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Unifi
ation Theory 4471. Introdu
tionUni�
ation is a fundamental pro
ess upon whi
h many methods for automated de-du
tion are based. Uni�
ation theory abstra
ts from the spe
i�
 appli
ations ofthis pro
ess: it provides formal de�nitions for important notions like instantiation,most general uni�er, et
., investigates properties of these notions, and provides andanalyzes uni�
ation algorithms that 
an be used in di�erent 
ontexts. In this intro-du
tory se
tion, we will �rst present the 
on
ept of uni�
ation in an informal way,then make some histori
al remarks on where uni�
ation was originally introdu
ed,and �nally explain our approa
h to writing this 
hapter.1.1. What is uni�
ation?Very generally speaking, uni�
ation tries to identify two symboli
 expressions byrepla
ing 
ertain sub-expressions (variables) by other expressions. To be more 
on-
rete, one usually 
onsiders terms that are built from fun
tion symbols (say f , a,and b, where f is binary and a; b are nullary) and variable symbols (say x andy). The uni�
ation problem for the terms s = f(a; x) and t = f(y; b) is 
on
ernedwith the following question: is it possible to repla
e the variables x; y in s and t byterms su
h that the two terms obtained this way are (synta
ti
ally) equal. In thisexample, if we substitute b for x and a for y, we obtain the uni�ed term f(a; b).This substitution is denoted as � := fx 7! b; y 7! ag, and its appli
ation to termsis written suÆx, i.e., s� = f(a; b) = t�. Note that di�erent o

urren
es of the samevariable in a uni�
ation problem must always be repla
ed by the same term. Forthis reason, the terms s0 = f(a; x) and t0 = f(x; b) 
annot be uni�ed sin
e thiswould require the o

urren
e of x in s0 to be repla
ed by b, and the o

urren
e ofx in t0 to be repla
ed by the di�erent 
onstant a.In most appli
ations of uni�
ation, one is not just interested in the de
isionproblem for uni�
ation, whi
h simply asks for a \yes" or \no" answer to the questionof whether two terms s and t are uni�able. If they are uni�able, one would like to
onstru
t a solution, i.e., a substitution that identi�es s and t. Su
h a substitutionis 
alled a uni�er of s and t. In general, a uni�
ation problem may have in�nitelymany solutions; e.g., f(x; y) and f(y; x) 
an be uni�ed by repla
ing x and y bythe same term s (and there are in�nitely many terms available). Fortunately, theappli
ations of uni�
ation in automated dedu
tion do not require the 
omputationof all uni�ers. It is suÆ
ient to 
onsider the so-
alled most general uni�er , i.e., auni�er su
h that every other uni�er 
an be obtained by instantiation. In the aboveexample, � := fx 7! yg is su
h a most general uni�er sin
e for all terms s we havefx 7! s; y 7! sg = �fy 7! sg. A uni�
ation algorithm should thus not only de
idesolvability of a given uni�
ation problem: if the problem is solvable, it should also
ompute a most general uni�er. As we will show, there exist very eÆ
ient algorithmsfor this purpose.Uni�
ation as des
ribed until now is 
alled synta
ti
 uni�
ation of �rst-orderterms. \Synta
ti
" means that the terms must be made synta
ti
ally equal, whereas



448 Franz Baader and Wayne Snyder\�rst-order" expresses the fa
t that we do not allow for higher-order variables, i.e.,variables for fun
tions. For example, the terms f(x; a) and g(a; x) obviously 
annotbe made synta
ti
ally equal by �rst-order uni�
ation. However, f(x; a) and G(a; x)
an be made equal by higher-order uni�
ation if G is a (higher-order) variable,whi
h may be repla
ed by f . We will not 
onsider higher-order uni�
ation in moredetail sin
e it is treated in [Dowek 2001℄ (Chapter 16 of this Handbook). However,equational uni�
ation|as opposed to synta
ti
 uni�
ation|of �rst-order terms willbe one of the most important topi
s of this 
hapter. Instead of requiring that theterms are made synta
ti
ally equal, equational uni�
ation is 
on
erned with mak-ing terms equivalent with respe
t to a 
ongruen
e indu
ed by 
ertain equationalaxioms E. In this 
ase, one talks about E-uni�
ation or uni�
ation modulo E. Forexample, if E = ff(a; a) � g(a; a)g, then the terms f(x; a) and g(a; x), whi
h arenot (synta
ti
ally) uni�able, are E-uni�able: for the substitution � := fx 7! ag, wehave f(x; a)� = f(a; a) =E g(a; a) = g(a; x)�, where =E denotes the equationaltheory indu
ed by E. For equational uni�
ation, things are not as ni
e as for syn-ta
ti
 uni�
ation. In fa
t, depending on the theory E in question, E-uni�abilitymay be unde
idable, and even if it is de
idable, solvable uni�
ation problems neednot have a most general E-uni�er. Resear
h on equational uni�
ation is, on theone hand, interested in 
lassifying equational theories of interest a

ording to theirbehavior in this respe
t. On the other hand, it develops general approa
hes andalgorithms that apply to whole 
lasses of theories.1.2. History and appli
ationsThe name \uni�
ation" and the �rst formal investigation of this notion is due toJ.A. Robinson [1965℄, who introdu
ed uni�
ation as the basi
 operation of his res-olution prin
iple, showed that uni�able terms have a most general uni�er, and de-s
ribed an algorithm for 
omputing this uni�er. In the propositional 
ase, the reso-lution prin
iple 
an be des
ribed as follows, see also [Ba
hmair and Ganzinger 2001℄(Chapter 2 of this Handbook). Assume that 
lauses C _p and C 0_:p have alreadybeen derived (where C;C 0 are sub-
lauses and p is a propositional variable). Thenone 
an also dedu
e C _C 0. In the �rst-order 
ase, the 
lauses one starts with may
ontain variables. Herbrand's famous theorem implies that �nitely many ground in-stan
es (i.e., instan
es obtained by substituting all variables by terms without vari-ables) are suÆ
ient to show unsatis�ability of a given unsatis�able set of 
lauses bypropositional reasoning (e.g., propositional resolution). The problem is, however, to�nd the appropriate instantiations. Early theorem provers approa
hed this problemby a breadth-�rst enumeration of all possible ground instantiations, whi
h led to animmediate 
ombinatorial explosion [Robinson 1963℄. Theorem provers based on theresolution prin
iple need not sear
h blindly for the right instantiations: they 
an
ompute them via synta
ti
 uni�
ation. For example, assume the 
lauses C _ P (s)and C 0_:P (t) are given. Obviously, the resolution rule applies to ground instan
esof these 
lauses i� in these instan
es the predi
ate P 
ontains the same term, i.e., i�the substitution used in the instantiation pro
ess is a (synta
ti
) uni�er of s and t.



Unifi
ation Theory 449Instead of using all ground uni�ers for instantiation, Robinson proposed to lift theresolution prin
iple to terms with variables, and apply only the most general uni�er� of s and t. In the example, this yields the resolvent (C _C 0)�. The 
ompletenessproof for propositional resolution 
an be lifted to non-ground resolution by usingthe fa
t that every ground uni�er of s; t is an instan
e of the most general uni�er.In fa
t, the notion \most general uni�er" was de�ned in this way just to make thislifting possible.Similar ideas for determining appropriate instantiations have been proposed priorto Robinson by Post, Herbrand [1930a, 1930b, 1967, 1971℄ (in the investigation ofhis property A), Prawitz [1960℄, and Guard [1964, 1969℄. However, in this previouswork, the notions \uni�
ation" and \most general uni�er" are not singled out asinteresting 
on
epts of their own (they don't even re
eive a name). Prawitz only
onsiders the fun
tion-free 
ase (in whi
h uni�
ation is rather trivial), and Herbrandalso �rst presents his approa
h for this restri
ted 
ase. The des
ription by Herbrandof the uni�
ation algorithm for the general 
ase (whi
h appears to be the �rstpublished a

ount of su
h an algorithm, and whi
h is similar to the transformation-based algorithm by Martelli and Montanari [1982℄) is rather informal, and there isno proof of 
orre
tness.1The notions \uni�
ation" and \most general uni�er" were independently re-invented by Knuth and Bendix [1970℄ as a tool for testing term rewriting systemsfor lo
al 
on
uen
e by 
omputing 
riti
al pairs. Again, the de�nition of the mostgeneral uni�er makes sure that every 
riti
al situation is an instan
e of a 
riti
alpair, and thus it is suÆ
ient to test the 
riti
al pairs for 
on
uen
e, see [Dershowitzand Plaisted 2001℄ (Chapter 9 of this Handbook). Equational uni�
ation was intro-du
ed both in resolution-based theorem proving and in term rewriting as a meansfor treating 
ertain troublesome equational axioms (like asso
iativity and 
ommu-tativity) in a spe
ial manner. In automated theorem proving, it qui
kly be
ameapparent that the equality relation requires a spe
ial treatment (see [Degtyarev andVoronkov 2001a, Nieuwenhuis and Rubio 2001℄, Chapters 10 and 7 of this Hand-book), sin
e a simple integration of axioms that des
ribe the properties of equality(in prin
iple, being a 
ongruen
e relation) often leads to an una

eptable in
rease inthe sear
h spa
e. Whereas the �rst approa
hes providing su
h a spe
ial treatmentof equality repla
ed only the axiomatization of equality by spe
ial inferen
e rules,Plotkin [1972℄ proposed to go one step further. In his approa
h, also 
ertain axiomsthat use equality (like f(x; y) � f(y; x) and f(f(x; y); z) � f(x; f(y; z))) 
an bebuilt into the inferen
e rule (namely resolution). This is a
hieved by repla
ing theuse of synta
ti
 uni�
ation in the resolution step by equational uni�
ation, i.e.,uni�
ation modulo the equational theory indu
ed by the axioms to be built in.In term rewriting, axioms like 
ommutativity (i.e., f(x; y) � f(y; x)) 
annot beoriented into terminating rewrite rules. One way of solving this problem is to takesu
h non-orientable identities 
ompletely out of the rewrite pro
ess, and perform1Stri
tly speaking, Herbrand's uni�
ation algorithm is not an algorithm for simple synta
ti
uni�
ation, but an algorithm for uni�
ation with so-
alled linear 
onstant restri
tions (see se
-tion 3.3.2). This is due to the fa
t that he does not Skolemize his formulae, and thus he has bothuniversal and existential quanti�ers in the quanti�er pre�x.
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t to the remaining (orientable) rules modulo the unorientedones. In this setting, 
riti
al pairs must now be 
omputed by equational uni�
ation,i.e., modulo the unoriented identities, see, e.g., [Peterson and Sti
kel 1981, Jouan-naud and Kir
hner 1986℄ and [Dershowitz and Plaisted 2001℄ (Chapter 9 of thisHandbook).1.3. Approa
hThis 
hapter is not intended to give a 
omplete 
overage of all the results obtained inuni�
ation theory (see the overview arti
les [Jouannaud and Kir
hner 1991, Baaderand Siekmann 1994℄ for this purpose). Instead we try to 
over a number of signi�
anttopi
s in more detail. This should give a feeling for uni�
ation resear
h and itsmethodology, provide the most important referen
es, and enable the reader to studyre
ent resear
h papers on the topi
.Notational and typographi
 
onventionsWe will try to keep as 
lose as possible to the typographi
 
onventions introdu
edby Dershowitz and Jouannaud [1991℄, whi
h they also used in their survey arti
le onrewrite systems [Dershowitz and Jouannaud 1990℄. In parti
ular, substitutions arewritten in suÆx notation (i.e., s� instead of �(s)), and 
onsequently 
ompositionof substitution should be read from left to right (i.e., �� means: �rst apply � andthen �).Equational axioms (written s � t) that de�ne equational theories will be 
alled\identities," whereas uni�
ation problems 
onsist of \equations" (written s=? t forsynta
ti
 uni�
ation and s=?E t for uni�
ation modulo E). Thus, identities musthold, whereas equations must be solved.2. Synta
ti
 uni�
ationAs mentioned earlier, synta
ti
 uni�
ation of �rst-order terms was introdu
ed byPost and Herbrand in the early part of this 
entury. Various resear
hers have studiedthe problem further [Champeaux 1986, Corbin and Bidoit 1983, Huet 1976, Martelliand Montanari 1982, Paterson and Wegman 1978, Robinson 1971, Venturini-Zilli 1975℄ and, among other results, it was shown that linear time algorithmsfor uni�
ation exist [Martelli and Montanari 1976, Paterson and Wegman 1978℄.The 
orresponding lower 
omplexity bound was shown by Dwork, Kanellakis andMit
hell [1984℄: the uni�
ation problem is log-spa
e 
omplete for P , the 
lass ofpolynomial-time solvable problems. In parti
ular, this implies that it is very un-likely that an eÆ
ient parallel uni�
ation algorithm exists.In this se
tion we review the major approa
hes to synta
ti
 uni�
ation.



Unifi
ation Theory 4512.1. De�nitionsA signature is a (�nite or 
ountably in�nite) set of fun
tion symbols F . We assumethe reader is familiar with the term algebra T (F ;V) generated by a signaturefun
tion symbols F and a (
ountably) in�nite set of variables V ; we shall 
all theseF-terms , or simply terms when F is unimportant, and denote them by the lettersl, r, s, t, u, and v. Variables will be denoted by w, x, y, and z. The set of variableso

urring in a term t will be denoted by Vars(t), and this will be extended to setsof variables, equations, and sets of equations.A substitution is a mapping from variables to terms whi
h is almost everywhereequal to the identity, and will generally be represented by �, �, �, or �. The identitysubstitution is represented by Id . The appli
ation of a substitution � to a term t,denoted t�, is de�ned by indu
tion on the stru
ture of terms:t� := ( x� if t = x,f(t1�; : : : ; tn�) if t = f(t1; : : : ; tn).In the se
ond 
ase of this de�nition, n = 0 is allowed: in this 
ase, f is a 
onstantsymbol and f� = f . Substitutions 
an also be applied to sets of terms, equations,and sets of equations, in the obvious fashion.For a substitution �, the domain is the set of variablesDom(�) := fx jx� 6= x g;the range is the set of termsRan(�) := [x2Dom(�)fx�g;and the set of variables o

urring in the range is VRan(�) := Vars(Ran(�)):A substitution 
an be represented expli
itly as a fun
tion by a set of bindings ofvariables in its domain, e.g., fx1 7! s1; : : : ; xn 7! sn g:The restri
tion of a substitution � to a set of variables X , denoted by �jX , isthe substitution whi
h is equal to the identity everywhere ex
ept over X \Dom(�),where it is equal to �. Composition of two substitutions is written ��, and is de�nedby t�� = (t�)�:An algorithm for 
onstru
ting the 
omposition �� of two substitutions representedas sets of bindings is as follows:1. Apply � to every term in Ran(�) to obtain �1;2. Remove from � any binding x 7! t, where x 2 Dom(�), to obtain �1;3. Remove from �1 any trivial binding x 7! x, to obtain �2; and



452 Franz Baader and Wayne Snyder4. Take the union of the two sets of bindings �2 and �1.It is also useful to be able to represent substitutions in their triangular form asa sequential list of bindings, e.g.,[x1 7! t1; x2 7! t2; : : : ; xn 7! tn ℄;whi
h represents the 
omposition of n substitutions ea
h 
onsisting of a singlebinding: fx1 7! t1 gfx2 7! t2 g : : : fxn 7! tn g:A substitution is idempotent if �� = �; it is easy to show that this is true i�Dom(�) \ VRan(�) = ;.A variable renaming substitution is de�ned as a substitution � su
h thatDom(�) = Ran(�). (For example, fx 7! y; y 7! z; z 7! xg is a variable renam-ing, whereas fx 7! yg and fy 7! z; x 7! zg are not.) For any su
h variable renaming� = fx1 7! y1; : : : ; xn 7! yng, we denote its inverse fy1 7! x1; : : : ; yn 7! xng by ��1.Two substitutions are equal, denoted � = �, if x� = x� for every variable x. Wesay that � is more general than �, denoted � �� �, if there exists an � su
h that� = ��. The relation�� is 
alled the instantiation quasi-ordering. The 
orrespondingequivalen
e relation (i.e., �� \ ��) is denoted by �=; it 
an be shown [Lassez, Maherand Mariott 1987℄ that � �= � i� there exists some variable renaming � su
h that� = ��.2.1. Definition. A substitution � is a uni�er of two terms s and t if s� = t�; itis a most general uni�er (or mgu for short), if for every uni�er � of s and t, � �� �.A uni�
ation problem for two terms s and t is represented by s=? t.A multiset is an unordered 
olle
tion with possible dupli
ate elements. We denotethe number of o

urren
es of an obje
t x in a multiset M by M(x), and de�ne themultiset union M [N as the multiset Q su
h that Q(x) =M(x) +N(x) for everyx.2.2. Uni�
ation of termsIn this se
tion and the next, we present a series of algorithms for uni�
ation, ea
hof whi
h returns an mgu for two uni�able terms. Our approa
h will be two-sided:on the one hand we will present a series of pra
ti
al algorithms, from the \naive"to the more sophisti
ated (and faster), in pseudo-
ode suitable for implementing ina programming language; and on the other we will present a \rule-based" approa
hwhi
h serves to 
larify the essential properties of the pro
ess and also to prove the
orre
tness of some of the pra
ti
al algorithms.2.2.1. A naive algorithmThe simplest algorithm for uni�
ation is perhaps one that is taught in many intro-du
tory 
ourses in AI:



Unifi
ation Theory 453Write down two terms and set markers (e.g., two index �ngers) at the begin-ning of the terms. Then:1. Move the markers together, one symbol at a time, until both move o� the endof the term (su

ess!), or until they point to two di�erent symbols;2. If the two symbols are both non-variables, then fail; otherwise, one is a variable(
all it x) and the other is the �rst symbol of a subterm (
all it t):(a) If x o

urs in t, then fail;(b) Otherwise, write down \x 7! t" as part of the solution, repla
e x everywhereby t (in
luding in the solution), and return to (1).This simple algorithm methodi
ally �nds disagreements in the two terms to beuni�ed, and attempts to repair them by binding variables to terms: it fails whenfun
tion symbols 
lash, or when an attempt is made to unify a variable with aterm 
ontaining that variable (whi
h is impossible). Already present in this simplealgorithm are several interesting issues:Implementation: What data stru
tures should be used for terms and substitu-tions? How should appli
ation of a substitution be implemented? What ordershould the operations be performed in?Corre
tness: Does the algorithm always terminate? Does it always produ
e anmgu for two uni�able terms, and fail for non-uni�able terms? Do these answersdepend on the order of operations?Complexity: How mu
h spa
e does this take, and how mu
h time?In the remainder of this se
tion we will 
onsider these issues in detail while devel-oping our sequen
e of algorithms.2.2.2. Uni�
ation by re
ursive des
entIf we take our naive algorithm and implement it as simply as possible in a pro-gramming language, then we would represent terms using either expli
it pointerstru
tures (as in C or Pas
al) or built-in re
ursive data types (as in ML and Lisp),and represent substitutions as lists of pairs of terms. Appli
ation of a substitutionwould involve 
onstru
ting a new term or repla
ing a variable with a new term.The left-to-right sear
h for disagreements would then be implemented by re
ursivedes
ent through the terms as shown in Figure 1.(In an a
tual implementation, the 
ase \Unify( t, s )" 
ould be moved up beforethe �rst \else if" and simply swap s and t if the former is not a variable.) Theonly detail that might 
ause some 
onfusion is the exa
t method for implementingthe 
omposition in the last line. This was des
ribed in se
tion 2.1; however, inour naive uni�
ation algorithm, we omitted the se
ond and third steps from theinformal algorithm for 
omposition, and this may be done as well here, due to asimple but important fa
t about these algorithms: when a binding x 7! t is 
reatedand applied, x will never appear in another term 
onsidered by the algorithm|xhas been \eliminated" and o

urs only on
e, in the solution.This algorithm is essentially the one �rst des
ribed by Robinson [1965℄, and hasbeen almost universally used in symboli
 
omputation systems.



454 Franz Baader and Wayne Snyderglobal � : substitution; f Initialized to Id gUnify( s : term; t : term )beginif s is a variable then f Instantiate variables gs := s�;if t is a variable thent := t�;if s is a variable and s = t thenf Do nothing gelse if s = f(s1; : : : ; sn) and t = g(t1; : : : ; tm) for n;m � 0 then beginif f = g thenfor i := 1 to n doUnify( si, ti );else Exit with failure f Symbol 
lash gendelse if s is not a variable thenUnify( t, s );else if s o

urs in t thenExit with failure; f O

urs 
he
k gelse � := �fs 7! tg;end; Figure 1: Uni�
ation by re
ursive des
ent
2.2.3. A rule-based approa
h UIn order to explore some of the logi
al properties of this algorithm, we now presenta simple inferen
e system for deriving solutions for uni�
ation problems.An idempotent substitution fx1 7! t1; : : : ; xn 7! tng may be represented by a setof equations fx1 � t1; : : : ; xn � tng in solved form, i.e., where ea
h xi has a singleo

urren
e in the set. For any idempotent substitution �, the 
orresponding solvedform set will be denoted by [�℄, and for any set of equations S in solved form, the
orresponding substitution will be denoted by �S.A system is either the symbol ? (representing failure) or a pair 
onsisting of amultiset P of uni�
ation problems and a set S of equations in solved form. Wewill use � to denote an arbitrary system. A substitution is said to be a uni�er (orsolution) of a system P ;S if it uni�es ea
h of the equations in P and S; the system? has no uni�ers.The inferen
e system U 
onsists of the following transformations on systems:22The symbol [ below when applied to P is multiset union.
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ation Theory 455Trivial: fs ?= sg [ P 0;S =) P 0;SDe
omposition:ff(s1; : : : ; sn) ?= f(t1; : : : ; tn)g [ P 0;S =) fs1 ?= t1; : : : ; sn ?= tng [ P 0;S(Note that possibly n = 0.)Symbol Clash: ff(s1; : : : ; sn) ?= g(t1; : : : ; tm)g [ P 0;S =) ?if f 6= g.Orient: ft ?=xg [ P 0;S =) fx ?= tg [ P 0;Sif t is not a variable.O

urs Che
k: fx ?= tg [ P 0;S =) ?if x 2 Vars(t) but x 6= t.Variable Elimination:fx ?= tg [ P 0;S =) P 0fx 7! tg;Sfx 7! tg [ fx � tgif x 62 Vars(t).In order to unify s and t, we 
reate an initial system fs=? tg; ; and apply su

es-sively rules from U ; we show below that su
h a pro
ess must terminate, produ
inga terminal system (i.e., to whi
h no rule applies) in the form of ? or ;;S, where Sis a solved form system representing the mgu of s and t.The inferen
e system U is in essen
e the same algorithm for uni�
ation presentedby Herbrand (see Appendix 3 in [Herbrand 1971℄); more re
ently, this formulationof the uni�
ation pro
ess was introdu
ed by Martelli and Montanari [1982℄ and hasgained wide 
urren
y as a formalism for representing uni�
ation algorithms (see,for example, [Jouannaud and Kir
hner 1991, Snyder 1991℄).Before 
onsidering U per se, let us 
onsider how this set of transformations mightsimulate the a
tions of the re
ursive des
ent algorithm. Suppose we were to printout a tra
e of the terms s and t, and the global substitution �, just before the thirdif-statement in Unify, e.g.,



456 Franz Baader and Wayne Snyders1 t1 Ids2 t2 �2s3 t3 �3: : :This sequen
e 
an be simulated by a sequen
e of transformationsfs1=? t1g; ;=) fs2=? t2g [ P2;S2=) fs3=? t3g [ P3;S3=) : : :where ea
h si=? ti is the equation a
ted on by the rule, and ea
h �i is identi
alto �Si . Furthermore, if the 
all to Unify ends in failure, then the transformationsequen
e ends in ?; and if the 
all to Unify terminates with su

ess, with a globalsubstitution �n, then the transformation sequen
e ends in a system ;;S where�S = �n. This simulation 
an be a
hieved by treating the multiset P as a sta
k,always applying a rule to the top equation, and only using Trivial when s is avariable; there is only one possible rule to apply at ea
h step under this 
ontrolstrategy.Therefore, U 
an be viewed as an abstra
t version of the re
ursive des
ent algo-rithm, and 
an be used to prove its 
orre
tness. In fa
t, U has many interestingfeatures in its own right, as we now pro
eed to show.2.2.4. Te
hni
al results about UIn this se
tion we present a number of results about U , adapted from Martelli andMontanari [1982℄. Perhaps the simplest property to show is termination.2.2. Lemma. For any �nite multiset of equations P , every sequen
e of transforma-tions in U P ; ; =) P1;S1 =) P2;S2 =) : : :terminates either with ? or with ;;S, with S in solved form.Proof. De�ne a 
omplexity measure hn1; n2; n3i on multisets of equations, orderedby the (well-founded) lexi
ographi
 ordering on triples of natural numbers, wheren1 = The number of distin
t variables in P ;n2 = The number of symbols in P ; andn3 = The number of equations in P of the form t=? x, with t not a variable.Ea
h rule in U redu
es the 
omplexity of the problem P . Furthermore, any equationmust �t into one of the 
ases mentioned on the left-hand sides of the rules, so thata rule 
an always be applied to a system with non-empty P . Thus, a system towhi
h no rule applies must be in the form ? or ;;S. Sin
e whenever an equation isadded to S, the variable on the left-side is eliminated from the rest of the system,ea
h of the systems S1; S2; : : : ; S must be in solved form.Another interesting fa
t is that a solution � produ
ed by U is always idempotent.



