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Abstract. This paper describes the invited talk given at the 8th Inter-
national Conference on Distributed Computing and Networking (ICDCN
2006), at the Indian Institute of Technology Guwahati, India. This talk
was intended to give a partial survey and to motivate further studies
of distributed verification. To serve the purpose of motivating, we allow
ourselves to speculate freely on the potential impact of such research.

In the context of sequential computing, it is common to assume that
the task of verifying a property of an object may be much easier than
computing it (consider, for example, solving an NP-Complete problem
versus verifying a witness). Extrapolating from the impact the separation
of these two notions (computing and verifying) had in the context of se-
quential computing, the separation may prove to have a profound impact
on the field of distributed computing as well. In addition, in the context
of distributed computing, the motivation for the separation seems even
stronger than in the centralized sequential case.

In this paper we explain some motivations for specific definitions, sur-
vey some very related notions and their motivations in the literature,
survey some examples for problems and solutions, and mention some ad-
ditional general results such as general algorithmic methods and general
lower bounds. Since this paper is mostly intended to “give a taste” rather
than be a comprehensive survey, we apologize to authors of additional
related papers that we did not mention or detailed.

1 Introduction

This paper addresses the problem of locally verifying global properties. This
task complements the task of locally computing global functions. Since many
functions cannot be computed locally [29, 42, 41], local verification may prove
more useful than local computing - one can compute globally and verify locally.

In terms of sequential time, there exists evidence that verification is sometimes
easier then computation. For example, verifying that a given color assignment
on a given graph is a legal 3 coloring is believed to consume much less time
than computing a 3 coloring [36]. As another example, given a weighted graph
together with a tree that spans it, it is required to decide whether this tree is an
MST of the graph. This MST verification problem was introduced by Tarjan in
the sequential model. A linear time algorithm for computing an MST is known
only in certain cases, or by a randomized algorithm [35,37]. On the other hand,
the sequential verification algorithm of [34] is (edge) linear.

In the context of distributed tasks, other measures of complexity are used, e.g.,
communication complexity. Still, one can ask a similar natural question. Given
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a distributed representation of a solution for a problem (for example, each node
holds a pointer to one of its incident edges), we are required to verify the legality
of the represented solution (in the example, to verify that collection of pointed
edges forms an MST). Does the verification consume fewer communication bits
than the computation of the solution (e.g., the MST)?

Since faults are much more likely to occur in a distributed setting than in a
sequential one, the motivation for verification in a distributed setting seems to
be even stronger than in a sequential one. A common application of local dis-
tributed verification is in the context of self stabilization. See, for example, the
local detection [31], or the local checking [9], or the silent stabilization [32]. Self
stabilization deals with algorithms that must cope with faults that are rather
sever, though of a type that does occur in reality [27, 28]. The faults may cause
the states of different nodes to be inconsistent with each other. For example,
the collection of pointed edges may not be a tree, or may not be an MST. Self
stabilizing algorithm thus often use distributed verification repeatedly. If the ver-
ification fails, a (much heavier) global MST recomputation algorithm is invoked.
An efficient verification algorithm thus saves repeatedly in communication. We
discuss the use application of distributed verification to self stabilization in more
length in Section 4.

In the simple model for local verification, all nodes are awakened simultane-
ously and start a computation. In a t-local verification algorithm, it is required
that the represented solution is illegal iff after at most t time rounds, at least
one processor outputs 0 (the rest may output 1). Since we want the locality
parameter t to be independent of the network, it would be desired to have t be
a constant.

Note, that for a constant t (even for t = 1), many representations can be
trivially verified. For example, in the legal-coloring verification task, each node
just checks that each of its neighbors has a different color than its own. As
another example, in a distributed representation of a Minimal Independent Set
(MIS), each node holds a flag indicating whether if belongs to the MIS or not.
Clearly, such an MIS representation can be verified in one time round.

In a distributed representation of a subgraph of G, each node may point at
some of its incident edges. The set of pointed edges forms a subgraph of G.
In the spanning tree (respectively, MST) verification problem, it is required to
check whether this subgraph is a spanning tree (resp., MST) of G or not. The
following simple claim indicates that in a too simple model for local verification,
the verifications of some basic representations require Ω(n) time rounds. (We do
not describe the simple model explicitly).

Claim 1. In the simple model for local verification, both the spanning tree and
the MST verification problems require Ω(n) time rounds.

