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Abstract

We study automatafor capturingtransforma-
tions employed by practicalnaturallanguage
processingsystems suchasthosethat trans-
late betweenhumanlanguages. For several
variationsof finite-statestring andtreetrans-
ducerswe askformal questionsaboutexpres-
siveness modularity teachability and gener
alization.

1 Introduction

Many problemsin naturallanguageprocessingNLP)
consistof transformingone string (or structure)into
another Theseinclude translation, summarization,
guestionanswering,speechrecognition, speechsyn-
thesis, semanticinterpretation,and languagegenera-
tion. Mappinginputsto their properoutputsamounts
to capturinga mathematicatelation,i.e, a possiblyin-
finite setof input/outputpairs. Given sucha relation,
we canask: for input x, whatis the setY of all possi-
ble outputs?Dueto incompleteknowledgeaboutthese
complex domainswe usuallyneedto reasorunderun-
certainty sowe often add numericalweights. We can
thenask:for inputx, whatis the highest-scoringutput
y?
Automata theory provides numerousframeworks
andformalismsfor conciselycapturingrelations.NLP
practitionersare frequently interestedin making use
of these,in orderto exploit formal propertiesand ef-
ficientalgorithms.Of coursethey only wantto do this
to the extent that the formalismis a goodfit for the
problem(s)they areworking on. In this paperwe will
look at somedesirablepropertiesof automatafrom an
NLP perspeciie,andinvestigatevhethertheseproper
tieshold acrossa wide rangeof formalisms.In partic-
ular, we look at:

e Expressieness.We canexpressthe requiredlin-
guisticknowledgein theformalism.

e Modularity. We can breaka complex problem
down into piecesmodelthosepiecesandassem-
ble theminto a solution.

e Inclusivenessin moving from asimplerto amore
expressve formalism,we do notlosetheability to
expresghesimplethings.

e Teachability Linguistic knowledge can be ob-
tainedefficiently from sampleinput/outputpairs.

For eachof these,we will selecta more specific,
provable formal propertyto investigate. Becausewe
wantto bridgebetweerautomataheoryandNLP prac-
tice, we have written this paperin a style accessibléo
both. We concludewith someopenissuedo consider

2 Stringtransducers

A finite-statestringtransduce(FST) proceedshrough
its input string from left to right in discretesteps. At
eachstep,somenumberof input-stringsymbols(pos-
sibly zero)areconsumedandasa result,somenumber
of output-stringsymbols(possiblyzero)areemitted.In
addition,eachsteptakesthe machinefrom onestateto
anotherIf themachinecanstartin stategstart, thenaf-
ter a seriesof stepsconsumeall of input X, emit string
y, andfinish in stategfinal, then<x,y> is an element
of the machines modeledrelation. Becausd=STsare
non-deterministicagiveninput may mapto mary out-
puts.

An FST can be defined as a 5-tuple
<Q,%, A, qo, fo, P>, where ) is a finite set of
states,¥ is an alphabetof input symbols, A is an
alphabebf outputsymbols g¢ is adistinguishednitial
state,f is adistinguishedinal state,and P is a setof
transitionswhich arethemseles4-tuples.A transition
like <q,r, A, BC> allows the FST, whenin stateq, to
consumesymbolA, emit symbolsB andC, andmove
to stater.

Thereare several variationsfor the transitionmap.
Drawing transitionsfrom Q x Q x ¥* x A* provides
flexibility, andit admitsa usefulnormalform Q x Q
X (X U e€) x (A Ue€). Thegeneralizedsequentiama-
chine(GSM) variationis restrictedo Q x Q X X x A*,
requiringthat eachtransitionconsumeexactly onein-
put symbol. WeightedFSTsadda numericalweightto
eachtransition.