Unifi
ation Theory 4572.3. Corollary. If P ; ; =)+ ;;S, then �S is idempotent.One of the most interesting features of U is that its rules do not 
hange the set ofuni�ers of a system. The main 
orre
tness results about U are essentially 
orollariesof this fa
t.2.4. Lemma. For any transformation P ;S =) �, a substitution � uni�es P ;S i�it uni�es �.Proof. The only non-trivial 
ases 
on
ern O

urs Che
k and Variable Elimination.If x o

urs in, but is not equal to, t, then 
learly x 
ontains fewer symbols than t;but then x� must also 
ontain fewer symbols than t�, so that x and t 
an have nouni�er.Regarding Variable Elimination, we know that x� = t�, from whi
h (by stru
turalindu
tion) we 
an show that u� = (ufx 7! tg)�for any term u, or indeed for any equation or multiset of equations. But thenP 0� = P 0fx 7! tg� and S� = Sfx 7! tg�from whi
h the result follows.The �rst of our major results about U shows that it does indeed produ
e a uni�er.2.5. Theorem. (Soundness) If P ; ; =)+ ;;S, then �S uni�es every equation inP .Proof. Note that �S uni�es S, be
ause it is idempotent; a simple indu
tion withlemma 2.4 shows that �S must unify the equations in P .Our se
ond major result shows that U is able to 
al
ulate anmgu for two uni�ableterms.2.6. Theorem. (Completeness) If � uni�es every equation in P , then any maximalsequen
e of transformations P ; ; =) : : :must end in some system ;;S su
h that �S �� �.Proof. Lemmas 2.2 and 2.4 show that su
h a sequen
e must end in some terminalsystem ;;S where � uni�es S. Now for every binding x 7! t in �S,x�S� = t� = x�;and for every x 62 Dom(�S), x�S� = x�, so that � = �S�.An immediate 
onsequen
e of these two results is the following.



458 Franz Baader and Wayne Snyder2.7. Corollary. If P has no uni�er, then any maximal transformation sequen
efrom P ; ; must have the form P ; ; =) : : : =) ?:The most interesting feature of this proof (and the reason for the emphasis on theword \any") is that the 
hoi
e of a rule to apply at any stage of the 
omputation isdon't 
are non-deterministi
, whi
h implies that any 
ontrol strategy will result inan mgu for two uni�able terms, and failure for two non-uni�able terms. Thus, anypra
ti
al uni�
ation algorithm whi
h pro
eeds by performing the atomi
 a
tions ofU , in any order, is sound and 
omplete, and in parti
ular it generates idempotentmgus for uni�able terms. However, some sequen
es of these basi
 operations maybe longer than others, or 
reate larger terms, and not all sequen
es end in the sameexa
t mgu. Before 
onsidering the issue of 
omplexity in detail, we digress for amoment to 
onsider this last point.2.2.5. Some properties of MGU'sTheorem 2.6 shows that any substitution produ
ed by U (or any algorithm that U
an simulate) is a 
ompa
t representation of the (in�nite) set of all uni�ers, whi
h
ould be generated by 
omposing all possible substitutions with the mgu. Thismeans that no information is lost in symboli
 
omputation systems (su
h as �rst-order theorem provers and logi
-programming interpreters) in solving a uni�
ationsubproblem and applying the solution to the rest of the 
omputation (this is whathappens, in fa
t, during the uni�
ation pro
ess itself).The inferen
e system U , starting from a single pair of terms s and t, 
ould produ
e(�nitely) many di�erent terminal forms, 
orresponding to distin
t mgus for s and t.What is the relationship of these distin
t mgus? Are there other mgus than these?Is there an in�nite number? The key to answering these questions lies in the 
on
eptof a variable renaming, de�ned in se
tion 2.1: if � and � are both mgus of s andt, then � �= �, i.e., they are instan
es of ea
h other, and hen
e � = �� for somevariable renaming � (for a proof, see [Lassez et al. 1987℄.)This means that the set of mgus of two terms 
an be generated from a single mgu,by 
omposition with variable renamings (whi
h is a spe
ial 
ase of the fa
t that theset of all uni�ers 
an be generated by 
omposition with arbitrary substitutions). Bysu
h an operation, it is possible to 
reate an in�nite number of idempotent mgusand an in�nite number of non-idempotent mgus; the �nite sear
h tree generated byU is not able to 
onstru
t any arbitrary mgu, nor even every idempotent mgu.An oft-repeated phrase in the literature states that \mgus are unique up torenaming"; the reader should now understand that this vague statement shouldmore properly be: \mgus are unique up to 
omposition with a variable renaming."This brief exposition of some of the important properties of mgus should 
onvin
ethe reader that the 
olle
tion of all uni�ers of two terms has non-trivial properties;later on in this 
hapter we shall examine the even more 
omplex 
ase of sets ofuni�ers for E-uni�
ation problems. For further 
hara
terizations of the set of mgusprodu
ed by U , and on uni�ers in general, see [Lassez et al. 1987, Eder 1985℄.
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ation Theory 4592.2.6. Complexity of re
ursive des
entThis se
tion will begin to 
onsider the 
omplexity of the uni�
ation pro
ess, a ques-tion whi
h will motivate the 
onsideration of further, more sophisti
ated algorithmsfor uni�
ation.The approa
hes to uni�
ation so far 
onsidered, unfortunately, 
an take expo-nential time and spa
e.2.8. Example. h(x1; x2; : : : ; xn; f(y0; y0); : : : ; f(yn�1; yn�1); yn)and h(f(x0; x0); f(x1; x1); : : : ; f(xn�1; xn�1); y1; : : : ; yn; xn)Unifying these two terms will 
reate an mgu where ea
h xi and ea
h yi is bound toa term with 2i+1�1 symbols. Clearly the problem is that the substitution 
ontainsmany dupli
ate 
opies of the same subterms. One idea that might help here wouldbe to represent substitutions as \triangular forms." Thus,[ y0 7! x0; yn 7! f(yn�1; yn�1); yn�1 7! f(yn�2; yn�2); : : :℄would be a triangular form uni�er of the two terms. Building up su
h a substitutionduring uni�
ation 
onsists of simply 
olle
ting a list of bindings; no dupli
ate termsare 
reated, and hen
e triangular form uni�ers 
an be no larger than the originalproblem.Unfortunately, this good idea is not suÆ
ient to res
ue the algorithm, as it ap-pears that substitution, and hen
e the dupli
ation of subterms, is ne
essary in theterms themselves: in the example, the 
all to Unify on the last arguments, xn andyn, whi
h by then are bound to terms with 2n+1� 1 symbols, will lead to an expo-nential number of re
ursive 
alls. The solution to this problem is to develop a moresubtle data stru
ture for terms, and a di�erent method for applying substitutions.2.3. Uni�
ation of term dagsIn this se
tion, we 
onsider two approa
hes to speeding up the uni�
ation pro
ess.The �rst approa
h, whi
h we adapt from Corbin and Bidoit [1983℄, �xes the problemof dupli
ation of subterms 
reated by substitution by using a graph representation ofterms whi
h 
an share stru
ture; this results in a quadrati
 algorithm. To develop anasymptoti
ally faster algorithm, however, it is ne
essary to abandon the re
ursivedes
ent approa
h, and re
ast the problem of uni�
ation as the 
onstru
tion of a
ertain kind of equivalen
e relation on graphs. This se
ond approa
h is due to Huet[1976℄.2.3.1. Term dags and substitutionCon
erning example 2.8, it should be remarked that the explosion in the size ofthe terms o

urred pre
isely be
ause there were dupli
ate o

urren
es of the same
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h 
ause a dupli
ation of ever larger and larger terms. In order to �xthis problem, it is ne
essary to 
onsider in detail how to represent terms as expli
itgraphs whi
h share subterms.2.9. Definition. A term dag is a dire
ted, a
y
li
 graph whose nodes are labeledwith fun
tion symbols, 
onstants, or variables, whose outgoing edges from any nodeare ordered, and where the outdegree of any node labelled with a symbol f is equalto the arity of f (variables have outdegree 0).In su
h a graph, ea
h node has a natural interpretation as a term, and we shallspeak of nodes and terms as if they were one and the same (e.g., a \node" f(a; x)is one labeled with f and having ar
s to nodes a and x). The only di�eren
e be-tween various dags representing a parti
ular term is the amount of stru
ture sharingamong the subterms. For example, we 
ould represent the term f(g(a; x); g(a; x))by any of the following dags:
a g ga xx f fg ga ax fga xAssuming that names of symbols are strings of 
hara
ters, it is possible to 
reate adag with unique, shared o

urren
es of variables in O(n), where n is the number ofall 
hara
ters in the string representation of a uni�
ation problem. For example, one
an use a trie to store the variable names when parsing the terms, so that dupli
ateo

urren
es of variables 
an be pointed to a unique, shared representation of thevariable. In the normal 
ase, names have a 
onstant size, and n just represents thenumber of symbols in the term; we make this assumption in what follows.Therefore, we assume that the input to our algorithm is a term dag representingthe two terms to be uni�ed, with unique, shared o

urren
es of all variables. Wealso assume that ea
h node t has an attribute parents(t) whi
h is a list of all parentsof t in the graph (i.e., all nodes p whi
h point to t), but do not show these in thediagrams below for simpli
ity. Parent pointers are ne
essary when sharing nodes inthe dag.A substitution involving only the subterms of a term dag 
an be representeddire
tly by a relation on the nodes of the dag , either stored expli
itly as a listof pairs of pointers to nodes, or by storing a link (we will 
all these substitutionar
s) in the graph itself, and maintaining a list of variables (nodes) bound by thesubstitution. Appli
ation of su
h a substitution 
an be impli
it or expli
it, the latterinvolving a
tual moving of subterm links. For example, two terms f(x; g(a)) andf(g(y); g(y)), and their mgu fx 7! g(a); y 7! a g 
an be represented by the dag :
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x g g gf f

a yThe impli
it appli
ation of a substitution identi�es two nodes 
onne
ted with asubstitution ar
, without a
tually moving any of the subterm links; the binding fora variable 
an be determined by traversing the graph depth �rst, left to right. Thisessentially represents the triangular form (e.g., [x 7! g(y); y 7! a ℄) in the dag . Weuse this form of substitution in the algorithm of se
tion 2.3.3.The expli
it appli
ation of a substitution expresses the substitution of bindingfor variable by moving any ar
 (subterm or substitution) pointing to a variable topoint to the binding. For example,x g g gf f
a yThis represents the \fun
tional" form fx 7! g(a); y 7! a g of the substitution in adire
t way. We shall use this expli
it form of appli
ation in the next algorithm.2.3.2. Re
ursive des
ent on term dagsIn this se
tion we present the �rst algorithm whi
h uses term dags. If we think abouttra
ing the operation of the re
ursive des
ent algorithm on this new data stru
ture,it might appear that the sour
e of exponential blowup has been removed, sin
esubstitution does not dupli
ate terms. However, it still may be possible to havedupli
ate 
alls to the same term; in example 2.8, for instan
e, the terms bound toxn and yn (see �g. 2) will be uni�ed when x0 is bound to y0; however, the re
ursivedes
ent algorithm will then blithely explore every other path through the pair ofterms, resulting in an exponential number of re
ursive 
alls.Clearly, we need to keep from revisiting already-solved problems in the graph.The best solution is simply to do stru
ture sharing \on the 
y" by merging uni�edterms (whi
h are, after all, now identi
al), and then 
he
king for identity of nodesin the �rst step. Merging two nodes s and t in a graph � 
an be implemented bymoving ar
s. Let parents(s) = fp1; : : : ; png; then1. For ea
h pi, repla
e the subterm ar
 pi �! s by pi �! t;2. Let parents(t) := parents(s) [ parents(t); and3. Let parents(s) := ;.This shares the stru
ture of t and isolates the node s. In the algorithm below, wewill denote by Repla
e(�, s, t) the new graph 
reated from a graph � by merging



462 Franz Baader and Wayne Snyderff...fx0 f
ff...
y0

xn ynxn�1x1 yn�1y1
Figure 2: A dag representation of the terms bound to xn and yn in example 2.8.s and t in this fashion.The algorithm takes as input a term dag in whi
h all o

urren
es of variablesare shared (i.e., ea
h variable o

urs exa
tly on
e). Even with these additions, ourre
ursive des
ent algorithm is mostly un
hanged:global � : termDag; f Term dag for s and t with shared variables gglobal � : list of pairs of nodes; f Initialized to empty gUnifyDag( s : node; t : node )beginif s and t are the same node thenf Do nothing gelse if s = f(s1; : : : ; sn) and t = g(t1; : : : ; tm) then beginif f = g thenfor i := 1 to n doUnifyDag( si, ti );else Exit with failure f Symbol 
lash gendelse if s is not a variable thenUnify( t, s );else if s o

urs in t thenExit with failure; f O

urs 
he
k gelseAdd (s; t) to the end of the list �;� := Repla
e(�, s, t); f Sin
e they are now uni�ed gend;The o

urs 
he
k is implemented as a standard graph traversal to sear
h for thegiven node s below t by following subterm ar
s.
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ation Theory 463The 
orre
tness of the data stru
ture for this algorithm is dependent on thefollowing result from Corbin and Bidoit [1983℄, whi
h 
an be proved by indu
tionon the dag .2.10. Lemma. Let � be a term dag with nodes x and t su
h that there is no pathfrom t to x.� Repla
e(�, x, t) is an a
y
li
 graph 
ontaining the same nodes (with the samelabels) as �.� Consider a distinguished node in � 
orresponding to the term s, and let s0 bethe term 
orresponding to the same node in Repla
e(�, x, t); then:{ if s = x, then s0 = x;{ otherwise, s0 = sfx 7! tg.In order to prove soundness and 
ompleteness, we may again show that U 
an\tra
e" the terms in ea
h 
all to UnifyDags, the only di�eren
e being that whenTrivial is used, s may not ne
essarily be a variable (i.e., when UnifyDag is 
alled ontwo terms previously uni�ed, and hen
e shared as one node). From a logi
al pointof view (thinking in term of the symboli
 expressions being manipulated), nothinghas 
hanged|only the underlying data stru
ture for terms and substitutions.Thus, the only thing that remains to be 
onsidered is the 
omplexity of UnifyDag.Sin
e ea
h 
all to this fun
tion isolates a node, there 
an not be more than n 
allsin toto (where n is the number of symbols o

urring in the original terms). Ea
h
all does a 
onstant amount of work ex
ept for the o

urs 
he
k (whi
h traverses nomore than n nodes) and the moving of no more than n pointers. Maintaining thelists of parents 
osts O(n) at ea
h 
all. The original 
onstru
tion of the dag takesO(n). This results in a time 
omplexity of O(n2); 
learly the spa
e used is O(n).2.3.3. An almost-linear algorithmIt would be possible to speed up this algorithm by making 
hanges to the waysubstitutions are represented (see [Baader and Siekmann 1994℄), however, we willnow 
onsider an alternate approa
h whi
h gives more insight into the nature of uni-�
ation. This approa
h makes the following fundamental 
hanges to the approa
h
onsidered so far:� instead of re
ursive 
alls to pairs of subterms whi
h must be uni�ed, we willre
ast the problem as that of 
onstru
ting an equivalen
e relation whose 
lassesare terms that must be uni�ed;� substitution will (in some sense) be repla
ed by the union of equivalen
e 
lasses;and� the repeated 
alls to the o

urs 
he
k will be repla
ed by a single pass throughthe graph to 
he
k for a
y
li
ity.The term dag data stru
ture will be used for these algorithms as well, however, wewill not move pointers as in the last se
tion. Instead, we 
onsider the uni�
ationproblem as one involving the following relation on terms.



464 Franz Baader and Wayne Snyder2.11. Definition. A term relation is an equivalen
e relation on terms, and is ho-mogeneous if no equivalen
e 
lass 
ontains f(: : :) and g(: : :) with f 6= g; it is a
y
li
if no term is equivalent to a proper subterm of itself.A uni�
ation relation is a homogeneous, a
y
li
 term relation satisfying the uni-�
ation axiom: For any f and terms si and ti,f(s1; : : : ; sn) �= f(t1; : : : ; tn) �! s1 �= t1 ^ : : : ^ sn �= tn:The uni�
ation 
losure of s and t, when it exists, is the least uni�
ation relationwhi
h makes s and t equivalent.The algorithm presented in this se
tion takes its starting point from the followingfa
t.2.12. Lemma. If s and t are uni�able, then there exists a uni�
ation 
losure for sand t.Proof. For any uni�er � of s and t, de�ne the relationu �=� v i� u� = v�:Clearly this is a uni�
ation relation. Sin
e the interse
tion of two uni�
ation rela-tions relating s and t is again a uni�
ation relation relating s and t, whenever sand t are uni�able there is a least su
h relation �= whi
h joins 
lasses only whenfor
ed to apply the uni�
ation axiom to subterms of s and t.The uni�
ation-
losure approa
h to uni�
ation, �rst presented in [Huet 1976℄,attempts to 
onstru
t this relation on two terms, whi
h, as we shall show, 
orre-sponds to �nding an mgu. However, before presenting the algorithm, we need anumber of an
illary notions.2.13. Definition. For any term relation �=, let a s
hema fun
tion be a fun
tion &from equivalen
e 
lasses to terms su
h that for any 
lass C,1. &(C) 2 C; and2. &(C) is a variable only if C 
onsists entirely of variables.The term &(C) will be 
alled the s
hema term for C.The point here is that the s
hema term is a fun
tional form whenever su
h exists,and will be used to propagate information downward using the uni�
ation axiom; itis also used to de�ne substitutions. Note that s
hema fun
tions are not unique, butthere always exists at least one for any term relation; we assume in the followingthat su
h a fun
tion has been 
hosen for any given uni�
ation 
losure.Note that for any a
y
li
 term relation there exists a partial ordering � su
h thatfor any term f(: : : s : : :), we have [f(: : : s : : :)℄ � [s℄.2.14. Definition. For any uni�
ation 
losure �=, de�ne ��= by:x��= = ( y if &([x℄) = yf(s1��=; : : : ; sn��=) if &([x℄) = f(s1; : : : ; sn)
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ation Theory 465(This notion is well-de�ned by re
ursion on the partial order �; Dom(��=) is �nitebe
ause �= has only a �nite number of non-trivial equivalen
e 
lasses.)2.15. Theorem. Terms s and t are uni�able i� there is a uni�
ation 
losure for sand t. In the aÆrmative 
ase, ��= is an mgu for s and t.Proof. The only if dire
tion has been proved in our previous lemma. For the otherdire
tion, let �= be a uni�
ation 
losure for s and t. We 
laim that for every term u,u��= = &([u℄)��= (thus, ��= uni�es ea
h pair of equivalent terms, in parti
ular s andt), and pro
eed by indu
tion on the size of u. For the base 
ase, if u is a 
onstantor variable, then the result is trivial by the de�nition of ��=. Now suppose thatu = f(s1; : : : ; sn) and &([u℄) = f(t1; : : : ; tn); sin
e �= is 
losed under the uni�
ationaxiom, then for ea
h i, si �= ti, and thus by the indu
tion hypothesis, si��= = ti��=.To prove that ��= is an mgu in the aÆrmative 
ase, we show that for any uni�er�, we have u��=� = u� for any term u, and pro
eed by indu
tion on �. Assumethat �=� is as de�ned in the previous lemma. (In the following, & refers to some�xed s
hema fun
tion for ��=.) First, note that if u �= v, then u� = v�, sin
e �= is
ontained in �=�. Now, for the base 
ase, if [u℄ 
ontains only 
onstants and variables,then u��= = &([u℄) �= u, from whi
h it follows that u��=� = u�. For the indu
tionstep, it must be the 
ase that &([u℄) equals some f(s1; : : : ; sn), and u is either a termof the form f(t1; : : : ; tn), or is a variable x. In the �rst 
ase, u��=� = u� by a dire
tuse of the indu
tion hypothesis. In the se
ond 
ase, x��= = f(s1��=; : : : ; sn��=), andx� = f(s1; : : : ; sn)� (sin
e �= is 
ontained in �=�), so thatx� = f(s1�; : : : ; sn�) = f(s1��=�; : : : ; sn��=�) = f(s1��=; : : : ; sn��=)� = x��=�;the se
ond step involving the indu
tion hypothesis.This result motivates the design of an eÆ
ient uni�
ation algorithm whi
h at-tempts to build a uni�
ation 
losure for two terms, and then extra
ts the mgu.To do this, it is ne
essary to have some means for maintaining equivalen
e 
lassesand for applying the uni�
ation axiom to 
lasses; the most eÆ
ient data stru
turerepresents 
lasses as trees of 
lass pointers (whi
h we represent by dashed lines)with a 
lass representative at the root:t1 t4s2 u2t2 u3s1u1t3To determine whether two terms are equivalent, it is only ne
essary to �nd theroots of the trees and 
he
k for identity; and to join two 
lasses, one 
lass is made



466 Franz Baader and Wayne Snydera subtree of the other's root. To redu
e the height of the trees as mu
h as possible,two subtle re�nements are made: (i) maintain a 
ount of the size of ea
h 
lass inthe representative, and when joining 
lasses, make the smaller one a subtree of thelarger; and (ii) when following paths to the root to determine equivalen
e, 
ompressthe paths by pointing all nodes en
ountered dire
tly at the root. For example, ifwe wished to take the union of the two 
lasses [t3℄ and [u3℄, we would �nd therepresentatives for the two 
lasses, 
ompressing the path from t3, and then add a
lass link from the representative of the smaller 
lass to the larger:t1 t4s2 s1 t2 u2 u3u1 t3Su
h a data stru
ture 
an pro
ess a series of O(n) Unions and Finds in O(n�(n)),where � is the fun
tional inverse of A
kermann's fun
tion, and whi
h, for all pra
-ti
al purposes, may be 
onsidered as a small 
onstant fa
tor.The term dag for this approa
h needs no parent pointers, as in the previousalgorithm, but does need� 
lass pointers;� a 
ounter of the size of the 
lass stored in the representative;� a pointer from ea
h representative to the s
hema term for the 
lass;� boolean 
ags visited and a
y
li
 in ea
h node used in 
y
le 
he
king (bothinitialized to false);� a pointer vars from ea
h representative to a list of all variables in the 
lass(used when generating solutions).Note that maintaining lists of parents of ea
h node is not ne
essary in this algorithm.A representative is simply a node whose 
lass pointer points to itself. The algorithmbased on this approa
h may now be given. It is shown in Figures 3 and 4. The termdag � for s and t is initialized to the identity relation, where ea
h 
lass 
ontainsa single term; thus for ea
h node the 
lass and s
hema pointers are initialized topoint to the same node, and the size is initialized to 1. The vars list is initializedto empty for non-variable nodes, and to a singleton list for variable nodes.If Unify(s, t) does not fail, then � 
ontains a triangular form solution. Find-Solution attempts to �nd su
h a solution, and fails i� there exists a 
y
le in thegraph. (We are essentially traversing the 
ommon term s� by repla
ing s by itss
hema term in the �rst line.) The �elds visited and a
y
li
 are both ne
essary, the�rst to �nd a 
y
le in the 
urrent exploration path, and the se
ond to keep fromreexamining nodes whi
h have already been ex
luded from any possible 
y
les.The 
orre
tness of this method depends on verifying that it implements 
orre
tlythe 
onstru
tion of an a
y
li
 uni�
ation 
losure. The essential points are that� the equivalen
e is 
learly homogeneous;� equivalen
e 
lasses are joined i� required by the uni�
ation axiom, hen
e therelation is least ;
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ation Theory 467global � : termDag; f Term dag for s and t with shared variables gglobal � : list of bindings := nil; f Triangular form solution gUnify( s : node; t : node )beginUnifClosure(s, t);FindSolution(s);end;UnifClosure( s : node; t : node )begins := Find(s); f Find representatives gt := Find(t);if s and t are the same node thenf Do nothing gelse beginif &([s℄) = f(s1; : : : ; sn) and &([t℄) = g(t1; : : : ; tm) for n;m � 0then beginif f = g then beginUnion(s, t);for i := 1 to n doUnifClosure( si, ti );endelse Exit with failure f Symbol 
lash gendelse Union(s, t);end;end;Union( s : node; t : node ) f s and t are representatives gbeginif size(s) � size(t) then beginsize(s) := size(s) + size(t);vars(s) := 
on
atenation of lists vars(s) and vars(t);if &([s℄) is a variable then&([s℄) := &([t℄);
lass(t) := s;endelse beginsize(t) := size(t) + size(s);vars(t) := 
on
atenation of lists vars(t) and vars(s);if &([t℄) is a variable then&([t℄) := &([s℄);
lass(s) := t;end;end; Figure 3: Uni�
ation algorithm



