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ABSTRACT 

Recent research demonstrates the use of goal regres­
sion as an analytic technique for learning search heuris­
tics. This paper critically examines this research and iden­
tifies essential applicability conditions for the technique. 
The conditions that operators be invertible and that the 
domain be closed wi th respect to the inverse operators 
severely l imi t the use of analytic goal regression. In those 
restricted domains which satisfy the applicability condi­
tions, analytic goal regression only discovers required pre­
conditions for operator application. Discovering pragmatic 
preconditions is beyond the capability of the technique. An 
alternative, called experimental goal regression, is defined 
which approximates the results of analytic goal regression 
wi thout suffering from these limitations. 

I. Introduction 
Goal regression was first used in AI by Waldinger 

[WALD77] as a technique for detecting and analyzing goal 
interactions during planning. Given a goal state G and an 
operator OP, a goal regression product is a description of 
a sub-goal state 5, such that OP applied to S achieves 
G. The goal regression product corresponds to Dijkstra's 
notion of weakest pre-condition [DIJK75]. According to 
Di jkstra, wp(OP,G) is the weakest constraint on a state S 
which guarantees that the application of OP to S yields a 
state satisfying G.*** 

Recent research in machine learning demonstrates 
the use of goal regression to improve concept acquisition. 
In part icular, this research focusses on techniques for learn­
ing problem solving heuristics. Given an operator se-
quence for a problem solution, goal regression serves to 
back-propagate constraints through the sequence to form 
heuristics for the individual operators. This technique in­
volves formal reasoning wi th operator semantics and wi l l 
be called analytic goal regression. 

This paper is a critical review of the research on an­
alytic goal regression and suggests a change in direction. 
Section 2 briefly reviews this research. Section 3 discusses 
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the applicability conditions for successful application of an­
alytic goal regression to machine learning. These condi­
tions appear to restrict the use of analytic goal regression 
to a relatively small class of problem domains. Section 4 
introduces experimental goal regression as an alternative 
to the analytic technique. Experimental goal regression 
uses induction f rom examples to approximate the "cor-
rect" result. This removes the constraining applicability 
conditions and permits goal regression in a wide class of 
problem domains. Section 5 compares analytic and exper­
imental goal regression. 

II. Review of Research 
Utgoff [UTG083] demonstrates the use of goal regres­

sion to adjust the bias inherent in the concept hierarchy 
trees used in LEX [M1TC78]. Partial state descriptions are 
regressed through a solution path to form a composite con­
straint on ini t ial states in the path. Motivat ing this work 
is the observation that the state description vocabulary 
should be rich enough to describe composite constraints. 
Typically, this vocabulary is a priori domain knowledge. 
The significance of Utgoff's use of goal regression is that 
the vocabulary can be dynamically enriched during the 
learning process. 

Porter and Kibler [PORT84A] use an empirical var i ­
ant of goal regression to improve the rate of learning prob­
lem solving heuristics. Their method of episodic learning 
discovers useful operator sequences [KIBL83B]. The learn­
ing is incremental and heuristics which recommend oper­
ators applied near the goal state are learned first. These 
heuristics are regressed through the episode to learn addi­
t ional heuristic rules. The significance of this use of goal 
regression is that the rate of episodic learning can be dra­
matically improved by broadcasting the refinement of one 
heurbtic through an episode to enable the refinement of 
other heuristics. 

Minton [MINT84] demonstrates the power and po­
tential of goal regression by showing effective learning f rom 
a single t raining instance. W i th a technique called con­
straint based generalization, state descriptions are gener­
alized by deducing why the training instance is classified 
as positive. The technique is applied to learning general­
ized state descriptions for forced wins in two-person games. 
Given a chain of actions resulting in a forced w in , goal re-
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gression is used to back-propagate the important descrip­
tors of the forced w in state. The goal regression product 
is a description of the set of states for which the chain of 
actions achieves the forced w in . The significance of this 
use of goal regression is that (a l imited form of) "one-
shot" learning is possible by reasoning w i th explicit goal 
descriptions. 

I I I . Applicabil i ty Conditions for Analytic Goal Regression 
This section defines two applicability conditions for 

effective use of analytic goal regression. 

A. Invertible Operators 
The first applicability condition requires that the do­

main operators be invertible. Given a STRIPS-like declar­
ative operator definit ion, inverses are easily computed by 
reversing the roles of the delete-list and add-list. However, 
procedural representations are more flexible and powerful 
for defining operator transformations [ HEWI72, M c D E 7 2 ]. 
Unfortunately, analytically inverting a procedurally de­
fined operator appears impossible in general. A similar 
problem occurs if the goal description is defined procedu­
rally. 

L E X - I I [MITC83] part ial ly circumvents this problem 
by providing the learning element w i th operator inverses. 
Both the domain operators and their inverses are repre­
sented procedurally. As Utgoff discovered [UTG083] , the 
chief shortcoming of this approach is the inability to rea­
son w i th some operator definitions. For example, consider 
the substitut ion operator in symbolic integration which re­
places a sub-expression of an integral w i th a variable. In 
LEX , this operator is defined as: 

where poly(f(x)) stands for a polynomial in x. The prob­
lem discovered by Utgoff is that analytic goal regression 
w i th this operator definition fails. The crit ical constraint 
that whatever matches /' be the derivative of whatever 
matches / is not explicit in this operator representation. 
This constraint is embedded in an opaque representation 
of the operator. Procedural representations can conceal es­
sential operator constraints and prevent the analytic com­
putat ion of goal regression products. 

B. Relative Closure of Representation Language 
The second applicability condition for analytic goal 

regression requires that the representation language ade­
quately express goal regression products. As we demon­
strate, analytic goal regression can produce state descrip­
tions which are unrepresentable in the language used for 
forward reasoning. In particular this constraint is n o t sat­
isfied by merely assuming that one has a STRIPS-like rep­
resentation. 

There is no problem w i th computing a goal regression 
product if the goal and the operator are ful ly instantiated. 
However, regressing expressions through part ial ly instan­

tiated operator definitions can be troublesome [NILS80, 
pp 288-292]. Consider the operator unstack(x,y) defined 
w i th the following STRIPS rule: 

Pre and Delete conditions: handempty, clear(x),on(x, y) 
Add conditions: holding (x), clear (y) 

The regression of the part ial state description clear (C) (for 
some constant C) yields the disjunction (y = C) \/clear (C). 
External disjunction is often precluded from concept de­
scription languages [MICH83] but commonly occurs in an­
alytic goal regression products. 

While a disjunctive clause might be split into sepa­
rate clauses, thereby eliminating the disjunction, negated 
clauses can also be troublesome. For example, the re­
gression of clear(C) through uns tack (x , B) yields 
C) A clear(C). These examples demonstrate that the con­
cept description languages must support disjunction and 
negation if analytic goal regression is used. 

The problem of representation language closure arises 
in Minton's research [MINT84] . As described in section 2, 
Minton applies goal regression to learn forced move board 
positions in two person games. In particular, consider 
Minton's example in the game gomoku. Gomoku is similar 
to tic-tac-toe except the board is a 19x19 grid and the 
object is to get 5 X's or O's in a row. An open four-
position for X is four X's in a row w i th an adjacent blank 
position. An open three-position for X is three X's in a 
row w i th two blank positions on one side and one blank 
position on the other. 

We believe that the description language cannot rep­
resent all goal regression products in this domain. The de­
scription language for board positions is a conjunct of pred­
icates. Minton computes the goal regression product of an 
open four-position as an open three-position. Assuming 
the natural gomoku move operator definition: 

pre-condition and delete-condition: empty (square) 
add-condition: on (square, X) 

the open three-position is only a subset of the correctly 
computed goal regression product. An open four can also 
result f rom applying the move operator to a 

blank - X - blank - X - X - blank 

position. Therefore, the correct goal regression product is 
a disjunctive clause which is outside the expressive power 
of the description language. This problem might be ad­
dressed by extending the description language to include 
terms which correspond to disjunctive expressions in the 
original language. But , discovering appropriate shifts in 
representation language may be more difficult than the 
problem being addressed. 

We believe that these applicability conditions restrict 
the use of analytic goal regression to a relatively uninter­
esting set of problem domains. In addit ion to these neces­
sary l imitat ions, there is an additional pragmatic concern. 
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The technique forms totally precise rules which may not 
capture the data at hand. Analytic goal regression could 
be used in the total absence of experience and might be 
called learning by reasoning or "no-shot" learning. 

The next section proposes an alternative which ap­
proximates the results of analytic goal regression but relies 
on experience, rather than reasoning. 

IV. Experimental Goal Regression 
Experimental goal regression is an alternative to an­

alytic goal regression in which the applicable conditions 
are eliminated. The technique yields an approximation of 
the result of analytic goal regression. This approximation 
is incrementally refined using standard machine learning 
techniques. 

Experimental goal regression uses induction to ap­
proximate a goal regression product. Consider states 
s1, s 2 , . . . , sn in the domain search space which are mapped 
by operator OP into a state satisfying the goal G. Experi­
mental goal regression applies standard induction tech­
niques to s1, S 2 , . . . , sn to form a partial description of the 
regression of G through OP. 