Sketch of Proof: We show the result for the spanning tree case. Let G =
{v1, v2, · · · , vn} be a circle. For simplicity of presentation, we assume n is even.
Consider three distributed representations of G as depicted in Figure 1. In the
first representation, G1, for each 1 ≤ i ≤ n − 1, node vi holds a pointer to
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Fig. 1. The three representations of subgraphs in G. The thick edges correspond to
the pointed edges and the dashed edges correspond to the non-pointed edges.

edge (vi, vi+1). Therefore, the pointed edges in G1 are all the edges except for
(vn, v1). In the second representation, G2, for each 1 ≤ i ≤ n/2 − 1 and each
n/2 + 1 ≤ i ≤ n, node vi holds a pointer to the edge (vi, vi+1) (mod n + 1).
Therefore, the pointed edges are all the edges except for (vn/2, vn/2+1). Note
that in both G1 and G2, the pointed edges form a spanning tree. In G3, for each
1 ≤ i ≤ n, node vi holds a pointer to the edge (vi, vi+1). Therefore, the set of
pointed edges consists of all edges in the circle.

First note that since the pointed edges in G1 and G2 form a spanning tree, no
node in either G1 or G2 outputs 0. Assume by contradiction that the spanning
tree verification can be accomplished in t time rounds, where t < n/4. In this
case, a node can only gather information about the nodes at distance at most t
from it. Therefore, for every 1 ≤ i ≤ n/4 and every 3n/4 ≤ i ≤ n, the output of
vi in G3 is the same as the output of vi in G2. Similarly, for each n/2 ≤ i ≤ 3n/4,
the output of vi in G3 is the same as the output of vi in G1. If follows that the
output of each vertex in G3 is not 0, contradicting the fact that the pointed
edges in G3 do not form a tree. ��
In order to deal with verification tasks such as verifying spanning trees, the
concept of proof labeling schemes was introduced in [40]. The formal definitions
are given in Section 2. Informally, it is assumed that the state of every node
has already been computed by some algorithm (in the above example, the state
may consist of a pointer to an incident edge). The configuration (formed as
the collection of states of all nodes) is supposed to satisfy some predicate (e.g.,
“the pointed edges form an MST of the underlying graph”). To enable local
verification, labels are added to the nodes in preprocessing stage. To perform
the verification, a node computes some local predicate, considering only its own
state, as well as the above mentioned labels of its neighbors but not their states
(!). The global configuration predicate is implied by the conjunction of the local
predicates in the following manner. If the configuration is legal then each node
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outputs 1 (i.e., “I do not detect a problem”). However, if the configuration is not
legal, then for every possible way of labeling the vertices, at least one node should
detect a problem, i.e. output 0. This, in a way, means that if the configuration
is not legal, the adversary cannot fool the verifier by changing the labels. The
restriction of one time round can obviously be generalized to t time rounds
(hopefully t being constant). However, all the results that have been previously
established in the area of proof labeling schemes hold for the case t = 1.

Note, that there is some resemblance between the definition of proof labeling
schemes and the notion of NP. Informally, the collection of assigned labels in the
preprocessing stage can be considered a witness. If the configuration is legal then
there exists a witness (labeling assignment) such that the legality of the config-
uration can be verified in one time round. Otherwise, if the configuration is not
legal then there does not exist such a witness, i.e., for any labeling assignment,
in one time round, at least one node should detect a problem.

We note that the number of bits in a label is the number of information bits
a node needs to convey to its neighbors in the verification. Ideally, this number
is as small as possible, even smaller than the state of the vertex. We evaluate a
proof labeling scheme by its label size, i.e., the maximum number of bits assigned
to a node of the graph in the preprocessing stage.

2 Model ( [40])

We consider distributed systems that are represented by connected graphs. The
vertices of the graph G = 〈V, E〉 correspond to the nodes in the system, and we
use the words “vertex” and “node” interchangeably. The edges of G correspond
to the links, and we use the words “link” and “edge” interchangeably. Denote
n = |V |. Every node v has internal ports, each corresponding to one of the edges
attached to v. The ports are numbered from 1 to deg(v) (the degree of v) by
an internal numbering known only to node v. If G is undirected, then for every
vertex v let N(v) denote the set of edges adjacent to v. If G is directed, then
for any vertex v let N(v) denote the set of edges incoming to v. In either case,
for every vertex v let n(v) = |N(v)|. Unless mentioned otherwise, all graphs
considered are undirected. For two vertices u and v in G, let dG(u, v) denote the
unweighted distance between u and v.