468 Franz Baader and Wayne SnyderFind( s : node ) f Returns representative for [s℄ and 
ompresses paths gt : node;beginif 
lass(s) = s f s is a representative g thenReturn s;else begint := Find(
lass(s));
lass(s) := t;return t;end;end;FindSolution(s : node); f Fails if exists a 
y
le below s gbegin;s := &(Find(s));if a
y
li
(s) thenReturn; f s is not part of a 
y
le gif visited(s) thenFail; f Exists a 
y
le gif s = f(s1; : : : ; sn) for some n > 0 then beginvisited(s) := true;for i := 1 to n doFindSolution(si);visited(s) := false;end;a
y
li
(s) := true;forea
h x 2 vars(Find(s)) doif x 6= s thenAdd [x 7! s℄ to front of �;end; Figure 4: Uni�
ation algorithm, 
ontinued� FindSolution fails i� there is a 
y
le in the graph; and� whenever a binding [x 7! s℄ is added to �, all relevant bindings for variables ins already o

ur in �.The 
omplexity of the algorithm is O(n�(n)), as, with the ex
eption of Find,ea
h fun
tion 
an be 
alled at most n times for terms with n symbols, and ea
h 
allperforms a 
onstant amount of work (note that the work of 
on
atenating the varslists 
an be a

omplished in O(n) if pointers to the last 
ell in the list are kept,and 
on
atenation is performed by moving pointers rather than by the standardappend operation). The dominating 
ost is therefore the 
alls to Find, whi
h, asmentioned above, 
an 
ost O(n�(n)).Linear-time algorithms for uni�
ation have been presented by Paterson and Weg-man [1978℄ (
f. [Champeaux 1986℄) and Martelli and Montanari [1982℄, to whi
h



Unifi
ation Theory 469we refer the reader for further study.3. Equational uni�
ationLike synta
ti
 uni�
ation, equational uni�
ation is 
on
erned with the problem ofmaking terms equal by applying a suitable substitution. The only di�eren
e is thatsynta
ti
 equality is repla
ed by equality modulo an equational theory E. At �rstsight, one might think that this is minor 
hange, and that the notions and ap-proa
hes from synta
ti
 uni�
ation 
an easily be adapted to this new situation.It turns out, however, that equational uni�
ation requires some non-trivial adjust-ments of the basi
 notation. In parti
ular, the notion of a most general uni�er isno longer suÆ
ient for the purpose of representing all uni�ers sin
e there may existE-uni�able terms that do not have a most general E-uni�er. In the �rst subse
tion,we introdu
e the basi
 notions as they are 
urrently used in uni�
ation theory, andin the subsequent subse
tion, we point out some di�eren
es to the 
ase of synta
ti
uni�
ation, and explain the reason for introdu
ing the notions in this modi�ed way.The third subse
tion introdu
es order-theoreti
, logi
al, algebrai
, and 
ategory-theoreti
 reformulations of some of these notions. We 
on
lude the se
tion with ashort survey of results in uni�
ation theory. Some of these results will be treatedin more detail in subsequent se
tions.3.1. Basi
 notionsAn equational theory is de�ned by a set of identities E, i.e., a subset ofT (F ;V)� T (F ;V) for a signature F and a (
ountably in�nite) set of variablesV . It is the least 
ongruen
e relation on the term algebra T (F ;V) that is 
losed un-der substitution and 
ontains E, and it will be denoted by =E (see [Dershowitz andPlaisted 2001, page 575℄ (Chapter 9 of this Handbook) for a more detailed de�ni-tion of the relation =E). Identities are written in the form s � t. If s =E t, then wesay that the term s is equal modulo E to the term t. For example, let f be a binaryfun
tion symbol. The identity C := ff(x; y) � f(y; x)g says that f is 
ommuta-tive, and the identity A := ff(f(x; y); z) � f(x; f(y; z))g expresses asso
iativityof f . We have f(f(a; b); 
) =C f(
; f(b; a)), and f(a; f(x; b)) =A f(f(a; x); b). Inthe following, we will often slightly abuse the notion of an equational theory byalso 
alling a set of de�ning identities E an equational theory. For a given set ofidentities E, we denote by Sig(E) the set of all fun
tion symbols o

urring in E.3.1. Definition. Let E be an equational theory and F a signature 
ontainingSig(E). An E-uni�
ation problem over F is a �nite set of equations� = fs1 ?=E t1; : : : ; sn ?=E tngbetween F-terms with variables in a (
ountably in�nite) set of variables V . An E-uni�er of � is a substitution � su
h that s1� =E t1�; : : : ; sn� =E tn�. The set of



470 Franz Baader and Wayne Snyderall E-uni�ers of � is denoted by UE(�), and � is E-uni�able i� UE(�) 6= ;.Obviously, synta
ti
 uni�
ation is the spe
ial 
ase of this de�nition where E = ;.Any synta
ti
 uni�er of an E-uni�
ation problem � is also an E-uni�er, but forE 6= ;, the set UE(�) may have additional elements. For example, if a and b aredistin
t 
onstant symbols, then the C-uni�
ation problem ff(a; x)=?C f(b; y)g hasfx 7! b; y 7! ag as C-uni�er, whereas the terms f(a; x) and f(b; y) do not have asynta
ti
 uni�er. For the A-uni�
ation problem � := ff(a; x)=?A f(y; b)g, the setUA(�) 
ontains the synta
ti
 uni�er fx 7! b; y 7! ag of f(a; x) and f(y; b), but alsoadditional A-uni�ers su
h as fx 7! f(z; b); y 7! f(a; z)g.The instantiation quasi-ordering �� on substitutions is adapted to the 
ase ofequational uni�
ation as follows:3.2. Definition. Let E be an equational theory and X a set of variables. Thesubstitution � is more general modulo E on X than the substitution � i� thereexists a substitution � su
h that x� =E x�� for all x 2 X . In this 
ase we write� ��XE � and say that � is an E-instan
e of � on X .It is easy to see that ��XE is a quasi-ordering, i.e., a re
exive and transitive binaryrelation. The asso
iated equivalen
e is denoted by �=XE , i.e., � �=XE � i� � ��XE � and� ��XE �.When 
omparing E-uni�ers of a problem �, the set X is the set of all vari-ables o

urring in �. Unlike the 
ase of synta
ti
 uni�
ation, uni�able E-uni�
ationproblems need not have a most general E-uni�er. For example, the C-uni�
ationproblem ff(x; y)=?C f(a; b)g has the two C-uni�ers �1 := fx 7! a; y 7! bg and�2 := fx 7! b; y 7! ag. On Var(�) = fx; yg, any C-uni�er of � is equal to either�1 or �2, and �1 and �2 are not 
omparable w.r.t the instantiation quasi-ordering��fx;ygC . Consequently, there 
annot be a most general C-uni�er of �. Thus, the rôleof the most general uni�er must in general be taken on by a 
omplete set of uni�ers.3.3. Definition. Let � be an E-uni�
ation problem over F and let X := Var(�)be the set of all variables o

urring in �. A 
omplete set of E-uni�ers of � is a setC of substitutions su
h that1. C � UE(�), i.e., ea
h element of C is an E-uni�er of �,2. for ea
h � 2 UE(�) there exists � 2 C su
h that � ��XE �.The set C is a minimal 
omplete set of E-uni�ers of � i� it is a 
omplete set thatsatis�es3. two distin
t elements of C are in
omparable w.r.t. ��XE , i.e., for all �; �0 2 C,� ��XE �0 implies � = �0.The substitution � is a most general E-uni�er of � i� f�g is a (minimal) 
ompleteset of E-uni�ers of �.If the uni�
ation problem � is not E-uni�able, then the empty set is a minimal
omplete set of E-uni�ers of �. Depending on the equational theory E, minimal
omplete sets of E-uni�ers need not always exist, and even if they do, they may be



Unifi
ation Theory 471in�nite (see below). It is, however, easy to show that they are unique up to instan-tiation equivalen
e �=XE (see subse
tion 3.3.1). This makes sure that the followingde�nition of the uni�
ation type of an E-uni�
ation problem and of an equationaltheory E is unambiguous.3.4. Definition. Let E be an equational theory, and let � be an E-uni�
ationproblem over F . The problem � has type unitary (�nitary , in�nitary) i� it hasa minimal 
omplete set of E-uni�ers of 
ardinality 1 (�nite 
ardinality, in�nite
ardinality). If � does not have a minimal 
omplete set of E-uni�ers, then it is oftype zero. We abbreviate type unitary by 1, type �nitary by !, type in�nitary by1, and type zero by 0, and order these types as follows: 1 < ! <1 < 0.The uni�
ation type of E w.r.t. the signature F is the maximal type of an E-uni�
ation problem over F .A

ording to this de�nition, an equational theory that is unitary is not �nitary,and a theory of type zero is not in�nitary. In the literature, these notion havesometimes been de�ned su
h that unitary implies �nitary (i.e., unitary theories are aspe
ial 
ase of �nitary theories) and type zero implies in�nitary. We prefer a stri
terseparation between the types. In order to express that a theory is unitary or �nitary(in the sense of de�nition 3.4) we say that it is at most �nitary . Analogously, toexpress that a theory is in�nitary or of type zero we say that it is at least in�nitary .It should also be noted that the uni�
ation type of an equational theory dependsnot only on E, but also on the set of fun
tion symbols F that are allowed to o

urin the uni�
ation problems (see subse
tion 3.2.2 for more details). We provide anexample for ea
h of the four types.3.5. Example (unitary). Sin
e any uni�able uni�
ation problem has a most gen-eral synta
ti
 uni�er, the empty theory ; (whi
h obviously de�nes synta
ti
 equal-ity) has uni�
ation type unitary w.r.t. any signature F .3.6. Example (�nitary). Above, we have seen that 
ommutativity C is not unitarysin
e the C-uni�
ation problem ff(x; y)=?C f(a; b)g does not have a most generalC-uni�er. It is not hard to show that C is �nitary w.r.t. any signature F . In fa
t,the C-equivalen
e 
lass [t℄C := ft0 j t=C t0g of a given term t is easily shown to be�nite. For a given C-uni�
ation problem � = fs1=?C t1; : : : ; sn=?C tng, we 
onsiderall possible synta
ti
 uni�
ation problems of the form �0 = fs01=? t01; : : : ; s0n=? t0ngwhere si =C s0i and ti =C t0i for all i; 1 � i � n. There are only �nitely manysu
h sets �0, and it 
an be shown that the 
olle
tion of all the synta
ti
 mostgeneral uni�ers of these sets is a 
omplete set of C-uni�ers of � [Siekmann 1979℄.In most 
ases, this set is not minimal, but obviously a minimal 
omplete set 
an beobtained by eliminating redundant elements, i.e., elements that are C-instan
es ofother elements of the set.3.7. Example (in�nitary). Even though asso
iativity A is similar to C in that A-equivalen
e 
lasses are �nite, the uni�
ation method outlined for C does not work



472 Franz Baader and Wayne Snyderfor A. It is easy to see that the A-uni�
ation problem ff(a; x)=?A f(x; a)g has anin�nite minimal 
omplete set of A-uni�ers, namely f�n j n � 1g, where for ea
hn the substitution �n := fx 7! f(a; f(a; � � � ; f(a; a) � � �))g repla
es x by a term
ontaining n o

urren
es of the 
onstant a. Consequently, A 
annot be unitary or�nitary. Plotkin [1972℄ des
ribes a pro
edure that generates a minimal 
ompleteset of A-uni�ers of a given A-uni�
ation problem over an arbitrary set of fun
tionsymbols F , whi
h shows that A is in fa
t in�nitary and not of type zero.3.8. Example (zero). The �rst example of an equational theory of uni�
ationtype zero was des
ribed by Fages and Huet [1983℄ and [1986℄. In [Baader1986℄ it is shown that the theory of idempotent semigroups, i.e., AI := A [ff(x; x) � xg is of uni�
ation type zero sin
e the AI-uni�
ation problemff(x; f(y; x))=?AI f(x; f(z; x))g does not have a minimal 
omplete set of AI-uni�ers.This result was also shown by S
hmidt-S
hau� [1986b℄, but his example problemff(z; f(a; f(x; f(a; z))))=?AI f(z; f(a; z))g 
ontains an additional 
onstant a.For synta
ti
 uni�
ation, a \uni�
ation algorithm" is an algorithm that 
om-putes a most general (synta
ti
) uni�er of a given uni�
ation problem if it exists,and determines non-uni�ability otherwise. For equational uni�
ation, this notionmust be adapted. More pre
isely, we are interested in di�erent types of algorithms,depending on what the equational theory allows and what is needed in appli
ations.An E-uni�
ation algorithm (w.r.t. F) is an algorithm that 
omputes a �nite 
om-plete set of E-uni�ers for all E-uni�
ation problems over F . Ideally, the 
omputedsets should also be minimal. There are, however, theories for whi
h it is easier to
ompute a not ne
essarily minimal set (
ommutativity C is an example). We 
allan E-uni�
ation algorithm minimal i� it 
omputes a �nite minimal 
omplete setof E-uni�ers. As mentioned in example 3.6, an E-uni�
ation algorithm 
an alwaysbe turned into a minimal one by eliminating redundant uni�ers, provided that theE-instantiation quasi-ordering is de
idable.In appli
ations su
h as 
onstraint-based approa
hes to automated dedu
tionand rewriting (see [B�ur
kert 1991, Nieuwenhuis and Rubio 1994, Kir
hner andKir
hner 1989℄ and [Nieuwenhuis and Rubio 2001℄, Chapter 7 of this Handbook), itis not ne
essary to 
ompute 
omplete sets of uni�ers. Instead, it is suÆ
ient to testuni�
ation problems for uni�ability. An algorithm that is able to de
ide uni�abilityof E-uni�
ation problems (over F) is 
alled a de
ision pro
edure for E-uni�
ation(w.r.t. F). Obviously, any E-uni�
ation algorithm yields a de
ision pro
edure forE-uni�
ation sin
e a given E-uni�
ation problem � is uni�able i� the 
omputed�nite 
omplete set is nonempty.For theories that are not unitary or �nitary, the notion of an E-uni�
ation al-gorithm, as introdu
ed above, is not appropriate. A (minimal) E-uni�
ation pro-
edure is a pro
edure that enumerates a possibly in�nite (minimal) 
omplete setof E-uni�ers. The pro
edure by Plotkin [1972℄ mentioned in example 3.7 is a mini-mal A-uni�
ation pro
edure. An E-uni�
ation pro
edure need not yield a de
isionpro
edure for E-uni�
ation sin
e it need not terminate even if the input prob-lem does not have E-uni�ers. This is, e.g., the 
ase for Plotkin's pro
edure. A-
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ation Theory 473uni�
ation (more pre
isely, the question whether there exists an A-uni�er for agiven A-uni�
ation problem) is nevertheless de
idable, but this is a lot harder toshow [Makanin 1977℄ than designing a minimal A-uni�
ation pro
edure.3.2. New issuesThe notions introdu
ed above deviate in several respe
ts from the notions intro-du
ed for synta
ti
 uni�
ation. In this subse
tion, we point out the reasons whythis was ne
essary.3.2.1. The instantiation quasi-orderingFor synta
ti
 uni�
ation, the instantiation quasi-ordering�� was de�ned by � �� � i�there exists � su
h that � = ��. In the de�nition of the instantiation quasi-orderingfor E-uni�
ation, synta
ti
 equality is (quite naturally) repla
ed by equality mod-ulo E. What may seem less 
lear is why we have restri
ted this equality (moduloE) to the variables o

urring in the uni�
ation problem. Obviously, the orderingobtained this way is stronger than the one that requires equality on all variables(i.e., more substitutions are 
omparable). In appli
ations in automated dedu
tion,where substitutions generally have meaning only in the 
ontext of the expressions(i.e., uni�
ation problems) that produ
ed them, it is admissible to use an orderingthat 
ompares alternate solutions only with respe
t to this small set of variables.It is also advisable, as this stronger ordering allows for smaller minimal 
ompletesets. For example, the theory ACU := AC [ ff(x; e) = xg is known to be uni-tary w.r.t. F := ff; eg. If the weaker instantiation quasi-ordering (i.e., the one
omparing substitutions on all variables) were used, this would no longer be true[Baader 1991℄.Another di�eren
e between the equational 
ase and the synta
ti
 
ase 
on
ernsthe 
hara
terization of the instantiation equivalen
e �=. For E = ;, two substitutionsare instantiation equivalent i� they are equal up to 
omposition with a variablerenaming. It should be noted that this need no longer be the 
ase for E 6= ;,even if one repla
es \equal up to 
omposition with a variable renaming" by \equalmodulo E up to 
omposition with a variable renaming." For example, 
onsider theequational theory I := ff(x; x) � xg, and the substitutions � := fx 7! yg and� := fx 7! f(y; z)g. Using the substitutions �1 := fy 7! f(y; z)g and �2 := fy 7!y; z 7! yg, it is easy to show that � �=fxgE �. However, a variable renaming 
annotidentify y and z, and thus f(y; z)� 6=I y for every su
h renaming �.3.2.2. The signature mattersIn the de�nitions of E-uni�
ation problems, uni�
ation type, et
., we have alwaysexpli
itly stated whi
h fun
tion symbols may o

ur in the uni�
ation problems. Thereason is that the uni�
ation properties of an equational theory (like de
idability,uni�
ation type, et
.) may depend on this set of fun
tion symbols. In most 
ases,however, a less �ne-grained distin
tion is suÆ
ient. Re
all that Sig(E) denotes the
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tion symbols o

urring in the equational theory E.3.9. Definition. Let E be an equational theory and � an E-uni�
ation problemover F .� � is an elementary E-uni�
ation problem i� F = Sig(E).� � is an E-uni�
ation problem with 
onstants i� F nSig(E) is a set of 
onstantsymbols.� In a general E-uni�
ation problem, F nSig(E) may 
ontain arbitrary fun
tionsymbols.Following this distin
tion, we 
an introdu
e three di�erent uni�
ation types foran equational theory. The uni�
ation type of E w.r.t. elementary uni�
ation isthe maximal uni�
ation type of E w.r.t. all sets of fun
tion symbols F satisfyingF = Sig(E). A

ordingly, the uni�
ation type of E w.r.t. uni�
ation with 
onstantsis the maximal uni�
ation type of E w.r.t. all sets of fun
tion symbols F su
h thatF nSig(E) is a set of 
onstant symbols, and the uni�
ation type of E w.r.t. generaluni�
ation3 is the maximal uni�
ation type of E w.r.t. all signatures F . Obviously,the same distin
tion 
an be made for de
idability of E-uni�
ation, and for otherinteresting properties of E-uni�
ation problems. Constant (fun
tion) symbols thatdo not o

ur in E are 
alled free 
onstant (fun
tion) symbols w.r.t. E.The theory ACU introdu
ed above is an example of a theory that is unitaryfor elementary uni�
ation, but only �nitary for uni�
ation with 
onstants (see,e.g., [Herold and Siekmann 1987℄). B�ur
kert [1989℄ has shown that there exists anequational theory for whi
h elementary uni�
ation is de
idable, but uni�
ation with
onstants is unde
idable.Appli
ations of equational uni�
ation in automated dedu
tion usually yield gen-eral uni�
ation problems. For example, in resolution-based theorem proving, theadditional free fun
tion symbols are often generated by Skolemization.From a stri
tly formal point of view, the de�nition of an E-uni�er (see de�ni-tion 3.1) is ambiguous sin
e it does not spe
ify over whi
h signature the terms thatare substituted for the variables may be built. By default, we have assumed thatthis set is the set F , whi
h 
ontains all fun
tion symbols o

urring in E or �. Onemight ask whether there would be a signi�
ant di�eren
e if we allowed the substi-tutions to introdu
e additional free fun
tion symbols. It is easy to show, however,that there is no su
h di�eren
e sin
e any E-uni�er of � that introdu
es additionalfree fun
tion symbols is an instan
e of an E-uni�er that uses only symbols from F :this more general uni�er 
an, in prin
iple, be obtained by repla
ing subterms start-ing with su
h additional fun
tion symbols by new variables, while taking 
are that=E-equal subterms are repla
ed by the same variable. Thus, if we restri
t the setof E-uni�ers to substitutions over F , we obtain a 
omplete set of E-uni�ers evenw.r.t. substitutions over larger signatures. This justi�es the (formally somewhatsloppy) de�nition of the set of E-uni�ers given above.3It should be noted that this use of the term \general uni�
ation" is distin
t from the onein [Gallier and Snyder 1989, Snyder 1991℄, where it refers to methods that provide uni�
ationpro
edures for arbitrary equational theories (see se
tion 4.1).
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ation Theory 4753.2.3. Single equations versus systems of equationsFor synta
ti
 uni�
ation, solving a system of term equations 
an be redu
ed tosolving a single equation s=? t. For this reason, synta
ti
 uni�
ation is sometimesonly 
onsidered for single equations. For equational uni�
ation, the same holds ifone 
onsiders general uni�
ation. In fa
t, if f 2 F is an n-ary fun
tion symbol not
ontained in Sig(E), then the E-uni�
ation problem fs1=?E t1; : : : ; sn=?E tng overF has the same set of uni�ers as ff(s1; : : : ; sn)=?E f(t1; : : : ; tn)g.For elementary uni�
ation and for uni�
ation with 
onstants, however, there maybe signi�
ant di�eren
es. For example, there exists an equational theory E su
hthat all elementary E-uni�
ation problems of 
ardinality 1 (i.e., single equations)have minimal 
omplete sets of E-uni�ers, but E is of type zero w.r.t. elementaryuni�
ation sin
e there exists an elementary E-uni�
ation problem of 
ardinality2 that does not have a minimal 
omplete set of E-uni�ers [B�ur
kert, Herold andS
hmidt-S
hau� 1989℄. Narendran and Otto [1990℄ give an example of a theory su
hthat uni�ability of elementary uni�
ation problems of 
ardinality 1 is de
idable, butuni�ability is unde
idable for elementary uni�
ation problems of larger 
ardinality.3.3. ReformulationsIn this subse
tion, we 
onsider reformulations of (some of) the notions introdu
edabove from an order-theoreti
, logi
al, algebrai
, and 
ategory-theoreti
 point ofview. This will shed a new light on the notions, and it allows us to utilize approa
hesand results from the respe
tive areas in uni�
ation theory.3.3.1. The order-theoreti
 point of viewLet E be an equational theory and � an E-uni�
ation problem with variablesX := Var(�). We know that the relation ��XE is a quasi-ordering on UE(�) withasso
iated equivalen
e relation �=XE . Thus, ��XE indu
es a partial ordering � on theset U := f[�℄ j � 2 UE(�)g of all �=XE -
lasses [�℄ := f� j � �=XE �g:[�℄ � [�℄ i� � ��XE �:This allows us to investigate notions like 
omplete and minimal 
omplete sets ofE-uni�ers on the abstra
t order-theoreti
 level.Thus, let (U;�) be an arbitrary partially ordered set. A subset C of U is 
alled
omplete i� for all u 2 U there exists 
 2 C su
h that su
h that 
 � u. A 
ompleteset C is 
alled minimal i� it is minimal with respe
t to set in
lusion.3.10. Lemma. The 
omplete set C � U is minimal i� for all x; y 2 C, x � yimplies x = y.Proof. If the elements x; y of the 
omplete set C satisfy x < y, then C nfyg is also
omplete, whi
h shows that C is not minimal. Conversely, if C1; C2 are 
ompletesets su
h that C1 � C2, then there exists y 2 C2 n C1. Sin
e C1 is 
omplete, thereexists x 2 C1 su
h that x � y, and sin
e y 62 C1, we have x 6= y.
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ribes the 
onne
tion between minimal 
omplete setsand minimal elements in partially ordered sets.3.11. Lemma. Let M be the set of �-minimal elements of U .1. If C � U is a minimal 
omplete set, then C =M .2. If M is 
omplete, then it is minimal 
omplete.Proof. The se
ond statement is obvious, sin
e di�erent �-minimal elements of U
annot be 
omparable w.r.t. �. To show the �rst statement, let C � U be a minimal
omplete set. Obviously, M � C sin
e any �-minimal element must be 
ontainedin a 
omplete set. To see the other in
lusion, assume that y 2 C is not minimal.Thus, there exists an element y0 2 U su
h that y0 < y. Sin
e C is 
omplete, thereexists x 2 C su
h that x � y0. Thus, we have x; y 2 C with x < y, whi
h showsthat C 
annot be minimal.Figure 5 shows (the Hasse diagrams of) two partially ordered sets. The left one
onsists of an in�nitely des
ending 
hain x1 > x2 > x3 > � � �. Consequently, theset of �-minimal elements is empty, and thus not 
omplete. The right one also
ontains an in�nitely des
ending 
hain (
onsisting of the elements y1; y2; : : :), butthe set of �-minimal elements (the elements z1; z2; : : :) is obviously 
omplete. Ifx1x2x3x5...x4
y1y2y3y5...y4

z1z2z3z5z4...Figure 5: Two partially ordered sets.U = f[�℄ j � 2 UE(�)g is the set of �=XE -
lasses of E-uni�ers of �, and � is thepartial ordering on U indu
ed by��XE , then lemma 3.11 yields a ni
e 
hara
terizationof all minimal 
omplete sets of E-uni�ers. If M is a subset of U , then a set ofrepresentatives of M is any subset of UE(�) that 
ontains for ea
h 
lass m 2 Mexa
tly one representative, i.e., a uni�er �m su
h that [�m℄ = m.3.12. Theorem. LetM be the set of all �-minimal elements of U . If C is a minimal
omplete set of E-uni�ers of �, then M = f[�℄ j � 2 Cg. Conversely, if M is
omplete, then any set of representatives of M is a minimal 
omplete set of E-uni�ers of �.
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ation Theory 477As an immediate 
onsequen
e of this theorem we 
an dedu
e3.13. Corollary. Let M be the set of all �-minimal elements of U .1. A minimal 
omplete set of E-uni�ers of � exists i� M is 
omplete.2. If a minimal 
omplete set of E-uni�ers of � exists, then it is unique up to theequivalen
e �=XE .In [Baader 1989a℄, this order-theoreti
 point of view was used to derive di�erent
hara
terizations of uni�
ation type zero.3.3.2. The algebrai
 and logi
al point of viewIt is well known that the de
ision problems for elementary uni�
ation and for uni-�
ation with 
onstants 
orrespond to natural 
lasses of logi
al de
ision problems[Bo
kmayr 1992℄, and it turns out that the same is true for general uni�
ation.Before stating these logi
al 
hara
terizations of E-uni�
ation, we re
all someresults from universal algebra about equationally de�ned 
lasses (see, e.g., [Cohn1965, Mal'
ev 1971, Gr�atzer 1979℄ for more details). An equational theory E de�nesa variety (or equational 
lass) V (E), i.e., the 
lass of all models of E. The theoryE is 
alled non-trivial if V (E) 
ontains algebras of 
ardinality > 1, and trivialotherwise. Obviously, E is trivial i� x =E y for distin
t variables x; y. If E isa non-trivial equational theory, then V (E) 
ontains free algebras over any set ofgenerators. In fa
t, let F0 := Sig(E), and let X be a set of variables of 
ardinality�. Then the quotient term algebra T (F0;X )==E is a free algebra in V (E). Its setof generators 
onsists of the =E-
lasses of the variables, and this set has 
ardinality� sin
e E was assumed to be non-trivial. We 
all this algebra the E-free algebrawith generators X .4 The fa
t that it is free in V (E) means that any mapping fromX into an algebra A 2 V (E) 
an uniquely be extended to a homomorphism ofT (F0;X )==E into A.Now, we introdu
e the 
lasses of formulae that 
orrespond to equational uni�-
ation problems. Let E be an equational theory, and F0 := Sig(E) be the set offun
tion symbols o

urring in E. An atomi
 F0-formula is an equation s = t. Apositive F0-matrix is built from atomi
 F0-formulae using 
onjun
tion and disjun
-tion. A positive F0-senten
e is a quanti�er-pre�x followed by a positive F0-matrixthat 
ontains only variables introdu
ed in the pre�x. Without loss of generalitywe assume that the variables o

urring in the pre�x are all distin
t. A positiveexistential F0-senten
e is a positive F0-senten
e whose pre�x 
ontains only exis-tential quanti�ers, and a positive AE F0-senten
e has a pre�x 
onsisting of a blo
kof universal quanti�ers, followed by a blo
k of existential quanti�ers. The positive(positive existential, positive AE) fragment of the equational theory E 
onsists ofthe set of all positive (positive existential, positive AE) F0-senten
es that are validin E, i.e., true in all models of E. A

ordingly, for an F0-algebra A, the positive4Stri
tly speaking, the generators are the =E-
lasses of the elements of X , but sin
e di�erentvariables belong to di�erent 
lasses, we slightly abuse the notation by identifying a variable x 2 Xwith its =E-
lass.



478 Franz Baader and Wayne Snyder(positive existential, positive AE) theory of A is the set of all positive (positiveexistential, positive AE) F0-senten
es that are true in A.3.14. Theorem. Let E be a non-trivial equational theory, F0 := Sig(E), and V a
ountably in�nite set of variables.1. Elementary E-uni�
ation is de
idable i� the positive existential fragment of Eis de
idable i� the positive existential theory of T (F0;V)==E is de
idable.2. E-uni�
ation with 
onstants is de
idable i� the positive AE fragment of E isde
idable i� the positive AE theory of T (F0;V)==E is de
idable.Proof. (1.1) Let � := fs1=?E t1; : : : ; sn=?E tng be an elementary E-uni�
ationproblem, and let Var(�) = fx1; : : : ; xkg. The terms s1; t1; : : : ; sn; tn are F0-termswith variables in Var(�), whi
h implies that�� := 9x1: � � � 9xk: s1 = t1 ^ : : : ^ sn = tnis a positive existential F0-senten
e. We 
laim that � is E-uni�able i� �� holds inT (F0;V)==E i� �� is valid in E.Assume that � is an E-uni�er of �, i.e., s1� =E t1�; : : : ; sn� =E tn�. Withoutloss of generality we may assume that � introdu
es only variables from V . Thus, thesubstitution � may also be 
onsidered as a valuation of the variables fx1; : : : ; xkgby elements of T (F0;V)==E . Conversely, any su
h valuation 
an be seen as a sub-stitution. This shows that � is E-uni�able i� �� holds in T (F0;V)==E .If �� is valid in all models of E, it obviously holds in T (F0;V)==E 2 V (E).Conversely, assume that �� holds in T (F0;V)==E . If �� is not valid in E, then thereexists an algebra A 2 V (E) in whi
h �� does not hold. By the L�owenheim-Skolemtheorem, we may without loss of generality assume that A is 
ountable. Thus,there exists a surje
tive homomorphism from T (F0;V)==E onto A (extending anarbitrary surje
tion of X onto the 
arrier ofA). Sin
e validity of positive senten
es isinvariant under surje
tive homomorphisms,5 validity of �� in T (F0;V)==E 2 V (E)implies validity of �� in A, whi
h is a 
ontradi
tion.(1.2) Let � = 9x1: � � � 9xn:  be a positive existential F0-senten
e. Without lossof generality we may assume that its matrix  is in disjun
tive normal form, i.e., =  1 _ : : : _  n where the formulae  i are 
onjun
tions of equations. Sin
eexistential quanti�er distribute over disjun
tion, � is valid in E (in T (F0;V)==E )i� one of the formulae 9x1: � � � 9xn:  i is valid in E (in T (F0;V)==E). Obviously,the formulae  i 
an be translated into uni�
ation problems �i, and as in part (1.1)of the proof we 
an show that �i is uni�able i� 9x1: � � � 9xn:  i is valid in E (inT (F0;V)==E).(2) The se
ond equivalen
e 
an be shown as in part (1.1) of the proof (sin
e therewe have only used the fa
t that �� is a positive F0-senten
e).To see the �rst equivalen
e, assume that � is a positive AE senten
e. Skolemizingthe universally quanti�ed variables6 yields a positive existential (F0 [F1)-senten
e5See [Mal'
ev 1973℄, pp. 143, 144 for a proof.6We must Skolemize the universally quanti�ed variables sin
e we are interested in validityinstead of satis�ability.
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h that F1 is a set of 
onstants (not 
ontained in Sig(E)) and � is validin E i� �0 is valid in E. As in (1.2) of the proof, �0 
an be translated into E-uni�
ation problems � 0i su
h that �0 is valid in E i� one of these uni�
ationproblems is uni�able. Obviously, the problems � 0i are E-uni�
ation problem with
onstants sin
e they 
ontains the additional Skolem 
onstants F1. Conversely, anyE-uni�
ation problem with 
onstants 
an be turned into a positive AE senten
e byrepla
ing its free 
onstants by universally quanti�ed variables.The redu
tion des
ribed in part (1.2) of the proof is exponential in the worst 
asesin
e the disjun
tive normal form of the matrix  
an be exponential in the size of . For synta
ti
 equality (i.e., E = ;), it 
an be shown that the problem of de
idingvalidity of positive existential senten
es is NP-
omplete, whereas the 
orrespondinguni�
ation problem is linear [Kozen 1981℄.Before we state the analogous 
orresponden
e between general E-uni�
ation andthe (full) positive fragment of E, we introdu
e another 
lass of uni�
ation problems,whi
h turns out to be equivalent to general E-uni�
ation.3.15. Definition. An E-uni�
ation problem with linear 
onstant restri
tions (l
r)
onsists of an E-uni�
ation problem with 
onstants, �, and a linear ordering < onthe variables and free 
onstants o

urring in �. A substitution � is an E-uni�er of(�; <) i� it is an E-uni�er of � that satis�esx < 
 implies 
 does not o

ur in x�for all variables x and free 
onstants 
 in �.For example, the (synta
ti
) uni�
ation problem ff(x)=? f(
)g has fx 7! 
g asmost general uni�er. Under the restri
tion x < 
, this uni�er is not admissible.3.16. Theorem. Let E be a non-trivial equational theory, F0 := Sig(E), and V a
ountably in�nite set of variables. Then the following statements are equivalent:1. The positive theory of E is de
idable.2. The positive theory of T (F0;V)==E is de
idable.3. General E-uni�
ation is de
idable.4. E-uni�
ation with linear 
onstant restri
tions is de
idable.Proof.We only give a sket
h of the proof (see [Baader and S
hulz 1996℄ for details).In order to show (1), (2), it is suÆ
ient to show that a positive F0-senten
e �is valid in E i� it is true in T (F0;V)==E . This 
an be shown as in part (1.1) of theproof of theorem 3.14.A given positive senten
e � 
an be turned into a positive existential senten
e �0by Skolemization. As in part (2) of the proof of theorem 3.14, validity of �0 
an beredu
ed to validity of several E-uni�
ation problems, whi
h are general sin
e theymay 
ontain Skolem fun
tions of arbitrary arity. This shows (3)) (1).A given E-uni�
ation problem with linear 
onstant restri
tions (�; <) 
an betransformed into a positive F0-senten
e �<� as follows: the matrix of �<� is simply
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onjun
tion of all equations in �. However, the 
onstants in � are 
onsideredas variables in this matrix. The quanti�er-pre�x 
ontains a universal quanti�er forevery free 
onstant in �, and an existential quanti�er for every variable in �. Theorder of the quanti�ers is determined by the linear ordering <. It 
an be shownthat (�; <) is uni�able i� �<� is valid in E. This proves (1)) (4).Finally, (4)) (3) follows from the 
ombination result in [Baader and S
hulz 1996℄(see se
tion 6).The following example, in whi
h we assume E = ff(x) � f(x)g, illustrates thetransformation of an E-uni�
ation problem with linear 
onstant restri
tions into apositive senten
es, and of this positive senten
e into a general E-uni�
ation problem(by Skolemization).uni�
ation with l
r positive senten
e general uni�
ationfx=?E f(
)g; x < 
 9x:8y: x = f(y) fx=?E f(h(x))gfx := f(
)g; 
 < x 8y:9x: x = f(y) fx=?E f(d)gThe problem fx=?E f(
)g is not uni�able under the restri
tion x < 
, sin
e anyuni�er must repla
e x by f(
), whi
h 
ontains the forbidden 
onstant 
. The 
or-responding positive senten
e 9x:8y: x = f(y) is not valid sin
e it says that f isa 
onstant fun
tion, whi
h is not true in all models of E. Finally, the general E-uni�
ation problem fx=?E f(h(x))g, whi
h 
ontains the Skolem fun
tion h, is notuni�able sin
e one obtains an o

urs 
he
k failure. Changing the linear orderingto 
 < x leads to a uni�able uni�
ation problem with l
r, and the 
orrespondingpositive senten
e is trivially valid.3.3.3. The 
ategory-theoreti
 point of viewLet � := fsi=?E ti j i = 1; : : : ; ng be an E-uni�
ation problem over F , andX := Var(�) be the �nite set of variables o

urring in �. Sin
e all our 
al
u-lations are done modulo E, we may 
onsider the terms si and ti as elementsof T (F ;X )==E , the E-free algebra with generators X . For example, let F 
on-sist of a binary fun
tion symbol f , and let A axiomatize asso
iativity of f , i.e.,A := ff(x; f(y; z)) � f(f(x; y); z)g. The E-free algebra with generators X is thefree semigroup X+, whose elements are the nonempty words over the alphabet X .Instead of writing terms like f(x; f(y; f(x; x))) in A-uni�
ation problems, we 
anomit the parentheses and all o

urren
es of the letter f , and simply write wordslike xyxx.Also, sin
e the instantiation quasi-ordering 
ompares substitutions only on X andmodulo E, ea
h substitution 
an be seen as a homomorphism from T (F ;X )==E intoan E-free algebra T (F ;Y)==E , where Y is a suitable �nite set (of variables or gener-ators). For example, modulo A, the substitution � := fx 7! f(x; f(y; f(x; x))); y 7!f(y; z)g 
an be viewed as a homomorphism �: fx; yg+ ! fx; y; zg+ that maps x tothe word xyxx and y to the word yz.
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ation Theory 481The E-uni�
ation problem � itself 
an be represented as a pair of homomorphismsbetween �nitely generated E-free algebras. Indeed, let I := fx1; : : : ; xng be a setof 
ardinality n. If we de�ne �; � : T (F ; I)==E ! T (F ;X )==E byxi� := si and xi� := ti (i = 1; : : : ; n);then Æ: T (F ;X )==E ! T (F ;Y)==E is an E-uni�er of � i� xi�Æ = siÆ = tiÆ =xi�Æ,7 that is, i� �Æ = �Æ. Consequently, any E-uni�
ation problem over F 
an berepresented as a parallel pair of morphisms in the following 
ategory:83.17. Definition. Let E be an equational theory and F be a signature su
h thatSig(E) � F . The 
ategory CF (E) is de�ned as follows:1. The obje
ts of CF (E) are the �nitely generated E-free algebras T (F ;X )==E .2. The morphisms of CF (E) are the homomorphisms between these algebras. Fora morphism Æ: T (F ;X )==E ! T (F ;Y)==E , the algebra T (F ;X )==E is 
alledits domain, and the algebra T (F ;Y)==E its 
odomain.3. Composition �Æ of morphisms is the usual 
omposition of mappings, whi
h isonly de�ned if the 
odomain of � 
oin
ides with the domain of Æ.A uni�
ation problem in CF (E) is a pair h�; �i of morphisms �; � : T (F ; I)==E !T (F ;X )==E having the same domain and the same 
odomain. A uni�er of h�; �iin CF (E) is a morphism Æ with domain T (F ;X )==E su
h that �Æ = �Æ.The instantiation quasi-order, and the notions 
omplete and minimal 
ompleteset of uni�ers as well as most general uni�er 
an be adapted in an obvious way tothis view of E-uni�
ation as a problem in CF(E). For example, the morphism Æ isa most general uni�er of h�; �i i� it is a uni�er of h�; �i su
h that, for all uni�ers �of h�; �i, there exists a morphism � satisfying � = Æ�.Readers familiar with basi
 notions from 
ategory theory may have noti
ed thatthis de�nition of a most general uni�er of h�; �i strongly resembles the de�nition ofa 
oequalizer of a parallel pair of morphisms (i.e., a pair with the same domain andthe same 
odomain). The only di�eren
e is that for a most general uni�er of h�; �ito be a 
oequalizer, the morphism � su
h that � = Æ� must always be unique.It is easy to see that a most general uni�er of h�; �i need not be a 
oequalizer ofthis parallel pair. For example, the most general (synta
ti
) uni�er Æ := fy 7! xg ofthe equation f(x; y)=? f(y; x) 
an be viewed as a morphism ÆY : T (ffg; fx; yg)!T (ffg;Y) for any �nite set of variables Y 
ontaining x. All these morphisms aremost general uni�ers of the parallel pair 
orresponding to the uni�
ation problemf(x; y)=? f(y; x), but only Æfxg is a 
oequalizer. More generally, a most generaluni�er in CF (;) need not be a 
oequalizer, but it 
an always be transformed intoone by appropriately restri
ting the set of generators in its 
odomain.For nonempty theories, su
h a transformation need not be possible, however. Asshown in [Baader 1991℄, there exists an equational theory, namely the theory ACU7Sin
e terms are now viewed as elements of E-free algebras (i.e., =E-equivalen
e 
lasses), wemay write equality (=) in pla
e of equality modulo E (=E).8See [Pier
e 1991℄ for basi
 de�nitions and results of 
ategory theory.



482 Franz Baader and Wayne Snyderthat axiomatizes an asso
iative-
ommutative binary symbol f with a unit e, su
hthat all solvable uni�
ation problems in Cff;eg(ACU) have a most general uni�er,but not all solvable uni�
ation problems in this 
ategory have a 
oequalizer. In theappli
ations of E-uni�
ation in automated dedu
tion, the additional uniquenessrequirement in the de�nition of a 
oequalizer is not relevant. Thus, one should sti
kwith the de�nition of a most general uni�er as introdu
ed above, and not repla
eit by the one of a 
oequalizer.As su
h, the simple observation that E-uni�
ation has a 
ategory-theoreti
 in-terpretation does not solve any problems: it just transforms them into a di�erentrepresentation. This new representation is only of interest if te
hniques and re-sults from 
ategory theory 
an be used to solve new and interesting problems inuni�
ation theory. Rydeheard and Burstall [1985℄ use the 
ategory-theoreti
 repre-sentation of synta
ti
 uni�
ation to derive a uni�
ation algorithm based on 
olimit
onstru
tions in CF (;). In [Baader 1989b℄, results from 
ategory theory on so-
alledsemi-additive 
ategories are used to obtain results on uni�
ation modulo so-
alled
ommutative theories (see subse
tion 5.2 below).Even though the 
onstru
tion of the 
ategory CF (E) is quite natural, there arealso other ways of representing uni�
ation problems in 
ategory-theoreti
 terms.Whereas Goguen [1989℄ just introdu
es the dual 
ategory of CF (E) (where mor-phisms are inverse homomorphisms), Ghilardi [1997℄ takes a quite di�erent ap-proa
h: he 
onsiders the 
ategory of all algebras in V (E) (not only the �nitelygenerated free ones), and represents uni�
ation problems as �nitely presented alge-bras in this 
ategory. In this setting, the proof that uni�
ation in Boolean algebrasand in primal algebras is unitary [Nipkow 1990℄ be
omes trivial.3.4. Survey of results for spe
i�
 theoriesResear
h in uni�
ation theory has produ
ed results on uni�
ation properties of agreat variety of equational theories. In this se
tion, we will brie
y review some ofthese results, with an emphasis on the more re
ent ones that are not yet 
overedby previous surveys of the area [Siekmann 1989, Jouannaud and Kir
hner 1991,Kapur and Narendran 1992a, Baader and Siekmann 1994℄. For ea
h theory, we areinterested in the de
ision problem and its 
omplexity as well as its uni�
ation typeand the existen
e of uni�
ation algorithms and pro
edures. Depending on whi
hkind of uni�
ation problems (elementary, with 
onstants, or general) is 
onsidered,there may exist di�erent results for a given theory.Asso
iativityThe theory Af := ff(f(x; y); z) � f(x; f(y; z))g axiomatizes asso
iativity of thebinary fun
tion symbol f .De
ision problem: This problem, whi
h is very hard and had been open for a longtime, was �nally solved by Makanin [1977℄, who proves de
idability of Af -uni�
ation with 
onstants (see also [P�e
u
het 1981, Ja�ar 1990, Abdulrab andP�e
u
het 1989, S
hulz 1993℄). Using general 
ombination te
hniques and an
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ation Theory 483extension of Makanin's algorithm [S
hulz 1992℄, de
idability of general Af -uni�
ation was shown in [Baader and S
hulz 1992, Baader and S
hulz 1996℄.The de
ision problem for Af -uni�
ation is NP-hard [Benanav, Kapur andNarendran 1985℄. The known upper bound is still higher, even though there hasre
ently been 
onsiderable progress in lowering the bound: the 3-NEXPTIMEresult by Kos
ielski and Pa
holski [1990℄ was �rst improved to EXPSPACEby Guti�errez [1998℄, then to NEXPTIME by Plandowski [1999a℄, and �nallyto PSPACE [Plandowski 1999b℄. Interestingly, the last two results no longerneed Makanin's algorithm, i.e., they yield a new de
ision pro
edure that isindependent of Makanin's result.Uni�
ation type: in�nitary for all three kinds of uni�
ation problems [Plotkin 1972℄(see also example 3.7).Uni�
ation pro
edures: Plotkin [1972℄ des
ribes a minimal uni�
ation pro
edure forgeneral Af -uni�
ation, whi
h 
an even deal with several asso
iative fun
tionsymbols. In general, this pro
edure does not yield a de
ision pro
edure sin
eit need not terminate even for non-solvable problems or problems having a�nite minimal 
omplete set of Af -uni�ers. For 
ertain restri
ted types of Af -uni�
ation problems, modi�
ations of Plotkin's pro
edure 
an be turned intode
ision pro
edures that are simpler than Makanin's general pro
edure [Au�rayand Enjalbert 1992, S
hmidt 1998℄.CommutativityThe theory Cf := ff(x; y) � f(y; x))g, whi
h axiomatizes 
ommutativity of thebinary fun
tion symbol f , has already been 
onsidered in example 3.6.De
ision problem: NP-
omplete for Cf -uni�
ation with 
onstants and general Cf -uni�
ation. The hardness result for uni�
ation with 
onstants is mentioned in[Garey and Johnson 1979℄, where it is attributed to Sethi (private 
ommuni-
ation, 1977). A simple NP-hardness proof due to Narendran (private 
om-muni
ation, 1993) is sket
hed in [Baader and Siekmann 1994℄. It is easy tosee that this proof 
an also be used to show NP-hardness of elementary Cf -uni�
ation (private 
ommuni
ation by Narendran, 1997).9 NP-de
ision pro
e-dures for general Cf -uni�
ation 
an easily be obtained from the simple uni�
a-tion algorithm sket
hed in example 3.6: instead of testing all possible sets �0,the non-deterministi
 de
ision pro
edure �rst guesses su
h a set �0, and thentests whether this set has a synta
ti
 uni�er.Uni�
ation type: �nitary for all three kinds of uni�
ation problems [Siekmann1979℄.Uni�
ation algorithms: In addition to Siekmann's simple (non-minimal) uni�
ationalgorithm for general Cf -uni�
ation [Siekmann 1979℄, various other methodshave been proposed [Fages 1983, Kir
hner 1985, Herold 1987℄. However, noneof them dire
tly produ
es a minimal 
omplete set of Cf -uni�ers.9In this proof, simply repla
e the 
onstants a; b by the terms ta := f(x; f(x; x) and tb := f(x; x)and add for ea
h propositional variable q an equation f(xq ; yq)=?Cf f(ta; tb), whi
h makes surethat xq is instantiated either by ta or by tb.



484 Franz Baader and Wayne SnyderDistributivityThe theories Dlf;g := ff(x; g(y; z)) � g(f(x; y); f(x; z))g and Drf;g := ff(g(y; z); x)� g(f(y; x); f(z; x))g axiomatize left-distributivity and right-distributivity of f overg, and their union Df;g := Dlf;g [ Drf;g axiomatizes (both-sided) distributivity off over g. In addition, we 
onsider 
ombinations of these theories with Ag andUf := ff(x; e) � x; f(e; x) � xg.De
ision problem: Dlf;g-uni�
ation (and, by symmetry, Drf;g-uni�
ation) with 
on-stants is de
idable in polynomial time [Tid�en and Arnborg 1987℄.If one adds a unit for f , i.e., 
onsiders Dlf;g [Uf (or Drf;g [Uf ), then the prob-lem be
omes mu
h harder sin
e Af -uni�
ation 
an be redu
ed to (Dlf;g [ Uf )-uni�
ation. De
idability of (Dlf;g [Uf )-uni�
ation with 
onstants was shown in[S
hmidt-S
hau� 1996b℄. Sin
e this de
ision pro
edure 
an be extended to 
opewith linear 
onstant restri
tions, general results on the 
ombination of de
isionpro
edures [Baader and S
hulz 1996℄ imply that general (Dlf;g[Uf )-uni�
ationis de
idable.For uni�
ation modulo both-sided distributivity, the de
ision problem was openfor quite a while. After some preliminary de
idability results for restri
ted
lasses of Df;g-uni�
ation problems [Contejean 1993, S
hmidt-S
hau� 1992℄,de
idability of Df;g-uni�
ation with 
onstants was �nally shown by S
hmidt-S
hau� [1996a℄. His non-deterministi
 algorithm redu
es solvability of Df;g-uni�
ation problems with 
onstants to Af -uni�
ation with 
onstants and ACU-uni�
ation with linear 
onstant restri
tions. Thus, the algorithm is of quite high
omplexity, 
ompared to the best known lower bound, whi
h is NP-hard [Tid�enand Arnborg 1987℄.Unde
idability of (Df;g [ Ag)-uni�
ation with 
onstants was proved in [Szab�o1982, Siekmann and Szab�o 1989℄. This negative result has been strengthened in[Tid�en and Arnborg 1987℄: every equational theory that lies above (Df;g [Ag)or (Dlf;g [ Uf [ Ag) and is 
onsistent with Peano arithmeti
 (where f standsfor multipli
ation, g for addition, and e for 1) has an unde
idable uni�
ationproblem. De
idability of (Df;g [ Uf )-uni�
ation is still an open problem.Uni�
ation type: in�nitary for Df;g-uni�
ation problems with 
onstants and gen-eral Df;g-uni�
ation problems. Szab�o [1982℄ gives an example of a Df;g-uni�
ation problem with 
onstants whose minimal 
omplete set of uni�ers isin�nite. The existen
e of minimal 
omplete sets of Df;g-uni�ers (for all threekinds of uni�
ation problems) is a 
onsequen
e of the fa
t that the =Df;g -
lassof a given term is always �nite [Szab�o 1982℄, whi
h implies that the instan-tiation quasi-ordering ��XDf;g is Noetherian [Szab�o 1982, B�ur
kert et al. 1989℄.Dlf;g-uni�
ation (and, by symmetry,Drf;g-uni�
ation) with 
onstants is unitary,and an mgu 
an be 
omputed in polynomial time [Tid�en and Arnborg 1987℄.Asso
iativity-
ommutativityThe theories ACf := Af [ Cf and ACUf := ACf [ Uf will be 
onsidered inmore detail in subse
tion 5.1. Examples of operations satisfying theses identitiesare addition and multipli
ation of (rational, real, et
.) numbers.
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ation Theory 485De
ision problem: NP-
omplete for uni�
ation problems with 
onstants and generaluni�
ation problems both for ACf and ACUf [Kapur and Narendran 1992a℄.Elementary ACUf -uni�
ation problems always have a trivial solution, and solv-ability of elementary ACf -uni�
ation problems is de
idable in polynomial timeusing linear programming [Domenjoud 1991℄.Uni�
ation type: ACUf is unitary for elementary and �nitary for the two otherkinds of uni�
ation problems, and ACf is �nitary for all three kinds of uni�-
ation problems [Livesey and Siekmann 1975, Sti
kel 1981, Fages 1987℄. Thenumber of uni�ers in a minimal 
omplete set of ACf -uni�ers may be doubly-exponential in the size of a given elementary ACf -uni�
ation problem [Kapurand Narendran 1992b℄.Uni�
ation algorithms: Be
ause uni�
ation modulo asso
iativity-
ommutativityhas many appli
ations in automated dedu
tion, a great variety of uni�
ationalgorithms has been developed for ACf and ACUf [Sti
kel 1975, Livesey andSiekmann 1975, Kir
hner 1985, Fortenba
her 1985, B�uttner 1986a, Herold 1987,Herold and Siekmann 1987, Lin
oln and Christian 1989, Boudet, Contejean andDevie 1990℄ (see also subse
tion 5.1).Asso
iativity-
ommutativity-idempoten
yWe 
onsider the theories ACIf := ACf [ ff(x; x) � xg, its extension by a unite, ACUIf := ACIf [ Uf , and by a zero n, ACUZIf := ACUI [ ff(x; n) � ng.Examples of operations satisfying theses identities are union and interse
tion ofsets. The theory ACUIf will be 
onsidered in more detail in subse
tion 5.1.De
ision problem: For all three theories, the de
ision problem is polynomial forelementary uni�
ation and for uni�
ation with 
onstants, and NP-
ompletefor general uni�
ation [Kapur and Narendran 1992a, Narendran 1996b℄. Likesynta
ti
 uni�
ation, ACIf - and ACUIf -uni�
ation with 
onstants are not onlyin P , but even P -
omplete [Hermann and Kolaitis 1997℄.Uni�
ation type: ACUIf is unitary for elementary and �nitary for the two otherkinds of uni�
ation problems, and ACIf is �nitary for all three kinds of uni-�
ation problems [Livesey and Siekmann 1975, B�uttner 1986b, Baader andB�uttner 1988, Kapur and Narendran 1992b℄. As with ACf , the number of ACIf -uni�ers in a minimal 
omplete set may be doubly-exponential in the size of agiven elementary ACIf -uni�
ation problem [Kapur and Narendran 1992b℄. Her-mann and Kolaitis show that 
omputing the 
ardinality of a minimal 
ompleteset of uni�ers for given ACIf - or ACUIf -uni�
ation uni�
ation problems is#P -hard, whi
h implies that this fun
tion 
annot be 
omputed in polynomialtime, unless P = NP [Hermann and Kolaitis 1997℄.Uni�
ation algorithms: Baader and B�uttner [1988℄ des
ribe an algorithm forACUIf -uni�
ation problems with 
onstants 
onsisting of a single equation, andKapur and Narendran [1992b℄ sket
h an algorithm for general ACIf -uni�
ation.



486 Franz Baader and Wayne SnyderAbelian groupsThe theory of Abelian groups is de�ned by the identities AGf := ACUf [ff(i(x); x) � eg.De
ision problem: trivial for elementary uni�
ation, polynomial for uni�
ation with
onstants [Baader and Siekmann 1994℄, and NP-
omplete for general uni�
ation[S
hulz 1997℄.Uni�
ation type: unitary for elementary uni�
ation and for uni�
ation with 
on-stants [Lankford, Butler and Brady 1984℄, and �nitary for general uni�
ation[S
hmidt-S
hau� 1989b, Boudet, Jouannaud and S
hmidt-S
hau� 1989℄. Com-puting the 
ardinality of a minimal 
omplete set of uni�ers for a given generalAGf -uni�
ation is again #P -hard [Hermann and Kolaitis 1996℄.Uni�
ation algorithms: Lankford et al. [1984℄ des
ribe an algorithm for AGf -uni�
ation with 
onstants, and S
hmidt-S
hau� [1989b℄ shows that this algo-rithm 
an be 
ombined with an algorithm for synta
ti
 uni�
ation into analgorithm for general AGf -uni�
ation.Commutative and Boolean ringsLet CRU denote the well-known axioms for 
ommutative rings with a (multipli
a-tive) unit, and BR the theory of Boolean rings.De
ision problem: As sket
hed in [Baader and Siekmann 1994℄, unde
idability ofelementary CRU-uni�
ation is an easy 
onsequen
e of the fa
t that Hilbert's10th problem is unde
idable [Matiyasevi
h 1971, Davis 1973℄.For the theory BR, the de
ision problem is NP-
omplete for elementary uni�-
ation, �p2-
omplete for uni�
ation with 
onstants, and PSPACE-
omplete forgeneral uni�
ation [Baader 1998℄.Uni�
ation type: The uni�
ation type of CRU is at least in�nitary, even for ele-mentary uni�
ation [Burris and Lawren
e 1990℄.10.BR is unitary for elementary uni�
ation and for uni�
ation with 
onstants[B�uttner and Simonis 1987, Martin and Nipkow 1989b, Martin and Nipkow1989a℄, and �nitary for general uni�
ation [S
hmidt-S
hau� 1989b℄. As with thetheory of Abelian groups, the problem of 
omputing the 
ardinality of a minimal
omplete set of uni�ers is #P -hard for general BR-uni�
ation [Hermann andKolaitis 1996℄.Uni�
ation algorithms: Algorithms that 
ompute most general uni�ers for elemen-tary BR-uni�
ation and BR-uni�
ation with 
onstants are des
ribed in [B�uttnerand Simonis 1987, Martin and Nipkow 1989b, Martin and Nipkow 1989a℄. Gen-eral 
ombination methods 
an be used to obtain algorithms for general BR-uni�
ation [S
hmidt-S
hau� 1989b, Boudet et al. 1989℄.EndomorphismsThe theory Endh;g := fh(g(x; y)) � g(h(x); h(y))g states that the unary fun
tionsymbol h behaves like an endomorphism for the binary fun
tion symbol g, and10The 
losely related theory of 
ommutative semirings is known to be of uni�
ation type zerow.r.t. elementary uni�
ation [Franzen 1992℄



Unifi
ation Theory 487Endh;e := fh(e) � eg states that h behaves like an endomorphism for the 
onstantsymbol e. We 
onsider these two theories in 
ombination with some of the theoriesintrodu
ed above:De
ision problem: Solvability of Endh;g-uni�
ation problems with 
onstants is de-
idable [Vogel 1978℄.For the theories Endh;g [ACg and Endh;g [ Endh;e [ACUg , solvability of uni-�
ation problems with 
onstants is unde
idable [Narendran 1996a℄.In 
ontrast, solvability of uni�
ation problems with 
onstants is de
idable forthe theory Endh;g [Endh;e [ACUIg . In [Baader and Narendran 1998℄ it shownthat this problem is EXPTIME-
omplete.A similar result holds for Endh;g[ACUIg: for this theory, the de
ision problem isknown to be 
o-NP-hard and in EXPTIME [Guo, Narendran and Shukla 1998℄.Finally, for Endh;g [ Endh;e [ AGg , de
idability of uni�
ation with 
onstantswas shown in [Baader 1993℄. Sin
e this de
idability result 
an be extended touni�
ation with linear 
onstant restri
tions, general 
ombination results yieldde
idability for general uni�
ation modulo this theory [Baader and Nutt 1996℄.Uni�
ation type: The theory Endh;g is unitary for uni�
ation with 
onstants [Vogel1978℄.Endh;g [ Endh;e [ ACUg and Endh;g [ Endh;e [ ACUIg are of type zero, evenfor elementary uni�
ation [Baader 1993, Baader 1989b℄.Endh;g [Endh;e [AGg is unitary for elementary uni�
ation and for uni�
ationwith 
onstants [Nutt 1990, Baader 1993℄, and �nitary for general uni�
ation[Baader and Nutt 1996℄.In addition to investigating uni�
ation properties of spe
i�
 equational theoriesof interest, uni�
ation theory also tries to develop more general methods, and thusto obtain results for whole 
lasses of equational theories. Sin
e uni�
ation moduloequational theories is in general unde
idable (as illustrated by some of the examplesabove), and also uni�
ation properties su
h as the uni�
ation type of a given the-ory are in general unde
idable [Nutt 1991℄, approa
hes that apply to all equationaltheories are likely to yield very weak results. For example, the general E-uni�
ationpro
edure introdu
ed in se
tion 4.1, whi
h 
an be used to enumerate a 
ompleteset of E-uni�ers, is very ineÆ
ient, and usually does not yield a de
ision pro
edureor a (minimal) E-uni�
ation algorithm even for unitary or �nitary theories whoseuni�
ation problem is de
idable. In order to obtain more useful results, one 
an tryto develop methods that work for appropriately restri
ted 
lasses of theories. Thereare basi
ally two di�erent ways of introdu
ing appropriate restri
tions on equa-tional theories. Synta
ti
 approa
hes impose restri
tions on the synta
ti
 form ofthe identities de�ning the equational theories. The uni�
ation methods produ
ed bythese approa
hes are usually also of a quite synta
ti
 nature: as with the rule-basedapproa
h to synta
ti
 uni�
ation, they transform the given uni�
ation problem intoa problem in solved form (se
tion 4). In 
ontrast, semanti
 approa
hes depend onproperties of the (free) algebras de�ned by the equational theory. Uni�
ation prob-lems are translated into equations over 
ertain algebrai
 stru
tures, whi
h (in some
ases) 
an be solved using known results from mathemati
s (se
tion 5).



488 Franz Baader and Wayne Snyder4. Synta
ti
 methods for E-uni�
ationIn this se
tion we dis
uss two synta
ti
 approa
hes to generating 
omplete sets ofE-uni�ers, using inferen
e systems extending the set U presented in se
tion 2.2.3.We �rst 
onsider the general problem (E-uni�
ation in arbitrary theories) andshow how it 
an be solved by adding a single rule to introdu
e identities into thetransformation pro
ess; this simple method is proved to be 
omplete and somerestri
tions whi
h preserve 
ompleteness are dis
ussed. We then present the mostsigni�
ant spe
ial 
ase of the general problem, when the equational theory 
anbe presented by a 
onvergent set of rewrite rules. This method, 
alled narrowing ,has been thoroughly investigated, and we will present the major results in theframework of transformation rules.4.1. E-uni�
ation in arbitrary theoriesIn this se
tion, we present a rule for introdu
ing identities into inferen
e steps in Uin su
h a way that a 
omplete set of E-uni�ers for an arbitrary set E of equationsmay be generated. By spe
ializing various aspe
ts of the resultant 
al
ulus (and its
ompleteness proof), we will obtain more pra
ti
al methods for the spe
ial 
ase of
onvergent sets of rewrite rules. The results of this se
tion are based on [Gallierand Snyder 1989, Snyder 1991℄.In this se
tion we assume that the reader is familiar with the basi
 
on
epts ofrewriting (espe
ially equational proofs, redu
tion orderings, ground 
onvergen
e,and 
riti
al pairs) dis
ussed in [Dershowitz and Plaisted 2001℄ (Chapter 9 of thisHandbook). By rewrite proof we refer to a sequen
e of rewrite steps between twoterms of the form s ��!u � � twhere u is in normal form. We will use e[u℄ in the following to represent a equation(or identity) with a distinguished o

urren
e of a subterm u in one of its terms; insu
h a 
ontext e[r℄ will denote the result of repla
ing this subterm with the term r.We will use systems P ;S, representing uni�
ation problems and sets of equationsin solved form, as before.4.1. Definition. For any equational theory E, a substitution � is an E-solution(or simply a solution when E is understood) of a system P ;S if it is an E-uni�erof every equation in P , and a uni�er of every equation in S.4.1.1. The 
al
ulus GThe set G of inferen
e rules 
onsists of the rules Trivial, De
omposition, Orientation,and Variable Elimination from U , plus the following rule for introdu
ing identities:Lazy Paramodulation (LP):fe[u℄g [ P ;S =)lp fl ?=u; e[r℄g [ P ;S
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ation Theory 489for a fresh variant11 of the identity l � r from E [ E�1, and where (i) u is nota variable, and (ii) if l is not a variable, then the top symbols of l and u areidenti
al, and no other inferen
e rule may be applied to the equation l=? u beforeit is subje
ted to a De
omposition step.Computation in G pro
eeds as in U , starting with an initial system of the formfs=? tg; ; and applying inferen
e rules in an attempt to �nd some terminal system;;S representing an E-uni�er �S of s and t. Clearly, by the general 
hara
teristi
sof E-uni�
ation dis
ussed above, su
h a pro
ess 
an not share the ni
e propertiesof U whi
h we dis
ussed in se
tion 2.2.4. However, it is possible to say quite a lotabout how to restri
t the appli
ation of rules, as we shall see.4.1.2. Completeness of GIt 
an be shown easily that the 
al
ulus G is sound in the sense that a solution itprodu
es is always an E-uni�er; however this proof does not give mu
h insight intothe properties of G and we refer the interested reader to [Gallier and Snyder 1989℄. Itis more interesting to 
onsider the issue of 
ompleteness, whi
h is 
onsiderably more
omplex than in the standard 
ase. What we want to show is that if we 
onsiderthe (�nitely-bran
hing but in�nite) sear
h tree of every possible transformationsequen
e starting from fs=? tg; ;, then the leaves form a 
omplete set of E-uni�ersfor s and t. However, it is simpler to state and prove this in the following \non-deterministi
" form.4.2. Theorem. Let E be a non-trivial equational theory and P be a set of uni�
a-tion problems. If � is an E-solution of P ; ;, then there exists a sequen
eP ; ; �=) ;;S(with S in solved form) in the 
al
ulus G su
h that �S ��XE �, where X = Vars(P ).There are three main stages to the proof. First we will prove the result given
ertain strong restri
tions on the equational theory E. Then we 
onstru
t a kindof \abstra
t 
ompletion" of E whi
h has the requisite restri
tions; �nally, we showthat any transformation sequen
e using this abstra
t 
ompletion 
an be 
onvertedinto one using simply E.The major diÆ
ulty in proving 
ompleteness of equational inferen
e systemsis generally in dealing with the restri
tion that equational steps not take pla
e atvariable positions (hen
e, \u is not a variable" in LP). The solution, due to Peterson[1983℄, is to work with a restri
ted form of substitution in the proof.4.3. Definition. Given a rewrite system R, a substitution � is R-redu
ed (or justredu
ed if R is unimportant) if for every x 2 Dom(�), x� is in R-normal form.11By a fresh variant we refer to an expression that has been renamed with fresh variables thatdo not o

ur anywhere else in the previous 
omputation. Whenever we mention a rewrite rule oridentity used in an inferen
e step, we will assume that it has been so renamed.



490 Franz Baader and Wayne SnyderNote that it is always possible for any � and terminating set of rules R to �nd an R-equivalent redu
ed substitution �0. This allows us to assume, when \lifting" rewritesteps at the ground level to inferen
e steps, that the position is a non-variable.Another essential ingredient in our proof is the notion of an \oriented groundinstan
e" of an identity.4.4. Definition. Let E be a non-trivial equational theory and � be a redu
tionordering total on ground terms. The set of ground instan
es of E isGr(E) := f l� � r� j l� and r� are ground and l � r 2 E [ E�1 g:The set of oriented ground instan
es of E isGr�(E) := f l� �! r� j l� � r� 2 Gr(E) and l� � r� g:A member l� �! r� of su
h a set is 
alled redu
ed if � is redu
ed with respe
t tothe entire set.12 For any E, the set of redu
ed oriented ground instan
es is denotedRE .An important fa
t about Gr(E) is the following.4.5. Proposition. For any two ground terms s and t, there exists an equationalproof s � !E t i� there exists a proof s � !Gr(E) tThis is easily proved by showing that equational steps are 
losed under instantiation,and hen
e we 
an instantiate any \unbound variables" by ground terms so that onlyground instan
es of identities from E are used.Another kind of restri
tion on proofs, whi
h will be essential in proving the\no inferen
es into variable positions" restri
tion in our 
ompleteness result, is thesubje
t of the next de�nition and lemma.4.6. Definition. Let u� be an instan
e of u, and R a set of rewrite rules. Arewrite step u� �!R u0 is based on u i� the redex is at a non-variable position inu (equivalently, is not wholly 
ontained within a term introdu
ed by �). A rewritesequen
e s� ��!R t is based on s (or simply basi
) i� either s� = t (re
exive 
ase)or it starts with a rewrite step based on s, e.g.,s� �!R (s�)[r�℄ = s[r℄�� ��!R tand the remainder is based on s[r℄. A rewrite proof s� ��! � � t� is basi
 if the leftside is based on s and the right side is based on t.Intuitively, this means that no rewrite step 
an take pla
e at a term introdu
ed byany substitution.The relationship between redu
ed substitutions, redu
ed oriented ground in-stan
es, ground 
onvergen
e, and basi
 rewrite sequen
es is now explored.12This notion is well-de�ned, as it 
ould more formally be de�ned by indu
tion on a suitableordering of rules, using the fa
t that l 
an not be a variable when E is non-trivial.
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ation Theory 4914.7. Lemma. Let E be a non-trivial equational theory su
h that Gr�(E) is ground
onvergent, and s� be a ground term su
h that � is RE-redu
ed. Then for any rewritesequen
e s� ��! t using rules from Gr�(E) to redu
e s� to its normal form t, thereexists a basi
 rewrite sequen
e s� ��! t using rules only from RE.Proof. Sin
e Gr�(E) is ground 
anoni
al, we may 
hoose any fair strategy forredu
tion; in parti
ular, we may spe
ify that at ea
h step, among all the possiblerules that 
ould be used for redu
tion, we 
hoose one that is minimal in the lexi-
ographi
 extension of � to pairs of terms. But then for any l� �! r� used in thesequen
e, � must be redu
ed, or else the rule would not be minimal. Thus, thereexists a rewrite sequen
e from s� to t using rules only from RE ; 
learly, sin
e allsubstitutions involved are redu
ed, this is also a basi
 sequen
e.For our purposes we may summarize these results as follows.4.8. Corollary. Let E be an equational theory su
h that Gr�(E) is ground 
on-vergent. For any ground terms s� and t�, where � is redu
ed with respe
t to Gr�(E),the following are equivalent:1. s� and t� are E-equivalent.2. There exists a basi
 rewrite proof for s� and t� using rules from Gr�(E).We now prove our 
ompleteness result in the spe
ial 
ase we have been dis
ussing.4.9. Lemma. Let E be a non-trivial equational theory su
h that Gr�(E) is ground
onvergent, and P be a set of uni�
ation problems. If � is a Gr�(E)-redu
ed solutionof P ; ;, then there exists a sequen
eP ; ; �=) ;;S(with S in solved form) in the 
al
ulus G su
h that �S ��X � for X = Vars(P ).Proof. We pro
eed by indu
tion, using the following measure. The 
omplexity ofa system P ;S and its solution � is a four-tuple hm;n1; n2; n3i, wherem = The total number of rewrite steps in all the minimal-length basi
rewrite proofs for equations in P�;n1 = The number of distin
t variables o

urring in equations u=? v 2 Psu
h that u� = v� and u� is in Gr�(E)-normal form;n2 = The number of symbols o

urring in equations u=? v 2 P su
h thatu� = v� and u� is in normal form;n3 = The number of equations in P of the form t=? x, where t is not avariable, and su
h that t� = x� and t� is in normal form.The asso
iated (well-founded) ordering is the lexi
ographi
 ordering using thenatural ordering on positive integers.We show by indu
tion on this measure that if � is a solution of a system P ;S0,with S0 in solved form, there exists a transformation sequen
eP ;S0 �=) ;;S



492 Franz Baader and Wayne Snyderwhere �S ��X � for X = Vars(P; S0).The base 
ase of the indu
tion 
onsists of a system ;;S and the result is trivial,sin
e a fortiori �S �� �. For the indu
tion step, suppose P = fu=? vg [ P 0. Ifu� = v� with u� in normal form; then we pro
eed as before with the inferen
esystem U to generate a transformation step to a smaller system 
ontaining thesame set of variables, and with the same solution (
f. lemma 2.4). As with U , anyequation introdu
ed into S must keep this set in solved form. Completing this withthe indu
tion hypothesis, we haveP ;S0 =)U P 00;S00 �=) ;;Ssu
h that �S ��X � with X = Vars(P; S0).Otherwise, without loss of generality, pi
k a rewrite step from the term u� in aminimal-length basi
 rewrite proof u� �! ��! � � v�, in whi
h a redu
ed groundinstan
e l� �! r� was used. If we let �0 = ��, then this �rst step was in fa
tu[u0℄�0 = u[l℄�0 �! u[r℄�0, where u0 
an not be a variable (sin
e � is redu
ed). Inaddition, the top symbols of u0 and l are identi
al if l is not a variable. Hen
e, thereexists some transformation stepfu[u0℄ ?= vg [ P 0;S0 =)lp fl ?=u0; u[r℄ ?= vg [ P 0;S0to a new system whi
h has a smaller 
omplexity with respe
t to its new solution�0. (It also 
ontains additional variables, i.e., those in Vars(l; r)). By the indu
tionhypothesis we 
an 
ontinue this with:fl ?=u0; u[r℄ ?= vg [ P 0;S0 �=) ;;Ssu
h that �S ��X �0 with X = Vars(l; r; P; S0). But, sin
e x� = x�0 for everyx 2 Vars(P; S0), we are done.The se
ond stage of our main 
ompleteness proof for G involves 
onstru
ting aset of identities �tting the 
onditions of the previous lemma. We do this by a kindof abstra
t 
ompletion of E:4.10. Definition. Let Cr(E) be the set of 
riti
al pairs w.r.t. � of E, 
reatedfrom fresh variants of identities in E using the inferen
e system U to 
al
ulate therequisite mgu's. Then, for ea
h i � 0, de�neE0 = E...Ei+1= Ei [ Cr(Ei)...E! = Sn�0En
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ation Theory 493The entire point of this 
onstru
tion is 
ontained in the following lemma, whi
h
an be proved using te
hniques familiar from [Dershowitz and Plaisted 2001℄, Chap-ter 9 of this Handbook (for a spe
i�
 proof, see Theorem 6.1.7 in [Snyder 1991℄).4.11. Lemma. For any E, Gr�(E!) is ground 
onvergent and equivalent to E onground terms.Thus, we 
an (
on
eptually, at least) use E! to 
onstru
t transformation se-quen
es as just shown in lemma 4.9. The se
ond main lemma of our 
ompletenessproof for G shows how to 
onvert su
h a transformation sequen
e into one usingonly identities from E.4.12. Lemma. For any sequen
e P ; ; �=) ;;Sintrodu
ing identities from E!, and su
h that �S is an E-uni�er for P , there existsa sequen
e P ; ; �=) ;;S0introdu
ing identities only from E, su
h that S � S0 and x�S0 = x�S for everyx 2 Vars(P ).Proof. The basi
 idea is to use the 
al
ulus G itself to 
onstru
t 
riti
al pairs. The
omplexity measure in our indu
tive proof is as follows. The depth of an identitye 2 E! is the least k su
h that e 2 Ek; the 
omplexity of a transformation sequen
eis the (�nite) multiset of the depths of all identities from E! introdu
ed, with theasso
iated (well-founded) multiset ordering.The base 
ase being trivial, we pro
eed dire
tly to the indu
tion step. Supposethe transformation sequen
e uses some identity r1� � l1[r2℄� of non-zero depth,obtained by forming a 
riti
al pair from l1[l0℄ � r1 and l2 � r2 (ea
h of smallerdepth) with � = mgu(l0; l2). We show how the original use of the 
riti
al pair in aLP step 
an be simulated by two LP steps involving the 
omponent identities, plussome number of U-transformations to simulate the 
onstru
tion of the 
riti
al pair.There are two 
ases, depending on whi
h dire
tion the 
riti
al pair was used in.Case One. Suppose the 
riti
al pair was r1� � l1[r2℄�, e.g.,�=) fe[u℄g [ P ;S0=)lp fr1�=? u; e[l1[r2℄�℄g [ P ;S0�=) ;;Swhere an additional De
omposition is possibly applied afterwards to r1�=? u (ifr1� is not a variable). This sequen
e 
an be 
onverted into:�=) fe[u℄g [ P ;S0=)lp fr1=? u; e[l1[l01℄℄g [ P ;S0=)lp fl2=? l01; r1=? u; e[l1[r2℄℄g [ P ;S0�=) fr1�=? u; e[l1[r2℄�℄g [ P ;S [ [�℄�=) ;;S [ [�0℄
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e has a smaller 
omplexity, as it repla
ed a 
riti
al pair by two identities ofstri
tly smaller depth. The se
ond line from the bottom represents the 
al
ulationof the mgu; these bindings apply only to terms from the two equations, although asthey are 
arried along in the solution set they may 
hange as the result of additionalsubstitutions (hen
e the 
hange to �0). The (possible) De
omposition step after the�rst LP step in the original is delayed until after the 
omputation of �.Case Two. Suppose the 
riti
al pair was l1[r2℄� � r1�; in this 
ase, we mayassume that the overlap in this 
riti
al pair is not at the root, sin
e otherwise we
ould apply 
ase one. Our original sequen
e is thus:�=) fe[u℄g [ P ;S0=)lp fl1[r2℄�=? u; e[r1�℄g [ P ;S0�=) ;;Swhere De
omposition is applied to l1[r1℄� � u at some point after the LP step(sin
e l1 has at least one fun
tion symbol above the overlap position). This sequen
ebe
omes:�=) fe[u℄g [ P ;S0=)lp fl1[l01℄ =? u; e[r1℄g [ P ;S0=)lp fl2=? l01; l1[r2℄ =? u; e[r1℄g [ P ;S0�=) fl1[r2℄�=? u; e[r1�℄g [ P ;S [ [�℄�=) ;;S [ [�0℄The De
omposition step is delayed until after the 
omputation of �. This sequen
eis, again, of smaller 
omplexity than the original.Note in both 
ases that the variables in Dom(�) are (e�e
tively) fresh, as theyo

ur in the 
omponent identities but not in the 
riti
al pair; thus, x�S0 = x�S forall x 2 Vars(P ) as required.We may now present the proof of our main 
ompleteness result.Proof of theorem 4.2. First, note that we may assume that P� 
ontains onlyground equations, using a straight-forward Skolemization argument (viz. [Snyder1991℄, p.90). If � is an E-uni�er of P , we may 
onstru
t an Gr�(E)-redu
ed sub-stitution �0 su
h that � =E �0. We then apply lemma 4.9, using rules from E!, toobtain a sequen
e P ; ; �=) ;;Swhere �S ��X �0 for X = Vars(P ). This is then 
onverted, using the te
hnique oflemma 4.12 to a new sequen
e using rules only from E:P ; ; �=) ;;S0where x�S = x�S0 for every x 2 Vars(P ). Thus, we may 
on
lude that �S ��XE �,where X = Vars(P ), as required.
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tions on E-uni�
ation in arbitrary theoriesIn this se
tion we des
ribe two re�nements of the 
al
ulus G that have been sug-gested:� The restri
tion on a equation l=? u introdu
ed by LP, when l is not a variable,that the top symbol of l and u must be the same, 
an be strengthened sothat the entire overlap of the non-variable positions in the two terms must beidenti
al.� The restri
tion in LP that u not be a variable may be strengthened so thatu 
an not even be a term introdu
ed into P by substitution (i.e., VariableElimination) at any point in the sequen
e.Both of these restri
tions in some sense extend the original restri
tions on G hered-itarily , in the �rst 
ase inheriting the restri
tion on top symbols down into theterms, and in the se
ond, inheriting the non-variable restri
tion throughout thehistory of the equation, and regarding terms introdu
ed by variable eliminationas being se
ond-
lass 
itizens whi
h do not play a dire
t role in equational infer-en
es, but only serve to 
onstrain the appli
ation of rules. This is 
alled the basi
restri
tion, as it rests on the existen
e of basi
 rewrite proofs as shown above.For la
k of spa
e, we do not 
onsider these re�nements to G in detail here, al-though the se
ond will form an essential part of the 
al
ulus in the next se
tion.For the �rst, see [Dougherty and Johann 1992℄, and also [So
her-Ambrosius 1994℄(where a further re�nement is presented); for the se
ond see [Moser 1993℄.4.3. NarrowingIn this se
tion we 
onsider the most important spe
ial 
ase of the E-uni�
ationproblem, when the equational theory 
an be represented by a ground 
onvergentset of rewrite rules. In this 
ase, the 
onversion of transformation sequen
es tosimulate 
riti
al pair generation is not ne
essary, and we 
an take a 
loser look atthe 
ompleteness proof and the restri
tions that 
an be imposed on the 
al
ulus.In parti
ular, we shall from the start 
onsider the existen
e of basi
 rewrite proofsas fundamental, and develop a new representation for problems whi
h prevents LPinferen
es at terms introdu
ed by substitutions.A 
onstraint system (or simply system in the rest of the se
tion) is either thesymbol ? (representing failure) or a triple 
onsisting of a multiset P of equations(representing the s
hema of the problem, in a sense that will be
ome 
lear below),a set C of equations (representing 
onstraints on variables in P ), and a set S ofequations (representing bindings in the solution). The set C plays a role similarto the multiset P in se
tion 2.2.4, and rules from U will be applied to C;S asbefore. The equational problems being worked on are in fa
t P�S , the separationinto the s
hema P and 
onstraints C;S serving to enfor
e the basi
 restri
tion onthe appli
ation of LP mentioned above. As expe
ted, a substitution � is said to bea solution (or E-uni�er) of a system P ;C;S if it E-uni�es ea
h equation in P , anduni�es ea
h of the equations in C and S; the system ? has no E-uni�ers.
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onvergent withrespe
t to a redu
tion ordering �, and 
onsists of a numbered sequen
e of rulesfl1 �! r1; l2 �! r2; : : : ; ln �! rng:The index of a rule will be its number in this sequen
e, and will be used in a 
ertainre�nement of our inferen
e system.4.3.1. The 
al
ulus BIn this se
tion we present the rules whi
h are used in the 
al
ulus B for basi
narrowing . We will �rst 
onsider a simple set of rules and prove its 
ompleteness,and then 
onsider re�nements and modi�
ations based on the details of the proof.The set B 
onsists of the following six rules.Trivial: P ; fs ?= sg [ C 0;S =) P ;C 0;SDe
omposition:P ; ff(s1; : : : ; sn) ?= f(t1; : : : ; tn)g [ C 0;S =) P ; fs1 ?= t1; : : : ; sn ?= tng [ C 0;SOrient: P ; ft ?=xg [ C 0;S =) P ; fx ?= tg [ C 0;Sif t is not a variable.Basi
 Variable Elimination:P ; fx ?= tg [ C 0;S =) P ;C 0fx 7! tg;Sfx 7! tg [ fx � tgif x does not o

ur in t. (Note that the substitution is not applied to the set P .)(Modulo the 
hanges to Variable Elimination, these are just the non-failure rulesfrom U , adapted for 
onstraint systems; we shall denote these �rst four rules as S.)Constrain: feg [ P 0;C;S =)
on P 0; fe�Sg [ C;SLazy Paramodulation:fe[u℄g [ P ;C;S =)lp fe[r℄g [ P ; fl�S ?=u�Sg [ C;S(with the exa
t same restri
tions as given above in se
tion 4.1.1).
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ation Theory 497Essentially, this 
al
ulus is no di�erent from G, ex
ept that it is designed toenfor
e the basi
 restri
tion, by separating out the parts of terms that were intro-du
ed into the problem by substitution (i.e., Variable Elimination) and those thatwere not (the \s
hema"). The latter 
onstitute the only positions where equationalinferen
es may take pla
e in the basi
 strategy. The 
ompleteness proof is hen
every similar to lemma 4.9. We will add more restri
tions to the way that 
ertain
hoi
es are made, however, whi
h will give us the ability to restri
t our 
al
ulus
orrespondingly.4.13. Theorem. Let R be a ground 
onvergent set of rewrite rules. If � is an R-solution of P ; ;; ;, then there exists a sequen
eP ; ;; ; �=)B ;; ;;Ssu
h that �S ��XR �, where X = Vars(P ).Proof. As in our 
ompleteness proof for G, we may assume that P� is ground andthat � is R-redu
ed, sin
e the relation��R does not distinguish between R-equivalentsubstitutions. Thus, we will prove a stronger result, that when � is R-redu
ed, thenin fa
t �S ��X �.The 
omplexity of a system P ;C;S and asso
iated solution � is hM;n1; n2; n3i,whereM = The multiset of all terms o

urring in P�;n1 = The number of distin
t variables in C;n2 = The number of symbols in C;n3 = The number of equations in C of the form t=? x, where t is not avariable.The asso
iated ordering is the lexi
ographi
 ordering using the multiset extensionof the redu
tion ordering � for the �rst 
omponent, and the ordering on naturalnumbers for the remaining 
omponents.Our indu
tion shows that if � is a solution of a system P ;C;S0, with S0 in solvedform, there exists a transformation sequen
eP ;C;S0 �=) ;; ;;Swhere �S ��X �, where X = Vars(P;C; S0).The base 
ase ;; ;;S is again trivial. For the indu
tion step, there are severaloverlapping 
ases.(1) If C = fu=? vg[C 0, then u� = v� and we use S to generate a transformationstep to a smaller system 
ontaining the same set of variables, and with the samesolution (
f. lemma 2.4). Completing this with the indu
tion hypothesis, we haveP ;C;S0 =)S P 00;C 0;S00 �=) ;; ;;Ssu
h that �S ��X � for X = Vars(P;C; S0).



498 Franz Baader and Wayne Snyder(2) If P = fu=? vg [ P 0 and u� = v�, then we may apply Constrain to obtain asmaller system (redu
ing the 
omponent M) with the same solution and the sameset of variables, and we 
on
lude as in the previous 
ase.(3) Suppose P = fu=? vg [ P 0 and there is some redex in either u� or v�;without loss of generally, assume the former. We may also assume that the redex isinnermost, and that if more than one instan
e of a rule from R redu
es this redex,we 
hoose the rule l� �! r� with the smallest index in the set R. Note that, sin
e� is R-redu
ed, the redex must o

ur inside the non-variable positions of u; thuswe have the following transformation:fu[u0℄ ?= vg [ P 0;C;S0 =)lp fu[r℄ ?= vg [ P 0; fl�S0 ?=u0�S0g [ C;S0to a system whi
h is smaller with respe
t to its new solution �0 = �� (sin
e the newequation introdu
ed into C is an identity modulo �0). Note that �0 is still R-redu
ed.By the indu
tion hypothesis we havefu[r℄ ?= vg [ P 0; fl�S0 ?=u0�S0g [ C;S0 �=) ;; ;;Ssu
h that �S ��X �0 with X = Vars(l; r; P; C; S0), and sin
e x� = x�0 for everyx 2 Vars(P;C; S0), the indu
tion is 
omplete.4.3.2. Standard narrowingAn interesting feature of this proof is that it also provides for the 
ompletenessof an alternate (and histori
ally earlier) version of narrowing due to Fay [1979℄,whi
h does not distinguish between substitution positions and other positions inthe problem.Let us de�ne the 
al
ulus N for standard narrowing as the inferen
e system Bwith the following 
hange: Basi
 Variable Elimination is repla
ed by the followingtransformation:Variable Elimination:P ; fx ?= tg [ C 0;S =) Pfx 7! tg;C 0fx 7! tg;Sfx 7! tg [ fx � tgif x does not o

ur in t.(The Constrain rule might also be 
hanged so that is does not instantiate anequation when moving it from P to C, however, sin
e �S is always idempotent, theexisting rule would have the same e�e
t.)The only di�eren
e is that the set P is kept instantiated with the substitutionde�ned by S during the transformation pro
ess, so that substitution positions 
anbe used for narrowing.4.14. Corollary. Let R be a ground 
onvergent set of rewrite rules. If � is anR-solution of P ; ;; ;, then there exists a sequen
eP ; ;; ; �=)N ;; ;;Sin the 
al
ulus N su
h that �S ��XR � with X = Vars(P ).
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ation Theory 499The proof is essentially the same as the previous one, sin
e the same transforma-tion sequen
e 
an be used in ea
h 
ase.The di�eren
e between the two inferen
e systems is that B restri
ts the appli-
ation of inferen
e rules to a smaller set of positions than N does, and hen
e thesear
h tree for solutions is narrower.4.4. Strategies and re�nements of basi
 narrowingThere is a variety of strategies and re�nements that 
an be developed for the basi
narrowing 
al
ulus without destroying 
ompleteness. Most of these, in one way oranother, 
an be derived from a 
lose examination of the 
ompleteness proof justgiven. In this se
tion we brie
y des
ribe the most important of these.4.4.1. Composite rules for basi
 narrowingThe �rst observation that 
an be made is that it is not ne
essary to 
onsider all pos-sible sequen
es of transformation rules, sin
e we either solve (standard) uni�
ationproblems (e.g., equations between two identi
al terms in P�) or simulate rewritingat the ground level by unifying left-hand sides of rules with non-variable positionsin terms, at the non-ground level. Thus, we may use the following two 
ompositerules as an alternate form of B:Solve (=)sol):feg [ P 0;C;S =)
on P 0; fe�Sg [ C;S �=)S P 0;C�;S� [ [�℄(i.e., � = mgu(e�S)).Narrow (=)nar):fe[u℄g[P ;C;S =)lp fe[r℄g[ P ; fl�S ?=u�Sg [C;S �=)S fe[r℄g [ P ;C�;S� [ [�℄(that is, � = mgu(l�S; u�S)), where l �! r is a fresh variant from R.The 
ompleteness proof goes through with few 
hanges. Note that in this formu-lation, no new equations remain in C after ea
h step. A similar set of 
ompositerules 
ould be given for N .4.4.2. Simpli�
ationThe inferen
e rules in S (like U) are signi�
ant in that they 
an be applied when-ever we want during a transformation sequen
e without a�e
ting the out
ome; inour indu
tive proof, we may observe that they make the problem smaller without
hanging the solution. Su
h rules are extremely important in redu
ing the sear
hspa
e for a solution.
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alled a simpli�
ation rule for B ifwhenever P ;C;S � P 0;C 0;S0, then � is an R-redu
ed solution of P 0;C 0;S0 i��jVars(P;C;S) is an R-redu
ed solution to P ;C;S, and P 0;C 0;S0 is smaller in theindu
tion ordering used in Theorem 4.13 with respe
t to � than P ;C;S w.r.t.�jVars(P;C;S).The restri
tions in this de�nition ensure that su
h a rule 
an be used any timeit applies in the indu
tion step to obtain a smaller system without 
hanging thesolution (w.r.t. the variables in the left side).Thus, the rules in S are simpli�
ation rules in this respe
t. There are many otherad-ho
 simpli�
ation rules that have been suggested for narrowing. For example,we may perform a form of De
omposition within P when we know that this doesnot remove a redex.Problem De
omposition:ff(s1; : : : ; sn ?= f(t1; : : : ; tn)g [ P 0;C 0;S =) fs1 ?= t1; : : : ; sn ?= tng [ P 0;C;Sif the symbol f does not o

ur at the top of the left-side of a rule in R.In the indu
tion in the 
ompleteness proof this rule de
reases the measure (spe
if-i
ally, it redu
es the 
omponentM). Clearly it does not 
hange the set of solutions.Therefore, we may apply this rule any time, in any 
ontext, without a�e
ting the
ompleteness properties of the 
al
ulus.Su
h rules 
an be applied \eagerly" to produ
e smaller problems, hopefully re-du
ing the sear
h spa
e.4.16. Definition. If T is a subset of rules for some 
al
ulus C, then the eager Tstrategy requires that a rule from CnT may only be applied if no rule from T appliesanywhere in the system.Simpli�
ation rules 
an be performed eagerly.4.17. Theorem. Let R be a ground 
onvergent set of rewrite rules, and A be a setof simpli�
ation rules. If � is an R-solution of P ; ;; ;, then there exists a sequen
eP ; ;; ; �=)B[A ;; ;;Sunder the eager A strategy su
h that �S ��XR �, where X = Vars(P ).The proof pro
eeds as before, with the ex
eption that in the indu
tion step, wemust use a simpli�
ation step if one applies; as noted above, the 
onditions of asimpli�
ation rule ensure that the indu
tion in the 
ompleteness proof goes through.One of the most useful simpli�
ation rules is redu
ing the problem set by the set ofrules R. From an abstra
t point of view, we may motivate su
h equational inferen
esas follows. If u� � !Ev� and u0 � !Eu, then, sin
e equational proofs are 
losedunder instantiation, we have u0� � !Eu� � !Ev�. Thus, we 
an not 
hange the set
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ation Theory 501of solutions by performing equational inferen
es on the problem terms themselves,for example, by redu
ing them.From the point of view of our 
al
ulus, we might observe that in the rule Narrowjust introdu
ed, if no appli
ation of Variable Elimination is ever applied to a variablefrom the system on the left side, then the set of solutions is un
hanged by thistransformation: the substitution generated must in this 
ase apply only to l andr, and hen
e we have, at the ground level, repla
ed e[u℄�� = e[l℄�� = e[l�℄� withe[r�℄�. Sin
e the properties of � were not involved, this means that e�e
tively wehave done a rewrite step u[l�℄ �!R u[r�℄. Alternately, we might say that if you endup doing Variable Elimination on x=? t for x 2 Dom(�) for some solution �, thenyou are assuming that x� = t�; this 
uts down on the number of possible solutions.The resultant rule is:Redu
e (=)red):fe[u℄g [ P ;C;S =)lp fe[r℄g [ P ; fl ?=u�Sg [ C;S�=) fe[r�℄g [ P ;C;S [ [�℄where l �! r is a fresh variant from R (note that the variables in Dom(�) o

uronly in r), and where the last line involves only Trivial, De
omposition, and VariableElimination applied to the variables from l (i.e., l� = u).Note that in the 
ontext of B, we are losing some \basi
ness" by instantiatingfully the right-hand side r; below we shall 
onsider how to re
over some of the basi
restri
tion lost in this fashion.4.18. Proposition. The Eager Redu
e Strategy is 
omplete for B and N .Histori
ally, the narrowing 
al
ulus was the �rst to be invented, by Fay [1979℄;the basi
 narrowing 
al
ulus was developed by Hullot [1980℄, and it was observedby R�ety [1987℄ that redu
tion needed to be modi�ed in this setting. A study ofbasi
 narrowing with redu
tion, to whi
h our treatment is heavily indebted, may befound in [Nutt, R�ety and Smolka 1989℄. In the next two se
tions we present furtherre�nements whi
h may also be found in [Bo
kmayr, Kris
her and Werner 1992℄ and[Nutt et al. 1989℄. For a 
omprehensive study of basi
 inferen
e systems, the readeris referred to [Ba
hmair, Ganzinger, Lyn
h and Snyder 1995℄ and to [Nieuwenhuisand Rubio 2001℄ (Chapter 7 of this Handbook).4.4.3. Redex orderings and variable abstra
tionOne of the useful properties of 
onvergent systems mentioned above is that anystrategy whi
h 
an �nd a redex in a redu
ible term is suÆ
ient for redu
ing termsto normal form, and hen
e for generating rewrite proofs. For example, at the groundlevel we might always look for redi
es in depth-�rst, left-to-right order. More gen-erally, we may de�ne a redex ordering �red as an ordering on the positions in anequation whi
h 
ontains the proper subterm ordering (i.e., for any u[u0℄ with u 6= u0,
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onsidering whether a term t is redu
ible at a position� by some rule, we must 
onsider all positions �0 �red �. The 
ompleteness proof
ould be sharpened by su
h an ordering simply by adding that we must 
hoose theminimal redex a

ording to the redex ordering (su
h a redex must be innermost).In su
h a 
ase, the positions less than this redex may be assumed to be irredu
ible.No further narrowing steps need be performed at su
h positions, and in fa
t, we
ould remove these parts of the term and move them into the solved part of thesystem to enfor
e this.Variable Abstra
tion (=)abst):fe[s℄g [ P ;C;S =) fe[x℄g [ P ; fx ?= sg [ C;Sif x is a fresh variable.A new version of the narrowing rule 
ould then be presented whi
h abstra
ts outterms whi
h are known to be redu
ed.Redex Ordered Narrow (=)ron):fe[u℄g [ P ;C;S =)lp fe[r℄g [ P ; fl�S ?=u�Sg [C;S �=)S fe[r℄g [ P ;C�;S� [ [�℄�=)abst fe0[r℄g [ P ;C� [ C 0;S� [ [�℄where u o

urs at position � in e, and Variable Abstra
tion is applied eagerly toall positions �0 �red � in e to obtain e0.The substitution of this version of Narrow in N preserves 
ompleteness; thefundamental idea is that whenever a term (at the ground level in our 
ompletenessproof) may be assumed to be redu
ed, it may be moved into the 
onstraint partof the system without losing 
ompleteness. This leads to a further use for VariableAbstra
tion in propagating what is known about redu
ed terms: if a term o

ursin S, then (at the ground level) it may be assumed to be redu
ed, and hen
e othero

urren
es of this term may be abstra
ted out.Propagation:fe[u℄g [ P 0;C; fx � t[s℄g [ S =)prop fe[y℄g [ P 0;C; fx � t[s℄; y � sg [ Sif u�S = s is a non-variable and y is a fresh variable.This rule is a simpli�
ation rule if we 
hange the 
omplexity measure in the proofto hM; i; n1; n2; n3iwhere the additional 
omponent i is the number of non-variable symbols o

urringin P . Clearly it 
hanges the solution � of a system to a new solution �fy 7! s�gwhi
h satis�es the 
ondition for a simpli�
ation rule.Returning to our Redu
e rule, we observe that in the 
ontext of B, Redu
e mayinstantiate terms into r that are known to be redu
ed; Propagation 
an remove theseagain. The 
ombination of Redu
tion with Eager Propagation e�e
tively gives usthe more 
omplex form of \basi
 simpli�
ation" des
ribed for example in [Ba
hmairet al. 1995℄ and [Nutt et al. 1989℄, see also [Nieuwenhuis and Rubio 2001℄ (Chapter 7of this Handbook).
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ation Theory 5034.4.4. Failure rulesUnlike our presentation of the 
al
ulus U , we have 
hosen here not to present failurerules from the outset, in order to highlight the essential issues �rst. The 
onditionsunder whi
h sequen
es may fail are of two kinds. First, the failure rules for U(Symbol Clash and O

ur Che
k) may be applied to the sets C and S as before,sin
e these represent uni�
ation problems; however, in this 
ase the 
orrespondingSolve, Narrow, or Redu
e would simply not be performed.The se
ond 
lass of 
onditions basi
ally amount to 
he
king for violations of theredu
ibility 
onditions in a system. At the ground level during the 
ompletenessproof, the substitution � is kept redu
ed, and in addition, 
ertain assumptions 
anbe made about the existen
e of redi
es in terms. However, we have to be 
areful, asour proof only allows us to assume that all substitutions are R-redu
ed, and thatno redex may be redu
ed below its root, or at the root by an equation of lowerindex.This leads to the following rule:Blo
king (=)blo
k): P ;C;S =) ?if some term in S is R-redu
ible, or if some term in C is redu
ible below the root.The Eager Blo
king Strategy is 
omplete, sin
e the 
ompleteness proof requiresthe 
onverse of the 
ondition of this rule at all times. Note that this rule 
ouldbe applied in the middle of a 
omposite rule, for example, just after moving theequation into the set C in Narrow.In order to a

ount for redu
tion at the top of equations in C, it is preferable toadd a further restri
tion to our Narrowing rule:Narrow (=)nar):fe[u℄g[P ;C;S =)lp fe[r℄g[ P ; fl�S ?=u�Sg [C;S �=)S fe[r℄g [ P ;C�;S� [ [�℄where l �! r is a fresh variant from R and l�S� is not the instan
e of the left-sideof any rule of lower index from R.This rule is 
onsistent with Redex Orderings.5. Semanti
 approa
hes to E-uni�
ationThe synta
ti
 approa
hes to E-uni�
ation introdu
ed above 
an be seen as exten-sions of the rule-based approa
h to synta
ti
 uni�
ation, whi
h use the identitiesde�ning the equational theory E to 
ome up with additional transformation rules.In 
ontrast, semanti
 approa
hes to E-uni�
ation try to utilize algebrai
 propertiesof the models of the equational theories. The two most prominent instan
es of theapproa
h are
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ation in Boolean algebras and rings [B�uttner and Simonis 1987, Martinand Nipkow 1989b, Martin and Nipkow 1989a℄, and its generalization to �niteand to primal algebras [B�uttner 1988, B�uttner, Estenfeld, S
hmid, S
hneiderand Tid�en 1990, Nipkow 1990, Kir
hner and Ringeissen 1994℄, and2. Uni�
ation modulo the theories ACU, ACUI, and AG (see subse
tion 3.4 forreferen
es to result on uni�
ation modulo these theories).In the following, we 
on
entrate on the approa
h used in the se
ond 
ase sin
e it 
anbe generalized to a whole 
lass of equational theories, 
alled 
ommutative theoriesin [Baader 1989b℄ and monoidal theories in [Nutt 1990℄. For su
h theories, uni�
a-tion 
an be redu
ed to solving linear equations in a 
orresponding semiring.13 In thefollowing, we introdu
e the 
lass of 
ommutative/monoidal theories, show how the
orresponding semiring is de�ned, and how uni�
ation in 
ommutative/monoidaltheories 
an be redu
ed to solving linear equations in this semiring. In 
ontrast tothe synta
ti
 approa
hes introdu
ed above, general uni�
ation problems 
annot besolved dire
tly by the semanti
 approa
h des
ribed below. However, for 
ommuta-tive/monoidal theories, the known te
hniques for 
ombining uni�
ation algorithms
an always be used to extend an algorithm for uni�
ation with 
onstants to analgorithm for general uni�
ation [Baader and Nutt 1996℄.The theoriesACU := ff(x; y) � f(y; x); f(f(x; y); z) � f(x; f(y; z)); f(x; e) � xg;ACUI := ACU [ ff(x; x) � xg;AG := ACU [ ff(x; i(x)) � egwill be used as examples throughout this se
tion. The introdu
tion of the 
lass of
ommutative/monoidal theories was motivated by the observation that the knownalgorithms for uni�
ation modulo these three theories have many 
ommon features.5.1. Uni�
ation modulo ACU, ACUI, and AG: an exampleWe will �rst restri
t our attention to elementary uni�
ation, and then show howthe methods 
an be extended to uni�
ation with 
onstants.Elementary uni�
ationTo illustrate how the algorithms for elementary uni�
ation modulo these threetheories work, let us 
onsider the problem of unifying the two terms f(x; f(x; y))and f(z; f(z; z)).Let us start with the theory ACU. Obviously, the substitution �1 := fx 7!z1; y 7! z1; z 7! z1g is a synta
ti
 uni�er of this pair of terms, and thus alsoan ACU-uni�er of �ACU := ff(x; f(x; y))=?ACU f(z; f(z; z))g. There are, however,ACU-uni�ers of �ACU that are not synta
ti
 uni�ers of the two terms: �2 := fx 7!13A semiring is similar to a ring, with the only di�eren
e being that its addition is just requiredto form an Abelian monoid, and not ne
essarily an Abelian group.
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ation Theory 505e; y 7! f(z2; f(z2; z2)); z 7! z2g is an example of su
h a uni�er, and �3 := fx 7!f(z3; f(z3; z3)); y 7! e; z 7! f(z3; z3)g is another one. None of these substitutionsis a most general ACU-uni�er of �ACU, but their \
ombination"� := fx 7! f(x�1; f(x�2; x�3)); y 7! f(y�1; f(y�2; y�3));z 7! f(z�1; f(z�2; z�3))g=ACU fx 7! f(z1; f(z3; f(z3; z3))); y 7! f(z1; f(z2; f(z2; z2)));z 7! f(z1; f(z2; f(z3; z3)))gis. For example, �2 
an be obtained as an ACU-instan
e of � by applying thesubstitution fz1 7! e; z3 7! eg. More generally, any �nite 
olle
tion �1; : : : ; �n ofACU-uni�ers of a given ACU-uni�
ation problem 
an be 
ombined in this way to anew ACU-uni�er �, whi
h has all the uni�ers �i as ACU-instan
es. In our example,there still remains the question of how we have found the three uni�ers �1; �2; �3,and why their 
ombination is a most general ACU-uni�er of the problem.In order to explain how we 
ame up with these uni�ers, assume that � is an ACU-uni�er of �ACU, and that z0 is a variable introdu
ed by � , i.e., z0 o

urs in (at least)one of the terms x�; y�; z� . It is easy to see that f(x; f(x; y))� =ACU f(z; f(z; z))�implies that the number of o

urren
es of z0 in f(x; f(x; y))� 
oin
ides with thenumber of o

urren
es of z0 in f(z; f(z; z))� . Thus, if jx� jz0 ; jy� jz0 ; jz� jz0 respe
tivelydenote the number of o

urren
es of z0 in x�; y�; z� , then we have 2jx� jz0 + jy� jz0 =3jz� jz0 , i.e., the numbers jx� jz0 ; jy� jz0 ; jz� jz0 are nonnegative integer solutions of thelinear equation 2x+ y = 3z:Thus, every variable introdu
ed by an ACU-uni�er of a given ACU-uni�
ation prob-lem yields a non-trivial14 solution of the linear equation 
orresponding to the prob-lem in the semiring of all nonnegative integers (with addition and multipli
ation assemiring operations). For the uni�er � introdu
ed above, the variable z1 yields thesolution (1; 1; 1), z2 yields (0; 3; 1), and z3 yields (3; 0; 2). What makes these threesolutions spe
ial is that they are the minimal non-trivial solutions of 2x + y = 3z(w.r.t. the 
omponent-wise �-ordering on triples). Consequently, any solution 
anbe obtained as a (nonnegative) linear 
ombination of these three solutions.Conversely, a substitution that introdu
es only variables (or free 
onstants)
orresponding to solutions of the linear equation is an ACU-uni�er of the 
or-responding ACU-uni�
ation problem. For example, the substitution � := fx 7!f(z0f(z00; f(z00; z00))); y 7! f(z0; f(z0; f(z0; z0))); z 7! f(z0; f(z0f(z00; z00)))g is anACU-uni�er of �ACU sin
e 2 � 1 + 4 = 3 � 2 and 2 � 3 + 0 = 3 � 2. The solutions(1; 4; 2) and (3; 0; 2) 
an be obtained as linear 
ombination of the minimal solu-tions: (1; 4; 2) = 1 � (1; 1; 1) + 1 � (0; 3; 1) + 0 � (3; 0; 2);(3; 0; 2) = 0 � (1; 1; 1) + 0 � (0; 3; 1) + 1 � (3; 0; 2):14Variables not introdu
ed by the uni�er 
orrespond to the trivial solution (0; : : : ; 0).
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t 
an be used to obtain a substitution � su
h that u� =ACU u�� for allu 2 fx; y; zg: � := fz1 7! z0; z2 7! z0; z3 7! z00g.To sum up, we have seen that a given elementary ACU-uni�
ation problem 
or-responds to a system15 of linear equations, whi
h must be solved in the semir-ing N of all nonnegative integers. A most general ACU-uni�er of the problemis obtained by 
ombining the uni�ers 
orresponding to the (�nitely many) min-imal solutions of the system of linear equations. The important property of theset of minimal solutions is that it generates all solutions as linear 
ombinationsin N . The fa
t that this set is always �nite is an easy 
onsequen
e of Di
kson'sLemma [Di
kson 1913℄. Methods for 
omputing this set 
an, for example, be foundin [Huet and Lang 1978, Lambert 1987, Clausen and Fortenba
her 1989, Boudetet al. 1990, Pottier 1991, Domenjoud 1991, Contejean and Devie 1994, Filgueiraand Tom�as 1995℄.The theory ACUI 
an be treated similarly, with the only di�eren
e being thatthe semiring N must be repla
ed by the Boolean semiring BS, whi
h 
onsistsof the truth values 0 and 1, and has 
onjun
tion as its multipli
ation and dis-jun
tion as its addition operation. In fa
t, modulo ACUI it is no longer ne
-essary that the numbers of o

urren
es of variables on the left-hand side andthe right-hand side of the equation 
oin
ide. It is suÆ
ient that ea
h variablethat o

urs on the right-hand side also o

urs on the left-hand side and vi
eversa. Thus, the linear equation 
orresponding to the ACUI-uni�
ation problem�ACUI := ff(x; f(x; y))=?ACUI f(z; f(z; z))g is x+ y = z, and it is easy to see thatall solutions in BS 
an be generated as linear 
ombinations in BS of the solutions(1; 0; 1) and (0; 1; 1). The most general ACUI-uni�er obtained from this generatingset of solutions is �0 := fx 7! z1; y 7! z2; z 7! f(z1; z2)g. The ACU-uni�er �1 fromabove is also an ACUI-uni�er of �ACUI, and it 
an be obtained as an ACUI-instan
eof �0 via the substitution �0 := fz1 7! z1; z2 7! z1g. Sin
e the Boolean semiring BSis �nite, there always exists a �nite set of solutions that generates all solutions aslinear 
ombinations in BS.For the theory AG, the presen
e of the inverse operation leads to the fa
tthat both the 
oeÆ
ients and the solutions of the linear equations 
orre-sponding to an AG-uni�
ation problem may also be negative integers. Thus,the semiring to be 
onsidered here is an fa
t a ring, namely the ring Z ofall integers. The linear equation 
orresponding to the AG-uni�
ation problem�AG := ff(x; f(x; y))=?AG f(z; f(z; z))g 
oin
ides with the one obtained from�ACU, but in Z there exists a smaller set generating all solutions, 
onsist-ing of (0; 3; 1) and (1; �2; 0). Thus, the substitution �00 := fx 7! z2; y 7!f(z1; f(z1; f(z1; f(i(z2); i(z2))))); z 7! z1g is a most general AG-uni�er of �AG.General methods for 
omputing su
h a �nite generating set of solutions of systemsof linear equations in Z 
an, for example, be found in [Knuth 1981, Kannan andBa
hem 1979, Iliopoulos 1989a, Iliopoulos 1989b℄.15Every equation in the uni�
ation problem yields one linear equation.
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ation with 
onstantsFor ACU-uni�
ation with 
onstants, there are two di�erent ways of extending theapproa
h for elementary uni�
ation to the 
ase of uni�
ation with 
onstants. Theapproa
h originally proposed by Sti
kel [1975℄ and [1981℄ �rst solves an elementaryACU-uni�
ation problem, whi
h is obtained by treating free 
onstants as variables,and then modi�es the solutions of the elementary problem to obtain solutions of theproblem with 
onstants. The other approa
h, due to Livesey and Siekmann [1975℄and des
ribed in more detail in [Herold and Siekmann 1987℄, handles free 
onstantswith the help of inhomogeneous linear equations. In the following, we restri
t ourattention to this se
ond method.As an example, we slightly modify the ACU-uni�
ation problem from above. Let�0ACU := ff(x; f(x; y))=?ACU f(a; f(z; f(z; z)))g, where a is a (free) 
onstant. Of
ourse, the numbers of o

urren
es jx� jz0 ; jy� jz0 ; jz� jz0 of a variable z0 introdu
ed byan ACU-uni�er of this problem must still solve the (homogeneous) linear equation2x+ y = 3z. For the free 
onstant a, however, one must also take into a

ount thata already o

urs on
e on the right-hand side. Thus, the numbers jx� ja; jy� ja; jz� jamust solve the following inhomogeneous equation:2x+ y = 3z + 1:The minimal (non-trivial) nonnegative integer solutions of this equation are (0; 1; 0)and (2; 0; 1). Every nonnegative integer solution of the equation 
an be obtainedas the sum of one of the minimal solution and a solution of the 
orrespondinghomogeneous equation 2x + y = 3z. Consequently, ea
h of the minimal solutionsof the inhomogeneous equation together with the set of all minimal solutions ofthe homogeneous equation gives rise to one element of the minimal 
omplete set ofACU-uni�ers of the problem:ffx 7! f(z1; f(z3; f(z3; z3))); y 7! f(a; f(z1; f(z2; f(z2; z2))));z 7! f(z1; f(z2; f(z3; z3)))g;fx 7! f(a; f(a; f(z1; f(z3; f(z3; z3))))); y 7! f(z1; f(z2; f(z2; z2)));z 7! f(a; f(z1; f(z2; f(z3; z3))))g g:In the general 
ase, one must solve one inhomogeneous equation for ea
h free 
on-stant o

urring in the uni�
ation problem. The uni�ers in the minimal 
ompleteset then 
orrespond to all possible 
ombinations of the minimal solutions of theseinhomogeneous equations. For example, if the uni�
ation problem 
ontains the free
onstants a; b; 
, and if the sets of minimal solutions of the inhomogeneous equationsindu
ed by a; b, and 
, respe
tively, have 
ardinality 2; 3, and 5, then the minimal
omplete set is of 
ardinality 2 � 3 � 5 = 30.Uni�
ation with 
onstants modulo the theories ACUI and AG 
an be treated a
-
ordingly. In both 
ases, one works in the semiring 
orresponding to the theory, and�rst determines a generating set of solutions for the system of homogeneous equa-tions 
orresponding to the uni�
ation problem. Then, one 
onsiders the systems of
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ed by the free 
onstants, and for ea
h system deter-mines �nitely many solutions su
h that all solutions of this system of inhomogeneousequations 
an be represented as the sum of one of these parti
ular solutions anda solution of the homogeneous equation. From these sets of solutions, the minimal
omplete set of uni�ers 
an be 
omputed, as illustrated in the above example.For AG, the fa
t that the 
orresponding semiring is a ring implies that takingone parti
ular solution for ea
h system of inhomogeneous equations is suÆ
ient.Consequently, AG is unitary both for elementary uni�
ation and for uni�
ationwith 
onstants, whereas the other two theories, though unitary for elementary uni-�
ation, are only �nitary for uni�
ation with 
onstants.5.2. The 
lass of 
ommutative/monoidal theoriesIn order to generalize this semanti
 approa
h to a whole 
lass of theories, let us tryto determine the relevant 
ommon features of the theories ACU, ACUI, and AG.Using a rather synta
ti
 point of view, we may observe that all three theories are
on
erned with an asso
iative-
ommutative binary fun
tion symbol f with a unit e.In addition, the signature of AG 
ontains a unary fun
tion symbol i, whi
h behaveslike an endomorphism for f and e, i.e., i(f(x; y)) =AG f(i(x); i(y)) and i(e) =AG e.This observation motivates the following de�nition of monoidal theories [Nutt 1990℄:5.1. Definition. An equational theory E is 
alled monoidal i� it satis�es thefollowing properties:1. Sig(E) 
ontains a binary fun
tion symbol f and a 
onstant symbol e, and allother fun
tion symbols in Sig(E) are unary.2. The symbol f is asso
iative-
ommutative with unit e, i.e., f(f(x; y); z) =Ef(x; f(y; z)), f(x; y) =E f(y; x), and f(x; e) =E x.3. Every unary fun
tion symbol h 2 Sig(E) is an endomorphism for f and e, i.e.,h(f(x; y)) =E f(h(x); h(y)) and h(e) =E e.Obviously, the theories ACU, ACUI, and AG are monoidal. Other examples ofmonoidal theories are the theories Eh;g [ Eh;e [ ACUg, Eh;g [ Eh;e [ ACUIg, andEh;g [ Eh;e [ AGg introdu
ed in subse
tion 3.4. The theory of Boolean rings andthe theory of 
ommutative rings are not monoidal sin
e their signatures 
ontaintwo binary fun
tion symbols.A drawba
k of the above de�nition of monoidal theories is that the signature andthe axioms de�ning a theory play an important rôle. In fa
t, the theory of Abeliangroups allows for many di�erent axiomatizations, some of whi
h do not satisfy thede�nition of a monoidal theory. For example, let g be a binary fun
tion symbol ande be a 
onstant symbol. The theoryAG0 := fg(x; x) � e; g(x; e) � e; g(g(x; g(e; y)); g(e; z)) � g(g(z; g(e; y)); g(e; x))gis not monoidal sin
e g is neither asso
iative nor 
ommutative modulo AG0. Never-theless, any model of AG0 is an Abelian group, where the group operations f andi are de�ned as f(x; y) := g(x; g(e; y)) and i(x) := g(e; x).
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ation Theory 509In order to 
apture theories like AG0 as well, one must take a more semanti
point of view. A 
ommon feature of the free algebras de�ned by ACU, ACUI,and AG is that the �nitely generated free algebras are dire
t powers of the freealgebras in one generator. For example, it is well known that the free Abeliangroup in one generator is just the additive group of the integers, and that the freeAbelian group in n generators is the n-fold dire
t produ
t of this group. As shownin [Baader 1989b℄, this 
ommon feature 
an ni
ely be generalized in the 
ategori
alsetting introdu
ed in subse
tion 3.3.3:5.2. Definition. Let E be an equational theory and F := Sig(E). Then E is a
ommutative theory i� CF (E) is a semi-additive 
ategory,16 i.e.,1. CF (E) has a zero obje
t.2. For every pair of obje
ts in CF (E), their 
oprodu
t is also their produ
t.In algebrai
 terms, the �rst 
ondition means that the initial algebra in V (E), i.e.,T (F ; ;)==E , is of 
ardinality 1. Sin
e the 
oprodu
t of T (F ;X )==E and T (F ;Y)==Eis simply T (F ;X ℄ Y)==E (where ℄ denotes disjoint union), the se
ond 
onditionmeans that the free algebra T (F ;X ℄ Y)==E is isomorphi
 to the dire
t produ
tT (F ;X )==E � T (F ;Y)==E . In parti
ular, this implies that the �nitely generatedE-free algebras are dire
t powers of the E-free algebra in one generator.The theory of Abelian groups satis�es these properties (and thus is 
ommuta-tive). The theory of Boolean rings and the theory of 
ommutative rings are not
ommutative in the sense of the above de�nition sin
e the initial algebras 
ontaintwo elements (the 
onstants 0 and 1).In order to obtain a more algebrai
 de�nition of 
ommutative theories, whi
halso makes 
lear that all monoidal theories are 
ommutative, we need two morenotions from universal algebra. A 
onstant symbol e 2 F is 
alled idempotent in Ei� f(e; : : : ; e) =E e holds for all f 2 F . Any term t(x1; : : : ; xn) over the signature Fde�nes an n-ary impli
it operation ot in V (E): for an algebra A 2 V (E), the resultof applying ot to elements a1; : : : ; an of the 
arrier of A is obtained by evaluatingt(a1; : : : ; an) in A. For example, the terms g(x; g(e; y)) and g(e; x) de�ne a binaryand a unary impli
it operation, whi
h together with the 
onstant e satisfy theaxioms of Abelian groups in all models of AG0, i.e., all algebras in V (AG0).5.3. Proposition. Let E be an equational theory and F := Sig(E). Then E is a
ommutative theory i�1. The signature F 
ontains a 
onstant e that is idempotent in E.2. There is a binary impli
it operation � in V (E) su
h that(a) The 
onstant e is a unit for � in all algebras in V (E).(b) For any n-ary fun
tion symbol h 2 F , the identity h(x1 � y1; : : : ; xn � yn) �h(x1; : : : ; xn) � h(y1; : : : ; yn) holds in all algebras in V (E).16See, e.g., [Herrli
h and Stre
ker 1973, Baader 1989b℄ for a more pre
ise de�nition of and moreinformation on semi-additive 
ategories.



510 Franz Baader and Wayne SnyderAlthough it is not expli
itly required by the proposition, the impli
it operation �turns out to be asso
iative and 
ommutative. Using this proposition, it is easy toshow that the theory AG0 is indeed 
ommutative: the impli
it operation � is de�nedby the term g(x; g(e; y)).Another easy 
onsequen
e of the proposition is that every monoidal theory is
ommutative: just take the expli
it asso
iative-
ommutative binary operation f inthe de�nition of monoidal theories as the impli
it operation �. The theory AG0is an example of a 
ommutative theory that is not monoidal. However, it 
an beshown [Baader and Nutt 1996℄ that every 
ommutative theory 
an be turned intoan \equivalent" monoidal theory with the help of a signature transformation. Forthis reason, one 
an in prin
iple use both notions synonymously.5.3. The 
orresponding semiringLet E be a 
ommutative theory with Sig(E) = F . The semiring SE 
orrespondingto E is obtained by 
onsidering the E-free algebra in one generator, say x, and thentaking the set of all endomorphisms of this algebra. Ea
h su
h endomorphism isuniquely determined by the image of the generator x. The multipli
ation operation\�" in SE is just 
omposition of morphisms, and the addition operation \+" is ob-tained by argument-wise appli
ation of the impli
it operation � of the 
ommutativetheory E: (� + �)(x) := �(x) � �(x).As an example, we 
onsider the 
ommutative theory ACUI, where the ex-pli
it operation f serves as the impli
it operation �. Sin
e the ACUI-free alge-bra generated by x 
onsists of two equivalen
e 
lasses, with representatives xand e, respe
tively, there are two possible endomorphisms: 0, whi
h is de�nedby x 7! e, and 1, whi
h is de�ned by x 7! x. It is easy to see that the op-eration \+" in SACUI behaves like disjun
tion and \�" like 
onjun
tion on thetruth values 0 and 1. For example, (0 � 1)(x) = 1(0(x)) = 1(e) = e = 0(x) and(0 + 1)(x) = f(0(x); 1(x)) = f(e; x) =ACUI x = 1(x). Consequently, SACUI is thetwo-element Boolean semiring BS.A well-known result for semi-additive 
ategories [Herrli
h and Stre
ker 1973℄ saysthat morphisms � in the semi-additive 
ategory CF (E) 
an be represented as matri-
esM� over SE su
h that 
omposition of morphisms 
orresponds to matrix multipli-
ation, i.e.,M�� =M� �M� . For example, the morphism �: T (F ; fx1; x2g)==ACUI !T (F ; fy1; y2g)==ACUI de�ned by �(x1) := f(y1; y2); �(x2) := y2 
orresponds to thematrix M� =  fx1 7! y1g fx1 7! y2gfx2 7! eg fx2 7! y2g ! =  1 10 1 ! :The se
ond equality depends on the fa
t that all E-free algebras in one generatorare isomorphi
, and thus a morphism �ij : T (F ; fxig)==E ! T (F ; fyjg)==E 
an beseen as an endomorphism of T (Ffxg)==E , i.e., an element of SE .
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ation Theory 5115.4. Results on uni�
ation in 
ommutative theoriesLet E be a 
ommutative theory with Sig(E) = F . In subse
tion 3.3.3 wehave seen that any E-uni�
ation problem over F 
orresponds to a parallel pair�; � : T (F ; I)==E ! T (F ;X )==E of morphisms in CF (E), and that an E-uni�er
orresponds to a morphism Æ with domain T (F ;X )==E su
h that �Æ = �Æ holds inCF (E).If we translate the morphisms into matri
es over SE , this means that an E-uni�er of the parallel pair h�; �i 
orresponds to a matrix M over SE su
h thatM� �M = M� �M . This 
orresponden
e is used in [Nutt 1990, Baader 1993℄ to
hara
terize the uni�
ation types of 
ommutative theories by algebrai
 propertiesof the 
orresponding semirings. The rows of the matrix M are n-tuples of elementsof SE , written as row ve
tors. We will denote the set of all su
h n-dimensional rowve
tors over SE by SnE .5.4. Theorem. A 
ommutative theory E is unitary w.r.t. elementary uni�
ationi� the 
orresponding semiring SE satis�es the following 
ondition: for all m;n � 1and all m� n-matri
es M1;M2 over SE the setU(M1;M2) := fv 2 SnE jM1 � v =M2 � vgis �nitely generated, i.e., there exist k � 0 and v1; : : : ; vk 2 SnE su
h thatU(M1;M2) = fv1 � s1 + � � �+ vk � sk j s1; : : : ; sk 2 SEg.If fv1; : : : ; vkg is su
h a �nite generating set for U(M�;M� ), then the matrix whose
olumns are the ve
tors v1; : : : ; vk 
orresponds to the most general E-uni�er ofh�; �i.Uni�
ation with 
onstants 
an also be reformulated as a problem in CF (E) forF = Sig(E). To this end we view 
onstants as spe
ial variables that must alwaysbe substituted for themselves. Let C be a �nite set of free 
onstants. We say thata morphism �: T (F ;X [ C)==E ! T (F ;Y [ C)==E respe
ts the 
onstants in C i�
� = 
 for all 
 2 C. In this 
ase, the matrix M� has a spe
ial form:M� =  Mh� M i�0 U ! ;whereMh� is an jX j�jYj-matrix,M i� is an jX j�jCj-matrix, 0 is the jCj�jYj-matrixwith all entries 0, and U is the jCj � jCj-unit matrix. The 0-submatrix is due to thefa
t that � does not substitute terms with variables for 
onstants, and the unitmatrix expresses that � maps any 
onstant to itself.An E-uni�
ation problem with 
onstants from a �nite set C 
orresponds to aparallel pair h�; �i of morphisms respe
ting the 
onstants in C, and ea
h E-uni�erÆ of this pair also 
orresponds to a morphism respe
ting C. For the 
omponents ofthe 
orresponding matri
es, the fa
t that Æ is a uni�er of h�; �i, i.e., thatM� �MÆ =M� �MÆ, leads to the following equations:Mh�MhÆ = Mh�MhÆ ;



