
September 1 9 9 0

WRL
Research Report 90/7

1990 DECWRL/
Livermore Magic
Release

Robert N. Mayo, Michael H. Arnold, Walter S. Scott,
Don Stark, Gordon T. Hamachi

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

Copyright (C) 1985, 1989, 1990 Regents of the University of California,
Lawrence Livermore National Labs, Stanford University, and Digital

Equipment Corporation. Permission to use, copy, modify, and distribute
this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in all

copies. The copyright holders make no representations about the
suitability of this software for any purpose. It is provided "as is"

without express or implied warranty. Export of this software outside
of the United States of America may require an export license.

The Western Research Laboratory (WRL) is a computer systems research group that
was founded by Digital Equipment Corporation in 1982. Our focus is computer science
research relevant to the design and application of high performance scientific computers.
We test our ideas by designing, building, and using real systems. The systems we build
are research prototypes; they are not intended to become products.

There is a second research laboratory located in Palo Alto, the Systems Research Cen-
ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge,
Massachusetts (CRL).

Our research is directed towards mainstream high-performance computer systems. Our
prototypes are intended to foreshadow the future computing environments used by many
Digital customers. The long-term goal of WRL is to aid and accelerate the development
of high-performance uni- and multi-processors. The research projects within WRL will
address various aspects of high-performance computing.

We believe that significant advances in computer systems do not come from any single
technological advance. Technologies, both hardware and software, do not all advance at
the same pace. System design is the art of composing systems which use each level of
technology in an appropriate balance. A major advance in overall system performance
will require reexamination of all aspects of the system.

We do work in the design, fabrication and packaging of hardware; language processing
and scaling issues in system software design; and the exploration of new applications
areas that are opening up with the advent of higher performance systems. Researchers at
WRL cooperate closely and move freely among the various levels of system design. This
allows us to explore a wide range of tradeoffs to meet system goals.

We publish the results of our work in a variety of journals, conferences, research
reports, and technical notes. This document is a research report. Research reports are
normally accounts of completed research and may include material from earlier technical
notes. We use technical notes for rapid distribution of technical material; usually this
represents research in progress.

Research reports and technical notes may be ordered from us. You may mail your
order to:

Technical Report Distribution
DEC Western Research Laboratory, UCO-4
100 Hamilton Avenue
Palo Alto, California 94301 USA

Reports and notes may also be ordered by electronic mail. Use one of the following
addresses:

Digital E-net: DECWRL::WRL-TECHREPORTS

DARPA Internet: WRL-Techreports@decwrl.dec.com

CSnet: WRL-Techreports@decwrl.dec.com

UUCP: decwrl!wrl-techreports

To obtain more details on ordering by electronic mail, send a message to one of these
addresses with the word ‘‘help’’ in the Subject line; you will receive detailed instruc-
tions.

1990 DECWRL/Livermore Magic Release

Robert N. Mayo, Michael H. Arnold, Walter S. Scott,
Don Stark, Gordon T. Hamachi

September, 1990

Prepared with the assistance of:

Digital Equipment Corporation
Western Research Laboratory

Palo Alto, California

Lawrence Livermore National Labs
"O" Division

Livermore, California

Stanford University
Center for Integrated Systems

Palo Alto, California

University of California
Department of EECS
Berkeley, California

d i g i t a l Western Research Laboratory 100 Hamilton Avenue Palo Alto, California 94301 USA

Table of Contents

CHAPTER 1 Overview
CHAPTER 2 Manual Pages - Section 1 (Programs)
CHAPTER 3 Manual Pages - Section 3 (Libraries)
CHAPTER 4 Manual Pages - Section 5 (File Formats)
CHAPTER 5 Manual Pages - Section 8 (System Maintenance)
CHAPTER 6 Tutorials

6.1 Magic Tutorial #1: Getting Started

6.2 Magic Tutorial #2: Basic Painting and Selection

6.3 Magic Tutorial #3: Advanced Painting (Wiring and Plowing)

6.4 Magic Tutorial #4: Cell Heirarchies

6.5 Magic Tutorial #5: Multiple Windows

6.6 Magic Tutorial #6: Design-Rule Checking

6.7 Magic Tutorial #7: Netlists and Routing

6.8 Magic Tutorial #8: Circuit Extraction

6.9 Magic Tutorial #9: Format Conversion for CIF and Calma

6.10 Magic Tutorial #10: The Interactive Router

6.11 Magic Tutorial #11: Using RSIM with Magic

CHAPTER 7 Maintainer’s Manuals
7.1 Magic Maintainer’s Manual #1: Hints for System Maintainers

7.1 Magic Maintainer’s Manual #2: The Technology File

7.1 Magic Maintainer’s Manual #3: The Display Style and Glyph Files

7.1 Magic Maintainer’s Manual #4: Using Magic under X Windows

CHAPTER 8 Technology Manuals
8.1 Magic Technology Manual #1: NMOS

8.1 Magic Technology Manual #2: SCMOS

APPENDIX A Other Reports In This Series

Overview of the DECWRL/Livermore Magic Release

This document corresponds to Magic version 6.

1. Introduction

This version of Magic, version 6, gathers together work done by numerous people at
several institutions since Magic version 4 was released from Berkeley on the 1986 VLSI
tools tape. This is a release of Magic and IRSIM only. You’ll probably want to obtain
other tools by ordering the 1986 VLSI Tools Tape from Berkeley.

This release has been prepared with the assistance of several groups. Much of the
new software came from Walter Scott’s group at the Lawrence Livermore National Labs
(LLNL). LLNL also provided partial funding to help prepare the release. Digital Equip-
ment Corporation’s Western Research Lab (DECWRL) helped out by providing com-
puter equipment, a place to work, and the services of one of us (Robert Mayo). Don
Stark, Michael Arnold, and Gordon Hamachi also worked on the release at DECWRL.
Stanford donated significant pieces of new code, including a simulation system called
IRSIM. Other individuals and institutions have also contributed code and assistance in
ways too numerous to detail here.

New features in Magic Version 6 include:

New and Improved Routing - Michael Arnold and Walter Scott of LLNL

Three major routing improvements have been made in this version of
Magic. There is a new, improved, global router courtesy of Walter Scott (of
LLNL). Walter Scott has also added a gate array router. See the "garoute"
command in the manual page for details. Michael Arnold (of LLNL) has writ-
ten an interactive maze router that allows the user to specify hints to control
the routing. See the documentation for the "iroute" command.

Extractor Enhancements - Don Stark of Stanford and Walter Scott of LLNL

The new "extresis" command, developed by Don Stark, provides substan-
tially better resistance extraction. Magic’s normal extraction ("extract") lumps
resistances on a node into a single value. In branching networks, this approxi-
mation is often not acceptable. Resis was written to solve this problem.
Walter Scott added accurate path length extraction, an important feature when
dealing with high speed circuits, such as ECL.

New contact structure - Walter Scott and Michael Arnold of LLNL and Don Stark of
Stanford

- 1 -

Overview of DECWRL/Livermore Magic September 19, 1990

Multilayer contacts are handled better. In the previous version of Magic,
there needed to be a separate contact type for each possible combination of
contact layers over a given point. This caused a combinatorial explosion of
tile types for multi-layer technologies with stacked contacts. Under the new
scheme, there are only a couple of tile types for each layer: one that connects
up, one that connects down, and one that connects in both directions.

Simulator Interface to IRSIM - Stanford

A simulator interface is provided courtesy of Stanford. See the commands
"startrsim", "simcmd", and "rsim". The irsim simulator, Stanford’s much
improved rewrite of esim, is included in this distribution. Credit goes to Mike
Chow, Arturo Salz, and Mark Horowitz.

New device/machine Support - Various

X11 is fully supported in this release, and is the preferred interface.
Older drivers for graphics terminals and X10 are also included, but X11 is the
preferred interface (meaning it is better supported and you’ll have lots of com-
pany). Magic’s X11 driver has a long history, starting with an X10 driver by
Doug Pan at Stanford. Brown University, the University of Southern Califor-
nia, the University of Washington, and Lawrence Livermore National Labs all
prepared improved versions, some of them for X11. Don Stark of Stanford
took on the task of pulling these together and producing the X11 driver in this
release.

Magic runs on a number of workstations, such as the DECstation 3100
and Sun’s SPARC processors. Partial Unix System V support is provided, via
the compilation flags mentioned below. The system also runs on the MacII.
Don Stark gets credit for the System V mods and support for HP machines,
while Mike Chow helped get it running on the MacII.

To assist people with small machines (such as the Mac II), Magic can
now be compiled without some of its fancy features. Compilation flags are
provided, as indicated below, to eliminate things like routing, plotting, or
calma output. This is courtesy of Don Stark.

Reorganization of Magic Source Directory

Magic, as previously distributed, was set up with the assumption that lots
of people would be changing the code at the same time. As a result, the
makefiles did all sorts of paranoid things like making extra copies of the source
code whenever a module was re-installed.

Since Magic is more stable now, this copying is no longer needed.
Instead, each makefile invokes the script ../:instclean after installing a module.
This script, by default, doesn’t copy the source code but does leave the .o files
around. This cuts down on the disk space needed by a factor of two. You can
change the script if you want the copying, or if you want to delete unused .o
files to save even more disk space.

Lots of bug fixes - Various

Lots of bugs have been fixed in this release. We’d like to thank every-
body that has reported bugs in the past. If you find a new bug, please report it

- 2 -

Overview of DECWRL/Livermore Magic September 19, 1990

as mentioned below.

2. Distribution Information

This version of Magic is available via FTP. Contact "magic@decwrl.dec.com" for infor-
mation.

For a handling fee, this version of Magic may be obtained on magnetic tape from:

EECS/ERL Industrial Liaison Program
479 Cory Hall

University of California at Berkeley
Berkeley, CA 94720

3. Bug Reports

Maintenance of Magic is a volunteer effort. Please send descriptions of bugs via
InterNet e-mail to "magic@decwrl.dec.com" or via Uucp e-mail to "decwrl!magic". If
you develop a fix for the problem, please send that too!

4. Changes for Magic maintainers

Previous releases of Magic expected to find their system files in the home directory
of the user cad. The default behavior of version 6 is no different, but it is possible to put
the files in another directory by setting the CAD_HOME shell environment variable. If
this variable is set, magic will use that location instead of the ∼cad it finds in the pass-
word file.

4.1. INSTALLING MAGIC

The distribution tape contains a version of Magic ready to run on Digital’s line of
Ultrix RISC workstations, such as the DECstation 3100. For other machines, read ahead.
In any event, all users should set their shell environment variable CAD_HOME to point
to the place where the tape is loaded, unless that place is ∼cad, in which case things will
default correctly.

Before installing Magic, you should set your shell environment variable
CAD_HOME to point to the place where you loaded the tape. If you "cd" to the magic
source directory (${CAD_HOME}/src/magic) you will find a makefile. A "make
config" will run a configuration script that asks questions about your configuration and
sets up magic to be compiled for your local environment.

After running a "make config", you can run a "make force" to force a complete
recompilation of magic. A "make install" will then copy the binaries to the
${CAD_HOME}/bin area, as well as install things in ${CAD_HOME}/lib and
${CAD_HOME}/man.

Included in this documentation is a set of Magic maintainer’s manuals. These
should be read by anybody interested in modifying Magic or by anybody that is having
difficulty installing it on their system.

- 3 -

Overview of DECWRL/Livermore Magic September 19, 1990

4.2. Technology file changes

Users of Magic 4 should have little trouble switching to Magic 6.

A new section, the mzrouter section needs to be added to your technology files.
See the mzrouter section of the tutorial Magic Maintainer’s Manual #2: The Technology
File for details.

Display styles must be defined in the .tech file for the mzrouter hint layers magnet,
fence and rotate. We suggest copying this information from the styles section of the
scmos technology file on the distribution tape. You’ll also need to include these display
styles in your .dstyle file.

5. Beta-test Sites

We’d like to thank the beta-test sites that tried out this version of Magic, reported
bugs and fixes in a timely manner, and ported the code to new machines:

Mike Chow, Apple Computer
Arun Rao, Arizona State University
Richard Hughey, Brown University
Rick Carley, Carnegie-Mellon University
Hank Walker, Carnegie-Mellon University
Christos Zoulas, Cornell University
Andreas Andreou, John Hopkins University
George Entenman, The Microelectronics Center of North Carolina
Shih-Lien Lu, The MOSIS Service
Jen-I Pi, The MOSIS Service
Guntram Wolski, Silicon Engineering, Inc.
Don Stark, Stanford University
Gregory Frazier, University of California at Los Angeles
Yuval Tamir, University of California at Los Angeles
Steven Parkes, University of Illinois
Larry McMurchie, University of Washington
Tim Heldt, Washington State University
David Lee, Xerox Palo Alto Research Center

Martin Harriman of Silicon Engineering wrote a "select less" command for Magic during
the beta-test phase. "Select less" has been a much-requested feature.

In addition to the persons named above, there were many other beta-test users of
Magic at these and other sites -- too many to list here. We appreciate their help. We also
acknowledge the help of the pre-release sites, who tested a version that included most of
the fixes from the beta-test phase.

- 4 -

Magic Tutorial #1: Getting Started

John Ousterhout
(updated by others, too)

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

This tutorial corresponds to Magic version 6.

