
Register Allocation via Hierarchical Graph Coloring

David Callahan Brian Koblenz

Tera Computer Company

400 N 34th Street, Suite 300

Seattle, WA 98103

�

Abstract

We present a graph coloring register allocator de-

signed to minimize the number of dynamic memory

references. We cover the program with sets of blocks

called tiles and group these tiles into a tree reecting

the program's hierarchical control structure.

Registers are allocated for each tile using standard

graph coloring techniques and the local allocation and

conict information is passed around the tree in a two

phase algorithm. This results in an allocation of reg-

isters that is sensitive to local usage patterns while

retaining a global perspective. Spill code is placed in

less frequently executed portions of the program and

the choice of variables to spill is based on usage pat-

terns between the spills and the reloads rather than

usage patterns over the entire program.

1 Introduction

We examine the problem of e�ciently allocating

registers to hold program variables and compiler tem-

poraries. In this problem, a program is represented

as a control ow graph consisting of basic blocks con-

nected with edges representing possible transfers of

control. Each basic block consists of a sequence of

instructions accessing variables. The target machine

has a �nite set R of physical registers and an un-

bounded set M of memory locations. Each reference

to a program variable must be associated with ei-

ther a physical register or a memory location during

�

This research was supported by the United States Defense

Advanced Research Projects Agency under Contract MDA972-

89-C-0002. The views and conclusions contained in this docu-

ment are those of Tera Computer Company and should not be

interpreted as representing the o�cial policies, either expressed

or implied, of DARPA or the U. S. Government.

compilation. The goal of the register allocator is to

minimize the number of dynamic memory references

in the program by placing heavily used variables in

registers.

Most of the work in recent years has cast the reg-

ister allocation problem in terms of coloring a graph

where the nodes represent variables and the edges

represent conicts. Two variables in the graph are

connected if they cannot simultaneously share a reg-

ister at some point in the program. The goal of the

allocator is to assign a register (\color") to every node

such that each node has a di�erent color than any of

its neighbors.

When it is impossible to color every node di�er-

ently from its neighbors then some form of spilling

is required.

1

The placement of code to implement

spill decisions has not received as much attention as

the question of which variables to spill. Even though

newer processor designs have more registers, we be-

lieve that the appropriate placement of spill code

will become more important in the near future. The

reason for this is that these processors have longer

pipelines, longer latencies between the time an oper-

ation is issued and the time the result is available,

and more operations executing concurrently. In or-

der to �nd these concurrent operations and hide the

pipeline latency, aggressive loop unrolling and oper-

ation scheduling are required, both of which increase

register pressure at various points in the program[5].

In Chaitin's allocator[6] the decision to spill a vari-

able is based on a weighted reference count and the

number of conict edges in the interference graph.

This heuristic su�ers because the program ow struc-

ture is not represented in the interference graph and

local reference patterns are not visible. In addition,

1

A variable is spilled over a section of the program when

references to that variable are associated with memory rather

than registers. The term reload is used to indicate a transition

point in the program where a spilled variable becomes associ-

ated with a register and the term spill refers to the opposite

transition.

Page 1

once a variable is spilled to memory all references

must fetch its value from memory and all de�nitions

must store the value back. Simple methods within a

basic block[2][6] can be used to avoid multiple loads

(or stores) of a variable if the register has not been

used since the previous load, but no global mecha-

nism allows the variable to be allocated a register

over some larger portion of the program. In the ex-

ample shown in Figure 1, Chaitin's allocator will spill

either g1 or g2 for the entire program resulting in the

poor execution of one of the loops.

Our work describes a graph coloring allocator that

is sensitive to program ow structure. Spilling occurs

in less frequently executed portions of the program.

The choice of variables to spill is based on usage pat-

terns between the spills and the reloads rather than

usage patterns over the entire program. The method

allows a variable to be assigned to one register over

a portion of the program, memory in a second por-

tion, and a di�erent register in yet a third portion.

Pro�ling information can be trivially incorporated to

improve the selection of spilled variables and the lo-

cation of the spill code because all analysis is based

on the probability of being in a particular basic block

or owing along a particular control ow edge.

The main idea is to represent the program's loop

and conditional structure by a tree of tiles. Tiles are

visited in a bottom up fashion and a local interference

graph is created and colored (using pseudo registers)

for each tile. A tile's local spill decisions are made

based on local usage and a compact summary of the

local interference graph is passed to the parent tile

to be incorporated into its interference graph. After

the bottom-up pass has allocated variables to pseudo

registers for the entire tree, a top down walk binds

pseudo registers to physical registers and introduces

spill code where desirable and required, but not nec-

essarily where the decision to spill was made.

In addition to better spill code placement, our ap-

proach also allows smaller conict graphs to be con-

structed. We are not claiming to be asymptotically

smaller, but with this technique it is not necessary to

construct the full conict graph at any one time. This

is similar to the bene�t of clique separators described

by Gupta, So�a, and Steele[11] yet we are able to re-

tain a global view of the program permitting better

spill analysis.

The next section describes the tile tree. Section 3

gives details for the allocation and section 4 describes

how spill decisions are made. We conclude with com-

parisons to other work and some observations about

the generality of our approach.

2 Tiles and Tile Trees

Our goal is to represent the hierarchical structure

of a program as a tree because the tree representation

is easy to reason about and separates areas of high

and low execution frequency.