512 Franz Baader and Wayne SnyderMh�M iÆ +M i� = Mh�M iÆ +M i� :The �rst equation is a system of homogeneous equations in SE , whereas the se
ondis a system of inhomogeneous equations.From these observations one 
an derive the following 
hara
terization of the type\at most �nitary" for uni�
ation with 
onstants in 
ommutative theories:175.5. Theorem. Let E be a 
ommutative theory that is unitary w.r.t. elementaryuni�
ation. Then E is at most �nitary w.r.t. uni�
ation with 
onstants i� the
orresponding semiring SE satis�es the following 
ondition: for all m;n � 1, allm � n-matri
es M1;M2 over SE, and all u1; u2 2 SmE , there exist �nitely manyv1; : : : ; vk 2 SnE su
h thatfw 2 SnE jM1 � w + u1 =M2 � w + u2g = fvi + v j 1 � i � k; v 2 U(M1;M2)g:This 
onditions means that �nitely many parti
ular solutions of the system of in-homogeneous equations, M1 � x + u1 = M2 � x + u2, together with the solutionsU(M1;M2) of the 
orresponding system of homogeneous equations,M1 �x =M2 �x,generate all solutions of the system of inhomogeneous equations. The assumptionthat E is unitary w.r.t. elementary uni�
ation implies that U(M1;M2) is �nitelygenerated. The 
omplete set of E-uni�ers 
an now be built from the generating setof U(M1;M2) and the �nitely many parti
ular solutions of the systems of inhomoge-neous equations 
orresponding to the free 
onstants as illustrated in subse
tion 5.1.We 
lose this se
tion by mentioning some additional results on uni�
ation in
ommutative theories. Let E be a 
ommutative theory.1. For elementary uni�
ation, E is either unitary or of type zero.2. If SE is �nite, then E is unitary for elementary uni�
ation and at most �nitaryfor uni�
ation with 
onstants.3. If SE is a ring and E is unitary for elementary uni�
ation, then E is also unitaryfor uni�
ation with 
onstants.4. If E is at most �nitary for uni�
ation with 
onstants, then E is also at most�nitary for uni�
ation with linear 
onstant restri
tions, and thus also for generaluni�
ation.Proofs of these and other interesting results on uni�
ation in 
ommutative/monoidaltheories 
an be found in [Baader 1989b, Nutt 1990, Baader 1993, Baader andNutt 1996℄.Compared to synta
ti
 approa
hes to uni�
ation, the semanti
 approa
h intro-du
ed here has the disadvantage that it 
annot treat general uni�
ation problemsdire
tly. In fa
t, for a 
ommutative theory E, we have 
onsidered the 
ategoryCF (E) for F = Sig(E), and have used the fa
t that this 
ategory is semi-additive.For an extended signature F1 � F , the 
ategory CF1(E) would no longer be semi-additive, and thus the presented approa
h to uni�
ation in 
ommutative theories
annot be applied dire
tly. For uni�
ation with 
onstants, we have shown that one
an still work within the 
ategory CF (E) by 
onsidering spe
ial morphisms. For17Re
all that \at most �nitary" means unitary or �nitary.
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ation Theory 513arbitrary free fun
tion symbols su
h an approa
h does not appear to be possible.The general methods for 
ombining uni�
ation algorithms des
ribed in the nextse
tion 
an, however, over
ome this problem (see result 4. from above).6. Combination of uni�
ation algorithmsIn appli
ations of equational uni�
ation in automated dedu
tion, one is often fa
edwith the problem of unifying terms 
ontaining several fun
tion symbols whose prop-erties are de�ned by equational theories. For example, asso
iative-
ommutativefun
tion symbols often 
ome in pairs (e.g., the addition operation + and the multi-pli
ation operation � of rings). However, a given AC- or ACU-uni�
ation algorithm
an only treat terms 
ontaining one of these two symbols, but not both. In pro-gram veri�
ation one may en
ounter data stru
tures su
h as sets and lists, and their
ombination (e.g., sets of lists). Sin
e union of sets ([) is asso
iative, 
ommutative,and idempotent, and the append operation for lists (app) is asso
iative, uni�
ationof terms 
ontaining both ACI- and A-symbols is of interest in this setting. Thus,the question arises whether we 
an use the known ACI[- and Aapp-uni�
ation al-gorithms for unifying terms 
ontaining both [ and app modulo ACI[ [Aapp . Thisis an instan
e of the following 
ombination problem for uni�
ation algorithms:Assume that E1; : : : ; En are equational theories over pairwise disjoint sig-natures. How 
an algorithms for uni�
ation modulo Ei (i = 1; : : : ; n) be
ombined to an algorithm for uni�
ation modulo E1 [ � � � [ En?To be more pre
ise, there are two variants of this problem: one 
an either tryto 
ombine algorithms 
omputing 
omplete sets of uni�ers or de
ision pro
edures.It should also be noted that without the disjointness 
ondition there 
annot ex-ist a general 
ombination method.18 For example, as mentioned in se
tion 3.4,Dlf;g-uni�
ation and Drf;g-uni�
ation are unitary, whereas uni�
ation modulo theirunion Df;g is in�nitary, whi
h shows that algorithms 
omputing �nite 
omplete setsof uni�ers 
annot be 
ombined in the non-disjoint 
ase. Se
tion 3.4 also yields anegative example for the 
ombination of de
ision pro
edures: Df;g-uni�
ation andAg-uni�
ation are de
idable, whereas uni�
ation modulo their union is unde
idable.The formulation of the 
ombination problem given above is still not quite pre
isesin
e it does not spe
ify whi
h kind of Ei-uni�
ation problems (elementary, with
onstants, or general) the 
omponent algorithms must be able to handle. As weshall see below, algorithms for uni�
ation with 
onstants are not quite suÆ
ient:the 
ombination method requires algorithms for uni�
ation with linear 
onstantrestri
tions for the 
omponent theories Ei. In parti
ular, algorithms for general E-uni�
ation 
an be obtained from algorithms for E-uni�
ation with l
r by 
ombiningthem with an algorithm for synta
ti
 uni�
ation (whi
h treats the free fun
tionsymbols).18There are some approa
hes that try to weaken the disjointness assumption, but the theoriesto be 
ombined must satisfy rather strong 
onditions [Ringeissen 1992, Domenjoud, Klay andRingeissen 1994℄.
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h on the 
ombination problem was triggered by the sear
h for auni�
ation algorithm that 
an deal with terms 
ontaining several asso
iative-
ommutative fun
tion symbols and free symbols [Sti
kel 1975, Sti
kel 1981, Fages1984, Fages 1987, Herold and Siekmann 1987℄. It turned out that the methods usedin this parti
ular instan
e of the 
ombination problem 
an easily be generalized toother equational theories, provided that they satisfy 
ertain restri
tions (su
h as
ollapse-freeness or regularity19) on the synta
ti
 form of their de�ning identities,whi
h make sure that the theories behave similarly to asso
iativity-
ommutativityand synta
ti
 equality [Kir
hner 1985, Tid�en 1986, Herold 1986, Yeli
k 1987, Boudetet al. 1989℄.The problem of 
ombining algorithms 
omputing 
omplete sets of uni�ers wassolved in a very general form by S
hmidt-S
hau� [1989b℄. His approa
h imposes norestri
tion on the synta
ti
 form of the identities. The only requirements on the
omponent theories Ei are of an algorithmi
 nature: both Ei-uni�
ation problemswith 
onstants and so-
alled \
onstant elimination problems" (see [S
hmidt-S
hau�1989b℄ for a de�nition) must be �nitary solvable modulo Ei. Boudet [1993℄ des
ribesa more eÆ
ient 
ombination algorithm, whi
h depends on the same requirementsas the one by S
hmidt-S
hau�.In the following, we will des
ribe the 
ombination method introdu
ed in [Baaderand S
hulz 1992, Baader and S
hulz 1996℄ in more detail, sin
e it 
an be used bothfor 
ombining algorithms 
omputing 
omplete sets of uni�ers and for 
ombining de-
ision pro
edures. Instead of splitting the algorithmi
 problem to be solved for the
omponent theories Ei into two parts (uni�
ation with 
onstants and 
onstant elim-ination), this method requires algorithms (de
ision pro
edures) for Ei-uni�
ationwith l
r. In this setting, S
hmidt-S
hau�'s 
ondition that 
onstant elimination prob-lems must be �nitary solvable modulo Ei 
an be seen as just one way of ensuringthat Ei-uni�
ation with l
r is at most �nitary provided that Ei-uni�
ation with
onstants is at most �nitary.6.1. A general 
ombination methodBefore des
ribing the 
ombination method of Baader and S
hulz [1992℄ and [1996℄formally, we illustrate the underlying ideas by a simple example. Let g be a unaryand f be a binary fun
tion symbol. We 
onsider the theories Af and Fg := fg(x) �g(x)g,20 and the (elementary) uni�
ation problem�0 := fg(f(y; y)) ?=E g(x); g(x) ?=E g(y); x ?=E f(y; y)gmodulo their union E := Af [Fg . In a �rst step, we transform �0 into an equivalentuni�
ation problem in de
omposed form, i.e., into a union of an (elementary) Af -19A theory E is 
alled 
ollapse-free if it does not 
ontain an identity of the form x = t where xis a variable and t is a non-variable term, and it is 
alled regular if the left- and right-hand sidesof the identities 
ontain the same variables.20Obviously, =Fg is just synta
ti
 equality. The \dummy" axiom g(x) � g(x) makes sure thatg belongs to Sig(Fg).
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ation problem and an (elementary) Fg-uni�
ation problem:� := fz ?=Af f(y; y); x ?=Af f(y; y)g [ fg(z) ?=Fg g(x); g(x) ?=Fg g(y)g:This has been a
hieved by repla
ing \alien" subterms (in the example, just the termf(y; y) o

urring on the left-hand side of the �rst equation) by new variables andintrodu
ing appropriate new equations (see [Baader and S
hulz 1996℄ for a formalde�nition of this de
omposition step).Unfortunately, it is not suÆ
ient simply to test the \pure" uni�
ation problemsobtained this way for solvability. The problem is that these uni�
ation problemsstill share variables, and the single solutions may instantiate these variables within
ompatible terms. For example, �1 := fx 7! f(y; y); z 7! f(y; y)g solves theAf -subproblem, and �2 := fx 7! g(x); y 7! g(x); z 7! g(x)g is a solution of theFg-subproblem, but these solutions repla
e both x and z by di�erent (even non-uni�able) terms. In order to avoid su
h in
ompatible assignments, we 
hoose atheory label for ea
h variable: in the subproblem 
orresponding to this theory, thevariable may be instantiated, whereas in the other subproblem the variable mustbe treated as a 
onstant. For example, if we assignL(x) := L(z) := Af and L(y) := Fg ;then y must be treated as a 
onstant in the Af -subproblem, whereas x and z mustbe treated as 
onstants in the Fg-subproblem.This avoids in
ompatible instantiations of shared variables, but also leads toa new problem: in the example, the equation g(z)=?Fg g(x) is no longer solvablesin
e both z and x must be treated as (di�erent) 
onstants. This problem 
an beover
ome by 
hoosing an appropriate variable identi�
ation. In the example, x mustbe identi�ed with z, whi
h 
an be a
hieved by repla
ing every o

urren
e of z byx: �0 := fx ?=Af f(y; y)g [ fg(x) ?=Fg g(x); g(x) ?=Fg g(y)g:Unfortunately, the solutions �01 := fx 7! f(y; y)g and �02 := fy 7! xg of thepure subproblems still 
annot be 
ombined to a solution of their union, sin
e thereis a 
y
li
 dependen
y between the two substitutions: x is repla
ed by a term
ontaining y, and y is repla
ed by a term 
ontaining x. Su
h 
y
li
 dependen
iesbetween solutions of the pure subproblems 
an �nally be avoided by 
hoosing alinear ordering on the shared variables of the uni�
ation problem, whi
h indu
eslinear 
onstant restri
tions for the subproblems.These ideas 
an be formalized as follows. Let E1; : : : ; En be non-trivial equationaltheories over disjoint signatures. An (E1 [ � � � [ En)-uni�
ation problem � is inde
omposed form i� � = �1[� � �[�n where ea
h �i is an elementary Ei-uni�
ationproblem. As illustrated in the example, it is easy to transform a given elementary(E1 [ � � �[En)-uni�
ation problem into an equivalent problem in de
omposed form(see [Baader and S
hulz 1996℄ for details). Thus, we may without loss of generalityassume that all our (E1 [ � � � [ En)-uni�
ation problems are in de
omposed form



516 Franz Baader and Wayne Snyder� = �1 [ � � � [ �n. A variable o

urring in � is 
alled a shared variable i� it o

ursin at least two of the pure subproblems �i.Let X be the set of shared variables of � = �1[� � �[�n. A variable identi�
ation
an be represented by a partition � = fP1; : : : ; Pkg of X . For ea
h of the 
lassesPi, let xi 2 Pi be a representative of this 
lass, and let X� := fx1; : : : ; xkg be theset of these representatives. The substitution that repla
es, for all i = 1; : : : ; k, ea
helement of Pi by its representative xi is denoted by ��. We denote the result ofapplying �� to ea
h term in �i by �i��. For a given partition � of the sharedvariables of �, let L : X� ! f1; : : : ; ng be a labelling fun
tion, whi
h assigns atheory label to ea
h variable in X�, and let < be a linear ordering on X�. Using Land <, ea
h of the elementary Ei-uni�
ation problems �i�� 
an be turned into anEi-uni�
ation problem with linear 
onstant restri
tions h�i��; L;<i: the variablesx 2 X� with label L(x) 6= i are treated as (free) 
onstants in h�i��; L;<i, whereasthe other variables are still treated as variables, and the linear 
onstant restri
tionsare indu
ed by <.216.1. Proposition. Let � := �1[ � � �[�n be an (E1[ � � �[En)-uni�
ation problemin de
omposed form. Then the following statements are equivalent:1. � is solvable, i.e., there exists an (E1 [ � � � [ En)-uni�er of �.2. There exists a partition �, a labelling fun
tion L : X� ! f1; : : : ; ng, and alinear ordering < on X� su
h that, for all i = 1; : : : ; n, the Ei-uni�
ationproblem with linear 
onstant restri
tions h�i��; L;<i is solvable.Assume that solvability of Ei-uni�
ation problems with l
r is de
idable for i =1; : : : ; n. For a given elementary (E1 [ � � � [ En)-uni�
ation problem �0 one 
an
ompute an equivalent problem in de
omposed form � in polynomial time. For�, there exist only �nitely many di�erent triples (�; L;<), whi
h means that itis possible to 
ompute all possible su
h triples, and then test the obtained Ei-uni�
ation problems with l
r for solvability. Thus, proposition 6.1 implies thatsolvability of elementary (E1 [ � � � [ En)-uni�
ation problems is de
idable. To bemore pre
ise, instead of deterministi
ally 
omputing all possible triples (�; L;<),one 
an also employ a non-deterministi
 algorithm that \guesses the right tuple"in polynomial time.6.2. Theorem. Let E1; : : : ; En be non-trivial equational theories over disjoint sig-natures. If solvability of Ei-uni�
ation problems with linear 
onstant restri
tions isde
idable (in NP) for i = 1; : : : ; n, then solvability of elementary (E1 [ � � � [ En)-uni�
ation problems is de
idable (in NP).In general, it is not possible to avoid the non-determinism inherent in this 
ombi-nation method [S
hulz 1997℄. For example, the de
ision problem is polynomial forACUI-uni�
ation with l
r, but NP-
omplete for general ACUI-uni�
ation [Baader21Non-shared variables are assumed to be larger than all shared variables, i.e., there are norestri
tions for the images of these variables.
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hulz 1993b, Kapur and Narendran 1992a℄. This shows that the 
ombina-tion of an algorithm for synta
ti
 uni�
ation with a de
ision pro
edure for ACUI-uni�
ation with l
r 
annot be a
hieved with the help of a polynomial 
ombinationmethod. For regular and 
ollapse-free theories for whi
h, in addition, it is possibleto 
ompute most general uni�ers in polynomial time, one 
an, however, design a(deterministi
) polynomial 
ombination pro
edure [S
hulz 1999℄.The naive 
ombination algorithm obtained by a dire
t appli
ation of proposi-tion 6.1 is highly non-deterministi
, and thus does not lead to satisfa
tory resultsin pra
ti
e. Optimizations of the 
ombination algorithm (whi
h avoid this unsatis-fa
tory behavior in many 
ases) are des
ribed in [Kepser and Ri
hts 1999℄.Proposition 6.1 
an also be used to obtain a method for 
ombining uni�
ationalgorithms, i.e., algorithms 
omputing �nite 
omplete sets of uni�ers. In fa
t, as weshall see below, given solutions �i of the Ei-uni�
ation problems with l
r indu
edby the triple (�; L;<) 
an e�e
tively be 
ombined into a solution �1�� � ���n of theoriginal (E1 [ � � � [En)-uni�
ation problem. For a given (E1 [ � � � [En)-uni�
ationproblem � in de
omposed form, let T1; : : : ; Tk be all the triples 
onsisting of apartition �, a labelling fun
tion L, and a linear ordering < on X�, and let Ci;j bea 
omplete set of Ei-uni�ers of the Ei-uni�
ation problem with l
r indu
ed by Tj .Then the set k[j=1f�1 � � � � � �n j �i 2 Ci;jgis a 
omplete set of (E1 [ � � � [ En)-uni�ers of � (see [Baader and S
hulz 1996℄ fora proof).6.3. Theorem. Let E1; : : : ; En be non-trivial equational theories over disjoint sig-natures that are at most �nitary for Ei-uni�
ation with linear 
onstant restri
tions.Then E1 [ � � � [ En is at most �nitary for elementary uni�
ation.Although the 
ombination results (as formulated in theorem 6.2 and theorem 6.3)only apply to elementary uni�
ation in the 
ombined theory, they 
an easily beextended to general uni�
ation. In fa
t, it is easy to see that synta
ti
 uni�
ationwith l
r is de
idable and unitary: just 
ompute the mgu of the uni�
ation problemwithout l
r, and then test whether it satis�es the 
onstant restri
tions. Thus, one
an simply take as one of the Ei's a \free" theory F su
h that Sig(F ) 
ontains allthe free fun
tion symbols o

urring in the general uni�
ation problem and =F isthe synta
ti
 equality on Sig(F )-terms.6.2. Proving 
orre
tness of the 
ombination methodIn order to show soundness of the 
ombination method (i.e., (2) ! (1) of propo-sition 6.1), it is suÆ
ient to show that given solutions �i of the Ei-uni�
ationproblems with l
r indu
ed by the triple (�; L;<) 
an indeed be 
ombined into a



518 Franz Baader and Wayne Snydersolution �1 � � � � � �n of the original (E1 [ � � � [En)-uni�
ation problem in de
om-posed form � = �1 [ � � � [ �n. First, we 
ombine �1; : : : ; �n into a solution � of��� = �1�� [ � � � [ �n��. Obviously, this implies that ��� is a solution of �.Without loss of generality, we may assume that the substitution �i maps allvariables with label i to terms 
ontaining only variables with label j 6= i (whi
h aretreated as free 
onstants in �i��) or new variables, i.e., variables not o

urring in�. The 
ombined solution � of ��� is de�ned along the linear ordering <.Let x be the least variable with respe
t to <, and let i be its label. Sin
e thesolution �i of �i�� satis�es the 
onstant restri
tions indu
ed by <, the term x�idoes not 
ontain any variables with index j 6= i. Thus we 
an simply de�ne x� :=x�i.Now let x be an arbitrary variable with label i, and let y1; : : : ; ym be the variableswith labels di�erent from i o

urring in x�i. Sin
e �i satis�es the 
onstant restri
-tions indu
ed by <, the variables y1; : : : ; ym (whi
h are treated as free 
onstants in�i��) must be smaller than x. This means that y1�; : : : ; ym� are already de�ned.The term x� is now obtained from x�i by repla
ing ea
h yk by yk� (k = 1; : : : ;m).It is easy to see that the substitution � obtained this way satis�es � = �i�(i = 1; : : : ; n), i.e., � is an instan
e of all the substitutions �i. Sin
e �i is anEi-uni�er of �i��, this implies that � is also an Ei-uni�er of �i��, and thus anE-uni�er of �i��. Consequently, � is an E-uni�er of ��� = �1�� [ � � � [ �n��.Proving 
ompleteness of the 
ombination method (i.e, (1) ! (2) of proposi-tion 6.1) turns out to be a bit more 
omplex. In the following, we only give asket
h of the proof. Assume that � is a solution of the (E1 [ � � � [ En)-uni�
ationproblem in de
omposed form � = �1 [ � � � [�n. This solution 
an be used to de�nethe 
orre
t triple (�; L;<):1. Two shared variables x; y belong to the same 
lass of � i� x� =E y�.2. If x� is not a variables, then L(x) = i i� the top symbol of x� belongs toSig(Ei). Otherwise, L(x) := 1 (this is an arbitrary de
ision).3. < is an arbitrary linear extension of the stri
t partial ordering � de�ned byx � y i� x� is a stri
t subterm of y�.It is easy to see that � is also a solution of ��� = �1�� [ � � � [ �n��. For ea
hi, the substitution � (whi
h is a substitution of the 
ombined signature Sig(E1) [� � � [ Sig(En)) 
an be turned into a Sig(Ei)-substitution �i by repla
ing aliensubterms in x� (i.e., subterms starting with a symbol not belonging to Sig(Ei))by new variables in su
h a way that =E-equivalent subterms are repla
ed by thesame variable. Unfortunately, for an arbitrary E-uni�er � of �, the substitution�i obtained this way need not be a solution of the Ei-uni�
ation problem withl
r h�i��; L;<i. For this to be true, � must be normalized in a 
ertain way. Onepossibility to obtain an appropriate notion of a normalized substitution is to applyunfailing 
ompletion to the equational theory E1 [ � � � [ En, and normalize w.r.t.the ordered rewrite system R obtained this way (see [Baader and S
hulz 1996℄for details). Sin
e R may be in�nite, it is not ne
essarily possible to 
ompute thenormal form of a given term, but this is irrelevant for the proof of 
ompleteness.Another possibility (whi
h has the advantage that normalization is e�e
tive) is to
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ompute a so-
alled \layer-redu
ed" form [S
hmidt-S
hau� 1989b, Kir
hner andRingeissen 1994℄. In prin
iples, this normal form is obtained by applying 
ollapse-equations as mu
h as possible.A di�erent way of proving soundness and 
ompleteness of the 
ombinationmethod des
ribed above was introdu
ed in [Baader and S
hulz 1995a℄: it dependson a representation of the free algebra in V (E1 [ � � � [ En) over 
ountably manygenerators as the so-
alled free amalgamated produ
t of the free algebras in V (Ei)in 
ountably many generators. This approa
h 
an also deal with the 
ombinationof 
onstraint solvers in free stru
tures (where the signature may also 
ontain pred-i
ate symbols), and it has been generalized to stru
tures that are not ne
essarilyfree [Baader and S
hulz 1995
, Baader and S
hulz 1998℄. The 
ombination methodhas also been extended to disuni�
ation [Baader and S
hulz 1995b, Kepser 1999℄.7. Further topi
sIn this arti
le we have 
on
entrated on uni�
ation of �rst-order terms, and havementioned only appli
ations in term rewriting and resolution-based theorem prov-ing. However, uni�
ation is a broad paradigm with appli
ations in almost everyarea of automated dedu
tion, and we would like to draw the reader's attentionin parti
ular to the two 
hapters of this handbook where varieties of uni�
ationnot 
overed here are treated: higher-order uni�
ation [Dowek 2001℄ and rigid E-uni�
ation [Degtyarev and Voronkov 2001a℄ (Chapters 16 and 10 of this Handbook).In addition, we brie
y mention in this �nal se
tion a number of important variantsof the uni�
ation problem that have been studied in the literature.Mat
hingGiven a pair of terms s; t, the mat
hing problem asks for a substitution � su
h thats� = t. Again, this synta
ti
 mat
hing problem 
an be generalized to mat
hingmodulo an equational theory E, where one asks for a substitution � satisfyings� =E t.If t does not 
ontain variables, then mat
hing and uni�
ation are obviously thesame problem. In general, one 
an turn a given mat
hing problem into an \equiva-lent" uni�
ation problem by repla
ing the variables in t by new free 
onstants. Thistransformation shows that mat
hing modulo E 
an be redu
ed to E-uni�
ation with
onstants . B�ur
kert [1989℄ has shown that there exists an equational theory forwhi
h elementary uni�
ation is de
idable, but mat
hing and uni�
ation with 
on-stants is unde
idable. Also, if one is interested in 
omplete sets of E-mat
hers, thenone must be 
areful how to de�ne the instantiation quasi-ordering [B�ur
kert 1989℄.Semiuni�
ationSemiuni�
ation is a de
eptively simple 
ombination of synta
ti
 mat
hing and syn-ta
ti
 uni�
ation on �rst-order terms.
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ation problem 
onsists of a set of pairs of termsfs1 �? t1; : : : ; sn �? tngand is 
alled uniform if n = 1. A substitution � is a solution (a semiuni�er) of su
ha problem i� there exist substitutions �1; : : : ; �n su
h thats1��1 = t1�; : : : ; sn��n = tn�:This simple de�nition belies the broad variety of appli
ations of semiuni�
ation interm rewriting, type 
he
king for programming languages, proof theory, and 
ompu-tational linguisti
s; in addition, proving the properties of the problem turned out tobe extremely diÆ
ult. Although it is easy to show that so-
alled prin
ipal solutions(analogous to mgus in synta
ti
 uni�
ation) always exist for solvable semiuni�
a-tion problems, the proof that the non-uniform 
ase is unde
idable is ex
eedingly
omplex; the interested reader is referred to [Kfoury, Tiuryn and Urzy
zyn 1993℄,where a review of the results on the non-uniform 
ase is presented.The uniform 
ase is de
idable, but it took a long time to develop a 
orre
t,eÆ
ient algorithm. A fast algorithm based on the uni�
ation-
losure method, aswell as a review of the various attempts to provide algorithms for the problem, maybe found in [Oliart and Snyder 1998℄. This paper shows that the uniform 
ase 
anbe de
ided in O(n2 �(n)2), where n is the size of the two input terms, and � isthe fun
tional inverse of A
kermann's fun
tion; 
onstru
ting a prin
ipal solution issomewhat more 
omplex.Disuni�
ationA disuni�
ation problem is of the formfs1 ?= t1; : : : ; sn ?= tn; sn+1 ?6= tn+1; : : : ; sn+m ?6= tn+mg;where s1; : : : ; tn+m are terms. A solution of su
h a problem is a substitution �satisfying si� = ti� (i = 1; : : : ; n) and sn+j� 6= tn+j� (j = 1; : : : ;m). Again, thisproblem 
an be generalized to disuni�
ation modulo an equational theory E.In 
ontrast to uni�
ation, one must distinguish between di�erent types of solv-ability: for disuni�
ation it makes a di�eren
e whether solutions are required tobe ground substitutions (i.e., substitution introdu
ing only variable-free terms),or whether they may be arbitrary substitutions. Both types of solvability havebeen 
onsidered in the literature [Colmerauer 1984, Kir
hner and Les
anne 1987,B�ur
kert 1988, Comon and Les
anne 1989, Comon 1988, Comon 1991, Buntineand B�ur
kert 1994, Baader and S
hulz 1993a℄, but ground solvability appears tobe more interesting for most appli
ations. It should also be noted that sometimesmore general problems than the one introdu
ed above are still 
alled disuni�
ationproblems (see, e.g., [Comon 1991℄).Sorted uni�
ationIn many appli
ations, the domain on whi
h the fun
tion symbols operate is notone homogeneous set: it is divided into di�erent subsets, whi
h on the synta
ti
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ation generalizes synta
ti
 uni�
ationin that the domain of variables is restri
ted to 
ertain sorts. Uni�ers are thenrequired to be well-sorted in the sense that variables 
an only be repla
ed byterms of a \
ompatible" sort. Results for sorted uni�
ation strongly depend onthe expressiveness of the sort language. An overview on sorted uni�
ation 
an,for example, be found in [Weidenba
h 1998℄; other important referen
es on thetopi
 are [Walther 1983, Walther 1987, S
hmidt-S
hau� 1986a, S
hmidt-S
hau�1989a, Comon 1989, Meseguer, Goguen and Smolka 1989, Tommasi 1991, Fris
hand Cohn 1992, Weidenba
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