
Reuse by program transformation?

Ralf Lämmel

CWI, P.O. Box 94079, NL-1090 GB Amsterdam
ralf@cwi.nl

WWW home page: http://www.cwi.nl/˜ralf

Abstract

Certain adaptations, that are usually performed manually by functional program-
mers are formalized by program transformations in this paper. We focus on adap-
tations to obtain a more reusable version of a program or a version needed for a
special use case. The paper provides a few examples, namely propagation of ad-
ditional parameters, introduction of monadic style, and symbolic rewriting. The
corresponding transformations are specified by inference rules in the style of nat-
ural semantics. Preservation properties such as type and semantics preservation
are discussed. The overall thesis of this paper is that suitable operator suites for
automated adaptations and a corresponding transformational programming style
can eventually be combined with other programming styles, such as polymorphic
programming, modular programming, or the monadic style, in order to improve
reusability of functional programs.

?Partial support received from the Netherlands Organization for Scientific Research
(NWO) under the Generation of Program Transformation Systems project

1 INTRODUCTION

Reuse is usually based on modularity, genericity and object-orientation. There
are very powerful module systems for functional languages [9, 4]. State of the art
functional languages are also very strong regarding language support for gener-
icity, as provided, e.g., by polymorphism and polytypism. Furthermore, there
are certain powerful ways of parameterization such as monadic programming
[10, 14, 5] and arrows more recently.

This paper investigates the utility of program transformations to facilitate reuse
of higher-order functional programs. The transformations illustrated in this paper
are meant to “mimic” certain common adaptations performed by programmers
manually. We want to provide evidence for the presumption that the need to an-
ticipate the actual reuse from the start can be reduced by adding program trans-
formation technology to the programming paradigm. The ultimate goal in this
context would be to come up with a transformational style of programming based
on a suitable operator suite for program adaptation. This paper just provides a
few examples for automated adaptations. Our illustrative examples are concerned
with adapting language interpreters, e.g., to introduce the monadic style in an in-
terpreter. Inference rules in the style of natural semantics are used to formalize
the transformations.

Most work on program transformations for functional programs focuses on
implementation, particularly on compilation and optimization. Refer, e.g., to Pet-
torossi’s and Proietti’s survey on rules and strategies for transforming functional
and logic programs [12] and issues of the annual ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-Based Program Manipulation ([3],. . .). Trans-
formations have been considered only to a very limited extent as a means of ex-
tending or adapting functional programs. The transformational approach sug-
gested in this paper is partially based on our previous work on meta-programming
for mainly first-order object languages [8].

The remaining paper is structured as follows. In Section 2, we will illustrate
certain limitations for reuse in functional programming and we motivate some
adaptations suitable to recover reusability. In Section 3, we develop a few trans-
formation operators to automate the adaptations motivated before. The paper is
concluded in Section 4. For brevity, related work is discussed throughout the
paper rather than in a separate section.

2 MOTIVATION BY EXAMPLES

We perform a few experiments with extending language interpreters written in
Haskell. We do not want to change the way how interpreters are developed. The
domain has rather been chosen because it is a common domain for studying exten-
sibility [14, 2, 5, 11, 1]. In programming practice, the illustrated limitations mean
that programs cannot be reused without resorting to extra-linguistic features (i.e.,
text-editing) because the actual reuse has not been anticipated.

2.1 Preliminaries

We adopt the running example of [14]: the interpretation of certain constructs of a
functional language. The following data types are needed in the rest of the paper:

type Name = String
data Exp = Zero | Succ Exp | Apply Exp Exp | Var Name | Lambda Name Exp
data Val = Wrong | Nat Int | Fun (Val → Val)
type Env = [(Name,Val)]

Exp models abstract syntactical expressions. Val describes the values which
can be encountered during interpretation including a special error value Wrong.
Env models environments used in the interpretation of λs. An interpreter is a
function that maps expressions in the context of an environment to a value.