Given a vertex v, let sv denote the state of v and let vs = (v, sv). A config-
uration graph corresponding to a graph G = 〈V, E〉 is a graph Gs = 〈Vs, Es〉,
where Vs = {vs | v ∈ V } and (vs, us) ∈ Es iff (v, u) ∈ E. A family of con-
figuration graphs Fs corresponding to graph family F consists of configuration
graphs Gs ∈ Fs for each G ∈ F . Let FS be the largest possible such family
when every state s is taken from a given set S. Unless mentioned otherwise, let
S denote the set of integers. We sometimes refer to each state sv of a configu-
ration graph as having two fields: sv = (id(v), s′(v)). Field id(v) is v’s identity
and is encoded using O(log n) bits. When the context is clear we may refer to
s′(v) as the state of v (instead of to s(v)). A configuration graph Gs is id-based
if for every pair of vertices v and u it is given that id(u) �= id(v). A graph whose
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identities are arbitrary (including possibly the case where all identities are the
same) is termed anonymous. An id-based (respectively, anonymous) family is a
family of id-based (respectively, anonymous) graphs. Let Fall be the collection of
all directed strongly-connected and all undirected connected graphs with O(n)
vertices. Let Fundirected be the collection of all undirected connected graphs
with O(n) vertices. When it is clear from the context, we use the term “graph”
instead of “configuration graph”, “id-based graph” or “anonymous graph”. We
may also use the notation v instead of vs. Given a family of configuration graphs
Fs, let Fs(W ) denote the family of all graphs in Fs such that, when considered
as weighted, the (integral) weight of each edge is bounded from above by W .

Many of the results in [40] deal with a distributed representation of subgraphs.
Such a representation is encoded in the collection of the nodes’ states. There can
be many such representations. For simplicity, we focus on the case that an edge is
included in the subgraph if it is explicitly pointed at by the state of an endpoint.
That is, given a configuration graph Gs, the subgraph (respectively, directed
subgraph) induced by the states of Gs, denoted H(Gs) (respectively, D(Gs)),
is defined as follows. For every vertex v ∈ G, if sv includes an encoding of one
of v’s ports pointing to a vertex u, then the edge (respectively, directed edge)
(v, u) is an edge in the subgraph. These are the only edges in the subgraph.

Consider a graph G. A distributed problem Prob is the task of selecting a
state sv for each vertex v, such that Gs satisfies a given predicate fProb. This
induces the problem Prob on a graph family F in the natural way. We say that
fProb is the characteristic function of Prob over F .

This model tries to capture adding labels to configuration graphs in order
to maintain a (locally checkable) distributed proof that the given configuration
graph satisfies a given predicate fProb. Informally, a proof labeling scheme in-
cludes a marker algorithm M that generates a label for every node, and a decoder
algorithm that compares labels of neighboring nodes. If a configuration graph
satisfies fProb, then the decoder at every two neighboring nodes declares their
labels (produced by marker M) “consistent” with each other. However, if the
configuration graph does not satisfy fProb, then for any possible marker, the
decoder must declare “inconsistencies” between some neighboring nodes in the
labels produced by the marker. It is not required that the marker be distributed.
However, the decoder is distributed and local, i.e., every node can check only the
labels of its neighbors (and its own label and state).

More formally, A marker algorithm L is an algorithm that given a graph
Gs ∈ Fs, assigns a label L(vs) to each vertex vs ∈ Gs. For a marker algorithm L
and a vertex vs ∈ Gs, let N ′

L(v) be a set of n(v) fields, one per neighbor. Each
field e = (v, u) in N ′

L(v), corresponding to edge e ∈ N(v), contains the following.
(1) The port number of e in v; (2) the weight of e (if G is unweighted we regard
each edge as having weight 1); (3) L(u).

Let NL(v) = 〈(sv, L(v)), N ′
L(v)〉. Informally, N ′

L(v) contains the labels given
to all of v’s neighbors along with the port number and the weights of the
edges connecting v to them. NL(v) contains also v’s state and label. A decoder
algorithm D is an algorithm which is applied separately at each vertex v ∈ G.
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When D is applied at vertex v, its input is NL(v) and its output, D(v, L), is
boolean.

A proof labeling scheme π = 〈M,D〉 for some family Fs and some character-
istic function f is composed of a marker algorithm M and a decoder algorithm
D, such that the following two properties hold:

1. For every Gs ∈ Fs, if f(Gs) = 1 then D(v,M) = 1 for every vertex v ∈ G.
2. For every Gs ∈ Fs, if f(Gs) = 0 then for every marker algorithm L there

exists a vertex v ∈ G so that D(v, L) = 0.

We note that all the proof labeling schemes constructed so far use a polytime
decoder algorithm. The size of a proof labeling scheme π = 〈M,D〉 is the maxi-
mum number of bits in the label M(vs) over all vs ∈ Gs and all Gs ∈ Fs. For a
family Fs and a function f , we say that the proof size of Fs and f is the smallest
size of any proof labeling scheme for Fs and f .

3 Basic Examples

To illustrate the definitions, we now present a basic proof labeling scheme [40]
concerning agreement among all vertices. Note that v’s neighbors cannot ‘see’ the
state of v but they can see v’s label. This is different than what is assumed e.g. in
[31]. We note that the following lemma also demonstrates a connection between
the notion of proof labeling scheme and that of communication complexity [43].

Lemma 2. [40] The proof size of Fall
S and fAgreement is Θ(m).

Proof. We first describe a trivial proof labeling scheme π = 〈M,D〉 of the desired
size m. Given Gs such that fAgreement(Gs) = 1, for every vertex v, let M(v) =
sv. I.e., we just copy the state of node v into its label. Then, D(v, L) simply
verifies that L(v) = sv and that L(v) = L(u) for every neighbor u of node v. It
is clear that π is a correct proof labeling scheme for Fall

S and fAgreement of size
m. We now show that the above bound is tight up to a multiplicative constant
factor even assuming that Fall

S is id-based. Consider the connected graph G
with two vertices v and u. Assume, by way of contradiction, that there is a proof
labeling scheme π = 〈M,D〉 for F all

S and fAgreement of size less than m/2. For
i ∈ S, let Gi

s be G modified so that both u and v have state s(u) = s(v) = i.
Obviously, fAgreement(Gi

s) = 1 for every i. For a vertex x, let Mi(x) be the label
given to x by marker M applied on Gi

s. Let Li = (Mi(v),Mi(u)). Since the
number of bits in Li is assumed to be less than m, there exist i, j ∈ S such that
i < j and Li = Lj . Let Gs be G modified so that su = i and sv = j. Let L be
the marker algorithm for Gs in which L(u) = Mi(u) and L(v) = Mj(v). Then
for each vertex x, D(x, L) = 1, contradicting the fact that f(Gs) = 0. ��
Note, that the corresponding computation task, that of assigning every node the
same state, requires only states of size 1.

By the above lemma, it is clear that for any m there exists a family Fs and a
function f with proof size Θ(m). A somewhat stronger claim is presented in [40],
namely, that a similar result exists also for graph problems (that is, problems
where the input is only the graph topology).
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Corollary 3. For every function 1 ≤ m < n2, there exists a graph problem on
an id-based family with proof size Θ(m).

Let us now show a family with a smaller proof size. The following example
concerns the representation of various spanning trees in the system. The upper
bound employs structures and ideas used in many papers including [3, 5, 31, 14,
4,40]. The lower bound is taken from [40]. A lower bound in the different model
of silent stabilization for one of the tasks below was presented in [32]. Consider
five different problems, obtained by assigning states to the nodes of G so that
H(Gs) (respectively, D(Gs)) is a (respectively, directed) (1) forest; (2) spanning
forest; (3) tree; (4) spanning tree; (5) BFS tree of G (for some root vertex r).
Let fNo−cycles (respectively, f ′

No−cycles) be the characteristic function of either
one of the five problems above.

Lemma 4. [40] The proof size of Fall
S and fNo−cycles (respectively, f ′

No−cycles)
is Θ(log n).

Proof. For proving the upper bound, construct the proof labeling scheme πspan =
〈Mspan,Dspan〉 for FS and f being “H(Gs) is a spanning tree”. The other cases
are constructed in a similar manner. Given Gs so that f(Gs) = 1, the marker
algorithm Mspan operates as follows. If H = H(Gs) is a spanning tree, then it
has n − 1 edges. Therefore, either there is only one vertex r in Gs whose state
is not an encoding of one of its port numbers or there exist exactly two vertices
whose states point at each other. In the second case let r be the vertex with the
smaller identity among the two and in both cases r is considered as the root.
Note that the state of each non-root vertex points at its parent in the rooted tree
(H, r). Let Mspan(v) = 〈id(r), dH(v, r)〉. For a vertex vs and a marker algorithm
L, the first field L(v) is denoted by L1(v) and the second by L2(v). The decoder
Dspan(v, L) = 1 iff all the following easy to verify events occur.

1. For every neighbor u of v, L1(u) = L1(v) ∈ S. I.e., all vertices agree on the
identity of the root.

2. If id(v) = L1(v) then L2(v) = 0.
3. If id(v) is not L1(v) then sv is an encoding of a port number of v leading to

a vertex u such that L2(v) = 1 + L2(u).
4. If L2(v) = 0 then either sv is not an encoding of a port of v or an encoding

of a port of v leading to vertex u and L2(u) = 1.

Obviously, the size of πspan is O(log n) so we only need to prove that the scheme
is correct. Given Gs so that f(Gs) = 1. W show that Dspan(v, L) = 1 for for all
u, v ∈ V . The first fields of Mspan(u) and Mspan(v) are the same since they are
both the identity of the root r. If v �= r then sv is the identity of v’s parent in
the tree H , therefore distH(v, r) = 1 + distH(sv, r). Also, (2) above holds for r.
Hence, D(v,Mspan) = 1 for each vertex v ∈ G.

If, for some marker algorithm L ,D(v, L) = 1 for every vertex v, then by
(1), all vertices must agree in the first field of their label. Denote this value x.
Since the identities of the vertices are disjoint, there can be at most one vertex r
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satisfying id(r) = x. Also, by (3), such a vertex must exist. By (3), for every
vertex u such that id(u) �= x corresponds a directed edge leading to some vertex
w and L(u) − 1 = L(w). Therefore all directed paths must reach the special
vertex r (satisfying id(r) = x). Therefore the edges corresponding to all vertices
but r, form a spanning tree T and the only case to be inspected is whether
the edge that correspond to r (if this edge exists), belongs to this tree. This is
verified by (4). The upper bound for the case of a spanning tree follows.

In the case were f (respectively, f ′) is a “(respectively, directed) BFS tree”,
the decoder D(v, L) also checks that |L2(u) − L2(v)| ≤ 1 for each (respectively,
directed) neighbor u of vertex v.

Remark: a similar approach applies also to BFS trees on weighted id-based
graphs except that the size of the scheme changes to O(log n + log W ). Note
that in the above schemes if the decoder satisfies D(v, L) = 1 for every v then
L2(v) = dG(v, r). Therefore, using this scheme we can also prove that each vertex
holds its distance to the root.

Let us next prove the lower bound (the proof is essentially the same for all five
problems). Let P be the horizontal path of n vertices. For the sake of analysis
only, enumerate the vertices of P from left to right, i.e., P = (1, 2, · · · , n). For
i < n, let si be the port number of the edge leading from vertex i to i + 1.
Obviously, f(Ps) = 1 and f ′(Ps) = 1. Assume, by way of contradiction, that
there exists a proof labeling scheme π = 〈M,D〉 for Fs and either f or f ′

which is of size less than log(n/2) − 2. Let L(i) be the label given by M to
vertex i in the above path Ps. Since the number of bits in each L(i) is less than
log(n/2)− 2, there exist two pairs of vertices (i, i + 1) and (j, j + 1) where 1 < i
and i + 1 < j < n − 1 so that L(i) = L(j) = L′ and L(i + 1) = L(j + 1) = L′′.
We now build the following ring R consisting of j − i vertices whose identities
are clockwise ordered from i to j−1. For i ≤ k < j−1 let sk be the port number
of vertex k leading from k to k +1 and let sj−1 be the port leading from j−1 to
i. Let us give Rs the same labeling L as M gives Ps, i.e., each vertex i ≤ k < j
in Rs is labeled L(k). By the correctness of π on Ps we get that for each vertex
v ∈ Rs, D(v, L) = 1. This is a contradiction to the fact that f(Rs) = 0 and
f ′(Rs) = 0.

Note that the proof applies to all the cases in the lemma, including the case
that a (not necessarily spanning) subgraph does not have a cycle. ��
Note that the above lemma implies a lower bound of Ω(log n) for proof labeling
schemes for the Minimum Spanning Tree problem (MST). A proof in the spirit
of the proof of lemma 2 was then used in [40] to increase this lower bound to
Ω(log n+logW ) where W is the maximum weight of an edge in the graph. This
lower bound was later increased in [38] to Ω((log n log W )). The proof of the lower
bound in [38] is quiet involved. It uses a new combinatorial structure termed
(h, μ)-hypertrees that is a combination between (h, μ)-trees and a hypercube.
That is, an (h, μ)-hypertree is constructed by connecting (via a weighted path)
every node in one (h − 1, μ)-hypertree to the corresponding node in another
(h−1, μ)-hypertree. This doubling of the hypertree is partially responsible for the
logarithmic behavior of the lower bound. The intuition behind this construction
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is that (1) the proof needed a structure with many cycles; and (2) the proof
needed to make many nodes neighbors, since proof labeling schemes deal only
with neighboring nodes. In the construction, h is the hight of the hypertree
and μ is the weight of the weight of some edges that are crucial for the MST.
That proof follows the general structure of [39] in the sense that labels for some
(h−1, μ2)-hypertree H ′ are computed using the labels for some (h, μ)-hypertree
H . However, the specifics are more complex and require some new tricks. For
example, the verifier described in the construction for the lower bound, at any
node v, has to guess labels for some other nodes.

Two general approaches to constructing proof labeling schemes are presented
in [40]. One is a modular construction of a scheme from modules that are other
schemes. The other is a simulation of the execution of a distributed algorithm
that computes the function to be verified. The second method bears some sim-
ilarity to the idea of the roll back compiler of [9], that is described briefly in
Section 4. This method is used in [40] together with ad hoc improvements to
derive an upper bound of O(log2 n + log n log W ) for the MST problem. This
was improved later in [38] to match their improved lower bound.

Additional upper and lower bounds given in [40] for a number of graph
problems, including many basic building block problems. Other results therein
demonstrated the role and the cost of identities in this model. It was also shown
that every predicate has a proof labeling scheme in id-based families of graphs.

4 Self Stabilization: An Application of Distributed
Verification

In this section we mention the notion of self stabilizing algorithms. It turns out
that distributed verification, in addition to its theoretical interest, can be very
useful for the design of such algorithms.

The notion of self stabilization was suggested by Dijkstra in 1974 ( [10], see
also [12]). Dijkstra’s paper later won the ACM-PODC influential paper award,
that shortly after that became the Dijkstra Prize in Distributed Computing
awarded by the ACM (the Association for Computing Machinery) at the Annual
Symposium on the Principles of Distributed Computing (PODC). Starting in
2007, this prize will be given by the ACM and EATCS (the European Association
for Theoretical Computer Science). It took some years until the importance of
that paper became evident, as highlighted first by Lamport [17]. However, since
then, a lot of attention has been invested in self stabilization, and this sub-area
now even has its own conference (SSS).

In the above mentioned paper, Dijkstra studied the example of a token ring.
This is a network of processors arranged in a circle, where each processor can
“see” the whole state of one processor that immediately precedes it (e.g. in a
clockwise order). The state of the processor (and of the preceding one) may
imply that the processor “has a token”, or that it “does not have a token”. It
is required that exactly one of the processors in the whole ring is in the state of
“having a token” at any given time. A second requirement was that each node
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“passes the token” eventually to the processor succeeding it on the ring. When
this action was taken, the passing processor no longer had a token, while the
successor started to have one. Thus, the token circulates the ring.

This example was based on a commercial network where if two processors “had
a token” their actions could have collided, while if no processor had a token the
network could deadlock. Hence, if either more or less than one processor has a
token, the network is in an illegal global state (configuration). The designers of
the commercial network assumed that it could sometimes reach an illegal state
because of either an incorrect initialization, or some equipment error, or bug, etc.
(It was proven by [27] that in actual network, even simple and rather common
faults may drive protocols into an arbitrary global state.) Hence, the commercial
products had a mechanism to recover from an illegal state. This mechanism was
based on a timing assumption- one processor serving as a leader (a “station”)
waited for a certain time (“timeout”) to receive the token from each predecessor.
If the token is not received, then it is assumed lost, and the leader generates a
new token. A similar method is used to destroy a redundant token.

In some sense, the commercial solution involved a global verification. That is,
the length of the timeout had to be large enough so that the token could visit
every processor in the ring. Moreover, the decision about the size of the timeout
had to take into account the durations the various processors needed to hold
the token. For example, if some processors were slower than others, the decision
about the timeout had to take this into consideration.

Dijkstra replaced the global timeout by a local action- each processor consid-
ered its own state and the state of its predecessor only, and acted. He showed
that the network converged into a correct global state in spite of this distributed
control. It is worth mentioning that Dijkstra’s solution nevertheless involved a
global computation. For example, assume that the network was in a legal state,
and some adversary changes the state of one processor. In this case, it is pos-
sible to return to a correct global state by changing the state of one processor.
However, Dijkstra’s solution involves changes in the states of all the processors,
as well as time that is long enough for all of them to be involved in the compu-
tation. (Moreover, a causal chain of events [18] of length Ω(n), where n is the
number of the processors, may result.)

A part of the elegance in Dijkstra’s algorithms was that they never really
detected an illegal state. Instead, when the network was put in an illegal state,
it “somehow” converged towards a legal state, and then stayed in the set of legal
states. This was also a characteristic of many later algorithms. While elegant, this
approach makes the design of algorithms difficult. Katz and Perry [16] suggested
a method of partitioning the design of self stabilizing algorithms:

1. Design an algorithm- the base algorithm, that is not necessarily self stabiliz-
ing (this implies a definition of the legal global states).

2. Detect, in a self stabilizing manner, that the above algorithm reached an
illegal state.

3. In the case that an illegal global state is detected, restart the execution of
the algorithm from some global legal state.
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In fact, they presented a method to perform the detection, given a leader node.
The detection (distributed verification) was performed in a rather centralized
manner. That is, their algorithm collected all the state information from all the
nodes to the leader node. The leader then checked whether the collection of
the states was a legal global state. (Collecting local states such that they form a
consistent global state is not a trivial task even in a non- self stabilizing network,
since in an asynchronous network local states are collected in different times, and
may thus not be parts of the same global state [11].)

In terms of complexity, note, first, that the time complexity of the verification
task above was linear in the number of nodes. Clearly, the communication cost
for the above approach may be large.

The paradigm of local detection was developed independently in [31]. This
can be viewed as replacing the second step above. The idea was to replace the
definition of a correct global state by a collection of definitions for correct local
states. Somewhat more formally, assume that the correctness of a global state is
defined as a global predicate P , that is, P is defined over all the variables in all
the states of the nodes in the network. Let us say that a predicate is local if it is
defined only over the state of a single node v together with the states of all of
v’s neighbors. Now assume that the conjunction of local predicates implies P . If
none of the local predicates is violated, then P holds.

The above allows to replace the detection step of the Katz and Perry’s algo-
rithm by a local detection. Each node collects the states of its neighbors and
computes its local predicate repeatedly. If the local predicate is violated at any
node, this node starts the recovery phase. The recovery may involve a computa-
tion that may not be local. However, the recovery may never be needed, while
the attempt to detect an illegal state is performed infinitely often. Hence, it is
much more important to have an efficient verification.

A self stabilizing algorithm for a spanning tree construction was presented in
[31] for several purposes. First, it demonstrated the local detection by detecting
potential cycles in the “tree” using the distance variables (see Section 3). Second,
it demonstrated that the local detection could be used also for a dynamically
changing state, as opposed to a state that contains already the desired spanning
tree and thus is not supposed to change. Specifically, in the algorithm of [31], a
node who wished to join a tree sent a message all the way to the tree root to
ask for a permission. This message was forwarded by the nodes over the tree.
In a self stabilizing environment, it is possible that the node never actually sent
that request, even though it “remembers” in its state that it did. Hence, had the
algorithm at the node just waited for an answer, a deadlock may have resulted,
since such an answer may never arrive (e.g. if the request has never actually
been sent). This non- local predicate- “a request message from node v is on its
way to the root” is replaced in the algorithm of [31] by a set of local predicates
at the nodes on the route of the request message. If the request message is not
there, then some node on its assumed route would detect that illegal state.

Another motivation for the tree algorithm in [31] was to enable a self stabi-
lizing reset instead of the third step of [16] (the recovery step). A distributed
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reset protocol restarts the base algorithm from a predetermined initial state. It
was observed by Awerbuch, Patt-Shamir, Varghese, and Dolev [8] that it is not
trivial to show that a general self stabilizing reset algorithm together with local
detection can perform the transformation of any algorithm to a self stabilizing
one correctly. However, it is rather easy to show that a self stabilizing reset that
uses a spanning tree suffices. Several other self stabilizing tree algorithms were
suggested independently. They defer in some of their properties (e.g., one as-
sumed a leader, antoher used an upper bound on the number os nodes) but they
too suggested, at least implicitly, the distributed verification of cycle freedom
described in Section 3, see the work by Dolev, Israeli, and Moran, and by Arora
and Gouda [13, 4].

The notion of local checking was presented in [9]. It bears similarities to the
notion of local detection. Instead of a local predicate involving a node and all
its neighbors, the local predicates in [9] are defined over the two endpoints of
one edge. This has a potential of simplifying algorithms using these predicates.
In [7], Awerbuch, Patt-Shamir, and Varghese extended the methodology of lo-
cal detection and global correction to local detection and local correction. The
methodology is applied in [7] to develop self-stabilizing interactive distributed
protocols, such as, end-to-end communication and network reset.

As described above, the verification step using the method of [16] consumes
Ω(n) time, while the verification using e.g. the approach of [31] takes O(1)
time. Methods suggested in [20,15,6,21,19] to detect cycles sacrificed some time
efficiency in order to reduce the total sizes of variables used in the local predicates
compared to that of [31]. This suggests the existence of a size- time trade-off. On
the other hand, it is not clear whether the total communication cost for these
methods is inherently smaller. Indeed, these algorithms communicate a smaller
number of bits, but those are communicated to larger distances.

A specific subset of problems allows for a specific kind of self stabilization
called silent stabilization. These are studied in Dolev, Gouda, and Schneider
in [32]. Informally, when silent stabilization is obtained, the only activity a pro-
cessor can be involved in is collecting the state information of its neighbors that
appear in its local predicates, and computing its local predicates. In a sense, this
too is a form of a local detection- if the desired property of the network does
not hold (that is, if the network is in an illegal state) this should be detected
at least by one node that will take additional actions to correct the state. This
captures input output relations- for example, this can be useful for protocols
that compute a spanning tree. When the tree is correct, no additional activity
is required except for the checking. On the other hand, this does not capture an
interactive problem, e.g. that of a token ring.

Some of the latter can be captured by the Roll-back compiler introduced by
Awerbuch and Varghese in [9]. It can be applied to any deterministic protocol
(however, if this protocol is not for an input-output problem, then the space
used by the compiler may not be bounded). Each node maintains its own log of
its events and states, and sends the log often to all its neighbors. Thus, every
node can check every transition it made in the past, to see whether its view of
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this transition is consistent with the view of its neighbors. These are the local
predicates. The global predicate Phistory is that “the current global state is a
result of a legal run of the base algorithm”. Local checking is also used in [9] for
designing self stabilizing algorithms directly for several tasks such as shortest
paths, topology update, leader election, and computing the maximum flow.

Beauquier, Delaet, Dolev, and Tixeuil(in [33]) assumed that only the part of
the state meant to be visible to the outside can be read by other nodes. (The
output is the part that appears in the specification of the task to be performed.)
It was shown in [33] that this assumption may imply the need for a very large
memory usage (e.g. for verifying a spanning tree).

Multiple self stabilizing algorithms have since used the idea of first detecting
that the global state is illegal, and then correcting it. This makes a large body
of work a potential application of distributed verification. We do not have the
space here to survey them all. A rather comprehensive survey (but not up to
date) of self stabilization by Herman and Johnen can be found in [1].

We note the following major difference between the model of proof labeling
schemes and the ones used by past self stabilization algorithms. In the latter
models, the design of the computation stage was intertwined with that of the
verification stage, and the designers sought to design a computation process that
will be easy for verification, and vice versa. This approach may lead to a low
cost local verification. However, this approach might also have the disadvan-
tage of making the design process less modular. In proof labeling schemes, it
is assumed that the distributed representation of the structure or function at
hand is already given, and the computed labels are required to verify this spe-
cific representation. This allows for more modular algorithm design and frees
the algorithm designer to consider other goals when designing the distributed
representation. The approach of proof labeling schemes may sometimes be useful
also in verifying properties on existing structures, even when the original design
of those structures was done without verification in mind.

To illustrate this difference, let us point out to one of the results in proof
labeling schemes, which states that local checking sometimes requires labels that
are longer even than the states (such as the states used in previous local checking
methods). This occurs in the natural setting where vertices are required to have
distinct states. For example, this can happen in an algorithm that hashes unique
identities of nodes into shorter unique states. In the case where the underlying
graph is an n-vertex path, the size of vertex labels that are required in order to
verify that all the states are unique is Ω(n). This is longer than the state, which
is O(log n). On the other hand, were we allowed to compute the states (rather
than prove the given hashing), labels of size zero would have sufficed in the case
of unique identities: just have the state equal the identity. (Since the identities
are assumed in this example to be unique, the states “computed” in that way are
unique too.) We note that in many other cases, “small” proof labeling schemes
exist even under the stronger requirements that the state to prove was developed
independently, and now it is required to develop the scheme.
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