We start with some de�nitions:

A program is represented by a control ow graph

G = (B ;E ; start ; stop) where B is the set of basic

blocks, E is the set of control ow edges between

elements of B, start 2 B is the unique block with no

predecessors and stop 2 B is the unique block with

no successors.

Let T be a collection of sets of basic blocks which

covers the set B. We say that T is a tile tree and

each element of T a tile if the following conditions

hold:

1. Each pair of sets in T are either disjoint or one

is a proper subset of the other. If t

2

� t

1

and

there is no t 2 T such that t

2

� t � t

1

, then we

say that t

2

is a child or a subtile of t

1

and t

1

is the parent of t

2

, denoted by t

1

= parent(t

2

).

We also de�ne the set blocks(t) to be the set of

basic blocks which are members of t but which

are not members of any child of t.

2. For each edge e = hn;mi 2 E and tile t

such that m 2 t, we have n 2 t or n 2

blocks(parent(t)). If n 2 blocks(parent(t)) we

say that e is an entry edge.

3. For each edge e = hm;ni 2 E and tile t

such that m 2 t, we have n 2 t or n 2

blocks(parent(t)). If n 2 blocks(parent(t)) we

say that e is an exit edge.

4. There is some tile t

0

such that blocks(t

0

) =

fstart; stopg This tile is called the root tile.

The �rst restriction is central to our hierarchical ap-

proach to making spill decisions. The second and

third are somewhat technical and we observe that

empty basic blocks can be inserted along an edge to

allow the original endpoints to be further \apart" in

the tile tree. Intuitively each empty block becomes a

point where spill code can be inserted if needed. The

�nal condition ensures a simple boundary case.

Many collections T satisfy the above de�nition in-

cluding the trivial tree consisting of two tiles, one of

which is the root tile. Our goal is to make the tile tree

represent the structure of the program so we combine

a couple of heuristics to build the tree from the con-

trol ow graph. The algorithm to construct the tile

tree is given in appendix A.

Figure 1 shows the tile tree resulting from the pro-

gram in �gure 1 superimposed on the new control ow

Page 2

... g1 ...
t1 = ...
 ... t1

g1 = ...
g2 = ...

B1:

B2:

Start:

...g2...
t2 = ...
... t2 ...

B3:

Stop:

T0

T1

T2

T3

B4:

... g1 ...
t1 = ...
 ... t1

...g2...
t2 = ...
... t2 ...

g1 = ...
g2 = ...

... g1 ...

... g2 ...

... g1 ...

... g2 ...

F1:

B4:

B3:

B2:

B1:

Start:

Stop:

Figure 1: Example allocation problem involving two loops, four variables and a two-register machine. Optimal

allocation requires g

2

to be spilled before block B

2

and reloaded before B

3

. g

1

should be spilled after B

2

: The

right hand �gure shows the hierarchical tile tree and the basic block inserted during tree construction.

Page 3

graph. The block labeled F1 is generated by the �x-

up code in �gure 3.

Though representing only the loop hierarchy may

su�ce in many cases, we include both loops and con-

ditionals in our hierarchy. By including the condi-

tionally executed portions of the program the size of

the interference graphs are further reduced and the

placement of spill code is improved.

For example, consider a variable v that is used

inside a deeply nested conditional that is rarely ex-

ecuted. There may not be enough register pressure

to cause the variable to spill until higher in the tile

tree, but the point higher in the tree is executed more

frequently than the conditional where the variable is

used. This corresponds to the case where it is desir-

able to spill a variable inside a conditional lower in

the tile tree than is necessary.

Alternatively, consider a pair of nested loops and

a variable v that cannot be allocated a register for

the inner loop (represented by tile t). It is possible to

spill inside of the outer loop (corresponding to spilling

along t's entry and exit edges), but if there are no

references to v in the outer loop it is better to spill

the variable outside of the outer loop, in a tile still

higher in the tree.

3 Allocation

Each basic block is populated with uses and de�-

nitions of variables. We assume that each program

variable has been fully renamed[9] and that variables

correspond to an unbounded set of pseudo-registers.

2

We say a variable v is local to a tile t if all refer-

ences to v are made by blocks within t and v is not

live along any entry or exit edge of t. Variables ref-

erenced in a tile but not local to the tile are called

global with respect to that tile.

The allocation process has two phases. In the �rst

phase, physical and pseudo registers are allocated in

a bottom-up fashion for each tile using graph color-

ing. Local spill decisions are made and a summary

of the tile's allocation is passed to its parent. Once

the entire tile tree has had pseudo registers allocated,

the second phase makes a top-down walk of the tile

tree mapping pseudo registers to physical registers

and updating spill decisions. We distinguish phys-

ical and pseudo registers in that a pseudo register

will be bound to some physical register during the sec-

ond phase. When certain values must be in particular

physical registers, e.g. to satisfy linkage conventions,

2

Renaming is not required but allows a variable with dis-

tinct live ranges within a tile to receive distinct registers for

each live range.

phase1(tile t)

foreach subtile s of t do

phase1(s)

endfor

compute conicts based on references in blocks(t)

add preferences based on references in blocks(t)

foreach subtile s of t do

incorporate s's tile summary variable con-

icts

foreach variable g global in s that is also

in a register in s do

incorporate g's conicts

endfor

add preferences from s

endfor

color tile interference graph

update spill information

save conict and preference information

for parent(t)

phase2(tile t)

reconstruct interference from global variables and

tile summary variables

include global variables in registers in parent(t)

set preferences based on allocation in parent(t)

color interference graph using physical registers

save allocation for each subtile s of t

foreach subtile s of t do

phase2(s)

endfor

Figure 2: Overview of the two passes for register al-

location. The initial call passes the root tile.

those variables are assigned to the appropriate phys-

ical registers during the �rst phase.