2.2 Towards modularity

Let us attempt to provide a modular description of the basic interpreter. For that
purpose Figure 1 presents two modules, VAL and ENV . The module VAL covers
constructs which can be described at just the “value” level of semantic aspects
as manifested by the profile ie :: Exp → Val. The module ENV covers the re-
maining constructs which need to be interpreted in the context of an environment.
Consequently, the profile ie :: Exp → Env → Val is used.

module VAL

ie :: Exp → Val
ie Zero = Nat 0
ie (Succ e) = ...

ie (Apply e1 e2) = apply (ie e1) (ie e2)

apply :: Val → Val → Val
apply (Fun f) x = f x
apply f x = Wrong

module ENV

ie :: Exp → Env → Val
ie (Var i) ρ = lookup ρ i
ie (Lambda i e) ρ =

Fun λx. ie e ((i,x) : ρ)

lookup :: Env → Name → Val
lookup [] i = Wrong
lookup ((j,v) : ρ) i = if i == j

then v
else lookup ρ i

FIGURE 1. A very modular interpreter

Conceptually, this modularization looks perfect but soon it becomes clear that
we cannot combine the two modules. The interpreter functions in both modules
cannot be unified because of the different semantic aspects involved in their defi-
nition as reflected by the profiles. Consequently, a decomposition, where we try to
abstract from environments in some part is not feasible. The module VAL cannot
be reused in an interpreter with environments.

ie :: Exp → Env → Val
ie Zero ρ = Nat 0

ie (Succ e) ρ = ...

ie (Apply e1 e2) ρ = apply (ie e1 ρ) (ie e2 ρ)

FIGURE 2. Module VAL adapted to support environment propagation

We should comment on the possible employment of monads in this situation.
If the modules VAL and ENV in Figure 1 had been written in the monadic style,
and the environment had been considered as a part of the underlying monad in
ENV , reuse would be possible. Further remarks regarding the monadic style of
programming are given in the conclusion of the paper.

2.3 Making modules compatible

It is a rather simple adaptation to make the module VAL compatible with the
module ENV by inserting parameters encoding environment propagation. The
eventual result is illustrated in Figure 2. The corresponding transformation is de-
veloped in Subsection 3.1. After that adaptation, the modules can be combined
provided the underlying module system allows recursive function and recursive
type definitions to be broken up and spread across modules [4].

2.4 Migrating to the monadic style

The basic interpreter discussed so far could be extended to support error handling,
states, I/O, profiling and others. In [14], such extensions are performed by means
of monads. Therefore, a prerequisite is that programs are parameterized by a
monad1. Figure 3, for example, shows the monadic version of the module VAL
from Figure 1. In Subsection 3.2 it is shown how to support the migration to the
monadic style by a corresponding transformation. The transformation also allows
one to extend the scope of a monad in a given program in a certain sense.

2.5 Adapting equations

Also if the monadic style is assumed, it is frequently necessary to perform adap-
tations which are beyond the scope of an ordinary functional language, that is to
say, equations need to be modified to refine the computational behaviour.

Let us consider an example concerned with profiling. Suppose that function
applications should be counted in the running interpreter example, i.e., applica-

1A monad is represented in a language like Haskell as a type constructor M and two
polymorphic functions ↑ :: α → M α (usually called unit or return), >>= :: M α → (α →
M β) → M β (usually called bind) obeying the common monad laws.

ie :: Exp → M Val
ie Zero = ↑ (Nat 0)
ie (Succ e) = ...