FSTs have nice computationalproperties,one of
which is closureunder compositiont A pipeline of
FSTscan always be re-tuilt as a single FST, allow-
ing the systemdesignerto breaka complex problem
down into simplepiecesandto assembleéhosepieces
automatically Compositioncan happenoff-line (e.g.,
D = A 0 B o C), andtheresultingcomposednachine
canbeappliedto input (e.g.,E = best-path(b D)). Al-
ternatively, we canwait until we have the input, then
perform a synchronizedsearchusing all of the FSTs
in the pipeline simultaneouslye.g.,E = best-path(lo
A o B o Q)). In this case,a nodein the synchronized
searchspaceis taken to be an n-tuple of statesdrawvn
from the input and pipelinedFSTs(e.g.,<i4, al,bl7,
c3>). This lazy composition(Mohri et al., 2000) is
practicalin memoryusage,and searchbeamscan be
appliedto make for an efficient approximationto the
best-patfcomputation.Thesearchs integrated,in that
x is processedimultaneoushpy all of the FSTsin the
pipeline,ratherthanbeingpassedrom oneto the next
sequentially Closureundercompositionallows all of
thesetypesof inference.

FSTsare also efficiently trainable. Exposedto a
corpusof input/outputstring pairsof maximumlength
n, theforward-backvardalgorithm(BaumandEagon,
1967)candetermineweightsfor thetransitionghatlo-
cally optimize the corpusprobability (either joint or
conditional)in time O(n?).

Portableimplementationof FST compositionand
training can be found in software toolkits such as
(Mohri etal., 2000;Graehl,1997).

3 Treetransducers

FSTsare a good fit for NLP problemsthat can be
characterizedby statefulleft-to-right substitution.One
exampleis acousticmodelingfor speechrecognition
(Mohri et al., 2000), and anotheris transliterationof
namesacrosslanguagepairs with different orthogra-
phiesand soundsystems(Knight and Graehl, 1998).
However, their expressienessbreaksdown for more
comple problems suchasmachinetranslationwhere
thereis a greatdeal of re-ordering,and where mary
operationaresensitve to syntacticandsemanticstruc-
ture. Figure 1 shawvs an exampleof Arabic-to-English
translation,in which the translationof the Arabic verb
(at the beginning) mustbe movedto the middle of the
EnglishoutputsentenceFigure2 shovsthereverse.
The utility of hierarchicaltree structurewas no-
ticedearlyby Chomsly, andautomataheoristsdevised
treeacceptorsaandtransducergDoner, 1970; Rounds,
1970; Thatchey 1970), whosemathematicahim was
to generalizeéhepreviously-derelopedstringautomata.
Recently NLP practitionershave been constructing
weightedsyntaxmodelsfor variousproblems(includ-
ing machinetranslation)soit it hasbecomemportant

}(Karhumaki,2005) givesa shortproof of this usingthe
FSTnormalform.

S ' S
t1 to t3 to VP
t1 t3

Figure 1. Arabic-to-Englishtranslationexample. We
wouldliketo captureall input/outputpairsof thisform,
wheresubtreeg, t2, andtz areidenticalin theinput
andoutput.

S ; S
t1 VP to t1 t3
to t3

Figure2: English-to-Arabictranslationexample. This
is theinverseof therelationin Figurel.

to understandhe match betweenpractical problems
andautomatgormalisms.

A top-davn treetransducecanbedefinedasatuple
<Q,3, A, P,qo>, where( is afinite setof states,X.
is an alphabetof input symbols, A is an alphabetof
outputsymbols,qo is a distinguishednitial state,and
P is asetof productiongor rules).A sampleruleis:

g S(x0,x1,x2) — S(rx1, VP(sx0, g x2))

Eachrule hasaone-level LHS (left handside)with a
stateaninput-treesymbol,and(optionally)asequence
of variablesx0, x1 ... xn. TheRHSshavswhattherule
emits. TheRHS maybe multi-leveled. It containsboth
output-treesymbolsandlabelsx0, x1 ... xn, thelatter
of which arelabeledwith statesfor recursve top-davn
processing.

Thereare differenttypesof tree transducerdased
on the typesof rulesthat areallowed. A rule is said
to be deletingif its LHS containsa variablethat does
notappeaontheRHS.TheRHSin acopyingrule will
containatleasttwo instance®f somelLHS variable.A
transducels non-copying (linear) and non-deletingif
all of its rulesarelikewise. The classof non-copying,
non-deletingransducerss calledLNT (L for linear, N
for non-deleting,T for top-down). If we allow delet-
ing, wewind up with theclassLT, andif we allow both
deletingand copying, we wind up with the classT of
top-down transducers.T can expressmore relations
than LT, which can expressmorerelationsthan LNT
(Gécsg andSteinby 1984).

