
Evaluation of Release Consistent

Software Distributed Shared Memory on

Emerging Network Technology

Sandhya Dwarkadas� Pete Keleher� Alan L� Cox� and Willy Zwaenepoel

Department of Computer Science

Rice University �

Abstract

We evaluate the e�ect of processor speed� network char�
acteristics� and software overhead on the performance
of release�consistent software distributed shared mem�
ory� We examine �ve di�erent protocols for implement�
ing release consistency� eager update� eager invalidate�
lazy update� lazy invalidate� and a new protocol called
lazy hybrid� This lazy hybrid protocol combines the
bene�ts of both lazy update and lazy invalidate�

Our simulations indicate that with the processors and
networks that are becoming available� coarse�grained
applications such as Jacobi and TSP perform well� more
or less independent of the protocol used� Medium�
grained applications� such as Water� can achieve good
performance� but the choice of protocol is critical� For
sixteen processors� the best protocol� lazy hybrid� per�
formed more than three times better than the worst�
the eager update� Fine�grained applications such as
Cholesky achieve little speedup regardless of the pro�
tocol used because of the frequency of synchronization
operations and the high latency involved�

While the use of relaxed memory models� lazy imple�
mentations� and multiple�writer protocols has reduced
the impact of false sharing� synchronization latency re�
mains a serious problem for software distributed shared
memory systems� These results suggest that future
work on software DSMs should concentrate on reducing
the amount of synchronization or its e�ect�

� Introduction

Although several models and algorithms for software
distributed shared memory �DSM	 have been pub�
lished� performance reports have been relatively rare�
The few performance results that have been published

�This work was supported in part by NSF Grants CCR��������

and CCR�����		�
 Texas ATP Grant No� 		���	�	�� and by a

NASA Graduate Fellowship�

consist of measurements of a particular implementation
in a particular hardware and software environment
��
��
� ���� Since the cost of communication is very im�
portant to the performance of a DSM� these results are
highly sensitive to the implementation of the commu�
nication software� Furthermore� the hardware environ�
ments of many of these implementations are by now ob�
solete� Much faster processors are commonplace� and
much faster networks are becoming available�

We are focusing on DSMs that support release consis�
tency
��� i�e�� where memory is guaranteed to be consis�
tent only following certain synchronization operations�
The goals of this paper are two�fold� ��	 to gain an
understanding of how the performance of release con�
sistent software DSM depends on processor speed� net�
work characteristics� and software overhead� and ��	 to
compare the performance of several protocols for sup�
porting release consistency in a software DSM�

The evaluation is done by execution�driven simula�
tion
��� The application programs we use have been
written for �hardware	 shared memory multiproces�
sors� Our results may therefore be viewed as an in�
dication of the possibility of �porting� shared memory
programs to software DSMs� but it should be recog�
nized that better results may be obtained by tuning
the programs to a DSM environment� The applica�
tion programs are Jacobi� Traveling Salesman Prob�
lem �TSP	� and Water and Cholesky from the SPLASH
benchmark suite
���� Jacobi and TSP exhibit coarse�
grained parallelism� with little synchronization relative
to the amount of computation� whereas Water may be
characterized as medium�grained� and Cholesky as �ne�
grained�

We �nd that� with current processors� the bandwidth
of the ���megabit Ethernet becomes a bottleneck� lim�
iting the speedups even for a coarse�grained application
such as Jacobi to about � on �
 processors� With a ����
megabit point�to�point network� representative of the
ATM LANs now appearing on the market� we get good
speedups even for small sizes of coarse�grained prob�

lems such as Jacobi and TSP� moderate speedups for
Water� and very little speedup for Cholesky� Regard�
less of the considerable bandwidth available on these
networks� Cholesky�s performance is constrained by the
very high number of synchronization operations�

Among the protocols for implementing software re�
lease consistency� we distinguish between eager and lazy

protocols� Eager protocols push modi�cations to all
cachers at synchronization variable releases
��� In con�
trast� lazy protocols
��� pull the modi�cations at syn�
chronization variable acquires� and communicate only
with the acquirer� Both eager and lazy release con�
sistency can be implemented using either invalidate or
update protocols� We present a new lazy hybrid proto�
col that combines the bene�ts of update and invalidate�
few access misses� low data and message counts� and low
lock acquisition latency�

Our simulations indicate that the lazy algorithm
and the hybrid protocol signi�cantly improve the per�
formance of medium�grained programs� those on the
boundary of what can be supported e�ciently by a
software DSM� Communication in coarse�grained pro�
grams is su�ciently rare that the choice of protocols
becomes less important� The eager algorithms perform
slightly better for TSP because the branch�and�bound
algorithm bene�ts from the early updates in the eager
protocols �see Section
��	� For the �ne�grained pro�
grams� lazy release consistency and the hybrid proto�
col reduce the number of messages and the amount of
data drastically� but the communication requirements
are still beyond what can be supported e�ciently on
a software DSM� For these kinds of applications� tech�
niques such as multithreading and code restructuring
may prove useful�

The outline of the rest of this paper is as follows�
Section � brie�y reviews release consistency� and the
eager and lazy implementation algorithms� Section �
describes the hybrid protocol� Section � details the im�
plementation of the protocols we simulated� Section �
discusses our simulation methodology� and Section

presents the simulation results� We brie�y survey re�
lated work in Section � and conclude in Section ��

� Release Consistency

For completeness� we reiterate in this section the main
concepts behind release consistency �RC	
��� eager re�
lease consistency �ERC	
��� and lazy release consis�
tency �LRC	
����

RC
�� is a form of relaxed memory consistency that
allows the e�ects of shared memory accesses to be
delayed until selected synchronization accesses occur�
Simplifyingmatters somewhat� shared memory accesses

are labeled either as ordinary or as synchronization ac�
cesses� with the latter category further divided into ac�

quire and release accesses� Acquires and releases may
be thought of as conventional synchronization opera�
tions on a lock� but other synchronization mechanisms
can be mapped on to this model as well� Essentially�
RC requires ordinary shared memory accesses to be per�
formed only when a subsequent release by the same pro�
cessor is performed� RC implementations can delay the
e�ects of shared memory accesses as long as they meet
this constraint�

For instance� the DASH
��� implementation of RC
bu�ers and pipelines writes without blocking the pro�
cessor� A subsequent release is not allowed to per�
form �i�e�� the corresponding lock cannot be granted
to another processor	 until acknowledgments have been
received for all outstanding invalidations� While this
strategy masks latency� in a software implementation
it is also important to reduce the number of messages
sent because of the high per message cost�

In an eager software implementation of RC such as
Munin�s multiple�writer protocol
��� a processor delays
propagating its modi�cations of shared data until it ex�
ecutes a release �see Figures � and �	� Lazy implemen�
tations of RC further delay the propagation of modi��
cations until the acquire� At that time� the last releaser
piggybacks a set of write notices on the lock grant mes�
sage sent to the acquirer� These write notices describe
the shared data modi�cations that precede the acquire
according to the happened�before�� partial order
���
The happened�before�� partial order is essentially the
union of the total processor order of the memory ac�
cesses on each individual processor and the partial order
of release�acquire pairs� The happened�before�� partial
order can be represented e�ciently by tagging write
notices with vector timestamps
���� At acquire time�
the acquiring processor determines the pages for which
the incoming write notices contain vector timestamps
larger than the timestamp of its copy of that page in
memory� For those pages� the shared data modi�ca�
tions described in the write notices must be re�ected
in the acquirer�s copy either by invalidating or by up�
dating that copy� The tradeo�s between invalidate and
update and a new hybrid protocol are discussed in the
next section�

� A Hybrid Protocol for LRC

A lazy invalidate protocol invalidates the local copy of a
page for which a write notice with a larger timestamp is
received �see Figure �	� The lazy update protocol never
invalidates pages to maintain consistency� Instead� ac�
quiring processes retrieve all modi�cations named by

P [x,y]1

2P [y]

P [x,y]3

acq w(x) rel

acq w(y) rel

acq r(y)
inv(x) inv(y)

inv(y)

m(y)

Figure � Eager Invalidate

P [x,y]1

2P [y]

P [x,y]3

acq w(x) rel

acq w(y) rel

acq r(y)
upd(x) upd(y)

upd(y)

Figure � Eager Update

P [x,y]1

2P [y]

P [x,y]3

acq w(x) rel

acq w(y) rel

acq r(y)

inv(x)

inv(x,y) m(y)

Figure � Lazy Invalidate

upd(x)

P [x,y]1

2P [y]

P [x,y]3

acq w(x) rel

acq w(y) rel

acq r(y)

upd(y)

Figure � Lazy Update

P [x,y]1

2P [y]

P [x,y]3

acq w(x) rel

acq w(y) rel

acq r(y)

inv(x)

inv(x)
upd(y)

Figure � Lazy Hybrid

incoming write notices for any page that is cached lo�
cally �see Figure �	� As an optimization� the releaser
piggybacks the modi�cations it has available locally on
the lock grant message�

In the lazy hybrid protocol� as in the lazy update
protocol� the releaser piggybacks on the lock grant mes�

sage� in addition to write notices� the modi�cations to
those pages that it believes the acquirer has a copy of
in its memory� However� unlike in the lazy update pro�
tocol� the acquirer does not make any attempt to ob�
tain any other modi�cations� Instead� it invalidates the
pages for which it received write notices but for which
no modi�cations were included in the lock grant mes�
sage�

Previous simulations
��� indicate that ��	 the lazy
protocols send fewer messages and less data than the
eager protocols� and ��	 the lazy update protocol send
fewer messages in most cases than the lazy invalidate
protocol� while the lazy invalidate protocol sends less
data than the lazy update protocol� The reduction in
the number of access misses outweighs the extra mes�
sages exchanged at the time of synchronization� Also�
the reduced access misses result in reduced latency� thus
favoring the update protocol�

However� the choice of a lazy or an eager algorithm�
and furthermore the choice between an update or an
invalidate protocol also a�ects the lock acquisition la�
tency� We distinguish two cases�

�� The lock request is pending at the time of the re�
lease� The lazy invalidate protocol has the short�
est lock acquisition latency� since a single message
from the releaser to the acquirer su�ces� followed
by the invalidations at the acquirer� a purely local
operation� In contrast� the eager algorithms must
update or invalidate all other cachers of pages that
have been modi�ed at the releaser� and the lazy
update protocol must retrieve all the modi�cations
that precede the acquire� again potentially a multi�
host operation�

�� The lock request is not yet pending at the time of
the release� The eager algorithms have the low�
est lock acquisition latency� followed closely by the
lazy invalidate protocol� All require a single mes�
sage exchange between the releaser and the ac�
quirer� but the lazy invalidate protocol also needs
to invalidate any local pages that have been modi�
�ed� The lazy update protocol potentially requires
a multi�host operation� resulting in higher lock ac�
quisition latency�

The lazy hybrid protocol combines the advantages of
lazy update and lazy invalidate protocols� First� like
the invalidate protocol� the hybrid only exchanges a
single pair of messages between the acquiring and the
releasing processor� As a result� lock acquisition la�
tency for the lazy hybrid protocol is close to that of the
lazy invalidate protocol� The only additional overhead
comes from the need to send and process the modi�ca�
tions piggybacked on the lock grant message� Second�

the amount of data exchanged is smaller than for the
update protocol� Finally� the hybrid sends updates for
recently modi�ed pages cached by the acquirer� It is
likely that these pages will be accessed by the acquirer�
thus reducing the number of access misses� and� as a
result� reducing the latency and the number of miss
messages�

� Protocol Implementations

In this section we describe the details of the �ve pro�
tocols that we simulated� lazy hybrid �LH	� lazy invali�
date �LI	� lazy update �LU	� eager invalidate �EI	� and
eager update �EU	�

All �ve are multiple�writer protocols� Multiple pro�
cessors can concurrently write to their own copy of a
page with their separate modi�cations being merged
at a subsequent release� in accordance with the RC
model� This contrasts with the exclusive�writer proto�
col used� for instance� in DASH
��� where a processor
must obtain exclusive access to a cache line before it
can be modi�ed� Experience with Munin
�� indicates
that multiple�writer protocols perform well in software
DSMs� because they can handle false sharing without
generating large amounts of message tra�c between
synchronization points�

All of the protocols support the use of exclusive locks
and global barriers to synchronize access to shared
memory� Processors acquire locks by sending a request
to the statically assigned owner� who forwards the re�
quest on to the current holder of the lock� �Locks� and
�unlocks� are mapped onto acquires and releases in a
straightforward manner� Barriers are implemented us�
ing a barrier master that collects arrival messages and
distributes departure messages� In terms of consistency
information� a barrier arrival is modeled as a release�
while a departure is modeled as an acquire on each of
the other processors�

Processes exchange three types of information at
locks and barriers� synchronization information� consis�
tency information� and data� The consistency informa�
tion is a collection of write notices� each of which con�
tains the processor identi�cation and the vector times�
tamp of the modi�cation� Consistency information can
be piggybacked on synchronization messages� but often
the data comprising the modi�cations to shared mem�
ory can not� Most shared data exchanged in the proto�
cols is in the form of di�s� which are runlength encod�
ings of the modi�ed data of a single page� Sending di�s
instead of entire pages greatly reduces data tra�c� and
allows multiple concurrent modi�cations to be merged
into a single version�

Each shared page has a unique� statically assigned

owner� Each processor keeps an approximate copyset
for every shared memory page� The copyset is initial�
ized to the owner�s copyset when a page is initially re�
ceived� and updated according to subsequent write no�
tices and di� requests� The copysets are used in the
eager protocols to �ush invalidations or updates to all
other processors at releases� Since the copyset is only
approximate� multiple rounds are sometimes needed to
ensure that the consistency information reaches every
cacher of the modi�ed pages� The copysets are used by
LH to determine which write notices should be accom�
panied by di�s�

Table � summarizes the message counts for locks� bar�
riers� and access misses for each of the protocols� In this
table� the concurrent last modi�ers for a page are the
processors that created modi�cations that do not pre�
cede� according to happened�before��� any other known
modi�cations to that page�

��� The Eager Protocols

����� Locks

We base our eager RC algorithms on Munin�s multiple�
writer protocol
��� A processor delays propagating its
modi�cations of shared data until it comes to a release�
At that time� write notices� together with di�s in the
EU protocol� are sent to all other processors that cache
the modi�ed pages� possibly taking multiple rounds if
the local copysets are not up to date�

A lock release is delayed until all modi�cations have
been acknowledged by the remote cachers� An acquire
consists solely of locating the processor that executed
the corresponding release and transferring the synchro�
nization variable� No consistency�related operations oc�
cur at lock acquires�

����� Barriers

At barrier arrivals� the EI protocol sends synchroniza�
tion and consistency information to the master in a sin�
gle message� However� the EI barrier protocol has a
slight complication in that multiple processors may in�
validate the same page at a barrier� In order to prevent
all copies of a page from being invalidated� the mas�
ter designates one processor as the �winner� for each
page� Only the winner retains a valid copy for a given
concurrently modi�ed page� The losers forward their
modi�cations to the winner and invalidate their local
copies�

In the EU protocol� each processor �ushes modi�ca�
tions to all other cachers of locally modi�ed pages be�
fore sending a synchronization message to the barrier
master�

����� Access Misses

Access misses are treated identically for both proto�
cols� A message is sent to the owner of the page� The
owner forwards the request to a processor that has a
valid copy� This processor then sends the page to the
processor that incurred the access miss�

��� The Lazy Protocols

����� Locks

At an acquire� the protocol locates the processor that
last executed a release on the same variable� The re�
leaser sends both synchronization and consistency in�
formation to the acquirer in a single message� The
consistency information consists of write notices for all
modi�cations that have been performed at the releaser
but not the acquirer� While LI moves data only in re�
sponse to access misses� both the LH and LU protocols
send di�s along with the synchronization and consis�
tency information� However� LH moves di�s only from
the releaser to the acquirer� and hence can append them
to an already existing message� The releaser sends all
di�s that correspond to modi�cations being performed
at the acquire for the �rst time� such that for each di�
the acquirer is in the releaser�s copyset for the page
named by the di�� Pages named by write notices that
arrive without di�s are invalidated�

The LU protocol never invalidates pages� An acquire
does not succeed until all of the di�s described by the
new write notices have been obtained� In general� the
acquirer must talk to other processors in order to pick
up all of the required di�s� However� the number of pro�
cessors with which the acquirer needs to communicate
can be reduced because of the following observation� If
processor p modi�es a page at time t� then all di�s of
that page that precede the modi�cation according to
happened�before�� can be obtained from processor p�

����� Barriers

At barrier arrivals� the LI protocol sends synchroniza�
tion information and write notices to the master in a
single message� When all processors have arrived� the
barrier master sends a single message to each proces�
sors that contains the barrier release as well as all the
write notices that it has collected�

LH and LU barrier arrivals are handled similarly� In
both cases� each processor pushes updates to all proces�
sors that cache pages that have been modi�ed locally�
before sending a barrier arrival message to the master�
The only di�erence is that in LU� the processes must
wait on the arrival of the data before departing from
the barrier�

����� Access Misses

Access misses are handled identically by LH� LI� and
LU� At a miss� a copy of the page and a number of di�s
may have to be retrieved� The number of sites that
need to be queried for di�s can be reduced through the
same logic as in Section ������ The new di�s are then
merged into the page and the processor is allowed to
proceed� The lazy protocols determine the location of
a page or updates to the page entirely on the basis of
local information� No additional messages are required�
unlike in other DSM systems
����

� Methodology

��� Application Suite

We simulated four programs� from three di�erent
classes of applications� Jacobi and TSP are coarse�
grained programs with a large amount of computa�
tion relative to synchronization �������� and ����������
cycles per processor between o��node synchronization
operations� respectively� at �
 processors	� Our Ja�
cobi program is a simple Successive Over�Relaxation
program that works on grids of ��� by ��� elements�
TSP solves the traveling salesman problem for ���city
tours� Water� from the SPLASH suite
���� is a medium
grained molecular dynamics simulation ������ cycles
per processor between o��node synchronization oper�
ations	� We ran Water with the default parameters�
��� molecules for � steps� Cholesky performs parallel
factorization of sparse positive de�nite matrices� and
is an example of a program with �ne�grained paral�
lelism from the SPLASH benchmark suite ������ cycles
per processor between o��node synchronization opera�
tions	� Cholesky was run with the default input �le�
�bcsstk���� TSP and Cholesky use only locks for syn�
chronization� Jacobi uses only barriers� and Water uses
both�

��� Architectural Model

We used two basic architectural models� an Ethernet

model and an ATM switch model� Both models assume
��MHz RISC processors with
� Kbyte direct�mapped
caches and a �� cycle memory latency� ���
 byte pages�
and an in�nite local memory �no capacity misses	� The
ethernet is modeled as a �� MBit�sec broadcast net�
work� while the ATM is modeled as a ��� MBit�sec
cross�bar switch�

��� Protocol Simulation

Each message exchanged by the protocols was mod�
eled by the wire time consumed by sending the mes�

Access Miss Lock Unlock Barrier
LH �m � � ��n��	�u
LI �m � � ��n��	
LU �m ���h � ��n��	��u
EI � or � � �c ��n��	 � v
EU � � �c ��n��	 � �u

m � � concurrent last modi�ers for the missing page

h � � other concurrent last modi�ers for any local page

c � � other cachers of the page

n � � processors in system

p � � pages in system

u �
Pn

i���� other procs caching pages modi�ed by i	

v �
Pp

i���� excess invalidators of page i	

Table � Shared Memory Operation Message Costs

sage� any inherent network latency� contention for the
network� and a software overhead that represents the
operating system cost of calling a user�level handler
for incoming messages� creating and reading the mes�
sages in the DSM software� and the cost of the DSM
protocol implementation� This cost is set at ����� �
message length � �����	 processor cycles at both the
destination and source of each message� These �gures
were modeled after the Peregrine
��� implementation
overheads� Peregrine is an RPC system that provides
performance close to optimal by avoiding intermediate
copying� The lazy implementation�s extra complexity
is modeled by doubling the per�byte message overhead
both at the sender and at the receiver� Di�s are mod�
eled by charging four cycles per word per page for each
modi�ed page at the time of di� creation� Although
all messages are simulated� protocol�speci�c consistency
information is not re�ected in the amount of data sent�
Only the actual shared data moved by the protocols is
included in message lengths�

� Simulation Results

��� DSM on an Ethernet

Although prior work
�� showed that Ethernet�based
software DSMs can achieve signi�cant speedups� we �nd
that for modern processors the Ethernet is no longer
a viable option� Figure
 shows the speedup of Ja�
cobi� a coarse�grained program� Jacobi�s speedup peaks
at ��� for eight processors� and declines rapidly there�
after� While Jacobi�s communication needs are modest
in comparison with other programs� the individual pro�

cessors execute identical code and therefore create sig�
ni�cant network contention at each barrier� This con�
tention is especially signi�cant for the update protocols�
in which each processor sends updates to its neighbors
prior to the barrier� In an ��processor run� processors
on average wait more than � milliseconds before gaining
control of the Ethernet�

��� DSM on an ATM

The emerging ATM networks have several advantages
over the Ethernet� Foremost among these are increased
bandwidth and reduced opportunity for contention�
Unlike the Ethernet� in which all processors seeking to
communicate contend with each other� processors in an
ATM network can communicate concurrently and in�
terfere only when they try to send to a common desti�
nation�

Figures ��� summarize the performance of the Jacobi
program on an ATM� While the Ethernet simulation of
Jacobi achieved a speedup of about �� the ATM version
reaches ��� Part of this increase is due to the increased
bandwidth� but much of it is due to the fact that no
more than two competing updates �from each of a pro�
cessor�s two neighbors	 ever arrive at a single destina�
tion during one interval� The performance of all �ve
protocols is roughly the same for this program because
of the regular nearest�neighbor sharing� The invalidate
protocols fare slightly worse than the update protocols
because pages on the edge of a processor�s assigned data
are invalidated at barriers� and have to be paged across
the network� The lazy protocols perform slightly worse
than the eager protocols because of the extra overhead

LH LI LU EI EU

 2 4 8 16

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Figure � Speedup for Jacobi on Ethernet

added in the simulation for message processing� This
overhead is probably unjusti�ed for Jacobi because of
the nature of communication involved� As will be seen
in all of the simulations� EI moves signi�cantly more
data than the other protocols because its access misses
cause entire pages to be transmitted� rather than di�s�

Like Jacobi� TSP is a coarse�grained program with
modest amounts of communication� Much of TSP�s
ine�ciency results from contention for a global tour
queue� Fully ��� of a �
�processor execution is wasted
waiting for the queue lock� In order to prevent repeated
acquires because of unpromising tours� each acquirer
holds the queue�s lock while making a preliminary check
on the topmost tour� If the tour is promising� the
queue�s lock is released� Otherwise� the acquirer re�
moves another tour from the queue�

Figures ����� present TSP�s performance� There is
little variation among the lazy protocols and among the
eager protocols because of the large granularity and the
contention for the queue lock� However� the speedup
for the eager protocols is better than for the lazy pro�
tocols� TSP uses a branch�and�bound algorithm� using
a global minimum to prune recursive searches� Read
access to the current minimum is not synchronized� A
processor may therefore read a stale version of the min�
imum� The lock protecting the minimum is acquired
only when the length of the tour just explored is smaller
than �the potentially stale value of	 the minimum� The
length is then rechecked against the value of the min�
imum� which is now guaranteed to be up to date� and
the minimum is updated� if necessary� The eager pro�
tocols push out the new value of the minimum at each
release� and therefore local copies of the minimum are
frequently updated� It is thus unlikely that a processor
would read a stale value� unlike with the lazy protocols
where the local copy is only updated as a result of an
acquire� Since the algorithm uses the global minimum
to prune searches� such stale values may cause TSP to
explore more unpromising tours with the lazy protocols�

Water is a medium�grained program that uses both
locks and barriers� Water�s data consists primarily of
an array of molecules� each protected by a lock� During
each iteration� the force vectors of all molecules with
a spherical cuto� range of a molecule are updated to
re�ect the molecule�s in�uence� In combination with
the relatively small size of the molecule structure in
comparison with the size of a page� this creates a large
amount of false sharing� The simulation results for Wa�
ter can be seen in Figures ������ LH performs better
than the other protocols because the molecules� migra�
tory behavior during the force modi�cation phase al�
lows the protocol to have far fewer cache misses� and
hence messages� than the other protocols� The lazy
protocols perform better than the eager protocols� and

LH LI LU EI EU

 2 4 8 16

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Figure 	 Speedup for Jacobi

 LH LI LU EI EU
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure
 Message Count in Jacobi