Figure 2 gives a brief algorithmic overview of the

allocation process. The steps are described in more

detail in the succeeding sections.

Allocation and Conict Summary After the

�rst phase has processed a tile, each variable refer-

enced in the tile will be either assigned a physical or

pseudo register, or be spilled to memory. The �rst

phase summarizes the allocation of local variables by

creating one new variable for each distinct register to

which a local variable is allocated. These new vari-

ables are referred to as tile summary variables and

we de�ne the mapping ts

t

(v) which maps each local

variable v in t to the tile summary variable associated

Page 4

with the register allocated to v. Tile summary vari-

ables represent the coalescing of local variables that

were allocated to the same register and allow an e�-

cient representation of the conicts between local and

global variables.

The number of tile summary variables for any

given tile is bounded by the number of physical reg-

isters kRk and the conicts with other tile summary

variables can be represented with a small bit matrix.

For each global variable g that was assigned a reg-

ister in tile t, we retain two sets of conicting vari-

ables. The �rst set, c

t

(g), describes the local variables

in t that conict with g. If L

t

is the set of variables

local to tile t and X(v

1

; v

2

) is the relation that v

1

and

v

2

conict then we de�ne:

c

t

(g) = fts

t

(v)jv 2 L

t

and X(v; g)g

The second set of conicts describes the global

variables in t that both conict with g and were as-

signed to registers in t. We observe that at most kRk

global variables can be in registers at any entry or

exit point to the tile and so the total amount of in-

formation in the summary is O((x

t

� kRk)

2

) where x

t

is the number of blocks which are the destination of

entry edges to tile t or sources of exit edges from tile t.

For structured programs, this number is 2.

Tile Interference Graph For each tile processed

in a bottom-up manner, an interference graph is built.

The interference graph for tile t consists of two kinds

of variables: variables referenced in t, and tile sum-

mary variables for each child of t. The �rst kind of

variable corresponds to the typical uses and de�ni-

tions found in t, while the second kind of variable

corresponds to the registers used by variables local to

a subtile of t.

A subtle implication is that variables that are live

but not referenced in t do not require a variable in t's

interference graph. The motivation here is that if any

variable must be spilled, these variables would be the

�rst candidates. Omitting unreferenced live variables

also provides a reduction in the size of the conict

graphs. An example of this is in �gure 1 where tile

T2 does not need to represent g

2

in its interference

graph.

Edges in the graph represent conicts between

variables and prevent two variables from being as-

signed the same register. These conict edges come

from a variety of sources.

1. A conict edge exists between two variables if

they conict in a block in blocks(t). This initial

conict graph is built ignoring the subtile infor-

mation using an algorithm similar to Chaitin[6].

2. A variable conicts with tile summary variables

and other global variables as indicated in the

conict summaries for each subtile.

3. Any variable that is live in a subtile but was

not part of the subtile's allocation summary,

conicts with all of the subtile's tile summary

variables. This includes variables that are not

referenced anywhere in the subtree rooted at

the subtile plus variables that have been spilled

in the subtile but are live in the current tile.

A second savings in graph size occurs because

variables live across a tile normally conict with

all local variables in the tile. These conicts are

more compactly represented as conicts with

the tile summary variables which represent a

set of variables local to the subtile.

4. Each node corresponding to a tile summary

variable conicts with other tile summary vari-

ables from the same subtile as indicated in the

conict summaries for each subtile. Tile sum-

mary variables do not conict with tile sum-

mary variables from sibling tiles because tile

summary variables in sibling tiles correspond

to variables with non-overlapping live ranges.

Coloring Once the interference graph has been

constructed it is colored using a standard heuristic:

all variables with less than kRk conicts are placed

on a colorable stack along with their edges. When

a variable is placed on the stack all associated edges

are removed from the graph enabling other variables

to now be placed on the stack.

When the remaining graph consists solely of vari-

ables with at least kRk conicts, spill analysis is used

to determine the next variable to push on the col-

orable stack. Variables that are least valuable for

keeping in a register | as determined in section 4 |

are pushed on the colorable stack next. Eventually

every variable is on the colorable stack as suggested

by Briggs et al.[3].

At this point the assignment of physical and

pseudo registers begins. A set of colors is maintained

consisting of physical and pseudo register colors as-

signed to variables. The set is initialized to contain

the physical registers that certain local variables re-

quire.

The coloring process pops variables from the col-

orable stack and gives the variable a color from the

color set excluding any color already allocated to a

conicting variable. If less than kRk colors have been

used and the variable requires a new color then a

pseudo register is selected and added to the set of

used colors.