LNT is describedin the literature as a generaliza-
tion of string transduction,n the following sense. If
we write stringsvertically asnon-branchingreesthen
we canview string transductionas tree transduction,



albeiton skinry trees.We canautomaticallycorverta

normal-formFST into an LNT transducer For each
transitionin the FST, we constructa corresponding
LNT rule. Therearefour case®f interest:

<qg,rhA,B> qA(X0) — B(r x0)

<qg,r,A,e> qA(x0) — rx0 “output-€”
<qg,re,B> qx0 — B(rx0) “input-¢”
<q,he,e> gx0—rx0

In eachcasewe substitutehe LNT rule ontheright
for the FST transitionon the left. We mustalsoapply
atechnicalfix to accounfor the FST's final state;part
of thisinvolvesaddingan END tokento the bottomof
theskinny treesthatrepresenstrings.

In this paper we refer to the secondkind of rule
aboveasanoutpute rule,andthethird kind asaninput-
e rule,in analogyto FSTs,eventhoughthereareno lit-
erale symbolsin the LNT rules. Notethatnoneof the
four rulesabove aredeletingrules—tobe deleting,the
ruleswould haveto lack x0 onthe RHS.

4 Properties

Now we re-visit the four desirablepropertiesof trans-
formationformalismsfrom Sectionl, assigningo each
a particularformal propertyto investigate Eachbroad
topic is potentially very large, so we pick issuesthat
arisefrequentlyin practice:

e Expressieness.Canthetransduceclassexpress
thetransformationsn Figuresl and2?

e Modularity. Is the transducerclassclosedunder
composition?

¢ Inclusiveness.Doesthetransduceclassgeneral-
ize FST?

e Teachability Doesthe transduceclassadmitan
efficientalgorithmfor optimizingparameters?

4.1 Basic and Extended Transducers

LNT is closedundercomposition(Gécsg andSteinby
1984),but it is not expressie (in the senseabove), be-
causeit cannotencodethe transformationin Figure 2.
An LNT rule matchingFigure2 musthave the form q
S(x0,x1) — ???.Thereis noway for theRHSto insert
X0 into themiddleof x1.

By contrast,T is expressve, despitethe fact that it
alsohasasingle-leel LHS (Shieber2004;Knight and
Graehl,2005).We accomplistthiswith acopying rule:

g S(x0,x1) — S(gleftx1, g x0, grightx1)
followedby two deletingrules:

gleft VP(x0,x1) — g x0
gright VP(x0,x1) — g x1

However, T is not closedundercomposition(Rounds,
1970).

The fact that LNT can expressthe transformation
in Figure 1 but not Figure 2 is unsatisfying. As a re-
sult, (GraehlandKnight, 2004)definethe classxLNT,
which allows rules with a multi-level LHS. XLNT is
shawvn to be expressve by the simplerule

g S(x0,VP(x1,x2)) — S(x1,x0, x2)

(Graehlet al., 2007)shav thatxLNT, xLT, andxT
arestrictly morepowerful thanLNT, LT, andT, respec-
tively. They alsoshowv thatxLT andxT arenot closed
undercomposition.

InterestinglyXLNT is alsonot closedundercompo-
sition. Thisis illustratedby thefollowing example:

f(Qi(f(t1, t2)), t3) ~T
f(f(tl, tz), t3) ~»T2
e(tli t2, t3)

g refersto a non-branchingree with i numberof g
symbols. 7y is the treerelationconsistingof all pairs,
for all valuesof i, of theform <f(gé(f(¢1, t2)), ta), f(f(¢1,
t2), t3)>, wherethety, t5, andts areidenticalin both
elementf the pair.