ie (Apply e1 e2) = ie e1 >>= λv1. ie e2 >>= λv2. apply v1 v2

apply :: Val → Val → M Val
apply (Fun f) x = f x
apply f x = ↑ Wrong

FIGURE 3. Module VAL in monadic style (call-by-value)

tions of apply. The state monad is useful to hide the counter. Still one adaptation
is necessary to increment the counter for applications of apply. The equation
interpreting function applications has to be adapted as follows:

ie (Apply e1 e2) = ie e1 >>= λv1. ie e2 >>= λv2. tick >>= λ(). apply v1 v2

A similar adaptation is described in the seminal paper on monads in functional
programming [14], but presumably assuming that the programmer has to resort to
extra-linguistic features for reuse. A rather rude method to solve the problems
would be to replace the affected equation altogether (manually or by a transfor-
mation). A more disciplined notion of adaptation is discussed in Subsection 3.3.
The notion is called symbolic rewriting because it allows us to replace a certain
pattern of, for example, function applications in a functional program by another
expression.

Another example of a rather subtle adaptation (also adopted from [14]) is con-
cerned with error handling which is done so far using the special error value
Wrong in Val. Let us suppose that proper error messages are required and that
error handling should be modelled by the error monad with the type constructor
M α = Ok α | Fail String2. It turns out that the monadic interpreter in Figure 3
cannot be used without further adaptation. The initial design decision to propa-
gate errors based on a special error value Wrong in Val has to be altered. All the
equations dealing with error situations are not appropriate any longer because—
due to the migration to the monadic style—errors are accidentally represented as
the “successful” value ↑ Wrong = Ok Wrong. The last equation for apply has to
be adapted, for example, as follows:

apply f x = Fail “ERROR: function expected.”

3 TRANSFORMATION OPERATORS

The adaptations motivated above are automated as program transformations in this
section. For brevity, the adaptations are discussed mostly at the level of terms and
not at the level of complete functional programs. We assume familiarity with the

2i.e., an error message s is represented as Fail s and a “successful” value v is represented
as ↑ v = Ok v

simply-typed λ-calculus. In some cases, a more expressive calculus supporting
polymorphism, data types and type constructors is needed, although that is not
spelled out. The formal definition of the operators is shown in part using inference
rules in the style of natural semantics.3

3.1 Propagation

A transformation operator ⇒distr , which can be used when a data structure in a
functional program has to be propagated, is defined. In our running example, the
operator can be used to make the module VAL compatible with module ENV as
discussed in Subsection 2.3.

x : τ ∈ Γ x : τ′ ∈ ∆ x ⇒Γ;τ;τ′ ;t+
pump t

x ⇒Γ;∆;t+
distr t

[D1]

x 6∈ ∆
x ⇒Γ;∆;t+

distr x
[D2]

t ⇒Γ,x:σ;∆;t+

distr t ′

λx : σ. t ⇒Γ;∆;t+
distr λx : σ. t ′

[D3]

t1 ⇒Γ;∆;t+
distr t ′1 t2 ⇒Γ;∆;t+

distr t ′2
t1 t2 ⇒Γ;∆;t+

distr t ′1 t ′2
[D4]

t ⇒Γ;τ;τ;t+
pump t t+ [P1]

t x ⇒
Γ,x:σ;τ;τ′ ;t+
pump t ′

t ⇒Γ;σ→τ;τ′;t+
pump λx : σ. t ′

[P2]

FIGURE 4. Distribution of a term t+

The operator ⇒distr is specified in Figure 4. The judgement t ⇒Γ;∆;t+

distr t ′ means
the following. The term t is transformed into the term t ′ by the operator ⇒distr
controlled by the parameters Γ, ∆ and t+. The terms t and t+ are assumed to
be well-typed w.r.t. the type assignment Γ. t+ is the term to be inserted by the
transformation in order to encode propagation (e.g., the variable ρ in Figure 2).
Finally, ∆ is a special type assignment encoding the function symbols contributing
to the propagation as follows. If x with x : σ1 → ··· → σn ∈ Γ has to contribute
to the propagation, then there exists an i such that x : σi → ··· → σn ∈ ∆ saying
that applications of type σi → ··· → σn rooted by x should be extended by the
further parameter t+. In this way, ∆ also controls that t+ should be inserted as
the i-th parameter. The actual insertion of t+ is initiated in rule [D1] and it is
performed by the auxiliary operator ⇒pump defined in rules [P1] and [P2]. The

transformation x ⇒Γ;τ;τ′;t+
pump tx “pumps up” x : τ to be become an application tx of

type τ′ rooted by x with t+ as the last parameter. The parameters before t+ are
3We adopt some common conventions. The type judgement Γ ` t : τ is valid if the λ-

term t has type τ w.r.t. the type assignment Γ. The extension of a type assignment Γ by
x : τ, as denoted by Γ,x : τ, is valid if x 6∈ Γ. Terms are treated as equivalent up to renaming
of bound variables (α-equivalence)

“handed over by wrapping” x with λ-abstractions. The remaining rules [D2] –
[D4] descend into λ-terms.

Example 1. ⇒distr is illustrated for the right-hand side of the equation interpreting
function applications in Figure 1, i.e., for the term apply (ie e1) (ie e2). To achieve
the effect shown in Figure 2, the function ie should be extended by a parameter
of type Env. We assume a free variable ρ serving as the parameter t+ for that
purpose. A suitable type assignment Γ is {ie : Exp → Val,apply : Val → Val →
Val,e1 : Exp,e2 : Exp,ρ : Env}. Finally, {ie : Val} serves as the parameter ∆. The
resulting term is apply ((λx1 : Exp. ie x1 ρ) e1) ((λx2 : Exp. ie x2 ρ) e2). The
resulting term has the same type as the original term w.r.t. a slightly different type
assignment Γ′ = {ie : Exp → Env → Val,apply : Val → Val → Val,e1 : Exp,e2 :
Exp,ρ : Env}.

It should be plausible that ⇒distr is semantics-preserving. One can show that
the output program is not strict w.r.t. the inserted parameters. Moreover, it is
possible to obtain the input program by just “projecting away” [8] the inserted
parameters. ⇒distr is also type-preserving. This property indicates, for example,
that an adapted term can be used in the context of the original term.

Let us consider a pragmatic problem with the transformation t ⇒Γ;∆;t+

distr t ′. The
term t ′ will not be very readable because for each application of a symbol x,
which is covered by ∆, n− 1 λ-abstractions are introduced, where n is the target
parameter position of t+. This is a consequence of the simple way how parameters
are inserted. To improve readability, more complex variants of ⇒distr and ⇒pump
could be developed. Readability can also be recovered adopting partial evaluation
for a subsequent simplification of t ′. For that purpose, we assume that λ is used in
λ-abstractions introduced by a transformation rather than λ.4 To make use of this
convention, rule [P2] in Figure 4 has to be updated:

t x ⇒
Γ,x:σ;τ;τ′ ;t+
pump t ′

t ⇒Γ;σ→τ;τ′;t+
pump λx : σ. t ′

[P2]

Example 2. The term obtained in Example 1 can be simplified to apply (ie e1 ρ)
(ie e2 ρ) by enforcing β-reduction for λs.

3.2 Monad introduction

An approach to the introduction of a monad 〈M,↑,>>=〉 in a given functional
program is presented. Monad introduction is performed in two steps:

1. A sequential version of the given program is derived as an intermediate result
by call-by-value sequencing; refer, e.g., to the A-normal forms in [7]. Concep-
tually, applications are flattened by means of (non-recursive) let-expressions.
The notation let x : τ = t1 in t2 can be represented in our framework without
introducing additional syntax as the term (λx : τ. t2) t1.

4Such a convention is also used elsewhere, for example, in [7] to keep track of admin-
istrative λ-abstractions introduced by a CPS transformation.

2. A let-expression let x : τ = t1 in t2 is transformed into t1 >>= λx : τ. t2 (i.e.,
>>= is used instead of let) if t1 is supposed to be a computation. When values
need to be coerced to computations, applications of ↑ are inserted.

Functional programmers usually have to perform this kind of adaptation by
hand. To use sequential programs as an intermediate representation is well in line
with Moggi’s computational meta-language [10].

Example 3. To illustrate sequencing, the right-hand side of the equation interpret-
ing function applications in Figure 1 is flattened. Using let-notation, the corre-
sponding sequential term is let x1 = e1 in let x2 = ie x1 in let x3 = e2 in let x4 =
ie x3 in apply x2 x4.

We assume that sequencing is type- and semantics-preserving and partial eval-
uation can be used to nullify the effect of sequencing. The second step of monad
introduction is modelled by the transformation operator ⇒ms specified in Fig-
ure 5. The operator ⇒ms and its collaborator ⇒ms′ are constrained by two type
assignments, Γ for the input term and Γ′ for the output term. The idea is that
Γ′ was derived from Γ by inserting some applications of M. Thereby, it can be
controlled what functions should be computed in the monad. Another control
parameter is the intended type of the output term. The terms are traversed by
the auxiliary operator ⇒ms′ , whereas ⇒ms possibly lifts the intermediate result
returned by ⇒ms′ using ↑. Rules [M3] – [M6] simply descend into the input

term. Rule [M7] transforms a let-expression (λx : σ. t2) t1 into an application of
>>= if t1 gets a computation. One should not be confused that the input term
pattern in rule [M6] is more general than the pattern of a let-expression covered
by rule [M7]. The nondeterminism involved in Figure 5 is resolved by the type
constraints. Note that partial evaluation can be used to remove the λ-abstractions
remaining from the process of sequencing. We distinguish ⇒ms and ⇒ms′ to
minimize the number of applications of ↑ and >>=, i.e., to avoid that the result-
ing program gets more sequential than necessary. Without this distinction, [M7]
would tend to produce terms of the form ↑ t >>= λx : σ. t ′ which can be simplified
according to the monad law that ↑ is the left unit of >>=.

Example 4. The sequential term from Example 3 is transformed into the monadic
style. For simplicity, only the function ie will be turned into monadic style in this
example.5 The simplified monadic version of the sequential term is (ie e1) >>=
λx2 : Val. (ie e2) >>= λx4 : Val. ↑ (apply x2 x4). The control parameters τ,
Γ and Γ′ for ⇒ms are as follows. τ = M Val because a right-hand side of an
equation defining ie is considered. Γ = {ie : Exp → Val,apply : Val → Val →
Val,e1 : Exp,e2 : Exp}. Γ′ is almost the same as Γ extended by the types for ↑
and >>=. Only one application of M has to be inserted, namely Γ′ = {ie : Exp →

M Val,apply : Val → Val → Val,e1 : Exp,e2 : Exp,↑ : α → M α,>>= : M α →
(α → M β) → M β}.

5That is sufficient, for example, if language constructs, whose interpretation involves
states, are added. Note that in Figure 3 also the function apply is monadic. This would be
necessary for other semantic aspects such as error handling.

t ⇒τ;Γ;Γ′

ms′ t ′

t ⇒τ;Γ;Γ′

ms t ′
[M1]

t ⇒τ;Γ;Γ′

ms t ′

t ⇒Mτ;Γ;Γ′

ms ↑ t ′
[M2]

Γ′ ` x : τ
x ⇒τ;Γ;Γ′

ms′ x
[M3]

t ⇒τ;Γ,x:σ;Γ′
,x:σ

ms t ′

λx : σ. t ⇒σ→τ;Γ;Γ′

ms′ λx : σ. t ′
[M4]

t ⇒τ;Γ,x:σ;Γ′ ,x:σ
ms t ′

λx : σ. t ⇒σ→τ;Γ;Γ′

ms′ λx : σ. t ′
[M5]

t1 ⇒σ→τ;Γ;Γ′

ms t ′1 t2 ⇒σ;Γ;Γ′

ms t ′2
t1 t2 ⇒τ;Γ;Γ′

ms′ t ′1 t ′2
[M6]

t1 ⇒Mσ;Γ;Γ′

ms′ t ′1 t2 ⇒
Mτ;Γ,x:σ;Γ′,x:σ
ms t ′2

(λx : σ. t2) t1 ⇒Mτ;Γ;Γ′

ms′ t ′1 >>= λx : σ. t ′2
[M7]

FIGURE 5. Establishing a monad 〈M,↑,>>=〉

It can be verified that ⇒ms is semantics-preserving by unfolding the occur-
rences of M, ↑ and >>= in Figure 5 according to the definition of the identity
monad. It is interesting to notice that ⇒ms also can effectively be used to widen
the monadic style by adapting further functions to be monadic. Thus, it does not
matter, for example, that apply was not made monadic in Example 4 because it
can be done later if necessary. However, the result of a repeated application of
⇒ms contains terms of the form t >>= λx : σ. ↑x to be simplified to t according to
the monad law that ↑ is the right unit of >>=.

3.3 Symbolic rewriting

The general idea of symbolic rewriting is that terms in a given program are substi-
tuted to enhance or to adapt the computational behaviour. By such substitutions it
is possible to perform several kinds of adaptations in the spirit of object-oriented
features [13, 4] such as inheritance, mixins or meta-object protocols. The two
problems illustrated in Subsection 2.5 can be handled by symbolic rewriting.

For brevity, we only consider a simple form of symbolic rewriting where ap-
plications a of a certain type τ and rooted by a certain symbol x are replaced by
terms (f a) of the same type.6 The corresponding judgements are of the form
t ⇒

Γ;x:τ; f
wrap t ′. Here, Γ is the type assignment for t and f . We might call this kind

of adaptation wrapping and so f becomes the “wrapper” function.

Example 5. For the adaptation in Subsection 2.5 to count function applications,
the following instance of ⇒wrap is needed: Γ is the type assignment for the
monadic interpreter as in Example 4 extended by the type for the ticker function,

6Note that the adaptation of the definition of a function is more coarse grained because
it corresponds to the adaptation of all applications of the function.

namely tick : M (). The applications to be adapted are described by apply : M Val.
The wrapper function is λc : M α. tick >>= λ(). c.

The formal specification of ⇒wrap is omitted for brevity. Although, the op-
erator is certainly type-preserving (i.e., if Γ ` t : τ, then Γ ` t ′ : τ), it is in gen-
eral not semantics-preserving. However, it is feasible to reason about semantics-
preservation for certain patterns of replacements. In the example above we can
use a notion of observable equivalence on programs by abstracting from the state.

4 CONCLUDING REMARKS

We discussed a few adaptations which can be modelled by program transforma-
tions. There are further adaptations which one can think of, e.g., adaptations based
on the common folding/unfolding transformations originally proposed for the
derivation of efficient programs [15]. The suggested transformational approach
competes to some extent with other programming styles, particularly with mod-
ular programming and the monadic style. We rather think of it as a completion
of the functional programming paradigm. Module systems are meant for pro-
gramming in the large. However, they fail to support certain forms of refinements
which are necessary to adapt a program before reuse or to alter design decisions.
One of the obvious reasons for this restriction is that there should be good support
for separate compilation. Programming for reuse in the monadic style requires
that, in principle, all functions are monadic and that extensions are modelled as
monad transformers. Extensive use of monads is suboptimal because it results in
tangled, essentially sequential code, and all functions are concerned with the en-
tire effect space. In [6], Filinski relaxes these requirements for at least Scheme-like
languages. His approach is based on an extra (non-trivial) effect-typing system.
In our approach, certain computational aspects can be modelled without resorting
to monads. In the running example, it is indeed debatable if environment propa-
gation is an effect to be modelled in a monad because there are functions which
are not concerned with environments, e.g. apply. In our approach, there is also
an incremental way to install a monad in a program and to extend the scope of
it. Moreover, we are concerned with adaptations which go beyond the limits of
monads as illustrated in the discussion on symbolic rewriting.

Our work also raises the following questions: What extensions of module
systems might be useful? How could certain operators be integrated with existing
module systems? Other topics for future work include the identification of further
scenarios promoting our transformational approach, and the development of a
transformational programming environment.

Acknowledgement I am very grateful for Guido Wachsmuth’s experiments in Coq to ver-
ify some ideas presented in the paper. Thanks to Andrzej Filinski and Joe Wells for stim-
ulating discussions. I thank Jan Heering, Jan Kort, Günter Riedewald and Joost Visser for
comments on earlier versions of the paper.

REFERENCES

[1] E. Börger and W. Schulte. A Programmer Friendly Modular Definition of the Seman-
tics of Java. In J. Alves-Foss, editor, Formal Syntax and Semantics of Java, volume
1523 of LNCS, pages 353–404. Springer, 1999.

[2] R. Cartwright and M. Felleisen. Extensible denotational language specifications. In
M. Hagiya and J. C. Mitchell, editors, Theoretical Aspects of Computer Software:
International Symposium, volume 789 of LNCS, pages 244–272. Springer, Apr. 1994.

[3] O. Danvy, editor. Proceedings of PEPM ’99: The 1999 ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-Based Program Manipulation, San Antonio, Texas,
Jan. 1999. BRICS Notes Series NS-99-1.

[4] D. Duggan and C. Sourelis. Mixin Modules. In Proceedings of ICFP ’96: The 1996
ACM SIGPLAN International Conference on Functional Programming, pages 262–
273, Philadelphia, Pennsylvania, 24–26 May 1996.

[5] D. A. Espinosa. Semantic Lego. PhD thesis, Graduate School of Arts and Sciences,
Columbia University, 1995.

[6] A. Filinski. Representing Layered Monads. In Conference Record of POPL ’99: The
26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Antonio, Texas, pages 175–188, New York, N.Y., Jan. 1999. ACM.

[7] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The Essence of Compiling with
Continuations. In Proceedings of PLDI ’93: The ACM SIGPLAN ’93 Conference on
Programming Language Design and Implementation, pages 237–247, Albuquerque,
New Mexico, 23–25 June 1993. SIGPLAN Notices 28(6), June 1993.

[8] R. Lämmel. Declarative aspect-oriented programming. In Danvy [3], pages 131–146.
BRICS Notes Series NS-99-1.

[9] X. Leroy. Applicative Functors and Fully Transparent Higher-Order Modules. In
Conference Record of POPL ’95: The 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 142–153, San Francisco, California,
Jan. 1995.

[10] E. Moggi. Notions of Computation and Monads. Information and Computation,
93(1):55–92, July 1991.

[11] P. D. Mosses. Theory and Practice of Action Semantics. In Proceedings of MFCS
’96: The 21st International Symposium on Mathematical Foundations of Computer
Science, volume 1113 of LNCS, pages 37–61, Cracow, Poland, Sept. 1996. Springer.

[12] A. Pettorossi and M. Proietti. Rules and Strategies for Transforming Functional and
Logic Programs. ACM Computing Surveys, 28(2):360–414, June 1996.

[13] E. Poll. Subtyping and Inheritance for Inductive Types. In Proceedings of TYPES’97
Workshop on Subtyping, inheritance and modular development of proofs, Durham,
UK, September 1997.

[14] P. Wadler. The Essence of Functional Programming. In Conference Record of POPL
’92: The 19th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 1–14, Albequerque, New Mexico, Jan. 1992.

[15] H. Zhu. How powerful are folding/unfolding transformations? Journal of Functional
Programming, 4(1):89–112, Jan. 1994.