Page 5

An exception is made for global variables live at

the tile boundaries and those variables that are pref-

erenced to them (see below). In order to avoid overly

constraining these variables, we attempt to select a

color that is separate from any other color already

used subject to the constraint of using only kRk col-

ors. Because we keep a summary of the tile's conicts,

it is possible to bind these distinct local colors to the

same physical register during the top down phase.

Alternatively, if we had coalesced local and global

variables during the bottom up phase, it would be

impossible to separate them even if it was desirable.

An obvious implication of the preceeding discussion

is that when coloring a local variable we try to avoid

colors that are allocated to uncoalesced global vari-

ables.

Since the algorithm may place a variable with kRk

or more conicts on the colorable stack, some vari-

ables on the stack may not receive a color. However,

due to the stack ordering of variables, it is guaranteed

that the more important variables, based on the spill

analysis, will receive registers before the less impor-

tant ones.

After all variables have either been given color

assignments or spilled, we compute the tile conict

summary described earlier for variables still in a reg-

ister.

Preferencing It is sometimes desirable to allocate

di�erent variables to the same register. Sources of

these preferences include:

1. If a variable is used as a procedure call argu-

ment or result and the linkage convention re-

quires the argument or result be in a particu-

lar physical register, then the variable becomes

preferenced to that register.

2. If there is a simple assignment from one vari-

able to another, than those variables become

preferenced.

Explicit preferencing is used as an alternative to co-

alescing[6] where nodes satisfying the above condi-

tions, especially the last, would simply be subsumed

into a single node before coloring. We feel our method

is superior because the separate live ranges of the in-

dividual variables allow more precise spill decisions to

be made.

The above cases are di�erent in that the �rst case

has speci�c register requirements, while the second

case simply desires to have two variables in the same,

arbitrary register. We handle these cases separately.

To implement the �rst case of preferencing we as-

sociate an optional local preference register with each

variable. When coloring a variable which has a local

preference, if the desired register is available, then

that register is assigned; otherwise the preference is

ignored. When coloring a variable without a local

preference, a color is found that does not conict

with either the already colored conicting variables

or with the local preferences of still uncolored con-

icting variables. If no such color exists, we revert to

standard coloring techniques choosing a color which

is distinct from already colored conicting variables.

This mechanism prevents a variable from arbitrar-

ily choosing a register that is the local preference of

a conicting variable. The only time a local prefer-

ence will not be awarded is if a higher priority vari-

able (based on the order of the coloring stack) desires

the preferenced register, or every available register is

some other variable's local preference.

The second type of preferencing described above

does not set a local preference value because there is

no particular register the two variables must share.

Instead, each variable is added to the other's prefer-

ence list. When a variable v is colored, each uncolored

variable on v's preference list is given v's color as its

local preference. Thus, after one variable in a group

of preferenced variables is colored the mechanism de-

scribed in the previous paragraph will then work to

keep the register available for the other member's of

the group.

In order to support inter-tile preferencing and reg-

ister targeting a couple of special cases are imple-

mented:

1. If a global variable is allocated to a physical

register in a subtile, then that physical register

becomes a local preference in the parent tile.

This propagates preferences up the tile tree and

allows earlier de�nitions of a variable to target

a desirable location.

2. If two global variables are preferenced in a sub-

tile and are allocated to the same pseudo regis-

ter (the preferencing was successful in the sub-

tile), then the pair is added to a list of pairs

of variables that should be preferenced in the

parent tile. When the parent tile's interference

graph is constructed the variables on this prop-

agated preferences list are preferenced to one

another.

3. We also add preferences between global vari-

ables and tile summary variables if there is a

local variable that was preferenced with the

global variable and both variables are assigned

the same color. This handles the case where

there is a preference between the global and a

Page 6

local associated with the tile summary variable

without the need to retain additional preference

information between phases.

Mapping pseudo registers to physical registers

When the root of the tile tree is colored, the �nal

assignment of pseudo registers to physical registers

occurs in a top-down fashion. At each tile, the parent

will have already placed certain global variables into

registers and assigned some tile summary variables

to registers. Other global variables will be spilled to

memory and some tile summary variables will also be

spilled to memory.

To make the �nal register assignment, the tile con-

ict graph is recreated from the summary information

and is colored based on current preferences. Since,

during the bottom-up walk, we ignored global vari-

ables that were not referenced in the subtree rooted

at the current tile, we must now include those vari-

ables that received registers in the parent tile and are

live across the subtile. We make these variables con-

ict with every other variable in the conict graph

and preference them to the physical register they re-

ceived in the parent.

Variables with physical preferences are assigned

to those physical registers. Global variables assigned

to a register in the parent are preferenced to those

registers if there is no physical local preference.

Inserting Spill Code Once the �nal coloring for a

tile is known, spill code may need to be added on en-

try and exit edges. There are four general situations:

Spill When the parent assigns a register to a global

variable v that is spilled in the child, then on

each entry edge where v is live a store to mem-

ory is inserted and on each exit edge where v is

live a load is inserted.

Transfer When the parent assigns a register to a

global variable which is assigned a di�erent reg-

ister in the child, then on each entry or exit edge

where the variable is live a register move is in-

serted.

Reload When the parent spills to memory a variable

assigned to a register in the child, and it is cost

e�ective to reload that variable, then on each

entry edge where the variable is live a load from

memory is inserted and on each exit edge where

the variable is live a store to memory is inserted.

