly monotonic) transformations of
the objective function value. The algorithms only depend on the ranking of func-
tion values.

• Invariance against angle preserving transformations of the search space (rotation,
reflection, and translation) if the initial search point(s) are transformed accord-
ingly.

• Scale invariance if the initial scaling, e.g. σ(0), and the initial search point(s) are
chosen accordingly.

• Invariance against any invertible linear transformation of the search space, A, if

the initial covariance matrix C(0) = A−1
(
A−1

)T
, and the initial search point(s)

are transformed accordingly.

In our opinion, invariance should be a fundamental design criterion for any search
algorithm.

Stationarity

An important design criterion for a stochastic search procedure is unbiasedness of
variations of object and strategy parameters [13, 12]. Consider random selection,
e.g. the objective function f(x) = rand to be independent of x. The population
mean is unbiased if its expected value remains unchanged in the next generation, that
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is E
[
m(g+1)

∣
∣m(g)

]
= m(g). For the population mean stationarity under random

selection is a rather intuitive concept. In the CMA-ES, stationarity is respected for
all parameters in (2). The distribution mean m, the covariance matrix C, and ln σ are
unbiased. Unbiasedness of ln σ does not imply that σ is unbiased. Actually, under
random selection, E

[
σ(g+1)

∣
∣σ(g)

]
> σ(g), compare (24).11

For variances (or step sizes) a bias toward increase or decrease will entail the
danger of divergence or premature convergence, respectively, whenever the selection
pressure is low. Nevertheless, on noisy problems a properly controlled bias toward
increase, even on the log scale, can be beneficial.

7 Summary and Conclusion

We have compared the CMA evolution strategy with EDAs that estimate the com-
plete covariance matrix of a multi-variate normal search distribution. We summarize
identified key points.

• Estimation principle: Most EDAs estimate the distribution parameters from a set
of selected points. The CMA estimates them from a set of selected steps. Us-
ing steps is much less prone to premature convergence and supports explorative
search behavior.

• Step size control: Methods to estimate or adapt the covariance matrix do not
achieve good overall step lengths. In EDAs, step size control is usually absent,
making a potential increase of the overall step length almost impossible. In the
CMA-ES, the adaptation of the covariance matrix is complemented with step
size control. The adjustment of the step size is based on a different adaptation
principle. Cumulative path length control often adapts nearly optimal step sizes
usually leading to considerably larger step lengths. This improves convergence
speed and global search capabilities at the same time.

• Population size, adaptation, and change rates: Choosing the population size λ is
always a compromise. Small λ lead to faster convergence, and large λ help to
avoid local optima. To achieve a fast learning scheme for a covariance matrix
1. the population size λ must be comparatively small (see end of Sect. 3.2) and
2. an adaptation procedure must be established, where parameters are updated

rather than estimated from scratch in every generation.
Appropriate time constants for change rates of the population mean, of the co-
variance matrix, and of the overall step length are essential for competitive per-
formance. In the CMA-ES, learning rates can be adjusted independently and only
the change rate of the population mean is (indirectly) associated with the popula-
tion size λ (via µeff ). Determining different change rates for different parameters
by adjusting learning rates is an open issue in EDAs.

11 Alternatively, if (28) would have been designed to be unbiased for σ(g+1), this would pre-

sumably imply E
[
ln σ(g+1)

∣
∣
∣ σ(g)

]
< ln σ(g), to our opinion a less desirable possibility.
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• Invariances: To generalize empirical performance results, invariance properties
are invaluable. Many EDAs use the given coordinate system to estimate the dis-
tribution, and are consequently not invariant to rotations of the search space.
The CMA-ES is invariant under search space rotation and exhibits further invari-
ances. Admittedly, a rotation invariant method cannot exploit separability of the
objective function efficiently.12

Based on these key points the CMA can improve the performance on ill-conditioned
and/or non-separable problems by orders of magnitude, leaving the performance on
simple problems unchanged. In conclusion, the CMA evolution strategy is a state-
of-the-art continuous domain evolutionary algorithm which is widely applicable and
quasi parameter free.
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A Algorithm Summary: The (µW, λ)-CMA-ES

Figure 7 outlines the complete algorithm, summarizing (2), (3), (17), (22), (23), and
(28). Symbols used are:

x(g+1)
k ∈ IRn, for k = 1, . . . , λ. Sample of λ search points of generation g + 1.

N (m,C), multi-variate normal distribution with mean m and covariance matrix
C.

x(g+1)
i:λ , i-th best point out of x(g+1)

1 , . . . ,x(g+1)
λ from (29). The index i : λ de-

notes the index of the i-th ranked point and f(x(g+1)
1:λ ) ≤ f(x(g+1)

2:λ ) ≤ · · · ≤
f(x(g+1)

λ:λ ).
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Set parameters

Set parameters λ, µ, wi=1...µ, cσ , dσ , cc, µcov, and ccov to their default values accord-
ing to Table 2.

Initialization

Set evolution paths p
(0)
σ = 0, p(0)

c = 0, and covariance matrix C(0) = I.
Choose step size σ(0) ∈ IR+ and distribution mean m(0) ∈ IRn problem dependent.1

For generation g = 0, 1, 2, . . . , until stopping criterion met:

Sample new population of search points

x
(g+1)
k ∼ N

(

m(g),
(
σ(g)

)2

C(g)

)

for k = 1, . . . , λ (29)

Selection and recombination

m(g+1) =

µ∑

i=1

wi x
(g+1)
i:λ ,

µ∑

i=1

wi = 1, wi > 0 (30)

Step size control

p(g+1)
σ = (1 − cσ)p(g)

σ +
√

cσ(2 − cσ)µeff C(g)−
1
2 m(g+1) − m(g)

σ(g)
(31)

σ(g+1) = σ(g) exp

(
cσ

dσ

(
‖p(g+1)

σ ‖
E‖N (0, I) ‖ − 1

))

(32)

Covariance matrix adaptation

p(g+1)
c = (1 − cc)p

(g)
c + h(g+1)

σ

√
cc(2 − cc)µeff

m(g+1) − m(g)

σ(g)
(33)

C(g+1) = (1 − ccov)C
(g) +

ccov

µcov

(
p(g+1)

c p(g+1)
c

T
+ δ(h(g+1)

σ )C(g)
)

+ ccov

(

1 − 1

µcov

) µ∑

i=1

wi OP

(
x

(g+1)
i:λ − m(g)

σ(g)

)

(34)

1The optimum should presumably be within the cube m(0) ± 2σ(0)(1, . . . , 1)T. If
the optimum is expected to be in [0, 1]n (initial interval) we may choose the initial search
point, m(0), uniformly randomly in [0, 1]n, and σ(0) = 0.5. Different search intervals
∆si for different variables can be reflected by a different initialization of C, in that the
diagonal elements of C(0) obey c

(0)
ii = (∆si)

2.

Fig. 7. The (µW, λ)-CMA evolution strategy. Symbols: see text
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µeff =
(∑µ

i=1 w2
i

)−1
is the variance effective selection mass. It holds 1 ≤ µeff ≤

µ.

C(g)−
1
2 def= B(g)D(g)−1

B(g)T, where C(g) = B(g)D(g)D(g)B(g)T is an eigende-
composition of the symmetric, positive definite covariance matrix C(g). Columns

of B(g) are an orthonormal basis of eigenvectors, B(g)TB(g) = B(g)B(g)T = I.
Diagonal elements of the diagonal matrix D(g) are square roots of the corre-
sponding positive eigenvalues. The matrix D(g) can be inverted by inverting its
diagonal elements.

E‖N (0, I) ‖ =
√

2 Γ(n+1
2 )/Γ(n

2 ) ≈ √n
(
1− 1

4n + 1
21n2

)
.

h
(g+1)
σ =

{
1 if ‖p(g+1)

σ ‖√
1−(1−cσ)2(g+1)

< (1.5 + 1
n−0.5 )E‖N (0, I) ‖

0 otherwise

the Heaviside function h
(g+1)
σ stalls the update of p(g)

c in (17) if ‖p(g+1)
σ ‖ is

large. This prevents a too fast increase of axes of C in a linear surrounding, i.e.
when the step size is far too small. This is useful when the initial step size chosen
is far too small or when the objective function changes in time.

δ(h(g+1)
σ ) = (1− h

(g+1)
σ )cc(2− cc) ≤ 1 is of minor relevance and can be set to 0.

In the (unusual) case of h
(g+1)
σ = 0, it substitutes for the second term from (33)

in (34).

OP : IRn → IRn×n,x �→ xxT, denotes the outer product of a vector with itself.

Default Parameters

The (external) strategy parameters are λ, µ, wi=1...µ, cσ , dσ , cc, µcov, and ccov. De-
fault strategy parameters values are given in Table 2. An in-depth discussion of most
parameters is given in [12]. The default parameters of (37)–(39) are in particular cho-
sen to be a robust setting and therefore, to our experience, applicable to a wide range
of functions to be optimized. We do not recommend changing this setting. In con-
trast, the population size λ in (35) can be increased by the user.13 If the λ-dependent
default values for µ and wi are used, the population size λ has a significant influ-
ence on the global search performance [8]. Increasing λ usually improves the global
search capabilities and the robustness of the CMA-ES, at the price of a reduced con-
vergence speed. The convergence speed decreases at most linearly with λ.

Implementation

We discuss a few implementational issues.

13 Decreasing λ is not recommended. Too small values regularly have strong adverse effects
on the performance.
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Table 2. Default Strategy Parameters, where µeff = 1∑µ
i=1 w2

i
≥ 1 and

∑µ
i=1 wi = 1

Selection and Recombination:

λ = 4 + �3 ln n�, µ = �λ/2� , (35)

wi =
ln(µ + 1) − ln i

∑µ
j=1(ln(µ + 1) − ln j)

for i = 1, . . . , µ , (36)

Step size control:

cσ =
µeff + 2

n + µeff + 3
, dσ = 1 + 2 max

(

0,

√
µeff − 1

n + 1
− 1

)

+ cσ (37)

Covariance matrix adaptation:

cc =
4

n + 4
, µcov = µeff (38)

ccov =
1

µcov

2

(n +
√

2)2
+

(

1 − 1

µcov

)

min

(

1,
2µeff − 1

(n + 2)2 + µeff

)

(39)

Multi-variate normal distribution: The distribution N(m(g), σ(g)2C(g)) in (29) is

distributed as m(g) + σ(g)B(g)D(g)N (0, I) (see C(g)−
1
2 above for the defini-

tions). This can be used to generate the random vector on the computer, because
N (0, I) is a vector with independent, (0, 1)-normally distributed components
that can be easily sampled on a computer.

Strategy internal numerical effort: In practice, the re-calculation of B(g), D(g), and

C(g)−
1
2 does not need to be done until max(1, �1/(10nccov)�) generations. For

reasonable ccov values, this reduces the numerical effort due to the eigende-
composition from O(n3) to O(n2) per generated search point. On a Pentium
4, 2.5 GHz processor the overall strategy internal time consumption is roughly
4(n + 2)2 × 10−8 seconds per function evaluation [14].

Flat fitness: In the case of equal function values for several individuals in the popu-
lation, it is feasible to increase the step size (see lines 92–96 in the source code
below).

Constraints: A simple, and occasionally sufficient, way to handle any type of bound-
aries and constraints is re-sampling unfeasible x(g+1)

k until they become feasible.

B MATLAB Code

001 function xmin=purecmaes

002 % CMA-ES: Evolution Strategy with Covariance Matrix Adaptation for

003 % nonlinear function minimization.

004 %

005 % This code is an excerpt from cmaes.m and implements the key parts
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006 % of the algorithm. It is intendend to be used for READING and

007 % UNDERSTANDING the basic flow and all details of the CMA *algorithm*.

008 % Computational efficiency is sometimes disregarded.

009

010 % -------------------- Initialization --------------------------------

011

012 % User defined input parameters (need to be edited)

013 strfitnessfct = ’felli’; % name of objective/fitness function

014 N = 10; % number of objective variables/problem dimension

015 xmean = rand(N,1); % objective variables initial point

016 sigma = 0.5; % coordinate wise standard deviation (step size)

017 stopfitness = 1e-10; % stop if fitness < stopfitness (minimization)

018 stopeval = 1e3*Nˆ2; % stop after stopeval number of function evaluations

019

020 % Strategy parameter setting: Selection

021 lambda = 4+floor(3*log(N)); % population size, offspring number

022 mu = floor(lambda/2); % number of parents/points for recombination

023 weights = log(mu+1)-log(1:mu)’; % muXone array for weighted recombination

024 % lambda=12; mu=3; weights = ones(mu,1); % uncomment for (3_I,12)-ES

025 weights = weights/sum(weights); % normalize recombination weights array

026 mueff=sum(weights)ˆ2/sum(weights.ˆ2); % variance-effective size of mu

027

028 % Strategy parameter setting: Adaptation

029 cc = 4/(N+4); % time constant for cumulation for covariance matrix

030 cs = (mueff+2)/(N+mueff+3); % t-const for cumulation for sigma control

031 mucov = mueff; % size of mu used for calculating learning rate ccov

032 ccov = (1/mucov) * 2/(N+1.4)ˆ2 + (1-1/mucov) * ... % learning rate for

033 ((2*mueff-1)/((N+2)ˆ2+2*mueff)); % covariance matrix

034 damps = 1 + 2*max(0, sqrt((mueff-1)/(N+1))-1) + cs; % damping for sigma

035

036 % Initialize dynamic (internal) strategy parameters and constants

037 pc = zeros(N,1); ps = zeros(N,1); % evolution paths for C and sigma

038 B = eye(N); % B defines the coordinate system

039 D = eye(N); % diagonal matrix D defines the scaling

040 C = B*D*(B*D)’; % covariance matrix

041 eigeneval = 0; % B and D updated at counteval == 0

042 chiN=Nˆ0.5*(1-1/(4*N)+1/(21*Nˆ2)); % expectation of

043 % ||N(0,I)|| == norm(randn(N,1))

044

045 % -------------------- Generation Loop --------------------------------

046

047 counteval = 0; % the next 40 lines contain the 20 lines of interesting code

048 while counteval < stopeval

049

050 % Generate and evaluate lambda offspring

051 for k=1:lambda,

052 arz(:,k) = randn(N,1); % standard normally distributed vector

053 arx(:,k) = xmean + sigma * (B*D * arz(:,k)); % add mutation % Eq. 29
054 arfitness(k) = feval(strfitnessfct, arx(:,k)); % objective function call

055 counteval = counteval+1;

056 end

057

058 % Sort by fitness and compute weighted mean into xmean

059 [arfitness, arindex] = sort(arfitness); % minimization

060 xmean = arx(:,arindex(1:mu))*weights; % recombination % Eq. 30
061 zmean = arz(:,arindex(1:mu))*weights; % == sigmaˆ-1*Dˆ-1*B’*(xmean-xold)

062

063 % Cumulation: Update evolution paths

064 ps = (1-cs)*ps + (sqrt(cs*(2-cs)*mueff)) * (B * zmean); % Eq. 31
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065 hsig = norm(ps)/sqrt(1-(1-cs)ˆ(2*counteval/lambda))/chiN < 1.5+1/(N-0.5);

066 pc = (1-cc)*pc + hsig * sqrt(cc*(2-cc)*mueff) * (B*D*zmean); % Eq. 33
067

068 % Adapt covariance matrix C

069 C = (1-ccov) * C ... % regard old matrix % Eq. 34
070 + ccov * (1/mucov) * (pc*pc’ ... % plus rank one update

071 + (1-hsig) * cc*(2-cc) * C) ...

072 + ccov * (1-1/mucov) ... % plus rank mu update

073 * (B*D*arz(:,arindex(1:mu))) ...

074 * diag(weights) * (B*D*arz(:,arindex(1:mu)))’;

075

076 % Adapt step size sigma

077 sigma = sigma * exp((cs/damps)*(norm(ps)/chiN - 1)); % Eq. 32
078

079 % Update B and D from C

080 if counteval - eigeneval > lambda/ccov/N/10 % to achieve O(Nˆ2)

081 eigeneval = counteval;

082 C=triu(C)+triu(C,1)’; % enforce symmetry

083 [B,D] = eig(C); % eigen decomposition, B==normalized eigenvectors

084 D = diag(sqrt(diag(D))); % D contains standard deviations now

085 end

086

087 % Break, if fitness is good enough

088 if arfitness(1) <= stopfitness

089 break;

090 end

091

092 % Escape flat fitness

093 if arfitness(1) == arfitness(min(1+floor(lambda/2), 2+ceil(lambda/4)))

094 sigma = sigma * exp(0.2+cs/damps);

095 disp(’escape flat fitness’);

096 end

097

098 disp([num2str(counteval) ’: ’ num2str(arfitness(1))]);

099

100 end % while, end generation loop

101

102 % -------------------- Ending Message ---------------------------------

103

104 disp([num2str(counteval) ’: ’ num2str(arfitness(1))]);

105 xmin = arx(:, arindex(1)); % Return best point of last generation.

106 % Notice that xmean is expected to be even

107 % better.

108

109 % ---------------------------------------------------------------

110 function f=felli(x)

111 N = size(x,1); if N < 2 error(’dimension must be greater one’); end

112 f=1e6.ˆ((0:N-1)/(N-1)) * x.ˆ2; % condition number 1e6
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