1. What is Magic?

Magic is an interactive system for creating and modifying VLSI circuit layouts.
With Magic, you use a color graphics display and a mouse or graphics tablet to design
basic cells and to combine them hierarchically into large structures. Magic is different
from other layout editors you may have used. The most important difference is that
Magic is more than just a color painting tool: it understands quite a bit about the nature
of circuits and uses this information to provide you with additional operations. For
example, Magic has built-in knowledge of layout rules; as you are editing, it continu-
ously checks for rule violations. Magic also knows about connectivity and transistors,
and contains a built-in hierarchical circuit extractor. Magic also has a plow operation
that you can use to stretch or compact cells. Lastly, Magic has routing tools that you can
use to make the global interconnections in your circuits.

Magic is based on the Mead-Conway style of design. This means that it uses
simplified design rules and circuit structures. The simplifications make it easier for you
to design circuits and permit Magic to provide powerful assistance that would not be pos-
sible otherwise. However, they result in slightly less dense circuits than you could get
with more complex rules and structures. For example, Magic permits only Manhattan
designs (those whose edges are vertical or horizontal). Circuit designers tell us that our
conservative design rules cost 5-10% in density. We think that the density sacrifice is
compensated for by reduced design time.

2. How to Get Help and Report Problems

There are several ways you can get help about Magic. If you are trying to learn
about the system, you should start off with the Magic tutorials, of which this is the first.
Each tutorial introduces a particular set of facilities in Magic. There is also a set of

- 1 -

Magic Tutorial #1: Getting Started September 19, 1990

iii
Magic Tutorial #1: Getting Started
Magic Tutorial #2: Basic Painting and Selection
Magic Tutorial #3: Advanced Painting (Wiring and Plowing)
Magic Tutorial #4: Cell Hierarchies
Magic Tutorial #5: Multiple Windows
Magic Tutorial #6: Design-Rule Checking
Magic Tutorial #7: Netlists and Routing
Magic Tutorial #8: Circuit Extraction
Magic Tutorial #9: Format Conversion for CIF and Calma
Magic Tutorial #10: The Interactive Route
Magic Tutorial #11: Using RSIM with Magiciii
Magic Maintainer’s Manual #1: Hints for System Maintainers
Magic Maintainer’s Manual #2: The Technology File
Magic Maintainer’s Manual #3: Display Styles, Color Maps, and Glyphs
Magic Maintainer’s Manual #4: Using Magic Under X Windowsiii
Magic Technology Manual #1: NMOS
Magic Technology Manual #2: SCMOSiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table I. The Magic tutorials, maintenance manuals, and technology manuals.

manuals intended for system maintainers. These describe things like how to create new
technologies. Finally, there is a set of technology manuals. Each one of the technology
manuals describes the features peculiar to a particular technology, such as layer names
and design rules. Table I lists all of the Magic manuals. The tutorials are designed to be
read while you are running Magic, so that you can try out the new commands as they are
explained. You needn’t read all the tutorials at once; each tutorial lists the other tutorials
that you should read first.

The tutorials are not necessarily complete. Each one is designed to introduce a set
of facilities, but it doesn’t necessarily cover every possibility. The ultimate authority on
how Magic works is the reference manual, which is a standard Unix man page. The man
page gives concise and complete descriptions of all the Magic commands. Once you
have a general idea how a command works, the man page is probably easier to consult
than the tutorial. However, the man page may not make much sense until after you’ve
read the tutorial.

A third way of getting help is available on-line through Magic itself. The :help
command will print out one line for each Magic command, giving the command’s syntax
and an extremely brief description of the command. This facility is useful if you’ve for-
gotten the name or exact syntax of a command. After each screenful of help information,
:help stops and prints ‘‘--More--’’. If you type a space, the next screenful of data will be
output, and if you type q the rest of the output will be skipped. If you’re interested in
information about a particular subject, you can type

:help subject

This command will print out each command description that contains the subject string.

- 2 -

Magic Tutorial #1: Getting Started September 19, 1990

If you have a question or problem that can’t be answered with any of the above
approaches, you may contact the Magic authors by sending mail to
magic@ucbarpa.Berkeley.EDU (or ucbvax!ucbarpa!magic). This will log your mes-
sage in a file (so we can’t forget about it) and forward the message to the Magic main-
tainers. Magic maintenance is a mostly volunteer effort, so when you report a bug or ask
a question, please be specific. Obviously, the more specific you are, the more likely we
can answer your question or reproduce the bug you found. We’ll tend to answer the
specific bug reports first, since they involve less time on our part. Try to describe the
exact sequence of events that led to the problem, what you expected to happen, and what
actually happened. If possible, find a small example that reproduces the problem and
send us the relevant (small!) files so we can make it happen here. Or best of all, send us
a bug fix along with a small example of the problem.

3. Graphics Configuration

Magic can be run with different graphics hardware. The most common
configuration is to run Magic under X11 on a workstation. Another way to run Magic is
on a mainframe with a serial-line graphics display. The rest of this section concerns
X11.

Before starting up magic, make sure that your DISPLAY variable is set correctly. If
you are running magic and your X server on the same machine, set it to unix:0:

setenv DISPLAY unix:0

Under X10, the layout window will appear in the upper left quadrant of your screen. The
X11 server will normally prompt you for the window’s position and size. This window is
an ordinary X window, and can be moved and resized using the window manager.

For now, you can skip to the next major section: "Running Magic".

3.1. Advanced X Use

The X11 driver can read in window sizing and font preferences from your .Xde-
faults file. The following specifications are recognized:

magic.window: 1000x600+10+10
magic.newwindow: 300x300+400+100
magic.small: helvetica8
magic.medium: helvetica12
magic.large: helvetica18
magic.xlarge: helvetica24

magic.window is the size and position of the initial window, while magic.newwindow is
the size and position of subsequent windows. If these are left blank, you will be
prompted to give the window’s position and size. small, medium, large, and xlarge are
various fonts magic uses for labels. Some X11 servers read the .Xdefaults file only when
you initially log in; you may have to log out and then back in again for the changes to
take effect.

Under X11, Magic can run on a display of any depth for which there are colormap
and dstyle files. Monochrome, 4 bit, 6 bit, and 7 bit files for Mos are distributed in this
release. You can explicitly specify how many planes Magic is to use by adding a suffix

- 3 -

Magic Tutorial #1: Getting Started September 19, 1990

numeral between 1 and 7 to "XWIND" when used with Magic’s "-d" option. For exam-
ple, "magic -d XWIND1" runs magic on a monochrome display and "magic -d
XWIND7" runs magic on a 7 plane display. If this number is not specified, magic checks
the depth of the display and picks the largest number in the set {1,4,6,7} that the display
will support.

The X10 driver only supports monochrome and 7 bit displays.

3.2. Serial-line Displays

If you are running Magic on a mainframe, each station consists of a standard video
terminal, called the text display, and a color display. You use the keyboard on the text
display to type in commands, and Magic uses its screen to log the commands and their
results. The color display is used to display one or more portions of the circuit you are
designing. You will use a graphics tablet or mouse to point to things on the color display
and to invoke some commands. If there is a keyboard attached to the color display (as,
for example, with AED512 displays) it is not used except to reset the display. The
current version of Magic supports the AED family of displays. Most of the displays are
now available with special ROMs in them that provide extra Magic support (talk to your
local AED sales rep to make sure you get the UCB ROMs). More displays are being
added, so check the Unix man page for the most up-to-date information.

4. Running Magic

From this point on, you should be sitting at a Magic workstation so you can experi-
ment with the program as you read the manuals. Starting up Magic is usually pretty sim-
ple. Just log in and, if needed, start up your favorite window system. Then type the shell
command

magic tut1

Tut1 is the name of a library cell that you will play with in this tutorial. At this point,
several colored rectangles should appear on the color display along with a white box and
a cursor. A message will be printed on the text display to tell you that tut1 isn’t writable
(it’s in a read-only library), and a ‘‘>’’ prompt should appear. If this has happened, then
you can skip the rest of this section (except for the note below) and go directly to Section
5.

Note: in the tutorials, when you see things printed in boldface, for example, magic
tut1 from above, they refer to things you type exactly, such as command names and file
names. These are usually case sensitive (A is different from a). When you see things
printed in italics, they refer to classes of things you might type. Arguments in square
brackets are optional. For example, a more complete description of the shell command
for Magic is

magic [file]

You could type any file name for file, and Magic would start editing that file. It turns out
that tut1 is just a file in Magic’s cell library. If you didn’t type a file name, Magic would
load a new blank cell.

If things didn’t happen as they should have when you tried to run Magic, any of
several things could be wrong. If a message of the form ‘‘magic: Command not found’’

- 4 -

Magic Tutorial #1: Getting Started September 19, 1990

appears on your screen it is because the shell couldn’t find the Magic program. The most
stable version of Magic is the directory ∼cad/bin, and the newest public version is in
∼cad/new. You should make sure that both these directories are in your shell path. Nor-
mally, ∼cad/new should appear before ∼cad/bin. If this sounds like gibberish, find a Unix
hacker and have him or her explain to you about paths. If worst comes to worst, you can
invoke Magic by typing its full name:

∼cad/bin/magic tut1

Another possible problem is that Magic might not know what kind of display you
are using. To solve this, use magic’s -d flag:

magic -d display tut1

Display is usually the model number of the workstation you are using or the name of
your window system. Look in the manual page for a list of valid names, or just guess
something. Magic will print out the list of valid names if you guess wrong.

If you are using a graphics terminal (not a workstation), it is possible that Magic
doesn’t know which serial line to use. To learn how to fix this, read about the -g switch
in the magic(1) manual page. Also read the displays(5) manual page.

5. The Box and the Cursor

Two things, called the box and the cursor, are used to select things on the color
display. As you move the mouse, the cursor moves on the screen. The cursor starts out
with a crosshair shape, but you’ll see later that its shape changes as you work to provide
feedback about what you’re doing. The left and right mouse buttons are used to position
the box. If you press the left mouse button and then release it, the box will move so that
its lower left corner is at the cursor position. If you press and release the right mouse
button, the upper right corner of the box will move to the cursor position, but the lower
left corner will not change. These two buttons are enough to position the box anywhere
on the screen. Try using the buttons to place the box around each of the colored rectan-
gles on the screen.

Sometimes it is convenient to move the box by a corner other than the lower left.
To do this, press the left mouse button and hold it down. The cursor shape changes to
show you that you are moving the box by its lower left corner:

While holding the button down, move the cursor near the lower right corner of the box,
and now click the right mouse button (i.e. press and release it, while still holding down
the left button). The cursor’s shape will change to indicate that you are now moving the
box by its lower right corner. Move the cursor to a different place on the screen and
release the left button. The box should move so that its lower right corner is at the cursor
position. Try using this feature to move the box so that it is almost entirely off-screen to
the left. Try moving the box by each of its corners.

You can also reshape the box by corners other than the upper right. To do this,
press the right mouse button and hold it down. The cursor shape shows you that you are

- 5 -

Magic Tutorial #1: Getting Started September 19, 1990

reshaping the box by its upper right corner:

Now move the cursor near some other corner of the box and click the left button, all the
while holding the right button down. The cursor shape will change to show you that now
you are reshaping the box by a different corner. When you release the right button, the
box will reshape so that the selected corner is at the cursor position but the diagonally
opposite corner is unchanged. Try reshaping the box by each of its corners.

6. Invoking Commands

Commands can be invoked in Magic in three ways: by pressing buttons on the
mouse; by typing single keystrokes on the text keyboard (these are called macros); or by
typing longer commands on the text keyboard (these are called long commands). Many
of the commands use the box and cursor to help guide the command.

To see how commands can be invoked from the buttons, first position the box over a
small blank area in the middle of the screen. Then move the cursor over the red rectan-
gle and press the middle mouse button. At this point, the area of the box should get
painted red. Now move the cursor over empty space and press the middle button again.
The red paint should go away. Note how this command uses both the cursor and box
locations to control what happens.

As an example of a macro, type the g key on the text keyboard. A grid will appear
on the color display, along with a small black box marking the origin of the cell. If you
type g again, the grid will go away. You may have noticed earlier that the box corners
didn’t move to the exact cursor position: you can see now that the box is forced to fall
on grid points.

Long commands are invoked by typing a colon (‘‘:’’) or semi-colon (‘‘;’’). After
you type the colon or semi-colon, the ‘‘>’’ prompt on the text screen will be replaced by
a ‘‘:’’ prompt. This indicates that Magic is waiting for a long command. At this point
you should type a line of text, followed by a return. When the long command has been
processed, the ‘‘>’’ prompt reappears on the text display. Try typing semi-colon fol-
lowed by return to see how this works. Occasionally a ‘‘]’’ (right bracket) prompt will
appear. This means that the design-rule checker is reverifying part of your design. For
now you can just ignore this and treat ‘‘]’’ like ‘‘>’’.

Each long command consists of the name of the command followed by arguments,
if any are needed by that command. The command name can be abbreviated, just as long
as you type enough characters to distinguish it from all other long commands. For exam-
ple, :h and :he may be used as abbreviations for :help. On the other hand, :u may not be
used as an abbreviation for :undo because there is another command, :upsidedown, that
has the same abbreviation. Try typing :u.