 LH LI LU EI EU
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure � Data �Kbytes	 Transmitted in Jacobi

LH LI LU EI EU

2 4 8 16

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Figure �� Speedup for TSP

 LH LI LU EI EU
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Figure �� Message Count in TSP

 LH LI LU EI EU
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Figure �� Data �Kbytes	 Transmitted in TSP

LH LI LU EI EU

2 4 8 16

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Figure �� Speedup for Water

 LH LI LU EI EU
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

Figure �� Message Count in Water

 LH LI LU EI EU
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Figure �� Data �Kbytes	 Transmitted in Water

LH LI LU EI EU

2 4 8 16

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

Figure �� Speedup for Cholesky

 LH LI LU EI EU
0

100000

200000

300000

400000

500000

600000

700000

800000

Figure �	 Message Count in Cholesky

 LH LI LU EI EU
0

20000

40000

60000

80000

100000

120000

140000

Figure �
 Data �Kbytes	 Transmitted in Cholesky

invalidate performs better than update� EU sends an
order of magnitudemore messages than any of the other
protocols because releases cause updates to be sent to
many other processors� Ninety�one percent of EU�s
messages are updates sent during lock releases� The
invalidate protocols send fewer messages because fewer
processors cache each page�

Cholesky is a program with �ne�grained synchroniza�
tion that uses a task queue approach to parallelism�
Locks are used to dequeue tasks as well as to protect
access to multiple columns of data� Figures �
��� sum�
marize Cholesky�s performance� The large amount of
synchronization limits the speedup to no more than
��� for any of the protocols� The eager protocols suf�
fer from excessive updates and invalidations caused by
false sharing� The lazy protocols� and in particular LH�
fare better because communication is largely localized
to the synchronizing processors� leading to much better
handling of false sharing�

Our simulations indicate that synchronization is a
major obstacle to achieving good performance on DSM
systems� For example� ��� of the messages required
by Water running on the �
�processor ATM model un�
der the hybrid protocol were for synchronization� For
Cholesky running on � processors� �
� of the mes�
sages were used for synchronization� All but a few of
these synchronization messages were for lock acquisi�
tion� Moreover� ��� of each processor�s time was spent
acquiring locks in the �
�processor LH Cholesky run�
While approximately one third of the lock acquisition
messages carried data� the rest were solely for synchro�
nization purposes� When a lock is reacquired by the
same processor before another processor acquires it� the
lazy protocols have an advantage over the eager proto�
cols� An eager protocol must distribute di�s at every
lock release� Lazy release consistency permits us to
avoid external communication when the same lock is
reacquired�

��� The E�ect of Network Characteris	
tics

The network is a shared resource that can be a perfor�
mance bottleneck� We can break down the network�s
e�ect on performance into three categories� bandwidth�
serialization� and collisions� Bandwidth a�ects the to�
tal amount of data that can be moved� Serialization
refers to the processor wait time when other proces�
sors have control of the contended network link� By
collisions we mean actual network collisions as well as
the e�ect of protocols like exponential backo� that are
used to avoid network collisions in the case of an eth�
ernet network� Table � summarizes speedup for Jacobi
and Water on �ve di�erent networks�

Jacobi Water

�� Mbit Ethernet w� Coll� ��� ���
�� Mbit Ethernet w�o Coll� ��� ���
�� Mbit ATM ���� ���
��� Mbit ATM ���� ���
� GBit ATM ���� ���

Table � Speedups With Di�erent Network
Characteristics �LH� �
 processors	

Jacobi communicates with neighbors at a barrier�
Both the implementation of barriers and the access
pattern �regular� to �xed neighbors	 bene�t from a
point�to�point network that eliminates most serializa�
tion� Hence� most of the bene�ts of ATM for this pro�
gram are from the concurrency in the network� Water�s
access pattern is much less regular because molecules
move� The potential for communication to be com�
pleted entirely in parallel is signi�cantly reduced� As
a result� Water bene�ts as much from network concur�
rency as from increased bandwidth� Increasing the net�
work bandwidth to � Gbit�sec does not improve per�
formance signi�cantly with a �� MHz processor� since
at this point� the software overhead is the major per�
formance bottleneck�

��� The E�ect of Software Overheads

Software overheads have a signi�cant impact on per�
formance� Table � shows the simulated performance of
an ATM network in the �
�processor case� with no soft�
ware overhead� with software overhead identical to that
used in the previous simulations� and with double that
amount�

We �rst removed the overhead in order to �nd an up�
per bound on DSM performance for the given network
and processor architecture� regardless of the operating
system and DSM implementation� The large speedups
indicate the performance potential for the protocols�
and the potential gains to be had from hardware sup�
port�

With software overhead removed� there is no longer a
signi�cant per�message penalty on a crossbar network�
This lessens the importance of access misses� and favors
protocols that reduce the amount of data moved for
improved performance� For instance� the LI protocol
outperforms LH on a �
�processor Cholesky run even
though the LH protocol sends ��� fewer messages and
has ��� fewer access misses than the LI protocol� The
reason is that the hybrid protocol attempts to �nd a
compromise between low message counts� low numbers