No Change When both the parent and the child al-

locate the variable to memory, no processing is

necessary because there is a single memory lo-

cation associated with each spilled variable.

The phrase \inserted on an edge" means that a new

basic block is created which is executed only when

this edge is traversed; �x-up code is placed in this

block. The �x-up code on entry and exit edges must

be ordered: stores and moves from a register must

preceed loads and moves to a register. It is possible

for a cycle of register to register moves to exist | per-

muting the contents of a set of registers | in which

case an idle register is used to break the cycle. In the

worst case a register must be spilled just to provide

an idle register.

The above description of when to spill and reload

is actually a bit too pessimistic. Consider the case of

a de�nition of a variable v prior to a loop, some uses

of v inside the loop, and �nally another use of v after

the loop. Assume that v gets a register for the tile

associated with the loop, but does not get a register

outside of the loop. As described, there would be a

reload of v before the loop is entered, and a spill of v

after the loop exit. The spill is unnecessary because

v was never modi�ed in the loop so the correct value

is already in memory. A simple solution is to mark

each tile where a variable is de�ned and propagate

the information up the tile tree. Thus, a variable is

reloaded only if there is a register de�nition of the

variable deeper in the tile tree and there has been no

spill of that variable since the de�nition.

4 Spilling

There are two primary issues to consider when

spilling:

� which variables should be spilled, and

� where should the spill code be located.

We address both of these issues here.

When the allocator reaches a point where all vari-

ables not on the colorable stack have at least kRk con-

icts, then one of the remaining variables may have to

be spilled. Following Briggs et al.[3] we prioritize the

remaining variables and next place the least valuable

variable on the stack; we delay the actual decision to

spill until a variable fails to �nd a valid color.

Chaitin[6] spills the variable with the lowest spill

cost to conict count ratio where the spill cost is the

penalty of accessing this variable from memory. This

is the variable that is least likely to bene�t from a

register and most likely to enable other variables to

become colorable. Bernstein et al. [2] use a comple-

mentary combination of spill heuristics and pick the

best set of variables to spill over the entire program.

Our algorithm could easily use either method but is

implemented using Chaitin's heuristic with our cost

metric.

Page 7

As was previously mentioned, the best place for

spill code may not be around the tile where the de-

cision to spill the variable is made. Therefore, the

information to make the spill location decision is com-

puted on the way up the tile tree and the actual spill

code insertion is made on the walk back down the

tree.

To properly determine spill locations for variables,

each variable that may want to be spilled higher or

lower in the tile tree is tracked in the subtiles. This

does not include every variable since the only vari-

ables that may want to be spilled higher in the tree

are those variables that have already been spilled, or

those that are referenced in this subtree and are vis-

ible to the parent tile. Local variables will never be

spilled higher in the subtree because they are not live.

The following formulas are used to determine

which variables are most deserving of registers and

where spill code should be inserted. Assuming unit

cost to load or store a variable:

Local weight

t

(v) =

X

b

Prob(b) �Ref

b

(v)

Transfer

t

(v) =

X

e

Prob(e) � Live

s

(v)

Weight

t

(v) =

X

s

(Reg

s

(v)�Mem

s

(v)) +

Local weight

t

(v)

Reg

t

(v) = Reg?

t

(v) �

min(Transfer

t

(v);Weight

t

(v))

Mem

t

(v) = Mem?

t

(v) � Transfer

t

(v)

where e ranges over entry and exit edges, b ranges over

the blocks in blocks(t), and s ranges over the subtiles

of tile t. Live

e

(v) is 1 if variable v is live along edge e

and 0 otherwise. Prob(b) is the probability of b be-

ing executed and Prob(e) is the probability of owing

along edge e. Ref

b

(v) is the number of references to

variable v in block b. Reg?

t

(v) is 1 if variable v was

allocated a register in tile t and 0 otherwise. Simi-

larly, Mem?

t

(v) is 1 if variable v was not allocated a

register in tile t and 0 otherwise.

Local weight

t

(v) corresponds to the value of keep-

ing v in a register contributed by blocks in tile t.

Transfer

t

(v) is the cost of spilling (and/or reload-

ing) variable v on entry to and exit from tile t.

Weight

t

(v) is used to drive the heuristic of which

variable should be spilled. It is based on the num-

ber of uses of the variable in the tile, the penalty of

allocating v to memory in this tile if it desires a reg-

ister in some subtiles, and the penalty of allocating v

to a register in this tile if it must be spilled in some

subtiles. The weight can be negative if there is disin-

centive to allocate v to a register. This occurs if the

cost of spilling v back to memory in some subtiles

outweighs the bene�t of having v in memory for tile t

and the subtiles that want v in a register.

Tile summary variables have zero Local weight ;

their weight is based on their value in the subtile and

the cost of transferring a variable on all of the tile en-

try and exit edges. This transfer cost approximates

the penalty of spilling and reloading conicting vari-

ables that are live and in registers at the child tile's

boundaries.

Reg

t

(v) is the penalty of having the parent tile

allocate v to memory if this tile allocates it to a reg-

ister. This is the lesser cost choice of doing a transfer

between memory and registers at t's boundary or sim-

ply changing the allocation of v to be in memory in

the subtile. If Reg

t

(v) < 0 then there is incentive

for the parent to place v in memory because some

descendants of t will need to spill v regardless of t's

decision and there are not enough local references to

overcome the cost of the spill.

Mem

t

(v) is the penalty of having the parent tile

allocate v to a register if this tile allocates it in mem-

ory. This is simply the cost of moving v between reg-

isters and memory around the current tile because v

must remain in memory in the subtile once a decision

to spill it has been made.

The preceeding equations are used in the bottom-

up walk of the tile tree to determine which variables

are most important to allocate to registers and also

to determine if a variable is not worth allocating a

register even if the parent tile can place the variable

in a register. They are also used in the top-down

assignment of physical registers to determine when

the allocation of a variable to a register should be

changed to a memory allocation because the variable

is in memory in the parent tile.

Making Spill Decisions When walking up the tile

tree, it is possible to determine that some variables

are not worth allocating to registers. For example, a

variable that is de�ned in the current tile but already

spilled in all subtiles may not be worth keeping in a

register for this tile because the subtile spills can be

eliminated if the variable is in memory. In this case,

weight

t

(v) < 0 demonstrating the disincentive of allo-

cating v to a register. If this disincentive overshadows

the bene�t even when the parent tile allocates v to

a register, then we know v should be in memory in

tile t regardless of whether the parent of t places v

in a register. Thus, each variable v satisfying the in-

equality transfer

t

(v) + weight

t

(v) < 0 is marked as

not receiving a register for tile t.

All other spilled variables (during the bottom up

walk) are spilled based on register pressure and the

Page 8

decision of which variables to spill is based on the

local bene�t of keeping the variable in a register.

Placement of Spill Code When walking back

down the tile tree, spill code must be inserted at ap-

propriate locations. There are two relevant cases for

a variable v.

If v is in memory in tile t and in a register in

the parent of t then we insert code to move v to and

from memory on t's boundary edges. This is because

spill decisions are never undone. If the parent found

it pro�table to place v in a register then there were

enough uses to overcome the disincentive represented

by the cost of transferring v to memory around tile t.

If v is in a register in t and in memory in the

parent of t and if weight

t

(v) > transfer

t

(v) we gener-

ate memory to register transfers otherwise we change

the allocation of v in t to reect that it should be in

memory.

5 Related Work

Our work is primarily an extension of the work

done by Chaitin[6]. We retain the accuracy of

Chaitin's interference graph but, unlike Chaitin, we

are able to bene�t from local usage patterns and can

place spill code intelligently.

Chow and Hennessy[8] and Larus and Hil�n-

ger[13] handle conicts more coarsely than we do.

They represent each variable as a set of contiguous

basic blocks| a live range|where the variable must

occupy a register. When the interference graph can-

not be colored with the available registers a live range

is split into a pair of live ranges which are treated as

separate variables and allocated to registers indepen-

dently. Spill code is inserted at the basic blocks that

form the boundary of two live ranges to coalesce vari-

ables that were split from a common ancestor. The

splitting of live ranges is greedy and based solely on

the edges in the interference graph; the new live range

continues to grow as long as it is colorable. This can

result in live range boundaries inside of loops even

though spilling outside the loop would produce better

code. Another disadvantage of the Chow and Hen-

nessy scheme is that they separate local and global

variables and color them from distinct register sets.

This results in extra copies that coalescing and pref-

erencing can avoid and also reduces the number of

available registers for global coloring.

Briggs, Cooper and Torczon[4] �nd the loop struc-

ture of the program and perform live range splitting

(with limited coalescing) at loop boundaries. They

spill intelligently, but their interference graphs are

large and they cannot spill inside of conditional state-

ments.

Meltzer and Knobe[12] independently attempted

to incorporate the program structure into a register

allocator and have a similar notion of local and global

variables. They construct a \control tree" based on

the work of Sharir[14]. This is similar to our tile tree

for structured programs but we believe our algorithm

is more easily adapted to varying tile granularities.

Also, Sharir may view branches out of nested loops

as if statements where we continue to see the natural

loop structure.

Meltzer and Knobe do not go into detail about

making spill decisions, but they claim the \optimal"

location for spill code is at the highest point in the

control tree. We believe their claim to be in error

based on the discussion in section 2 and have tried to

give a complete discussion of spill analysis to support

our position.

6 Summary and Observations

To summarize, our method for register allocation

covers the program with sets of blocks called tiles.

The tiles are grouped into a tree reecting the pro-

gram's structure and resulting in an allocation of reg-

isters that is sensitive to local usage patterns while re-

taining a global perspective. Registers are allocated

in each tile using standard graph coloring techniques

and spill code is inserted at infrequently executed tile

boundaries to rectify di�erent allocations between an

ancestor tile and its descendants.

We conclude with a brief discussion of special top-

ics which are handled well by this method.

When a variable corresponding to a machine in-

struction operand is spilled, some provision must still

be made to deliver the variable's value to the pro-

cessor. Most modern processor designs allow such

operands to only come from registers and so a reg-

ister must be made available to hold the value im-

mediately before its use. A simple solution[13] to

this problem is to reserve registers speci�cally for

this purpose. Another solution[6] is to introduce

temporary variables for each such use and then re-

peat the entire register allocation process considering

these temporary variables. Repeating the allocation

is expensive[3][11] and the potential for register spills

is increased with aggressive optimization techniques.

Our method avoids the need to iterate by introducing

these temporaries as local variables with in�nite spill

cost. Since these variables are visible in only one tile

and no tile has a large number of them, they do not

contribute signi�cantly to the cost of allocation.

Another anomaly in register allocation is handling

Page 9

procedure calls. A linkage convention may specify

that particular registers should be saved by the caller,

saved by the callee, used as parameters, or used to

return a value. The various conventions for handling

registers at call sites and procedure entry and exit can

be handled uniformly with our technique. Parame-

ter passing and return values can be easily handled

with preferencing. Spilling caller-save variables can

be modeled by introducing, at the point of the call,

a local variable with in�nite spill cost and a prefer-

ence to a physical register. Handling callee-save reg-

isters is analogous to spilling variables corresponding

to the callee-saved registers that are live across the

entire procedure but not referenced anywhere in the

procedure. When processing the root tile, each callee-

save register is assumed to contain a live variable with

weight commensurate with the save and restore cost

and a preference to the callee-save register. This vari-

able competes with other variables during the spill

analysis.

For example, consider a case where a routine �rst

has a quick return check and then does lots of com-

putation. The bulk of the computation will be in a

subtile with lower execution frequency than the root

tile. In this case, the cost analysis will indicate sub-

tile summary variables should be spilled in the root

tile, rather than the variables occupying callee-save

registers. The net e�ect is the same as the \shrink

wrapping" discussed by Chow[7]: a callee-save regis-

ter is not saved until an execution path which actually

requires the register is selected.

Inline expansion | replacing a function call with

a copy of the body of the function | is an optimiza-

tion used to reduce the overhead of function calls and

to allow more e�ective optimization in the vicinity of

the function call. However, inline expansion can have

a detrimental e�ect on traditional register allocators

since a natural spill point (the call site) has been re-

moved. Since our method retains natural spill points

such as loop boundaries and nested control we should

not su�er any side e�ects. Further, since the local

variables of the inlined-function will all be local to

the function's tile, the cost of coloring after inline ex-

pansion should be proportional to the combined cost

of coloring each function separately.

Some machines have more levels of programmer

addressable memory hierarchy than just registers and

main memory. Our techniques can be easily extended

to handle this hierarchy by moving variables between

one hierarchical level and another at the tile bound-

aries. Allocation entails placing the variable at the

highest level where it can be allocated and relying

on the spill analysis to eliminate unpro�table moves

between levels.

Finally, our original goal for this work was to �nd

an e�cient register allocation scheme that could ex-

ecute in parallel on our machine and thus speed the

entire allocation process. We achieved this goal since

sibling subtrees can be processed concurrently in both

the bottom-up and top-down passes. The amount of

parallelism depends on the shape of the tile tree. Our

primary language is Fortran and our expectations |

con�rmed by early experiments | are that there is

adequate breadth in the tree to expect bene�t from

parallel evaluation.

References

[1] F. E. Allen. Control Flow Analysis. In Proceed-

ings of the SIGPLAN '70 Symposium on Com-

piler Construction, pages 1{19, July 1970.

[2] D. Bernstein, D. Goldin, M. Golumbic,

H. Krawczyk, Y. Mansour, I. Nahshon, and

R. Pinter. Spill code minimization techniques

for optimizing compilers. In Proceedings of the

ACM SIGPLAN 89 Conference on Program Lan-

guage Design and Implementation, pages 258{

263, June 1989.

[3] P. Briggs, K. Cooper, K. Kennedy, and L. Torc-

zon. Coloring Heuristics for Register Allocation.

In Proceedings of the ACM SIGPLAN 89 Con-

ference on Program Language Design and Imple-

mentation, pages 275{284, June 1989.

[4] P. Briggs, K. Cooper, and L. Torczon. Aggres-

sive Live range Splitting. Technical report, Rice

University, 1991.

[5] D. Callahan, S. Carr, and K. Kennedy. Im-

proving Register Allocation for Subscripted Vari-

ables. In Proceedings of the ACM SIGPLAN

90 Conference on Program Language Design and

Implementation, pages 53{65, June 1990.

[6] G. Chaitin. Register Allocation and Spilling via

Graph Coloring. In Proceedings of the SIGPLAN

'82 Symposium on Compiler Construction, pages

98{105, June 1982.

[7] F. Chow. Minimizing Register Usage Penalty

at Procedure Calls. In Proceedings of the ACM

SIGPLAN 88 Conference on Program Language

Design and Implementation, pages 85{94, June

1988.

[8] F. Chow and J. Hennessy. Register Allocation

by Priority-based Coloring. In Proceedings of

Page 10

the SIGPLAN '84 Symposium on Compiler Con-

struction, SIGPLAN Notices Vol. 19, No. 6,

pages 222{232, June 1984.

[9] R. Cytron, J. Ferrante, B. Rosen, M. Wegman,

and K. Zadeck. An E�cient Method of Comput-

ing Static Single Assignment Form. In Confer-

ence Record of the Sixteenth ACM Symposium on

the Principles of Programming Languages, pages

25{35, January 1989.

[10] J. Ferrante, K. J. Ottenstein, and J. D. Warren.

The Program Dependence Graph and Its Use in

Optimization. ACM Transactions on Program-

ming Languages and Systems, 9(3):319{349, July

1987.