It is easyto modeleachof 1 andr; by XLNT trans-
ducers,but no single XLNT transducercan bring to-
getherthethreesubtrees;, t», andts, becaus¢hey are
separatedby an unboundechumberof g's. Thisis in-
terestingoecausexLNT doespresenre regularity—i.e.,
it is possibleto sendaninputtree(or forest)throughr
andsendtheresultingtree(or forest)throughr,. How-
ever, it is not possibleto do composition(andit seems
difficult to do integratedsearch)andthis haspractical
conseqguences.

Synchronougree substitutiongrammar(STSG), of
the linear non-deletingvariety, is shovn in (Graehlet
al., 2007)to be slightly lesspowerful thanxLNT, but
only becausexLNT usesstatesthat are separatdrom
theinput-symbolvocatulary.

4.2

Now we askwhich of the above formalismsis inclu-
sive, i.e.,which generalizé=ST. Noneof themdo. As
definedin theautomatditerature LNT allows outpute
rules,but notinput-e rulesof the form:

e-Rules

g x0 — A(r x0)

While FSTs can generateunboundedamountsof
outputgivenfinite input, LNT doesnot allow this, so
it is nota generalizatiorof FST. Ratherit is a general-
ization of string-basedsSMs,which consumeexactly
oneinputsymbolpertransition. Thesameholdsfor the
variationof XLNT asdefinedin (Graehlet al., 2007).
However, XLNT as originally definedin (Graehland
Knight, 2004) allows both outpute andinput- rules,
andsogeneralize$ST.

How importantaree-rulesin practice?We canfirst
considerexamplesfrom the string transduction. One
of the mostwidely adoptedmachinetranslationmod-
elsis IBM 3, which caststranslationasa word substi-



tution/permutatiorprocess. (Knight and Al-Onaizan,
1998)give a reconstructiorof this modelasa pipeline
of FSTs,andbothtypesof e-transitionsappearOutput-
€ transitionseliminate“zero-fertility” input wordsthat
should not be translated,such as the word “do” in
English/Spanisiranslation. Likewise, input-< transi-
tionsgeneratéargetfunctionwordsthathave no corre-
spondingsourcevord, suchastheSpanistdirectobject
marker “a”. Interestingly IBM 3 boundsthe latter by
the numberof Englishwords, so theseinput-epsilons
couldbeeliminatedin theory

In mary currentphrase-basechodelsof translation,
by contrastphrasathunksaresubstitutedbne-forone,
with no deletionor spuriousgeneration—thusthe 2-
word phrase“seesVictoria” might be substitutedby
the 3-word phrase've a Victoria”. (KumarandByrne,
2003)presenta practicalphrase-basettanslationsys-
tem built from genericFST tools. Becausédhereis no
unboundedgenerationof output (or unboundedcon-
sumptionof input), this modelcan be encodedas an
e-free FST (thoughnotin normal-form).

Similar variations exist in tree-basedtranslation
models. For example,the XLNT systemof (Galley et
al., 2004)acquiresulesof theform

gA(B, x0) —» qx0

to modelthenon-translatiorof wordslike B = “please”

(in travel corpora)or B = “the” (in English/Chinese
translation). Likewise, (Graehl and Knight, 2004)

employ e-rulesto better parameterizaheir system—
beforeconsuminganinputtreenode,themodelmakes

a 3-way decision about generatingtarget-language
functionwords,with competingrules

gsx0 — gs1x0
gsx0 — qs2x0
gsx0 — gs3x0
gs1S(x0,x1) — ...
gs1S(x0,x1) — ...

the first threeof which have probabilitiesthat sumto
one.

Hence,e-transitionsare usedfrequentlyin practice,
eventhoughit is not obviousthatsystemdesignerse-
ally needgeneratiorof unbounded@utput,or consump-
tion of unboundednput. Unboundedutputdoesap-
pearin n-bestlists, whereatranslationlik e “pleaseX”
is accompaniedy lower-scoringalternatves “please
pleaseX”, “pleasepleasepleaseX”, andsoon.

4.3 Generalizing FST

To make LNT ageneralizatiorof FST, we needto add
e-inputruleslike g x0 — A(r x0). Unfortunately this
destrgs closureundercomposition. The relevant ex-
ampleis:

e(c,c,c)~"t
f(f(c, c),c)~"
f(g°(f(c. c)). ©)

wherer, generatesinunboundedumberof g's. This
example is simpler than the previous example for
XLNT, asthe c symbolsare atomic and do not stand
for whole subtreesThe practicalsignificanceis thata
generalLNT compositionalgorithm cannotdo every-
thingthata generaFFST compositiomalgorithmcan,so
bothalgorithmsmay still be needed.

The example above also covers XLNT. Therefore,
while XLNT hasexpressvenesshatseemso beagood
match for NLP problems,both input<€ and outpute
rulesindepedentlycausenon-closureundercomposi-
tion. Becausepracticionersmay be able to re-work
their modelsinto e-free versions,it is worth asking
whethere-freexLNT is closedundercomposition.The
answeris shavn to be no in (Arnold and Dauchet,
1982),with thefollowing example:

(1, to, NEs, ta, NC.QEn—1, t0)))) ~™
9(t1, 9(t2, 9(.-9ln—1, tn)))) ~™
g(ty, h(t2, t3, (ts, ts, N(.NCn2, tn_1, tn)))))

Here,r, is ary relationthatmapsits above-specified
input to a setthat includesits above-specifiecbutput;
it may non-deterministicallyproduceother outputsas
well. While both relationscan be modeledindividu-
ally with e-freexLNT, it is impossiblefor onexLNT to
make the entireleap.

We cannow summarizethe effectsontop-dovntree
transducer®f all combinationf: (1) extendedLHS,
(2) input-e rules,and(3) outpute rules:

x-LHS  inpute€ outpute | expressie  composable inclusive
no no no no yes no
no no yes no yes no
no yes no no no no
no yes yes no no yes
yes no no yes no no
yes no yes yes no no
yes yes no yes no no
yes yes yes yes no yes

4.4 Teachability

Finally, we look atwhetherefficient parametetraining
proceduresxistfor variousclassesGiveninput/output
treesof maximumsizen, (Graehland Knight, 2004)
presentan expectation-maximizatiomalgorithmfor xT

transducersvith e rules, which coversall of the top-

down classesin this paper This algorithm runs in

0O(n?) time, which is the sameasymptoticbehavior as
the forward-backvard algorithmfor FSTs(Baumand
Eagon,1967). Like forward-backvard,it guarantees
setof parametewaluesthatlocally optimizethe proba-
bility of thetrainingcorpus.

5 Conclusion

Figure 3 summarizeghe top-dovn transducerlasses
analyzedin this paper plus someof the bottom-up
transduceclassegsuffixedwith B), togethemwith their
properties.

Immediatelywe canseethatnotransduceclasshas
all of the desirablepropertieswe laid out. Classeof



Figure3: Classeof treetransducersindtheir proper
ties.

interestincludeLNT (which offersclosureundercom-
position),XLNT (which offersexpressvenessandgen-
eralizesFST),andxT (which offerscopying, deleting,
andtrainability). Dueto LNT not generalizing=ST, it
is still the casethatstring softwaretoolkits like (Mohri
et al., 2000) andtree softwaretoolkits like (May and
Knight, 2006)offer overlappingcapabilities.

Future problemsinclude exploring more automata
framewvorks. For example, it appearsthat bottom-
up transducersare not expressve, even with copy-
ing anddeletingpower. However, within the bottom-
up family, (Maletti, 2007) hasrecentlyanalyzednon-
deterministic multi-state transducers(MLB in Fig-
ure 3), which canremembemultiple outputtreefrag-
ments as they crawl up the input tree. Thesema-
chinescan carry out the transformationof Figure 2,
andtheirnon-copying versionis closedundercomposi-
tion (though like LNT, they donotgenerateinbounded
outputanddo not generalizeé=ST). Anotherfuture di-
rectionis to investigateother desirableformal prop-
ertiesfrom an NLP perspectre. Finally, it would be
usefulto be ableto test,for two individual transducers
(bothin someclass),whethertheir compositionlies in
the sameclass.This would cover mary commoncases
of NLP transducerandwould allow tree transducers
with e-rulesto generalizeé=ST.
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