As an example of a long command, put the box over empty space on the color
display, then invoke the long command

- 6 -

Magic Tutorial #1: Getting Started September 19, 1990

:paint red

The box should fill with the red color, just as if you had used the middle mouse button to
paint it. Everything you can do in Magic can be invoked with a long command. It turns
out that the macros are just conveniences that are expanded into long commands and exe-
cuted. For example, the long command equivalent to the g macro is

:grid

Magic permits you to define new macros if you wish. Once you’ve become familiar with
Magic you’ll almost certainly want to add your own macros so that you can invoke
quickly the commands you use most frequently. See the magic(1) man page under the
command :macro.

One more long command is of immediate use to you. It is

:quit

Invoke this command. Note that before exiting, Magic will give you one last chance to
save the information that you’ve modified. Type y to exit without saving anything.

- 7 -

Magic Tutorial #2: Basic Painting and Selection

John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

(Updated by others, too.)

This tutorial corresponds to Magic version 6.

Tutorials to read first:

Magic Tutorial #1: Getting Started

Commands introduced in this tutorial:

:box, :clockwise, :copy, :erase, :findbox :grid, :label, :layers, :macro, :move, :paint,
:redo, :save, :select, :sideways, :undo, :upsidedown, :view, :what, :writeall, :zoom

Macros introduced in this tutorial:

a, A, c, d, ˆD, e, E, g, G, q, Q, r, R, s, S, t, T, u, U, v, w, W, z, Z, 4

1. Cells and Paint

In Magic, a circuit layout is a hierarchical collection of cells. Each cell contains
three things: colored shapes, called paint, that define the circuit’s structure; textual labels
attached to the paint; and subcells, which are instances of other cells. The paint is what
determines the eventual function of the VLSI circuit. Labels and subcells are a conveni-
ence for you in managing the layout and provide a way of communicating information
between various synthesis and analysis tools. This tutorial explains how to create and
edit paint and labels in simple single-cell designs, using the basic painting commands.
‘‘Magic Tutorial #3: Advanced Painting (Wiring and Plowing)’’ describes some more
advanced features for manipulating paint. For information on how to build up cell
hierarchies, see ‘‘Magic Tutorial #4: Cell Hierarchies’’.

- 1 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

2. Painting and Erasing

Enter Magic to edit the cell tut2a (type magic tut2a to the Unix shell; follow the
directions in ‘‘Tutorial #1: Getting Started’’ if you have any problems with this). The
tut2a cell is a sort of palette: it shows a splotch of each of several paint layers and gives
the names that Magic uses for the layers.

The two basic layout operations are painting and erasing. They can be invoked
using the :paint and :erase long commands, or using the buttons. The easiest way to
paint and erase is with the mouse buttons. To paint, position the box over the area you’d
like to paint, then move the cursor over a color and click the middle mouse button. To
erase everything in an area, place the box over the area, move the cursor over a blank
spot, and click the middle mouse button. Try painting and erasing various colors. If the
screen gets totally messed up, you can always exit Magic and restart it. While you’re
painting, white dots may occasionally appear and disappear. These are design rule viola-
tions detected by Magic, and will be explained in ‘‘Magic Tutorial #6: Design Rule
Checking’’. You can ignore them for now.

It’s completely legal to paint one layer on top of another. When this happens, one
of three things may occur. In some cases, the layers are independent, so what you’ll see
is a combination of the two, as if each were a transparent colored foil. This happens, for
example, if you paint metal1 (blue) on top of polysilicon (red). In other cases, when you
paint one layer on top of another you’ll get something different from either of the two
original layers. For example, painting poly on top of ndiff produces ntransistor (try this).
In still other cases the new layer replaces the old one: this happens, for example, if you
paint a pcontact on top of ntransistor. Try painting different layers on top of each other
to see what happens. The meaning of the various layers is discussed in more detail in
Section 11 below.

There is a second way of erasing paint that allows you to erase some layers without
affecting others. This is the macro ˆD (control-D, for ‘‘Delete paint’’). To use it, posi-
tion the box over the area to be erased, then move the crosshair over a splotch of paint
containing the layer(s) you’d like to erase. Type ˆD key on the text keyboard: the colors
underneath the cursor will be erased from the area underneath the box, but no other
layers will be affected. Experiment around with the ˆD macro to try different combina-
tions of paints and erases. If the cursor is over empty space then the ˆD macro is
equivalent to the middle mouse button: it erases everything.

You can also paint and erase using the long commands

:paint layers
:erase layers

In each of these commands layers is one or more layer names separated by commas (you
can also use spaces for separators, but only if you enclose the entire list in double-
quotes). Any layer can be abbreviated as long as the abbreviation is unambiguous. For
example, :paint poly,metal1 will paint the polysilicon and metal1 layers. The macro ˆD
is predefined by Magic to be :erase $ ($ is a pseudo-layer that means ‘‘all layers under-
neath the cursor’’).

- 2 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

3. Undo

There are probably going to be times when you’ll do things that you’ll later wish
you hadn’t. Fortunately, Magic has an undo facility that you can use to restore things
after you’ve made mistakes. The command

:undo

(or, alternatively, the macro u) will undo the effects of the last command you invoked. If
you made a mistake several commands back, you can type :undo several times to undo
successive commands. However, there is a limit to all this: Magic only remembers how
to undo the last ten or so commands. If you undo something and then decide you wanted
it after all, you can undo the undo with the command

:redo

(U is a macro for this command). Try making a few paints and erases, then use :undo
and :redo to work backwards and forwards through the changes you made.

4. The Selection

Once you have painted a piece of layout, there are several commands you can
invoke to modify the layout. Many of them are based on the selection: you select one or
more pieces of the design, and then perform operations such as copying, deletion, and
rotation on the selected things. To see how the selection works, load cell tut2b. You can
do this by typing :load tut2b if you’re still in Magic, or by starting up Magic with the
shell command magic tut2b.

The first thing to do is to learn how to select. Move the cursor over the upper por-
tion of the L-shaped blue area in tut2b, and type s, which is a macro for :select. The box
will jump over to cover the vertical part of the ‘‘L’’. This operation selected a chunk of
material. Move the box away from the chunk, and you’ll see that a thin white outline is
left around the chunk to show that it’s selected. Now move the cursor over the vertical
red bar on the right of the cell and type s. The box will move over that bar, and the selec-
tion highlighting will disappear from the blue area.

If you type s several times without moving the cursor, each command selects a
slightly larger piece of material. Move the cursor back over the top of the blue ‘‘L’’, and
type s three times without moving the cursor. The first s selects a chunk (a rectangular
region all of the same type of material). The second s selects a region (all of the blue
material in the region underneath the cursor, rectangular or not). The third s selects a net
(all of the material that is electrically connected to the original chunk; this includes the
blue metal, the red polysilicon, and the contact that connects them).

The macro S (short for :select more) is just like s except that it adds on to the selec-
tion, rather than replacing it. Move the cursor over the vertical red bar on the right and
type S to see how this works. You can also type S multiple times to add regions and nets
to the selection.

If you accidentally type s or S when the cursor is over space, you’ll select a cell
(tut2b in this case). You can just undo this for now. Cell selection will be discussed in
‘‘Magic Tutorial #4: Cell Hierarchies’’.

- 3 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

You can also select material by area: place the box around the material you’d like
to select and type a (short for :select area). This will select all of the material under-
neath the box. You can use the macro A to add material to the selection by area, and you
can use the long command

:select [more] area layers

to select only material on certain layers. Place the box around everything in tut2b and
type :select area metal1 followed by :select more area poly.

If you’d like to clear out the selection without modifying any of the selected
material, you can use the command

:select clear

or type the macro C. You can clear out just a portion of the selection by typing :select
less or :select less area layers; the former deselects paint in the order that :select selects
paint, while the latter deselects paint under the box (just as :select area selects paint
under the box). For a synopsis of all the options to the :select command, type

:select help

5. Operations on the Selection

Once you’ve made a selection, there are a number of operations you can perform on
it:

:delete
:move [direction [distance]]

:stretch [direction [distance]]
:copy

:upsidedown
:sideways

:clockwise [degrees]

The :delete command deletes everything that’s selected. Watch out: :delete is different
from :erase, which erases paint from the area underneath the box. Select the red bar on
the right in tut2b and type d, which is a macro for :delete. Undo the deletion with the u
macro.

The :move command picks up both the box and the selection and moves them so
that the lower-left corner of the box is at the cursor location. Select the red bar on the
right and move it so that it falls on top of the vertical part of the blue ‘‘L’’. You can use
t (‘‘translate’’) as a macro for :move. Practice moving various things around the screen.
The command :copy and its macro c are just like :move except that a copy of the selec-
tion is left behind at the original position.

There is also a longer form of the :move command that you can use to move the
selection a precise amount. For example, :move up 10 will move the selection (and the
box) up 10 units. The direction argument can be any direction like left, south, down,
etc. See the Magic manual page for a complete list of the legal directions. The macros

- 4 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

q, w, e, and r are defined to move the selection left, down, up, and right (respectively) by
one unit.

The :stretch command is similar to :move except that it stretches and erases as it
moves. :stretch does not operate diagonally, so if you use the cursor to indicate where
to stretch to, Magic will either stretch up, down, left, or right, whichever is closest. The
:stretch command moves the selection and also does two additional things. First, for
each piece of paint that moves, :stretch will erase that layer from the region that the
paint passes through as it moves, in order to clear material out of its way. Second, if the
back edge of a piece of selected paint touches non-selected material, one of the two
pieces of paint is stretched to maintain the connection. The macros Q, W, E, and R just
like the macros q, etc. described above for :move. The macro T is predefined to
:stretch. To see how stretching works, select the horizontal piece of the green wire in
tut2b and type W, then E. Stretching only worries about material in front of and behind
the selection; it ignores material to the sides (try the Q and R macros to see). You can
use plowing (described in Tutorial #3) if this is a problem.

The command :upsidedown will flip the selection upside down, and :sideways flips
the selection sideways. Both commands leave the selection so it occupies the same total
area as before, but with the contents flipped. The command :clockwise will rotate the
selection clockwise, leaving the lower-left corner of the new selection at the same place
as the lower-left corner of the old selection. Degrees must be a multiple of 90, and
defaults to 90.

At this point you know enough to do quite a bit of damage to the tut2b cell. Exper-
iment with the selection commands. Remember that you can use :undo to back out of
trouble.

6. Labels

Labels are pieces of text attached to the paint of a cell. They are used to provide
information to other tools that will process the circuit. Most labels are node names: they
provide an easy way of referring to nodes in tools such as routers, simulators, and timing
analyzers. Labels may also be used for other purposes: for example, some labels are
treated as attributes that give Crystal, the timing analyzer, information about the direc-
tion of signal flow through transistors.

Load the cell tut2c and place a cross in the middle of the red chunk (to make a
cross, position the lower-left corner of the box with the left button and then click the
right button to place the upper-right corner on top of the lower-left corner). Then type
type the command :label test. A new label will appear at the position of the box. The
complete syntax of the :label command is

:label [text [position [layer]]]

Text must be supplied, but the other arguments can be defaulted. If text has any spaces in
it, then it must be enclosed in double quotes. Position tells where the text should be
displayed, relative to the point of the label. It may be any of north, south, east, west,
top, bottom, left, right, up, down, center, northeast, ne, southeast, se, southwest, sw,
northwest, nw. For example, if ne is given, the text will be displayed above and to the
right of the label point. If no position is given, Magic will pick a position for you. Layer

- 5 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

tells which paint layer to attach the label to. If layer covers the entire area of the label,
then the label will be associated with the particular layer. If layer is omitted, or if it
doesn’t cover the label’s area, Magic initially associates the label with the ‘‘space’’ layer,
then checks to see if there’s a layer that covers the whole area. If there is, Magic moves
the label to that layer. It is generally a bad idea to place labels at points where there are
several paint layers, since it will be hard to tell which layer the label is attached to. As
you edit, Magic will ensure that labels are only attached to layers that exist everywhere
under the label. To see how this works, paint the layer pdiff (brown) over the label you
just created: the label will switch layers. Finally, erase poly over the area, and the label
will move again.

Although many labels are point labels, this need not be the case. You can label any
rectangular area by setting the box to that area before invoking the label command. This
feature is used for labelling terminals for the router (see below), and for labelling tiles
used by Mpack, the tile packing program. Tut2c has examples of point, line, and rec-
tangular labels.

All of the selection commands apply to labels as well as paint. Whenever you
select paint, the labels attached to that paint will also be selected. Selected labels are
highlighted in white. Select some of the chunks of paint in tut2c to see how the labels
are selected too. When you use area selection, labels will only be selected if they are
completely contained in the area being selected. If you’d like to select just a label
without any paint, make the box into a cross and put the cross on the label: s and S will
select just the label.

There are several ways to erase a label. One way is to select and then delete it.
Another way is to erase the paint that the label is attached to. If the paint is erased all
around the label, then Magic will delete the label too. Try attaching a label to a red area,
then paint blue over the red. If you erase blue the label stays (since it’s attached to red),
but if you erase the red then the label is deleted.

You can also erase labels using the :erase command and the pseudo-layer labels.
The command

:erase labels

will erase all labels that lie completely within the area of the box. Finally, you can erase
a label by making the box into a cross on top of the label, then clicking the middle button
with the cursor over empty space. Technically, this will erase all paint layers and labels
too. However, since the box has zero area, erasing paint has no effect: only the labels
are erased.

7. Labelling Conventions

When creating labels, Magic will permit you to use absolutely any text whatsoever.
However, many other tools, and even parts of Magic, expect label names to observe cer-
tain conventions. Except for the special cases described below, labels shouldn’t contain
any of the characters ‘‘/$@!ˆ’’. Spaces, control characters, or parentheses within labels
are probably a bad idea too. Many of the programs that process Magic output have their
own restrictions on label names, so you should find out about the restrictions that apply at
your site. Most labels are node names: each one gives a unique identification to a set of

- 6 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

things that are electrically connected. There are two kinds of node names, local and glo-
bal. Any label that ends in ‘‘!’’ is treated as a global node name; it will be assumed that
all nodes by this name, anywere in any cell in a layout, are electrically connected. The
most common global names are Vdd! and GND!, the power rails. You should always
use these names exactly, since many other tools require them. Nobody knows why
‘‘GND!’’ is all in capital letters and ‘‘Vdd!’’ isn’t.

Any label that does not end in ‘‘!’’ or any of the other special characters discussed
below is a local node name. It refers to a node within that particular cell. Local node
names should be unique within the cell: there shouldn’t be two electrically distinct nodes
with the same name. On the other hand, it is perfectly legal, and sometimes advanta-
geous, to give more than one name to the same node. It is also legal to use the same local
node name in different cells: the tools will be able to distinguish between them and will
not assume that they are electrically connected.

The only other labels currently understood by the tools are attributes. Attributes are
pieces of text associated with a particular piece of the circuit: they are not node names,
and need not be unique. For example, an attribute might identify a node as a chip input,
or it might identify a transistor terminal as the source of information for that transistor.
Any label whose last character is ‘‘@’’, ‘‘$’’, or ‘‘ˆ’’ is an attribute. There are three dif-
ferent kinds of attributes. Node attributes are those ending with ‘‘@’’; they are associ-
ated with particular nodes. Transistor source/drain attributes are those ending in ‘‘$’’;
they are associated with particular terminals of a transistor. A source or drain attribute
must be attached to the channel region of the transistor and must fall exactly on the
source or drain edge of the transistor. The third kind of attribute is a transistor gate attri-
bute. It ends in ‘‘ˆ’’ and is attached to the channel region of the transistor. To see exam-
ples of attributes and node names, edit the cell tut2d in Magic.

Special conventions apply to labels for routing terminals. The standard Magic
router (invoked by :route) ignores all labels except for those on the edges of cells. (This
restriction does not apply to the gate-array router, Garoute, or to the interactive router,
Iroute). If you expect to use the standard router to connect to a particular node, you
should place the label for that node on its outermost edge. The label should not be a
point label, but should instead be a horizontal or vertical line covering the entire edge of
the wire. The router will choose a connection point somewhere along the label. A good
rule of thumb is to label all nodes that enter or leave the cell in this way. For more
details on how labels are used by the standard router, see ‘‘Magic Tutorial #7: Netlists
and Routing’’. Other labeling conventions are used by the Garouter and Irouter, consult
their respective tutorials for details.

8. Files and Formats

Magic provides a variety of ways to save your cells on disk. Normally, things are
saved in a special Magic format. Each cell is a separate file, and the name of the file is
just the name of the cell with .mag appended. For example, the cell tut2a is saved in file
tut2a.mag. To save cells on disk, invoke the command

:writeall

This command will run through each of the cells that you have modified in this editing
session, and ask you what to do with the cell. Normally, you’ll type write, or just hit the

- 7 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

return key, in which case the cell will be written back to the disk file from which it was
read (if this is a new cell, then you’ll be asked for a name for the cell). If you type
autowrite, then Magic will write out all the cells that have changed without asking you
what to do on a cell-by-cell basis. Flush will cause Magic to delete its internal copy of
the cell and reload the cell from the disk copy, thereby expunging all edits that you’ve
made. Skip will pass on to the next cell without writing this cell (but Magic still
remembers that it has changed, so the next time you invoke :writeall Magic will ask
about this cell again). Abort will stop the command immediately without writing or
checking any more cells.

IMPORTANT NOTE: Unlike vi and other text editors, Magic doesn’t keep
checkpoint files. This means that if the system should crash in the middle of a session,
you’ll lose all changes since the last time you wrote out cells. It’s a good idea to save
your cells frequently during long editing sessions.

You can also save the cell you’re currently editing with the command

:save name

This command will append ‘‘.mag’’ to name and save the cell you are editing in that
location. If you don’t provide a name, Magic will use the cell’s name (plus the ‘‘.mag’’
extension) as the file name, and it will prompt you for a name if the cell hasn’t yet been
named.

Once a cell has been saved on disk you can edit it by invoking Magic with the com-
mand

magic name

where name is the same name you used to save the cell (no ‘‘.mag’’ extension).

Magic can also read and write files in CIF and Calma Stream formats. See ‘‘Magic
Tutorial #9: Format Conversion for CIF and Calma’’ for details.

9. Plotting

Magic can generate hardcopy plots of layouts in four ways: versatec (black-and-
white or color), gremlin and pixels (a generalized pixel-file that can be massaged in many
ways). The first style is for printers like the black-and-white Versatec family: for these,
Magic will output a raster file and spool the file for printing. To plot part of your design,
place the box around the part you’d like to plot and type

:plot versatec [width [layers]]

This will generate a plot of the area of the box. Everything visible underneath the box
will appear in more-or-less the same way in the plot. Width specifies how wide the plot
will be, in inches. Magic will scale the plot so that the area of the box comes out this
wide. The default for width is the width of the plotter (if width is larger than the plotter
width, it’s reduced to the plotter width). If layers is given, it specifies exactly what infor-
mation is to be plotted. Only those layers will appear in the plot. The special ‘‘layer’’
labels will enable label plotting.

The second form is for driving printers like color Versatecs. It is enabled by setting
the color plot parameter to true. A table of stipples for the primary colors (black, cyan,

- 8 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

magenta abd yellow) is given in the technology file. When the plot command is given,
four rasters (one for each of the colors) are generated, separated with the proper control
sequences for the printer. Otherwise, operation is exactly as for the black-and-white
case.

The third form of plotting is for generating Gremlin-format files, which can then be
edited with the Gremlin drawing system or included in documents processed by Grn and
Ditroff. The command to get Gremlin files is

:plot gremlin file [layers]

It will generate a Gremlin-format file in file that describes everything underneath the box.
If layers is specified, it indicates which layers are to appear in the file; otherwise every-
thing visible on the screen is output. The Gremlin file is output without any particular
scale; use the width or height commands in Grn to scale the plot when it’s printed. You
should use the mg stipples when printing Magic Gremlin plots; these will produce the
same stipple patterns as :plot versatec.

Finally, the ‘‘pixels’’ style of plotting generates a file of pixel values for the region
to be plotted. This can be useful for input to other image tools, or for generation of slides
and viewgraphs for presentations. The file consists of a sequence of bytes, three for each
pixel, written from left to right and top to bottom. Each three bytes represent the red,
green and blue values used to display the pixel. Thus, if the upper-left-most pixel were
to be red, the first three bytes of the file would have values of 255, 0 and 0.

The resolution of the generated file is normally 512, but can be controlled by setting
the plot parameter pixWidth. It must be a multiple of 8; Magic will round up if an inap-
propriate value is entered. The height of the file is determined by the shape of the box.
In any case, the actual resolution of the file is appended to the file name. For example,
plotting a square region, 2048 pixels across, will result in a file named something like
‘‘magicPlot1234a-2048-2048’’.

There are several plotting parameters used internally to Magic, such as the width of
the Versatec printer and the number of dots per inch on the Versatec printer. You can
modify most of these to work with different printers. For details, read about the various
:plot command options in the man page.

10. Utility Commands

There are several additional commands that you will probably find useful once you
start working on real cells. The command

:grid [spacing]
:grid xSpacing ySpacing

:grid xSpacing ySpacing xOrigin yOrigin
:grid off

will display a grid over your layout. Initially, the grid has a one-unit spacing. Typing
:grid with no arguments will toggle the grid on and off. If a single numerical argument
is given, the grid will be turned on, and the grid lines will be spacing units apart. The
macro g provides a short form for :grid and G is short for :grid 2. If you provide two
arguments to :grid, they are the x- and y-spacings, which may be different. If you

- 9 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

provide four arguments, the last two specify a reference point through which horizontal
and vertical grid lines pass; the default is to use (0,0) as the grid origin. The command
:grid off always turns the grid off, regardless of whether or not is was previously on.
When the grid is on, a small black box is displayed to mark the (0,0) coordinate of the
cell you’re editing.

If you want to create a cell that doesn’t fit on the screen, you’ll need to know how to
change the screen view. This can be done with three commands:

:zoom factor
:findbox [zoom]

:view

If factor is given to the zoom command, it is a zoom-out factor. For example, the com-
mand :zoom 2 will change the view so that there are twice as many units across the
screen as there used to be (Z is a macro for this). The new view will have the same
center as the old one. The command :zoom .5 will increase the magnification so that
only half as much of the circuit is visible.

The :findbox command is used to change the view according to the box. The com-
mand alone just moves the view (without changing the scale factor) so that the box is in
the center of the screen. If the zoom argument is given then the magnification is changed
too, so that the area of the box nearly fills the screen. z is a macro for :findbox zoom and
B is a macro for :findbox.

The command :view resets the view so that the entire cell is visible in the window.
It comes in handy if you get lost in a big layout. The macro v is equivalent to :view.

The command :box prints out the size and location of the box in case you’d like to
measure something in your layout. The macro b is predefined to :box. The :box com-
mand can also be used to set the box to a particular location, height, or width. See the
man page for details.

The command

:what

will print out information about what’s selected. This may be helpful if you’re not sure
what layer a particular piece of material is, or what layer a particular label is attached to.

If you forget what a macro means, you can invoke the command

:macro [char]

This command will print out the long command that’s associated with the macro char. If
you omit char, Magic will print out all of the macro associations. The command

:macro char command

We set up char to be a macro for command, replacing the old char macro if there was
one. If command contains any spaces then it must be enclosed in double-quotes. To see
how this works, type the command :macro 1 "echo You just typed the 1 key.", then
type the 1 key.

One of the macros, ‘‘.’’, has special meaning in Magic. This macro is always
defined by the system to be the last long command you typed. Whenever you’d like to
repeat a long command, all you have to do is use the dot macro.

- 10 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

11. What the Layers Mean

The paint layers available in Magic are different from those that you may be used to
in Caesar and other systems because they don’t correspond exactly to the masks used in
fabrication. We call them abstract layers because they correspond to constructs such as
wires and contacts, rather than mask layers. We also call them logs because they look
like sticks except that the geometry is drawn fully fleshed instead of as lines. In Magic
there is one paint layer for each kind of conducting material (polysilicon, ndiffusion,
metal1, etc.), plus one additional paint layer for each kind of transistor (ntransistor,
ptransistor, etc.), and, finally, one further paint layer for each kind of contact (pcontact,
ndcontact, m2contact, etc.) Each layer has one or more names that are used to refer to
that layer in commands. To find out the layers available in the current technology, type
the command

:layers

In addition to the mask layers, there are a few pseudo-layers that are valid in all technolo-
gies; these are listed in Table I. Each Magic technology also has a technology manual
describing the features of that technology, such as design rules, routing layers, CIF styles,
etc. If you haven’t seen any of the technology manuals yet, this is a good time to take a
look at the one for your process.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
errors (design-rule violations)
labels
subcells
* (all mask layers)
$ (all mask layers visible under cursor)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c

c
c
c
c
c
c

Table I. Pseudo-layers available in all technologies.

If you’re used to designing with mask layers (e.g. you’ve been reading the Mead-
Conway book), Magic’s log style will take some getting used to. One of the reasons for
logs is to save you work. In Magic you don’t draw implants, wells, buried windows, or
contact via holes. Instead, you draw the primary conducting layers and paint some of
their overlaps with special types such as n-transistor or polysilicon contact. For transis-
tors, you draw only the actual area of the transistor channel. Magic will generate the
polysilicon and diffusion, plus any necessary implants, when it creates a CIF file. For
contacts, you paint the contact layer in the area of overlap between the conducting layers.
Magic will generate each of the constituent mask layers plus vias and buried windows
when it writes the CIF file. Figure 1 shows a simple cell drawn with both mask layers (as
in Caesar) and with logs (as in Magic). If you’re curious about what the masks will look
like for a particular layout, you can use the :cif see command to view the mask informa-
tion.

- 11 -

Magic Tutorial #2: Basic Painting and Selection September 19, 1990

Metal

Polysilicon

N-Diffusion

P-Diffusion

Contacts

N-Fet

P-Fet

Figure 1. An example of how the logs are used. The figure on the left shows actual mask
layers for an CMOS inverter cell, and the figure on the right shows the layers used to
represent the cell in Magic.

An advantage of the logs used in Magic is that they simplify the design rules. Most
of the formation rules (e.g. contact structure) go away, since Magic automatically gen-
erates correctly-formed structures when it writes CIF. All that are left are minimum size
and spacing rules, and Magic’s abstract layers result in fewer of these than there would
be otherwise. This helps to make Magic’s built-in design rule checker very fast (see
‘‘Magic Tutorial #6: Design Rule Checking’’), and is one of the reasons plowing is pos-
sible.

- 12 -

Magic Tutorial #3: Advanced Painting (Wiring and Plowing)

John Ousterhout
Walter Scott

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

(Updated by others, too.)

This tutorial corresponds to Magic version 6.

Tutorials to read first:

Magic Tutorial #1: Getting Started
Magic Tutorial #2: Basic Painting and Selection

Commands introduced in this tutorial:

:array, :corner, :fill, :flush, :plow, :straighten, :tool, :wire

Macros introduced in this tutorial:

<space>

1. Introduction

Tutorial #2 showed you the basic facilities for placing paint and labels, selecting,
and manipulating the things that are selected. This tutorial describes two additional facil-
ities for manipulating paint: wiring and plowing. These commands aren’t absolutely
necessary, since you can achieve the same effect with the simpler commands of Tutorial
#2; however, wiring and plowing allow you to perform certain kinds of manipulations
much more quickly than you could otherwise. Wiring is described in Section 2; it
allows you to place wires by pointing at the ends of legs rather than by positioning the
box, and also provides for convenient contact placement. Plowing is the subject of Sec-
tion 3. It allows you to re-arrange pieces of your circuit without having to worry about
design-rule violations being created: plowing automatically moves things out of the way
to avoid trouble.

- 1 -

Magic Tutorial #3: Wiring and Plowing September 19, 1990

2. Wiring

The box-and-painting paradigm described in Tutorial #2 is sufficient to create any
possible layout, but it’s relatively inefficient since three keystrokes are required to paint
each new area: two button clicks to position the box and one more to paint the material.
This section describes a different painting mechanism based on wires. At any given
time, there is a current wiring material and wire thickness. With the wiring interface you
can create a new area of material with a single button click: this paints a straight-line
segment of the current material and width between the end of the previous wire segment
and the cursor location. Each additional button click adds an additional segment. The
wiring interface also makes it easy for you to place contacts.

2.1. Tools

Before learning about wiring, you’ll need to learn about tools. Until now, when
you’ve pressed mouse buttons in layout windows the buttons have caused the box to
change or material to be painted. The truth is that buttons can mean different things at
different times. The meaning of the mouse buttons depends on the current tool. Each
tool is identified by a particular cursor shape and a particular interpretation of the mouse
buttons. Initially, the current tool is the box tool; when the box tool is active the cursor
has the shape of a crosshair. To get information about the current tool, you can type the
long command

:tool info

This command prints out the name of the current tool and the meaning of the buttons.
Run Magic on the cell tut3a and type :tool info.

The :tool command can also be used to switch tools. Try this out by typing the
command

:tool

Magic will print out a message telling you that you’re using the wiring tool, and the cur-
sor will change to an arrow shape. Use the :tool info command to see what the buttons
mean now. You’ll be using the wiring tool for most of the rest of this section. The
macro ‘‘ ’’ (space) corresponds to :tool. Try typing the space key a few times: Magic
will cycle circularly through all of the available tools. There are three tools in Magic
right now: the box tool, which you already know about, the wiring tool, which you’ll
learn about in this tutorial, and the netlist tool, which has a square cursor shape and is
used for netlist editing. ‘‘Tutorial #7: Netlists and Routing’’ will show you how to use
the netlist tool.

The current tool affects only the meanings of the mouse buttons. It does not change
the meanings of the long commands or macros. This means, for example, that you can
still use all the selection commands while the wiring tool is active. Switch tools to the
wiring tool, point at some paint in tut3a, and type the s macro. A chunk gets selected
just as it does with the box tool.

- 2 -

Magic Tutorial #3: Wiring and Plowing September 19, 1990

2.2. Basic Wiring

There are three basic wiring commands: selecting the wiring material, adding a
leg, and adding a contact. This section describes the first two commands. At this point
you should be editing the cell tut3a with the wiring tool active. The first step in wiring is
to pick the material and width to use for wires. This can be done in two ways. The easi-
est way is to find a piece of material of the right type and width, point to it with the cur-
sor, and click the left mouse button. Try this in tut3a by pointing to the label 1 and left-
clicking. Magic prints out the material and width that it chose, selects a square of that
material and width around the cursor, and places the box around the square. Try pointing
to various places in tut3a and left-clicking.

Once you’ve selected the wiring material, the right button paints legs of a wire.
Left-click on label 1 to select the red material, then move the cursor over label 2 and
right-click. This will paint a red wire between 1 and 2. The new wire leg is selected so
that you can modify it with selection commands, and the box is placed over the tip of the
leg to show you the starting point for the next wire leg. Add more legs to the wire by
right-clicking at 3 and then 4. Use the mouse buttons to paint another wire in blue from
5 to 6 to 7.

Each leg of a wire must be either horizontal or vertical. If you move the cursor
diagonally, Magic will still paint a horizontal or vertical line (whichever results in the
longest new wire leg). To see how this works, left-click on 8 in tut3a, then right-click on
9. You’ll get a horizontal leg. Now undo the new leg and right-click on 10. This time
you’ll get a vertical leg. You can force Magic to paint the next leg in a particular direc-
tion with the commands

:wire horizontal
:wire vertical

Try out this feature by left-clicking on 8 in tut3a, moving the cursor over 10, and typing
:wire ho (abbreviations work for :wire command options just as they do elsewhere in
Magic). This command will generate a short horizontal leg instead of a longer vertical
one.

2.3. Contacts

When the wiring tool is active, the middle mouse button places contacts. Undo all
of your changes to tut3a by typing the command :flush and answering yes to the ques-
tion Magic asks. This throws away all of the changes made to the cell and re-loads it
from disk. Draw a red wire leg from 1 to 2. Now move the cursor over the blue area and
click the middle mouse button. This has several effects. It places a contact at the end of
the current wire leg, selects the contact, and moves the box over the selection. In addi-
tion, it changes the wiring material and thickness to match the material you middle-
clicked. Move the cursor over 3 and right-click to paint a blue leg, then make a contact
to purple by middle-clicking over the purple material. Continue by drawing a purple leg
to 4.

Once you’ve drawn the purple leg to 4, move the cursor over red material and
middle-click. This time, Magic prints an error message and treats the click just like a
left-click. Magic only knows how to make contacts between certain combinations of

- 3 -

Magic Tutorial #3: Wiring and Plowing September 19, 1990

layers, which are specified in the technology file (see ‘‘Magic Maintainer’s Manual #2:
The Technology File’’). For this technology, Magic doesn’t know how to make contacts
directly between purple and red.

2.4. Wiring and the Box

In the examples so far, each new wire leg appeared to be drawn from the end of the
previous leg to the cursor position. In fact, however, the new material was drawn from
the box to the cursor position. Magic automatically repositions the box on each button
click to help set things up for the next leg. Using the box as the starting point for wire
legs makes it easy to start wires in places that don’t already have material of the right
type and width. Suppose that you want to start a new wire in the middle of an empty
area. You can’t left-click to get the wire started there. Instead, you can left-click some
other place where there’s the right material for the wire, type the space bar twice to get
back the box tool, move the box where you’d like the wire to start, hit the space bar once
more to get back the wiring tool, and then right-click to paint the wire. Try this out on
tut3a.

When you first start wiring, you may not be able to find the right kind of material
anywhere on the screen. When this happens, you can select the wiring material and
width with the command

:wire type layer width

Then move the box where you’d like the wire to start, switch to the wiring tool, and
right-click to add legs.

2.5. Wiring and the Selection

Each time you paint a new wire leg or contact using the wiring commands, Magic
selects the new material just as if you had placed the cursor over it and typed s. This
makes it easy for you to adjust its position if you didn’t get it right initially. The :stretch
command is particularly useful for this. In tut3a, paint a wire leg in blue from 5 to 6 (use
:flush to reset the cell if you’ve made a lot of changes). Now type R two or three times
to stretch the leg over to the right. Middle-click over purple material, then use W to
stretch the contact downward.

It’s often hard to position the cursor so that a wire leg comes out right the first time,
but it’s usually easy to tell whether the leg is right once it’s painted. If it’s wrong, then
you can use the stretching commands to shift it over one unit at a time until it’s correct.

2.6. Bundles of Wires

Magic provides two additional commands that are useful for running bundles of
parallel wires. The commands are:

fill direction [layers]
corner direction1 direction2 [layers]

To see how they work, load the cell tut3b. The :fill comand extends a whole bunch of

- 4 -

Magic Tutorial #3: Wiring and Plowing September 19, 1990

paint in a given direction. It finds all paint touching one side of the box and extends that
paint to the opposite side of the box. For example, :fill left will look underneath the right
edge of the box for paint, and will extend that paint to the left side of the box. The effect
is just as if all the colors visible underneath that edge of the box constituted a paint brush;
Magic sweeps the brush across the box in the given direction. Place the box over the
label ‘‘Fill here’’ in tut3b and type :fill left.

The :corner command is similar to :fill except that it generates L-shaped wires that
follow two sides of the box, travelling first in direction1 and then in direction2. Place the
box over the label ‘‘Corner here’’ in tut3b and type :corner right up.

In both :fill and :corner, if layers isn’t specified then all layers are filled. If layers
is given then only those layers are painted. Experiment on tut3b with the :fill and
:corner commands.

When you’re painting bundles of wires, it would be nice if there were a convenient
way to place contacts across the whole bundle in order to switch to a different layer.
There’s no single command to do this, but you can place one contact by hand and then
use the :array command to replicate a single contact across the whole bundle. Load the
cell tut3c. This contains a bundle of wires with a single contact already painted by hand
on the bottom wire. Type s with the cursor over the contact, and type S with the cursor
over the stub of purple wiring material next to it. Now place the box over the label
‘‘Array’’ and type the command :array 1 10. This will copy the selected contact across
the whole bundle.

The syntax of the :array command is

:array xsize ysize

This command makes the selection into an array of identical elements. Xsize specifies
how many total instances there should be in the x-direction when the command is
finished and ysize specifies how many total instances there should be in the y-direction.
In the tut3c example, xsize was one, so no additional copies were created in that direc-
tion; ysize was 10, so 9 additional copies were created. The box is used to determine
how far apart the elements should be: the width of the box determines the x-spacing and
the height determines the y-spacing. The new material always appears above and to the
right of the original copy.

In tut3c, use :corner to extend the purple wires and turn them up. Then paint a
contact back to blue on the leftmost wire, add a stub of blue paint above it, and use
:array to copy them across the top of the bundle. Finally, use :fill again to extend the
blue bundle farther up.

3. Plowing

Magic contains a facility called plowing that you can use to stretch and compact
cells. The basic plowing command has the syntax

:plow direction [layers]

where direction is a Manhattan direction like left and layers is an optional, comma-
separated list of mask layers. The plow command treats one side of the box as if it were
a plow, and shoves the plow over to the other side of the box. For example, :plow up

- 5 -

Magic Tutorial #3: Wiring and Plowing September 19, 1990

treats the bottom side of the box as a plow, and moves the plow to the top of the box.

As the plow moves, every edge in its path is pushed ahead of it (if layers is
specified, then only edges on those layers are moved). Each edge that is pushed by the
plow pushes other edges ahead of it in a way that preserves design rules, connectivity,
and transistor and contact sizes. This means that material ahead of the plow gets com-
pacted down to the minimum spacing permitted by the design rules, and material that
crossed the plow’s original position gets stretched behind the plow.

You can compact a cell by placing a large plow off to one side of the cell and plow-
ing across the whole cell. You can open up space in the middle of a cell by dragging a
small plow across the area where you want more space.

To try out plowing, edit the cell tut3d, place the box over the rectangle that’s
labelled ‘‘Plow here’’, and try plowing in various directions. Also, try plowing only cer-
tain layers. For example, with the box over the ‘‘Plow here’’ label, try

:plow right metal2

Nothing happens. This is because there are no metal2 edges in the path of the plow. If
instead you had typed

:plow right metal1

only the metal would have been plowed to the right.

In addition to plowing with the box, you can plow the selection. The command to
do this has the following syntax:

:plow selection [direction [distance]]

This is very similar to the :stretch command: it picks up the selection and the box and
moves both so that the lower-left corner of the box is at the cursor location. Unlike the
:stretch command, though, :plow selection insures that design rule correctness and con-
nectivity are preserved.

Load the cell tut3e and use a to select the area underneath the label that says
‘‘select me’’. Then point with the cursor to the point labelled ‘‘point here’’ and type
:plow selection. Practice selecting things and plowing them. Like the :stretch com-
mand, there is also a longer form of :plow selection. For example, :plow selection
down 5 will plow the selection and the box down 10 units.

Selecting a cell and plowing it is a good way to move the cell. Load tut3f and
select the cell tut3e. Point to the label ‘‘point here’’ and plow the selection with :plow
selection. Notice that all connections to the cell have remained attached. The cell you
select must be in the edit cell, however.

The plowing operation is implemented in a way that tries to keep your design as
compact as possible. To do this, it inserts jogs in wires around the plow. In many cases,
though, the additional jogs are more trouble than they’re worth. To reduce the number of
jogs inserted by plowing, type the command

:plow nojogs

From now on, Magic will insert as few jogs as possible when plowing, even if this means
moving more material. You can re-enable jog insertion with the command

- 6 -

Magic Tutorial #3: Wiring and Plowing September 19, 1990

:plow jogs

Load the cell tut3d again and try plowing it both with and without jog insertion.

There is another way to reduce the number of jogs introduced by plowing. Instead
of avoiding jogs in the first place, plowing can introduce them freely but clean them up
as much as possible afterward. This results in more dense layouts, but possibly more
jogs than if you had enabled :plow nojogs. To take advantage of this second method for
jog reduction, re-enable jog insertion (:plow jogs) and enable jog cleanup with the com-
mand

:plow straighten

From now on, Magic will attempt to straighten out jogs after each plow operation. To
disable straightening, use the command

:plow nostraighten

It might seem pointless to disable jog introduction with :plow nojogs at the same time
straightening is enabled with :plow straighten. While it is true that :plow nojogs won’t
introduce any new jogs for :plow straighten to clean up, plowing will straighten out any
existing jogs after each operation.

In fact, there is a separate command that is sometimes useful for cleaning up layouts
with many jogs, namely the command

:straighten direction

where direction is a Manhattan direction, e.g., up, down, right, or left. This command
will start from one side of the box and pull jogs toward that side to straighten them.
Load the cell tut3g, place the box over the label ‘‘put box here’’, and type :straighten
left. Undo the last command and type :straighten right instead. Play around with the
:straighten command.

There is one more feature of plowing that is sometimes useful. If you are working
on a large cell and want to make sure that plowing never affects any geometry outside of
a certain area, you can place a boundary around the area you want to affect with the com-
mand

:plow boundary

The box is used to specify the area you want to affect. After this command, subsequent
plows will only affect the area inside this boundary.

Load the cell tut3h place the box over the label ‘‘put boundary here’’, and type
:plow boundary. Now move the box away. You will see the boundary highlighted with
dotted lines. Now place the box over the area labelled ‘‘put plow here’’ and plow up.
This plow would cause geometry outside of the boundary to be affected, so Magic
reduces the plow distance enough to prevent this and warns you of this fact. Now undo
the last plow and remove the boundary with

:plow noboundary

Put the box over the ‘‘put plow here’’ label and plow up again. This time there was no
boundary to stop the plow, so everything was moved as far as the height of the box.
Experiment with placing the boundary around an area of this cell and plowing.

- 7 -

Magic Tutorial #4: Cell Hierarchies

John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

(Updated by others, too.)

This tutorial corresponds to Magic version 6.

Tutorials to read first:

Magic Tutorial #1: Getting Started
Magic Tutorial #2: Basic Painting and Selection

Commands introduced in this tutorial:

:array, :edit, :expand, :flush, :getcell, :identify, :load, :path, :see, :unexpand

Macros introduced in this tutorial:

x, X, ˆX

1. Introduction

In Magic, a layout is a hierarchical collection of cells. Each cell contains three
things: paint, labels, and subcells. Tutorial #2 showed you how to create and edit paint
and labels. This tutorial describes Magic’s facilities for building up cell hierarchies.
Strictly speaking, hierarchical structure isn’t necessary: any design that can be
represented hierarchically can also be represented ‘‘flat’’ (with all the paint and labels in
a single cell). However, many things are greatly improved if you use a hierarchical
structure, including the efficiency of the design tools, the speed with which you can enter
the design, and the ease with which you can modify it later.

- 1 -

Magic Tutorial #4: Cell Hierarchies September 19, 1990

2. Selecting and Viewing Hierarchical Designs

‘‘Hierarchical structure’’ means that each cell can contain other cells as com-
ponents. To look at an example of a hierarchical layout, enter Magic with the shell com-
mand magic tut4a. The cell tut4a contains four subcells plus some blue paint. Two of
the subcells are instances of cell tut4x and two are instances of tut4y. Initially, each
subcell is displayed in unexpanded form. This means that no details of the subcell are
displayed; all you see is the cell’s bounding box, plus two names inside the bounding
box. The top name is the name of the subcell (the name you would type when invoking
Magic to edit the cell). The cell’s contents are stored in a file with this name plus a .mag
extension. The bottom name inside each bounding box is called an instance identifier,
and is used to distinguish different instances of the same subcell. Instance id’s are used
for routing and circuit extraction, and are discussed in Section 6.

Subcells can be manipulated using the same selection mechanism that you learned
in Tutorial #2. To select a subcell, place the cursor over the subcell and type f (‘‘find
cell’’), which is a macro for :select cell. You can also select a cell by typing s when the
cursor is over a location where there’s no paint; f is probably more convenient, particu-
larly for cells that are completely covered with paint. When you select a cell the box will
be set to the cell’s bounding box, the cell’s name will be highlighted, and a message will
be printed on the text display. All the selection operations (:move, :copy, :delete, etc.)
apply to subcells. Try selecting and moving the top subcell in tut4a. You can also select
subcells using area selection (the a and A macros): any unexpanded subcells that inter-
sect the area of the box will be selected.

To see what’s inside a cell instance, you must expand it. Select one of the instances
of tut4y, then type the command

:expand toggle

or invoke the macro ˆX which is equivalent. This causes the internals of that instance of
tut4y to be displayed. If you type ˆX again, the instance is unexpanded so you only see a
bounding box again. The :expand toggle command expands all of the selected cells that
are unexpanded, and unexpands all those that are expanded. Type ˆX a third time so that
tut4y is expanded.

As you can see now, tut4y contains an array of tut4x cells plus some additional
paint. In Magic, an array is a special kind of instance containing multiple copies of the
same subcell spaced at fixed intervals. Arrays can be one-dimensional or two-
dimensional. The whole array is always treated as a single instance: any command that
operates on one element of the array also operates on all the other elements simultane-
ously. The instance identifiers for the elements of the array are the same except for an
index. Now select one of the elements of the array and expand it. Notice that the entire
array is expanded at the same time.

When you have expanded the array, you’ll see that the paint in the top-level cell
tut4a is displayed more brightly than the paint in the tut4x instances. Tut3a is called the
edit cell, because its contents are currently editable. The paint in the edit cell is normally
displayed more brightly than other paint to make it clear that you can change it. As long
as tut4a is the edit cell, you cannot modify the paint in tut4x. Try erasing paint from the
area of one of the tut4x instances: nothing will be changed. Section 4 tells how to switch
the edit cell.

- 2 -

Magic Tutorial #4: Cell Hierarchies September 19, 1990

Place the cursor over one of the tut4x array elements again. At this point, the cur-
sor is actually over three different cells: tut4x (an element of an array instance within
tut4y), tut4y (an instance within tut4a), and tut4. Even the topmost cell in the hierarchy
is treated as an instance by Magic. When you press the s key to select a cell, Magic ini-
tially chooses the smallest instance visible underneath the cursor, tut4x in this case.
However, if you invoke the s macro again (or type :select) without moving the cursor,
Magic will step through all of the instances under the cursor in order. Try this out. The
same is true of the f macro and :select cell.

When there are many different expanded cells on the screen, you can use the selec-
tion commands to select paint from any of them. You can select anything that’s visible,
regardless of which cell it’s in. However, as mentioned above, you can only modify
paint in the edit cell. If you use :move or :upsidedown or similar commands when
you’ve selected information outside the edit cell, the information outside the edit cell is
removed from the selection before performing the operation.

There are two additional commands you can use for expanding and unexpanding
cells:

:expand
:unexpand

Both of these commands operate on the area underneath the box. The :expand command
will recursively expand every cell that intersects the box until there are no unexpanded
cells left under the box. The :unexpand command will unexpand every cell whose area
intersects the box but doesn’t completely contain it. The macro x is equivalent to
:expand, and X is equivalent to :unexpand. Try out the various expansion and unexpan-
sion facilities on tut4a.

3. Manipulating Subcells

There are a few other commands, in addition to the selection commands already
described, that you’ll need in order to manipulate subcells. The command

:getcell name

will find the file name.mag on disk, read the cell it contains, and create an instance of
that cell with its lower-left corner aligned with the lower-left corner of the box. Use the
getcell command to get an instance of the cell tut4z. After the getcell command, the
new instance is selected so you can move it or copy it or delete it. The getcell command
recognizes additional arguments that permit the cell to be positioned using labels and/or
explicit coordinates. See the man page for details.

To turn a normal instance into an array, select the instance and then invoke the
:array command. It has two forms:

:array xsize ysize
:array xlo xhi ylo yhi

In the first form, xsize indicates how many elements the array should have in the x-
direction, and ysize indicates how many elements it should have in the y-direction. The
spacing between elements is controlled by the box’s width (for the x-direction) and

- 3 -

Magic Tutorial #4: Cell Hierarchies September 19, 1990

height (for the y-direction). By changing the box size, you can space elements so that
they overlap, abut, or have gaps between them. The elements are given indices from 0 to
xsize-1 in the x-direction and from 0 to ysize-1 in the y-direction. The second form of the
command is identical to the first except that the elements are given indices from xlo to
xhi in the x-direction and from ylo to yhi in the y-direction. Try making a 4x4 array out
of the tut4z cell with gaps between the cells.

You can also invoke the :array command on an existing array to change the
number of elements or spacing. Use a size of 1 for xsize or ysize in order to get a one-
dimensional array. If there are several cells selected, the :array command will make
each of them into an array of the same size and spacing. It also works on paint and
labels: if paint and labels are selected when you invoke :array, they will be copied
many times over to create the array. Try using the array command to replicate a small
strip of paint.

4. Switching the Edit Cell

At any given time, you are editing the definition of a single cell. This definition is
called the edit cell. You can modify paint and labels in the edit cell, and you can re-
arrange its subcells. You may not re-arrange or delete the subcells of any cells other than
the edit cell, nor may you modify the paint or labels of any cells except the edit cell. You
may, however, copy information from other cells into the edit cell, using the selection
commands. To help clarify what is and isn’t modifiable, Magic displays the paint of the
edit cell in brighter colors than other paint.

When you rearrange subcells of the edit cell, you aren’t changing the subcells them-
selves. All you can do is change the way they are used in the edit cell (location, orienta-
tion, etc.). When you delete a subcell, nothing happens to the file containing the subcell;
the command merely deletes the instance from the edit cell.

Besides the edit cell, there is one other special cell in Magic. It’s called the root
cell and is the topmost cell in the hierarchy, the one you named when you ran Magic
(tut4a in this case). As you will see in Tutorial #5, there can actually be several root
cells at any given time, one in each window. For now, there is only a single window on
the screen, and thus only a single root cell. The window caption at the top of the color
display contains the name of the window’s root cell and also the name of the edit cell.

Up until now, the root cell and the edit cell have been the same. However, this need
not always be the case. You can switch the edit cell to any cell in the hierarchy by
selecting an instance of the definition you’d like to edit, and then typing the command

:edit

Use this command to switch the edit cell to one of the tut4x instances in tut4a. Its paint
brightens, while the paint in tut4a becomes dim. If you want to edit an element of an
array, select the array, place the cursor over the element you’d like to edit, then type
:edit. The particular element underneath the cursor becomes the edit cell.

When you edit a cell, you are editing the master definition of that cell. This means
that if the cell is used in several places in your design, the edits will be reflected in all
those places. Try painting and erasing in the tut4x cell that you just made the edit cell:

- 4 -

Magic Tutorial #4: Cell Hierarchies September 19, 1990

the modifications will appear in all of its instances.

There is a second way to change the edit cell. This is the command

:load name

The :load command loads a new hierarchy into the window underneath the cursor. Name
is the name of the root cell in the hierarchy. If no name is given, a new unnamed cell is
loaded and you start editing from scratch. The :load command only changes the edit cell
if there is not already an edit cell in another window.

5. Subcell Usage Conventions

Overlaps between cells are occasionally useful to share busses and control lines run-
ning along the edges. However, overlaps cause the analysis tools to work much harder
than they would if there were no overlaps: wherever cells overlap, the tools have to com-
bine the information from the two separate cells. Thus, you shouldn’t use overlaps any
more than absolutely necessary. For example, suppose you want to create a one-
dimensional array of cells that alternates between two cell types, A and B: ‘‘ABABA-
BABABAB’’. One way to do this is first to make an array of A instances with large gaps
between them (‘‘A A A A A A’’), then make an array of B instances with large gaps
between them (‘‘B B B B B B’’), and finally place one array on top of the other so
that the B’s nestle in between the A’s. The problem with this approach is that the two
arrays overlap almost completely, so Magic will have to go to a lot of extra work to han-
dle the overlaps (in this case, there isn’t much overlap of actual paint, but Magic won’t
know this and will spend a lot of time worrying about it). A better solution is to create a
new cell that contains one instance of A and one instance of B, side by side. Then make
an array of the new cell. This approach makes it clear to Magic that there isn’t any real
overlap between the A’s and B’s.

If you do create overlaps, you should use the overlaps only to connect the two cells
together, and not to change their structure. This means that the overlap should not cause
transistors to appear, disappear, or change size. The result of overlapping the two sub-
cells should be the same electrically as if you placed the two cells apart and then ran
wires to hook parts of one cell to parts of the other. The convention is necessary in order
to be able to do hierarchical circuit extraction easily (it makes it possible for each subcell
to be circuit-extracted independently).

Three kinds of overlaps are flagged as errors by the design-rule checker. First, you
may not overlap polysilicon in one subcell with diffusion in another cell in order to
create transistors. Second, you may not overlap transistors or contacts in one cell with
different kinds of transistors or contacts in another cell (there are a few exceptions to this
rule in some technologies). Third, if contacts from different cells overlap, they must be
the same type of contact and must coincide exactly: you may not have partial overlaps.
This rule is necessary in order to guarantee that Magic can generate CIF for fabrication.

You will make life a lot easier on yourself (and on Magic) if you spend a bit of time
to choose a clean hierarchical structure. In general, the less cell overlap the better. If
you use extensive overlaps you’ll find that the tools run very slowly and that it’s hard to
make modifications to the circuit.

- 5 -

Magic Tutorial #4: Cell Hierarchies September 19, 1990

6. Instance Identifiers

Instance identifiers are used to distinguish the different subcells within a single
parent. The cell definition names cannot be used for this purpose because there could be
many instances of a single definition. Magic will create default instance id’s for you
when you create new instances with the :get or :copy commands. The default id for an
instance will be the name of the definition with a unique integer added on. You can
change an id by selecting an instance (which must be a child of the edit cell) and invok-
ing the command

:identify newid

where newid is the identifier you would like the instance to have. Newid must not
already be used as an instance identifier of any subcell within the edit cell.

Any node or instance can be described uniquely by listing a path of instance
identifiers, starting from the root cell. The standard form of such names is similar to
Unix file names. For example, if id1 is the name of an instance within the root cell, id2
is an instance within id1, and node is a node name within id2, then id1/id2/node can be
used unambiguously to refer to the node. When you select a cell, Magic prints out the
complete path name of the instance.

Arrays are treated specially. When you use :identify to give an array an instance
identifier, each element of the array is given the instance identifier you specified, fol-
lowed by one or two array subscripts enclosed in square brackets, e.g, id3[2] or id4[3][7].
When the array is one-dimensional, there is a single subscript; when it is two-
dimensional, the first subscript is for the y-dimension and the second for the x-dimension.

7. Writing and Flushing Cells

When you make changes to your circuit in Magic, there is no immediate effect on
the disk files that hold the cells. You must explicitly save each cell that has changed,
using either the :save command or the :writeall command. Magic keeps track of the
cells that have changed since the last time they were saved on disk. If you try to leave
Magic without saving all the cells that have changed, the system will warn you and give
you a chance to return to Magic to save them. Magic never flushes cells behind your
back, and never throws away definitions that it has read in. Thus, if you edit a cell and
then use :load to edit another cell, the first cell is still saved in Magic even though it
doesn’t appear anywhere on the screen. If you then invoke :load a second time to go
back to the first cell, you’ll get the edited copy.

If you decide that you’d really like to discard the edits you’ve made to a cell and
recover the old version, there are two ways you can do it. The first way is using the flush
option in :writeall. The second way is to use the command

:flush [cellname]

If no cellname is given, then the edit cell is flushed. Otherwise, the cell named cellname
is flushed. The :flush command will expunge Magic’s internal copy of the cell and
replace it with the disk copy.

- 6 -

Magic Tutorial #4: Cell Hierarchies September 19, 1990

When you are editing large chips, Magic may claim that cells have changed even
though you haven’t modified them. Whenever you modify a cell, Magic makes changes
in the parents of the cell, and their parents, and so on up to the root of the hierarchy.
These changes record new design-rule violations, as well as timestamp and bounding box
information used by Magic to keep track of design changes and enable fast cell read-in.
Thus, whenever you change one cell you’ll generally need to write out new copies of its
parents and grandparents. If you don’t write out the parents, or if you edit a child ‘‘out of
context’’ (by itself, without the parents loaded), then you’ll incur extra overhead the next
time you try to edit the parents. ‘‘Timestamp mismatch’’ warnings are printed when
you’ve edited cells out of context and then later go back and read in the cell as part of its
parent. These aren’t serious problems; they just mean that Magic is doing extra work to
update information in the parent to reflect the child’s new state.

8. Search Paths

When many people are working on a large design, the design will probably be more
manageable if different pieces of it can be located in different directories of the file sys-
tem. Magic provides a simple mechanism for managing designs spread over several
directories. The system maintains a search path that tells which directories to search
when trying to read in cells. By default, the search path is ‘‘.’’, which means that Magic
looks only in the working directory. You can change the path using the command

:path [searchpath]

where searchpath is the new path that Magic should use. Searchpath consists of a list of
directories separated by colons. For example, the path ‘‘.:∼ouster/x:a/b’’ means that if
Magic is trying to read in a cell named ‘‘foo’’, it will first look for a file named
‘‘foo.mag’’ in the current directory. If it doesn’t find the file there, it will look for a file
named ‘‘∼ouster/x/foo.mag’’, and if that doesn’t exist, then it will try ‘‘a/b/foo.mag’’
last. To find out what the current path is, type :path with no arguments. In addition to
your path, this command will print out the system cell library path (where Magic looks
for cells if it can’t find them anywhere in your path), and the system search path (where
Magic looks for files like colormaps and technology files if it can’t find them in your
current directory).

If you’re working on a large design, you should use the search path mechanism to
spread your layout over several directories. A typical large chip will contain a few hun-
dred cells; if you try to place all of them in the same directory there will just be too
many things to manage. For example, place the datapath in one directory, the control
unit in another, the instruction buffer in a third, and so on. Try to keep the size of each
directory down to a few dozen files. You can place the :path command in a .magic file
in your home directory or the directory you normally run Magic from; this will save you
from having to retype it each time you start up (see the Magic man page to find out about
.magic files). If all you want to do is add another directory onto the end of the search
path, you can use the :addpath [directory] command.

Because there is only a single search path that is used everywhere in Magic, you
must be careful not to re-use the same cell name in different portions of the chip. A com-
mon problem with large designs is that different designers use the same name for

- 7 -

Magic Tutorial #4: Cell Hierarchies September 19, 1990

different cells. This works fine as long as the designers are working separately, but when
the two pieces of the design are put together using a search path, a single copy of the cell
(the one that is found first in the search path) gets used everywhere.

There’s another caveat in the use of search paths. Magic looks for system files in
˜cad, but sometimes it is helpful to put Magic’s system files elsewhere. If the
CAD_HOME shell environment variable is set, then Magic uses that as the location of
˜cad instead of the location in the password file. This overrides all uses of ˜cad within
magic, including the ˜cad seen in the search paths printed out by :path.

9. Additional Commands

This section describes a few additional cell-related commands that you may find
useful. One of them is the command

:select save file

This command takes the selection and writes it to disk as a new Magic cell in the file
file.mag. You can use this command to break up a big file into smaller ones, or to extract
pieces from an existing cell.

The command

:dump cellName [labelName]

does the opposite of select save: it copies the contents of cell cellName into the edit cell,
such that the lower-left corner of label labelName is at the lower-left corner of the box.
The new material will also be selected. This command is similar in form to the getcell
command except that it copies the contents of the cell instead of using the cell as a sub-
cell. There are several forms of dump; see the man page for details.

The main purpose of dump is to allow you to create a library of cells representing
commonly-used structures such as standard transistor shapes or special contact arrange-
ments. You can then define macros that invoke the dump command to place the cells.
The result is that a single keystroke is all you need to copy one of them into the edit cell.

As mentioned earlier, Magic normally displays the edit cell in brighter colors than
non-edit cells. This helps to distinguish what is editable from what is not, but may make
it hard for you to view non-edit paint since it appears paler. If you type the command

:see allSame

you’ll turn off this feature: all paint everywhere will be displayed in the bright colors.
The word allSame must be typed just that way, with one capital letter. If you’d like to
restore the different display styles, type the command

:see no allSame

You can also use the :see command to selectively disable display of various mask layers
in order to make the other ones easier to see. For details, read about :see in the Magic
man page.

- 8 -

Magic Tutorial #5: Multiple Windows

Robert N. Mayo

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

(Updated by others, too.)

This tutorial corresponds to Magic version 6.

Tutorials to read first:

Magic Tutorial #1: Getting Started
Magic Tutorial #2: Basic Painting and Selection

Commands introduced in this tutorial:

:center :closewindow, :openwindow, :over, :specialopen, :under, :windowpositions

Macros introduced in this tutorial:

o, O, ‘‘,’’

1. Introduction

A window is a rectangular viewport. You can think of it as a magnifying glass that
may be moved around on your chip. Magic initially displays a single window on the
screen. This tutorial will show you how to create new windows and how to move old
ones around. Multiple windows allow you to view several portions of a circuit at the
same time, or even portions of different circuits.

Some operations are easier with multiple windows. For example, let’s say that you
want to paint a very long line, say 3 units by 800 units. With a single window it is hard
to align the box accurately since the magnification is not great enough. With multiple
windows, one window can show the big picture while other windows show magnified
views of the areas where the box needs to be aligned. The box can then be positioned
accurately in these magnified windows.

- 1 -

Magic Tutorial #5: Multiple Windows September 19, 1990

2. Manipulating Windows

2.1. Opening and Closing Windows

Initially Magic displays one large window. The

:openwindow [cellname]

command opens another window and loads the given cell. To give this a try, start up
Magic with the command magic tut5a. Then point anywhere in a Magic window and
type the command :openwindow tut5b (make sure you’re pointing to a Magic window).
A new window will appear and it will contain the cell tut5b. If you don’t give a
cellname argument to :openwindow, it will open a new window on the cell containing
the box, and will zoom in on the box. The macro o is predefined to :openwindow. Try
this out by placing the box around an area of tut5b and then typing o. Another window
will appear. You now have three windows, all of which display pieces of layout. There
are other kinds of windows in Magic besides layout windows: you’ll learn about them
later. Magic doesn’t care how many windows you have (within reason) nor how they
overlap.

To get rid of a window, point to it and type

:closewindow

or use the macro O. Point to a portion of the original window and close it.

2.2. Resizing and Moving Windows

If you have been experimenting with Magic while reading this you will have
noticed that windows opened by :openwindow are all the same size. If you’d prefer a
different arrangement you can resize your windows or move them around on the screen.
The techniques used for this are different, however, depending on what kind of display
you’re using. If you are using a workstation, then you are also running a window system
such as X11 or SunView. In this case Magic’s windows are moved and resized just like
the other windows you have displayed, and you can skip the rest of this section.

For displays like the AED family, which don’t have a built-in window package,
Magic implements its own window manager. To re-arrange windows on the screen you
can use techniques similar to those you learned for moving the box for painting opera-
tions. Point somewhere in the border area of a window, except for the lower left corner,
and press and hold the right button. The cursor will change to a shape like this:

This indicates that you have hold of the upper right corner of the window. Point to a new
location for this corner and release the button. The window will change shape so that the
corner moves. Now point to the border area and press and hold the left button. The cur-
sor will now look like:

- 2 -

Magic Tutorial #5: Multiple Windows September 19, 1990

This indicates that you have hold of the entire window by its lower left window. Move
the cursor and release the button. The window will move so that its lower left corner is
where you pointed.

The other button commands for positioning the box by any of its corners also work
for windows. Just remember to point to the border of a window before pushing the but-
tons.

The middle button can be used to grow a window up to full-screen size. To try this,
click the middle button over the caption of the window. The window will now fill the
entire screen. Click in the caption again and the window will shrink back to its former
size.

2.3. Shuffling Windows

By now you know how to open, close, and resize windows. This is sufficient for
most purposes, but sometimes you want to look at a window that is covered up by
another window. The :underneath and :over commands help with this.

The :underneath command moves the window that you are pointing at underneath
all of the other windows. The :over command moves the window on top of the rest.
Create a few windows that overlap and then use these commands to move them around.
You’ll see that overlapping windows behave just like sheets of paper: the ones on top
obscure portions of the ones underneath.

2.4. Scrolling Windows

Some of the windows have thick bars on the left and bottom borders. These are
called scroll bars, and the slugs within them are called elevators. The size and position
of an elevator indicates how much of the layout (or whatever is in the window) is
currently visible. If an elevator fills its scroll bar, then all of the layout is visible in that
window. If an elevator fills only a portion of the scroll bar, then only that portion of the
layout is visible. The position of the elevator indicates which part is visible − if it is near
the bottom, you are viewing the bottom part of the layout; if it is near the top, you are
viewing the top part of the layout. There are scroll bars for both the vertical direction
(the left scroll bar) and the horizontal direction (the bottom scroll bar).

Besides indicating how much is visible, the scroll bars can be used to change the
view of the window. Clicking the middle mouse button in a scroll bar moves the elevator
to that position. For example, if you are viewing the lower half of a chip (elevator near
the bottom) and you click the middle button near the top of the scroll bar, the elevator
will move up to that position and you will be viewing the top part of your chip. The little
squares with arrows in them at the ends of the scroll bars will scroll the view by one
screenful when the middle button is clicked on them. They are useful when you want to
move exactly one screenful. The :scroll command can also be used to scroll the view

- 3 -

Magic Tutorial #5: Multiple Windows September 19, 1990

(though we don’t think it’s as easy to use as the scroll bars). See the man page for infor-
mation on it.

If you only want to make a small adjustment in a window’s view, you can use the
command

:center

It will move the view in the window so that the point that used to be underneath the cur-
sor is now in the middle of the window. The macro , is predefined to :center.

The bull’s-eye in the lower left corner of a window is used to zoom the view in and
out. Clicking the left mouse button zooms the view out by a factor of 2, and clicking the
right mouse button zooms in by a factor of 2. Clicking the middle button here makes
everything in the window visible and is equivalent to the :view command.

2.5. Saving Window Configurations

After setting up a bunch of windows you may want to save the configuration (for
example, you may be partial to a set of 3 non-overlapping windows). To do this, type:

:windowpositions filename

A set of commands will be written to the file. This file can be used with the :source
command to recreate the window configuration later. (However, this only works well if
you stay on the same kind of display; if you create a file under X11 and then :source it
under SunView, you might not get the same positions since the coordinate systems may
vary.)

3. How Commands Work Inside of Windows

Each window has a caption at the top. Here is an example:

mychip EDITING shiftcell

This indicates that the window contains the root cell mychip, and that a subcell of it
called shiftcell is being edited. You may remember from the Tutorial #4 that at any
given time Magic is editing exactly one cell. If the edit cell is in another window then
the caption on this window will read:

mychip [NOT BEING EDITED]

Let’s do an example to see how commands are executed within windows. Close
any layout windows that you may have on the screen and open two new windows, each
containing the cell tut5a. (Use the :closewindow and :openwindow tut5a commands to
do this.) Try moving the box around in one of the windows. Notice that the box also
moves in the other window. Windows containing the same root cell are equivalent as far
as the box is concerned: if it appears in one it will appear in all, and it can be manipu-
lated from them interchangeably. If you change tut5a by painting or erasing portions of
it you will see the changes in both windows. This is because both windows are looking
at the same thing: the cell tut5a. Go ahead and try some painting and erasing until you
feel comfortable with it. Try positioning one corner of the box in one window and
another corner in another window. You’ll find it doesn’t matter which window you point
to, all Magic knows is that you are pointing to tut5a.

- 4 -

Magic Tutorial #5: Multiple Windows September 19, 1990

These windows are independent in some respects, however. For example, you may
scroll one window around without affecting the other window. Use the scrollbars to give
this a try. You can also expand and unexpand cells independently in different windows.

We have seen how Magic behaves when both windows view a single cell. What
happens when windows view different cells? To try this out load tut5b into one of the
windows (point to a window and type :load tut5b). You will see the captions on the
windows change — only one window contains the cell currently being edited. The box
cannot be positioned by placing one corner in one window and another corner in the
other window because that doesn’t really make sense (try it). However, the selection
commands work between windows: you can select information in one window and then
copy it into another (this only works if the window you’re copying into contains the edit
cell; if not, you’ll have to use the :edit command first).

The operation of many Magic commands is dependent upon which window you are
pointing at. If you are used to using Magic with only one window you may, at first, for-
get to point to the window that you want the operation performed upon. For instance, if
there are several windows on the screen you will have to point to one before executing a
command like :grid — otherwise you may not affect the window that you intended!

4. Special Windows

In addition to providing multiple windows on different areas of a layout, Magic pro-
vides several special types of windows that display things other than layouts. For exam-
ple, there are special window types to edit netlists and to adjust the colors displayed on
the screen. One of the special window types is described in the section below; others are
described in the other tutorials. The

:specialopen type [args]

command is used to create these sorts of windows. The type argument tells what sort of
window you want, and args describe what you want loaded into that window. The
:openwindow cellname command is really just short for the command :specialopen lay-
out cellname.

Each different type of window (layout, color, etc.) has its own command set. If you
type :help in different window types, you’ll see that the commands are different. Some
of the commands, such as those to manipulate windows, are valid in all windows, but for
other commands you must make sure you’re pointing to the right kind of window or the
command may be misinterpreted. For example, the :extract command means one thing
in a layout window and something totally different in a netlist window.

5. Color Editing

Special windows of type color are used to edit the red, green, and blue intensities of
the colors displayed on the screen. To create a color editing window, invoke the com-
mand

:specialopen color [number]

Number is optional; if present, it gives the octal value of the color number whose inten-
sities are to be edited. If number isn’t given, 0 is used. Try opening a color window on
color 0.

- 5 -

Magic Tutorial #5: Multiple Windows September 19, 1990

A color editing window contains 6 ‘‘color bars’’, 12 ‘‘color pumps’’ (one on each
side of each bar), plus a large rectangle at the top of the window that displays a swatch of
the color being edited (called the ‘‘current color’’ from now on). The color bars display
the components of the current color in two different ways. The three bars on the left
display the current color in terms of its red, green, and blue intensities (these intensities
are the values actually sent to the display). The three bars on the right display the current
color in terms of hue, saturation, and value. Hue selects a color of the spectrum. Satura-
tion indicates how diluted the color is (high saturation corresponds to a pure color, low
saturation corresponds to a color that is diluted with gray, and a saturation of 0 results in
gray regardless of hue). Value indicates the overall brightness (a value of 0 corresponds
to black, regardless of hue or saturation).

There are several ways to modify the current color. First, try pressing any mouse
button while the cursor is over one of the color bars. The length of the bar, and the
current color, will be modified to reflect the mouse position. The color map in the
display is also changed, so the colors will change everywhere on the screen that the
current color is displayed. Color 0, which you should currently be editing, is the back-
ground color. You can also modify the current color by pressing a button while the cur-
sor is over one of the ‘‘color pumps’’ next to the bars. If you button a pump with ‘‘+’’ in
it, the value of the bar next to it will be incremented slightly, and if you button the ‘‘-’’
pump, the bar will be decremented slightly. The left button causes a change of about 1%
in the value of the bar, and the right button will pump the bar up or down by about 5%.
Try adjusting the bars by buttoning the bars and the pumps.

If you press a button while the cursor is over the current color box at the top of the
window, one of two things will happen. In either case, nothing happens until you release
the button. Before releasing the button, move the cursor so it is over a different color
somewhere on the screen. If you pressed the left button, then when the button is released
the color underneath the cursor becomes the new current color, and all future editing
operations will affect this color. Try using this feature to modify the color used for win-
dow borders. If you pressed the right button, then when the button is released the value
of the current color is copied from whatever color is present underneath the cursor.

There are only a few commands you can type in color windows, aside from those
that are valid in all windows. The command

:color [number]

will change the current color to number. If no number is given, this command will print
out the current color and its red, green, and blue intensities. The command

:save [techStyle displayStyle monitorType]

will save the current color map in a file named techStyle.displayStyle.monitorType.cmap,
where techStyle is the type of technology (e.g., mos), displayStyle is the kind of display
specified by a styletype in the style section of a technology file (e.g., 7bit), and monitor-
Type is the type of the current monitor (e.g., std). If no arguments are given, the current
technology style, display style, and monitor type are used. The command

:load [techStyle displayStyle monitorType]

- 6 -

Magic Tutorial #5: Multiple Windows September 19, 1990

will load the color map from the file named techStyle.displayStyle.monitorType.cmap as
above. If no arguments are given, the current technology style, display style, and moni-
tor type are used. When loading color maps, Magic looks first in the current directory,
then in the system library.

- 7 -

Magic Tutorial #6: Design-Rule Checking

John Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

(Updated by others, too.)

This tutorial corresponds to Magic version 6.

Tutorials to read first:

Magic Tutorial #1: Getting Started
Magic Tutorial #2: Basic Painting and Selection
Magic Tutorial #4: Cell Hierarchies

Commands introduced in this tutorial:

:drc

Macro introduced in this tutorial:

y

1. Continuous Design-Rule Checking

When you are editing a layout with Magic, the system automatically checks design
rules on your behalf. Every time you paint or erase, and every time you move a cell or
change an array structure, Magic rechecks the area you changed to be sure you haven’t
violated any of the layout rules. If you do violate rules, Magic will display little white
dots in the vicinity of the violation. This error paint will stay around until you fix the
problem; when the violation is corrected, the error paint will go away automatically.
Error paint is written to disk with your cells and will re-appear the next time the cell is
read in. There is no way to get rid of it except to fix the violation.

Continuous design-rule checking means that you always have an up-to-date picture
of design-rule errors in your layout. There is never any need to run a massive check over
the whole design unless you change your design rules. When you make small changes to
an existing layout, you will find out immediately if you’ve introduced errors, without

- 1 -

Magic Tutorial #6: Design-Rule Checking September 19, 1990

having to completely recheck the entire layout.

To see how the checker works, run Magic on the cell tut6a. This cell contains
several areas of metal (blue), some of which are too close to each other or too narrow.
Try painting and erasing metal to make the error paint go away and re-appear again.

2. Getting Information about Errors

In many cases, the reason for a design-rule violation will be obvious to you as soon
as you see the error paint. However, Magic provides several commands for you to use to
find violations and figure what’s wrong in case it isn’t obvious. All of the design-rule
checking commands have the form

:drc option

where option selects one of several commands understood by the design-rule checker. If
you’re not sure why error paint has suddenly appeared, place the box around the error
paint and invoke the command

:drc why

This command will recheck the area underneath the box, and print out the reasons for any
violations that were found. You can also use the macro y to do the same thing. Try this
on some of the errors in tut6a. It’s a good idea to place the box right around the area of
the error paint: :drc why rechecks the entire area under the box, so it may take a long
time if the box is very large.

If you’re working in a large cell, it may be hard to see the error paint. To help
locate the errors, select a cell and then use the command

:drc find [nth]

If you don’t provide the nth argument, the command will place the box around one of
the errors in the selected cell, and print out the reason for the error, just as if you had
typed :drc why. If you invoke the command repeatedly, it will step through all of the
errors in the selected cell. (remember, the ‘‘.’’ macro can be used to repeat the last long
command; this will save you from having to retype :drc find over and over again). Try
this out on the errors in tut6a. If you type a number for nth, the command will go to the
nth error in the selected cell, instead of the next one. If you invoke this command with
no cell selected, it searches the edit cell.

A third drc command is provided to give you summary information about errors in
hierarchical designs. The command is

:drc count

This command will search every cell (visible or not) that lies underneath the box to see if
any have errors in them. For each cell with errors, :drc count will print out a count of
the number of error areas.

- 2 -

Magic Tutorial #6: Design-Rule Checking September 19, 1990

3. Errors in Hierarchical Layouts

The design-rule checker works on hierarchical layouts as well as single cells. There
are three overall rules that describe the way that Magic checks hierarchical designs:

[1] The paint in each cell must obey all the design rules by itself, without considering
the paint in any other cells, including its children.

[2] The combined paint of each cell and all of its descendants (subcells, sub-subcells,
etc.) must be consistent. If a subcell interacts with paint or with other subcells in a
way that introduces a design-rule violation, an error will appear in the parent. In
designs with many levels of hierarchy, this rule is applied separately to each cell
and its descendants.

[3] Each array must be consistent by itself, without considering any other subcells or
paint in its parent. If the neighboring elements of an array interact to produce a
design-rule violation, the violation will appear in the parent.

To see some examples of interaction errors, edit the cell tut6b. This cell doesn’t
make sense electrically, but illustrates the features of the hierarchical checker. On the
left are two subcells that are too close together. In addition, the subcells are too close to
the red paint in the top-level cell. Move the subcells and/or modify the paint to make the
errors go away and reappear. On the right side of tut6b is an array whose elements
interact to produce a design-rule violation. Edit an element of the array to make the vio-
lation go away. When there are interaction errors between the elements of an array, the
errors always appear near one of the four corner elements of the array (since the array
spacing is uniform, Magic only checks interactions near the corners; if these elements
are correct, all the ones in the middle must be correct too).

It’s important to remember that each of the three overall rules must be satisfied
independently. This may sometimes result in errors where it doesn’t seem like there
should be any. Edit the cell tut6c for some examples of this. On the left side of the cell
there is a sliver of paint in the parent that extends paint in a subcell. Although the overall
design is correct, the sliver of paint in the parent is not correct by itself, as required by
the first overall rule above. On the right side of tut6c is an array with spacing violations
between the array elements. Even though the paint in the parent masks some of the prob-
lems, the array is not consistent by itself so errors are flagged. The three overall rules are
more conservative than strictly necessary, but they reduce the amount of rechecking
Magic must do. For example, the array rule allows Magic to deduce the correctness of an
array by looking only at the corner elements; if paint from the parent had to be con-
sidered in checking arrays, it would be necessary to check the entire array since there
might be parent paint masking some errors but not all (as, for example, in tut6c).

Error paint appears in different cells in the hierarchy, depending on what kind of
error was found. Errors resulting from paint in a single cell cause error paint to appear in
that cell. Errors resulting from interactions and arrays appear in the parent of the
interacting cells or array. Because of the way Magic makes interaction checks, errors can
sometimes ‘‘bubble up’’ through the hierarchy and appear in multiple cells. When two
cells overlap, Magic checks this area by copying all the paint in that area from both cells
(and their descendants) into a buffer and then checking the buffer. Magic is unable to tell
the difference between an error from one of the subcells and an error that comes about
because the two subcells overlap incorrectly. This means that errors in an interaction

- 3 -