[11] R. Gupta, M. L. So�a, and T. Steele. Register

Allocation via Clique Separators. In Proceed-

ings of the ACM SIGPLAN 89 Conference on

Program Language Design and Implementation,

pages 264{274, June 1989.

[12] K. Knobe and A. Meltzer. Control Tree based

Register Allocation. Technical report, COM-

PASS, 1990.

[13] J. Larus and P. Hil�nger. Register Allocation

in the SPUR Lisp Compiler. In Proceedings

of the SIGPLAN '86 Symposium on Compiler

Construction, SIGPLAN Notices Vol. 21, No. 7,

pages 255{263, June 1986.

[14] M. Sharir. Structural Analysis: A New Ap-

proach to Flow Analysis in Optimizing Compil-

ers. Computer Languages, 5:151{153, 1980.

[15] R. E. Tarjan. Testing Flow Graph Reducibil-

ity. Journal of Computer and System Sciences,

9:355{365, 1974.

A Tile Tree Construction

Many tile trees can be constructed from a pro-

gram. We construct a tile tree by starting with a tile

graph corresponding to the control ow graph and

group nodes in the tile graph together until it forms

a legal tile tree.

The �rst step is to identify the loop structure

based on intervals in the ow graph[1, 15]. An in-

terval is a set of basic blocks which form a loop in the

program. Like tiles, intervals nest. We de�ne a loop

top as the single basic block that has incoming back

edges and dominates every basic block in its loop. Al-

though irreducible loops do not have a loop top, all

blocks in an irreducible loop that are reached by a

forward control ow edge from a basic block outside

de�ne t(n) to be the smallest tile which

contains block n.

foreach edge e = (n;m) do

if n 62 t(m) and m 62 t(n) then

let a be the smallest tile containing

both n and m

create a block n

a

in a and in

all tiles containing a

replace e with (n; n

a

) and (n

a

;m).

endif

endfor

while 9e = (n;m) where m 62 parent(t(n)) do

create n

0

in parent(t(n)) and all ancestor tiles

replace e with (n; n

0

) and (n

0

;m)

endwhile

while 9e = (m;n) where m 62 parent(t(n)) do

create m

0

in parent(t(n)) and all ancestor tiles

replace e with (n;m

0

) and (m

0

;m)

endwhile

Figure 3: Tile tree �x-up: eliminate edges which vio-

late conditions 2 or 3 by inserting empty blocks.

the loop can be combined in the tile tree and treated

as a single summary loop top. This summary node

will dominate every basic block in the loop. Similarly

for loops with multiple exits, we add a summary exit

node so that each node in the interval will be post-

dominated by a node in the interval. Each interval

will be a tile.

The interval structure could be used directly as a

tile tree but we can further capture the control struc-

ture within each interval. For each interval I , we

form a graph G

I

= (N

I

; E

I

). Each interval strictly

contained in I is represented by a single node in N

I

and each block in I not in a subinterval is repre-

sented by a node in N

I

. Edges E

I

are induced by

control ow edges between blocks in I as if blocks in

subintervals were coalesced together. Self-loops and

interval exit edges are ignored. We next �nd equiv-

alence classes of nodes in each G

I

which are totally

ordered by both the dominator and post-dominator

relations:

3

for S

i

= fn

1

; : : : ; n

k

g, we have n

j

dom-

inates and is post-dominated

4

by n

j+1

. From each

S

i

we construct S

�

i

by including any node dominated

3

These sets are almost the same as sets of nodes with the

same control dependences[10]. Since not all edges in the control

ow graph are considered, the dominator and post-dominator

relations are for this graph are not subsets of the corresponding

relations of the control ow graph.

4

We assume a both dominates and post-dominates itself.

Page 11

by a node in S

i

and post-dominated by a node in S

i

.

Each of the sets S

�

i

will be a tile.

Since conict graphs may have O(n

2

) edges for n

variables, it is desirable to control the size of blocks(t)

plus the number of subtiles of t. This suggests that we

break large tiles up into pieces to bound this number.

A natural way to break tiles is to partition large S

i

into disjoint pieces where all nodes in one piece dom-

inate those in another. A tile can, however, be bro-

ken into arbitrary connected components if no natural

partition exists.

Once an initial covering of tiles has been selected,

empty basic blocks are added where edges violate the

second or third conditions on a tile tree. Figure 3

shows the algorithm to add these basic blocks. The

�rst loop �nds edges which cross between sibling tiles

and introduces an empty block in the smallest con-

taining tile. The next two loops identify edges which

cross from a tile to a containing tile which is not the

parent. Each such edge is \shortened" by adding an

empty block in the parent tile and replacing the in-

valid edge with an edge to the parent block and and

edge from the parent block to the other endpoint.

The former of these new edges satis�es restriction

two and the latter is \shorter" than the original edge

so this process must terminate. Execution time is

O(kEk � h(T)) where h(T) is the height of the tile

tree: the length of the longest chain of tiles totally

ordered by subset inclusion. It is expected that ac-

tual times will not approach this bound in practice.

Execution time of �nding intervals is O(kEk +

kNk) and the execution time of �nding tiles within

intervals is dominated by the time to compute the

dominator relation, O(kEk log kNk).

Page 12