Experimental goal regression avoides the limitations 
of analytic goal regression discussed in the previous sec­
t ion. First , the technique does not preclude procedural 
operator representations since OP is not inverted. Second, 
goals can be represented procedurally since experimen­
tal goal regression uses them only as boolean predicates 
on state descriptions. Th i rd , experimental goal regres­
sion does not require the language to be complete wi th 
respect to goal regression products. Only a useful par­
t ial characterization of the inverse is generated instead of 
a completely accurate one as in the case of analytic goal 
regression. 

The practical success of experimental goal regression 
relies on an efficient construction of multiple examples of 
goal regression products. One approach to example gener­
ation is perturbation [KIBL83A], which relies on inherent 
regularity and continuity in the search space [LENA83]. 
Given a single example, perturbation automatically gen­
erates and classifies neighboring examples. The selection 
of the most promising neighbors can be guided wi th some 
knowledge of the transformation performed by the opera­
tor. Relational operator models [PORT84B] are one tech­
nique for approximating operator definitions. 

V. An Example 
The following example compares analytic and exper­

imental goal regression for learning search heuristics. The 
task is the algebraic simplification of a pair of simultaneous 
linear equations labelled a and 6. The operator sub(a,b) 
replaces equation 6 w i th the result of subtracting equation 
a f rom equation 6. Similarly, sub(b, a) replaces equation a 
wi th the result of subtracting equation b from equation a. 
For simplicity we assume that the sub operators are only 

applicable when the equations have equal x-coefficients. 
These operators can be defined as: 

Operator Preconditions and Add conditions 
Delete conditions 

As wi th other systems for learning search heuristics 
[LANG83, OHLS82], the learning element uses a static eval­
uation function for credit assignment. Since the overall 
problem solving goal is to simplify the equations, the func-
tion counts the number of non-zero terms in the equations. 

Let us examine how analytic goal regression would 
learn heuristics for the sub operator. Consider the follow­
ing positive training instance for the operator sub(a,b): 

The static evaluation function reveals that sub(a, 6) is not 
effective in reducing the number of nonzero terms in the 
example. 

Experimental goal regression induces a goal regres­
sion product from positive examples. The representation 
of both the sub operators and the static evaluation func­
t ion are irrelevant to the success of experimental goal re­
gression. Examples of effective applications of sub(at b) are 
generated (perhaps by perturbation of a given example) 
and classified as positive or negative by the static evalua-
t ion function. Induction over the set of positive examples 
using the climbing hierarchy tree generalization operator 
yields the heuristic rule: 

a : nonzero1x + integer1y = integer2 
—► sub (a , b) 

b : nonzero1x + nonzero2y = nonzero3 
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where nonzero and integer are typed variables. 

A goal regression product, derived experimentally, in­
corporates the pragmatic preconditions for effective use of 
each operator. In the example above, pragmatic precondi-
tions for sub(a, b) require that both the y-coefficient and 
the constant term in equation b be non-zero. Pragmatic 
preconditions are enforced by constraints external to the 
operator definit ion. Therefore, they cannot be discovered 
by analytic goal regression. 

We believe that combinations of analytic and exper­
imental goal regression might be more promising than ei­
ther technique alone. For example, a combination of tech­
niques might mitigate the following problems: 

• Analyt ic goal regression relies on extending the 
representation language to precisely describe goal 
regression products (section I I IB ) . 

• Experimental goal regression relies on efficiently 
generating a set of state descriptions (section IV ) . 

Using a combination of the two techniques, the goal 
regression product computed by analytic goal regression 
might be used to constrain the generation of state descrip­
tions used in experimental goal regression. An analytic 
goal regression product that can be approximated in the 
representation language can be used as a "seed" for state 
description generation. The combination of analytic and 
experimental goal regression is a topic of future research. 

VI. Conclusions 
Goal regression promises to be a powerful technique 

in learning about actions. Predominantly, analytic goal 
regression has been explored. Analytic goal regression is a 
powerful reasoning technique for "no-shot" learning. That 
is, learning could proceed given only the definition of the 
goals and operators. Unfortunately, the necessity to invert 
operator definitions and to stay wi th in the representation 
language severely l imits the applicability of analytic goal 
regression. Experimental goal regression is an alternative 
to the analytic technique which relies on proven machine 
learning algorithms to approximate the results of analytic 
goal regression. Coupled w i th automatic example genera­
t ion , experimental goal regression is an effective machine 
learning technique that does not suffer f rom the l imitations 
of analytic goal regression. 
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