Prog� Overhd� LH LI LU EI EU

Zero ���� ���� ���� ���� ����
Jacobi Normal ���� ���� ���� ���� ����

Double ���� ���
 ���� ���� ����

Zero ��� ��� ��� ���� ����
TSP Normal ��� ��� ��� ��� ���

Double ��� ��� ��� ���� ����

Zero ���� ���� ���� ��� ����
Water Normal ��� ���
�
 ��� ��

Double
��
�� ��� ��� ���

Zero ��� ��
 ��� ��� ���
Chol� Normal ��� ��� ��� ��� ���

Double ��� ��� ��� ��� ���

Table � Speedups With Varying Software
Overhead ��
 processors	

of access misses� and low amounts of data� but the data
total is more signi�cant if software overhead is removed�

The signi�cance of software overhead can be seen
most clearly in comparing the speedups of Water with
and without overhead� The lazy protocols improve
by an average of ��� when the overhead is removed�
EI still performs badly because the amount of data it
moves� �ve times more than any of the other protocols�
EU� which runs three times slower than the LH proto�
col when software overhead is included� speeds up by
more than ���� when software overhead is removed�

In order to determine the variation in performance
that might occur due to an increase in software over�
head� we determined speedups when the overhead per
message was doubled� The performance decreases by
��� to ��� for Water� The decrease in performance is
not as large as when going from zero to normal over�
head since the normal overhead includes the per di�
overhead� which is signi�cant� In general� the lazy pro�
tocols� and in particular the lazy hybrid� perform better
as communication becomes more expensive�

��� The E�ect of Processor Speeds

Processor speeds a�ect the ratio of computation time to
communication time� However� the software overhead
is proportional to the processor speed� We varied the
processor speeds from �� to �� MHz� Table � shows the
variation in speedup for the �
�processor case when us�
ing the lazy hybrid protocol in the case of Jacobi� TSP
and Water� and the ��processor case for Cholesky� For
Jacobi and TSP� the variations are negligible because
the low message counts for these programs results in lit�
tle variation in the computation to communication ra�

tio� Water and Cholesky show a more signi�cant varia�
tion in speedup due to the larger amount of communica�
tion� In the latter two cases� communication latency is
as much of a bottleneck as the software overheads� and
hence an increased processor speed reduces speedup�
However� some of the improvements are masked by the
corresponding changes in software overheads�

��� The E�ect of Page Size

The large page sizes in common use in software DSMs
result in a high probability of false sharing� Prior work
has developed implementations of relaxed memory con�
sistency models for DSM that reduce but do not to�
tally eliminate the e�ects of false sharing� For example�
Munin�s eager implementation of release consistency
eliminates the �ping�pong� e�ect of a page bouncing
between two writing processors
��� However� modi�ca�
tions to falsely shared pages still have to be distributed
to all processors caching the page at a release� The
lazy hybrid protocol further reduces the e�ect of false
sharing because data movement only occurs between
synchronizing processors� In other words� false sharing
in LH increases the amount of data movement but not
the number of messages�

The results we have reported are for a page size
of ���
 bytes� To obtain a measure of the e�ects of
false sharing� we ran simulations using a page size of
���� bytes� While going to a �����byte page reduces
false sharing� we found that we need to communicate
with approximately the same number of processors to
maintain consistency� Furthermore� the resulting re�
duction in communication is often partially counterbal�
anced by the increased number of access misses �see
Table �� which presents data for the lazy hybrid proto�
col	� While reducing the page size has a limited e�ect
on performance� restructuring the program may prove
more bene�cial�

� Related Work

This work draws on the large body of research in re�
laxed memory consistency models �e�g��
�� �� �� ��	� We

Pr� Spd �MHz	 Jacobi TSP Water Chol�

�� ���� ���� ��� ���
�� ���� ��� ��� ���
�� ���� ���� ��
 ���

Table � Speedups with Di�erent Processor
Speeds �LH� �
 processors	

Procs Page Size Jac� TSP Wat� Chol�
�bytes	

� ���� ��� ��� ��� ���
���
 ��� ��� ��� ���

� ���� ��� ��
 ��� ���
���
 ��� ��
 ��� ���

� ���� ��� ��� ��� ���
���
 ��� ��� ��� ���

�
 ���� ���� ��� ��� ���
���
 ���� ��� ��� ���

Table � E�ect on Speedup of Reducing the
Page Size to ���� bytes �LH	

have chosen as our basic model the release consis�
tency model introduced by the DASH project at Stan�
ford
���� because it requires little or no change to ex�
isting shared memory programs� An interesting alter�
native is entry consistency �EC	� de�ned by Bershad
and Zekauskas
��� EC di�ers from RC because it re�
quires all shared data to be explicitly associated with
some synchronization variable� On a lock acquisition
EC only needs to propagate the shared data associated
with the lock� EC� however� requires the programmer
to insert additional synchronization in shared memory
programs to execute correctly on an EC memory� Typ�
ically� RC does not require additional synchronization�

Ivy
��� and Munin
�� are two implementations of
software DSMs for which performance measurements
have been published� Both achieve good speedups on
many of the applications studied� The slow proces�
sors used in the implementations prevented the net�
work from becoming a bottleneck in achieving these
speedups� With faster processors� faster networks are
needed and more sophisticated methods are required�
In addition� synchronization latency becomes a major
issue� Performance measurements are also available for
the DASH hardware DSM multiprocessor� Compari�
son between these numbers and our simulation results
indicates the bene�ts of a dedicated high�speed inter�
connect for �ne�grained parallel applications�

	 Conclusions

With the advent of faster processors� the performance
of DSM that can be achieved on an Ethernet network
is limited� Serialization of messages� collisions� and
low bandwidth severely constrain speedups� even for
coarse�grained problems� Higher�bandwidth point�to�
point networks� such as the ATM LANs appearing on

the market� allow much better performance� with good
speedups even for medium�grained applications� Fine�
grained applications still perform poorly even on such
networks because of the frequency and cost of synchro�
nization operations�

Lazy hybrid is a new consistency protocol that com�
bines the bene�ts of invalidate protocols �relatively lit�
tle data	 and update protocols �fewer access misses and
fewer messages	� In addition� the lazy hybrid shortens
the lock acquisition latency considerably compared to
a lazy update protocol� The hybrid protocol outper�
forms the other lazy protocols under a model that takes
into account software overhead for communication� For
medium�grained applications the di�erences are quite
signi�cant�

The latency of synchronization remains a major prob�
lem for software DSMs� Without resorting to broad�
cast� it appears impossible to reduce the number of mes�
sages required for lock acquisition� Therefore� the only
possible approach may be to hide the latency of lock
acquisition� Multithreading is a common technique for
masking the latency of expensive operations� but the
attendant increase in communication could prove pro�
hibitive in software DSMs� Program restructuring to
reduce the amount of synchronization may be a more
viable approach�

References

�� S� V� Adve and M� D� Hill� A uni�ed formaliza�
tion of four shared�memory models� Technical Re�
port CS������ University of Wisconsin� Madison�
September �����

�� M� Ahamad� P�W� Hutto� and R� John� Im�
plementing and programming causal distributed
shared memory� In Proceedings of the ��th In�

ternational Conference on Distributed Computing

Systems� pages ��� ���� May �����

�� H�E� Bal and A�S� Tanenbaum� Distributed pro�
gramming with shared data� In Proceedings of the

���� International Conference on Computer Lan�

guages� pages �� ��� October �����

�� B�N� Bershad and M�J� Zekauskas� Midway�
Shared memory parallel programming with entry
consistency for distributed memory multiproces�
sors� Technical Report CMU�CS�������� Carnegie�
Mellon University� September �����

�� J�B� Carter� J�K� Bennett� and W� Zwaenepoel�
Implementation and performance of Munin� In

Proceedings of the ��th ACM Symposium on Oper�

ating Systems Principles� pages ��� �
�� October
�����

� J�S� Chase� F�G� Amador� E�D� Lazowska� H�M�
Levy� and R�J� Little�eld� The Amber system�
Parallel programming on a network of multiproces�
sors� In Proceedings of the �	th ACM Symposium

on Operating Systems Principles� pages ��� ����
December �����

�� R� G� Covington� S� Dwarkadas� J� R� Jump�
S� Madala� and J� B� Sinclair� The E�cient Simu�
lation of Parallel Computer Systems� International
Journal in Computer Simulation� ���� ��� January
�����

�� M� Dubois and C� Scheurich� Memory access
dependencies in shared�memory multiprocessors�
IEEE Transactions on Computers� �
�
	�

�
���
June �����

�� K� Gharachorloo� D� Lenoski� J� Laudon� P� Gib�
bons� A� Gupta� and J� Hennessy� Memory con�
sistency and event ordering in scalable shared�
memory multiprocessors� In Proceedings of the

�
th Annual International Symposium on Com�

puter Architecture� pages �� �
� May �����

��� D�B� Johnson and W� Zwaenepoel� The Peregrine
high�performance RPC system� Software� Practice
and Experience� ����	���� ���� February �����

��� P� Keleher� A� L� Cox� and W� Zwaenepoel� Lazy
release consistency for software distributed shared
memory� In Proceedings of the ��th Annual In�

ternational Symposium on Computer Architecture�
pages �� ��� May �����

��� D� Lenoski� J� Laudon� K� Gharachorloo�
A� Gupta� and J� Hennessy� The directory�based
cache coherence protocol for the DASH multipro�
cessor� In Proceedings of the �
th Annual In�

ternational Symposium on Computer Architecture�
pages ��� ���� May �����

��� K� Li and P� Hudak� Memory coherence in shared
virtual memory systems� ACM Transactions on

Computer Systems� ���	���� ���� November �����

��� J�P� Singh� W��D�Weber� and A� Gupta� SPLASH�
Stanford parallel applications for shared�memory�
Technical Report CSL�TR�����
�� Stanford Uni�
versity� April �����

