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ABSTRACT
Many emerging sensor network applications involve mobile nodes
with communication patterns requiring any-to-any routing topolo-
gies. We should be able to build upon the MANET work to im-
plement these systems. However, translating these protocols into
real implementations on resource-constrained sensor nodes raises a
number of challenges. In this paper, we present the lessons learned
from implementing one such protocol, Adaptive Demand-driven
Multicast Routing (ADMR), on CC2420-based motes using the
TinyOS operating system. ADMR was chosen because it supports
multicast communication, a critical requirement for many perva-
sive and mobile applications. To our knowledge, ours is the first
non-simulated implementation of ADMR. Through extensive mea-
surement onMotelab, we present the performance of the imple-
mentation, TinyADMR, under a wide range of conditions. We
highlight the real-world impact of path selection metrics, radio link
asymmetry, protocol overhead, and limited routing table size.

Categories and Subject Descriptors:
C.2.2 [Computer-Communication Networks]: Network Protocols

General Terms: Experimentation, Measurement.

Keywords: Sensor Networks, Routing , Multicast.

1. INTRODUCTION
To date, much work on routing protocols in sensor networks

has focused on forming stable routes to a single aggregation point.
Many approaches have been proposed for spanning-tree formation,
parent selection, and hop-by-hop data aggregation as data flows up
the tree [27, 5, 16, 17]. These protocols are appropriate for net-
works consisting of stationary nodes that are primarily focused on
data collection. However, several emerging applications for sensor
networks require more general topologies as well as communica-
tion with mobile nodes. Examples include tracking firefighters in
a burning building [28], data collection with mobile sensors [11,
12, 14], and monitoring the location and health status of disaster
victims [15].
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The mobile ad-hoc networking (MANET) community has de-
veloped a wide range of protocols for unicast and multicast rout-
ing using mobile wireless devices [19, 9, 10, 18]. Many of these
protocols have been studied only under simulation using simplis-
tic radio models, and do not consider issues such as bandwidth
or memory limitations. In contrast, the sensor network commu-
nity has demanded solutions that work on real hardware with lim-
ited resources. As a result, much of the MANET work has been
overlooked by the sensor network community in favor of specially-
tailored protocols that focus on energy management [22, 7], relia-
bility [27, 26, 21], and in-network aggregation [16, 17].

Our goal is to bridge the gap between the mobile ad-hoc net-
working field and the state-of-the-art in sensor networks. By do-
ing so, we hope to tap into the rich body of work in the MANET
community, which may require reevaluating and redesigning these
protocols as necessary. In particular, we identify several challenges
to implementing MANET-based protocols on sensor nodes. The
limited memory, computational power, and radio bandwidth deeply
impact the implementation strategy. In addition, the realities of ra-
dio propagation, such as lossy and asymmetric links, require care-
ful evaluation of path selection metrics.

This paper presents our experience with implementing a particu-
lar protocol, Adaptive Demand-Driven Multicast Routing(ADMR)
[9], in TinyOS on MicaZ motes using the CC2420 radio. ADMR
was chosen because it represents a fairly sophisticated and mature
ad hoc multicast routing protocol, and was developed by an inde-
pendent research group. To our knowledge, ADMR has never been
implemented on real hardware, although its design has been well-
studied inns-2simulations assuming an 802.11 MAC. Our goal is
to study the challenges involved in translating this style of protocol
into a real implementation on resource-limited sensor nodes.

Several important lessons have emerged from this experience.
The first is that communication performance is very sensitive to
path selection metrics. The ADMR design attempts to minimize
path hop count, but this can result in very lossy paths [4, 27].
We describe PATH-DR, a new metric that estimates the overall
path delivery ratio using a simple hop-by-hop measurement of the
CC2420’s Link Quality Indicator (LQI). This metric differs from
previous works in that it requires only a single packet reception
and selects routes based on estimated delivery ratio across the entire
path. The performance of PATH-DR is compared with conventional
hop count and link quality metrics. The second lesson involves the
impact of protocol overhead and practical limitations on data rates
given the very limited radio bandwidth of IEEE 802.15.4. The third
lesson deals with the impact of limited memory on routing proto-
col state. We evaluate several approaches for selectively dropping
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Figure 1: The ADMR route discovery process.

reverse-path information when the size of this state exceeds mem-
ory availability.

We present a detailed evaluation of our TinyOS implementation
of ADMR running on Motelab [30], a 30-node indoor sensor net-
work testbed. Motelab exhibits a great deal of variation in link qual-
ity and exercises the ADMR protocol in several ways. We present a
comparison of several path selection policies, and demonstrate the
impact of varying data rates, interference from other transmitters,
and limitations on routing protocol state. Although length limits
constrain us from presenting all of our results here; we refer the
reader to [31] for full details.

2. ADMR BACKGROUND
Adaptive Demand-Driven Multicast Routing (ADMR) [9] is a

multicast routing protocol designed for ad hoc networks in which
nodes collaborate with each other to deliver packets. Data is mul-
ticast by sending packets togroup addressesrather than individ-
ual node addresses. These packets will then be forwarded towards
all the receivers belonging to a particular group along a forward-
ing tree established by the protocol. ADMR is fairly sophisticated
and we elide many details from this discussion; we refer the reader
to [9] for complete details.

2.1 Data forwarding
ADMR delivers packets from senders to receivers by routing

each packet along a set offorwarding treesthat are constructed
on demand. Each tree is rooted at a single receiver and has leaves
at each sender node for a group. ADMR’sroute discoveryprocess
assigns nodes in the network to beforwardersfor a group based
on measurements of potential routing paths between senders and
receivers. Nodes assigned as forwarders rebroadcast data packets
received for the corresponding group.

Forwarders are ignorant of the recipients for any group; rather,
they simply rebroadcast group messages, and a single broadcast
may be received by multiple nodes (including receivers or other
forwarders). ADMR may also cause messages to traverse multi-
ple routes from the sender to receiver. Each forwarder performs
duplicate packet suppression by keeping track of the previously-
transmitted sequence number for each〈sender , group〉 pair; a for-
warder will not rebroadcast the same data packet multiple times.

2.2 Route discovery
Route discovery is the process of assigning forwarders in the

network and is crucial to ADMR. There are two ways of estab-
lishing forwarding states:sender-initiated discoveryandreceiver-
initiated discovery. In sender-initiated discovery, senders initiate
a network flood to find potential receivers. Receiver-initiated dis-
covery reverses this process and has receivers flooding the network
to discover senders. While we have implemented both discovery
techniques, for brevity we only discuss sender-initiated discovery
further.

The route discovery process (Figure 1) begins with senders send-
ing out a ROUTE-DISCOVERY as a controlled network flood. Ev-
ery node receiving this packet rebroadcasts the packetonceallow-
ing the message to propagate throughout the network. Upon receipt
of a ROUTE-DISCOVERY, the node compares the hop count of the
ROUTE-DISCOVERY to the lowest stored hop count (if any) from
the sender generating the discovery.

If the new hop count is lower, the node stores three pieces of
information: thesender addressthat originated the discovery, the
previous hopfrom which the discovery message was received, and
new hop countof the discovery message. This information is re-
freshed each time the sender initiates a new discovery process, as
indicated by a sequence number in the message header. In this way,
each node maintains the lowest hop count path from all sending
nodes, as well as the previous hop from this sender.

When a receiver of the group receives ROUTE-DISCOVERY,
it sends a RECEIVER-JOIN packet back to the original sender as
a unicast message using path reversal. That is, the RECEIVER-
JOIN is relayed along the lowest hop-count path back to the sender,
using the stored previous hop information. Each intermediate node
receiving a RECEIVER-JOIN configures itself as aforwarder for
the corresponding〈sender , group〉 pair. Once a sender receives
any RECEIVER-JOIN, it can start broadcasting data packets for
this group. The forwarding nodes will relay the messages until
they reach the receivers.

2.3 Tree pruning
Tree pruning allows ADMR to deactivate unnecessary forwarders

in the network. When a forwarder is no longer effective at deliver-
ing packets to downstream receivers, it should stop re-broadcasting
messages to avoid wasting bandwidth. Likewise, if a receiver moves
away or is no longer interested in the data from a certain group,
there is no need to forward packets to that receiver. ADMR per-
forms state expiration usingpassive acknowledgments. Whenever
a forwarder rebroadcasts a packet, it listens for another downstream
node to retransmit the packet that it just forwarded. If the packet
is retransmitted by other nodes, then the forwarding state will re-
main valid. Otherwise, the forwarder will deactivate itself after an
expiration period. Section 4.4 discusses the impact of passive ac-
knowledgments versus active route reinforcement, which requires
a receiver to periodically refresh forwarders with a RECEIVER-
JOIN.

2.4 Routing state
To support the functions described above, ADMR maintains 3 ta-

bles on each node.Node Tablestores theprevious hopandpath cost
for each sender. It is indexed by〈sender , group〉 pair. Node Table
also stores thesequence numberof the most recent message from
each〈sender , group〉 pair to suppress duplicate packets.Member-
ship Tableis also indexed by〈sender , group〉 pair. It remembers



whether a node is a receiver or forwarder for a given group address.
Sender Tablestores a list of group addresses for which a node is a
sender.

3. IMPLEMENTATION
In this section we briefly describeTinyADMR, our implemen-

tation of the ADMR protocol for TinyOS-based mote platforms.
TinyADMR is a complete reimplementation as faithful as possible
based on details in [9] rather than an adapted version of the ns-2
implementation.

The most substantial change in TinyADMR is the departure from
hop count as a path selection metric. As we discuss in Section 4.2,
we have explored a range of metrics for picking good paths from
senders to receivers. In TinyADMR, as ROUTE-DISCOVERYs are
propagated through the network, the code provides a general notion
of path costthat is stored in the Node Table.

TinyADMR is implemented as a NesC component which wires
in several modules providing the protocol functionality. Most of
the protocol functionality itself is implemented in a single module
consisting of 1793 lines of commented NesC code. When com-
piled for the MicaZ mote, it requires 3544 bytes of ROM and 1563
bytes of RAM. Memory usage could be significantly reduced by
removing debugging and instrumentation from the code.

3.1 Route discovery
Route discovery is implemented as described in Section 2.2, but

TinyADMR allows use of various routing metrics other than hop
count. To deal with topology change due to node mobility, the dis-
covery process is invoked periodically; by default it is set to 15 sec,
although for our experiments in Section 4 we decreased the interval
to 5 sec to reduce the time to acquire measurements. All discov-
ery and data packets are broadcast while RECEIVER-JOIN uses
hop-by-hop acknowledgment and retransmission to ensure that it
is routed to the sender. Each node along the path attempts to re-
transmit the RECEIVER-JOIN up to 5 times before dropping the
message.

3.2 Routing metrics
The original ADMR protocol selects paths with theminimum

hop count, which we call the MIN-HOP metric. As has been dis-
cussed elsewhere [4, 27], this choice of metric is not necessarily
ideal, especially when link quality varies considerably. For exam-
ple, MIN-HOP will prefer a short path over (potentially) very poor
radio links rather than a longer path over high-quality links. MIN-
HOP was appropriate in the original ADMR work which did not
consider lossy radio links. However, in a realistic environment we
expect it to have very poor performance. For this reason, We have
investigated several alternate path selection metrics in our develop-
ment of TinyADMR. For brevity we describe only two here. The
comparison of these metrics are discussed in Section 4.2.

MAX-LQI. The first is to select the path with the “best worst
link.” In this metric the receiver selects the path with the highest
minimumLQI value over all links in the path. Given a set of poten-
tial pathsP and set of linksLp for eachp ∈ P , we select the path
p?:

p? = arg max
p∈P

min
l∈Lp

LQI(l)

We call this metric MAX-LQI. MAX-LQI attempts to find the path
with the best “bottleneck,” however, it does not have any way of
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Figure 2: Relationship between LQI and delivery ratio in Motelab.
Also shown is the piecewise linear model used to map LQI obser-
vations to LDR estimates.

differentiating between two paths with the same bottleneck link but
different path characteristics.

PATH-DR. Because our goal in ADMR is to maximize the over-
all path delivery ratio(PDR), directly using the path with the best
PDR would be ideal. However, directly measuring PDR requires
measuring the hop-by-hop LDR along the path. This requires mul-
tiple rounds of message exchange between neighboring nodes, in-
curring additional messaging overhead. This is the approach used
by ETX [4] and MintRoute [27].

Rather than directly measure LDR, we have found that there is a
high correlation between the LQI and LDR observed on each link.
Figure 2 plots the pairwise LQI and LDR over an extensive set of
measurements on Motelab. From this data we can derive a simple
modelmapping LQI to LDR; a piecewise linear approximation ap-
pears to work well for this data set. Because LQI can be observed
from a single packet reception, using this information to predict
the previous-hop LDR allows us to produce the PATH-DR metric,
which selects the pathp? such that:

p? = arg max
p∈P

Y
l∈Lp

ESTLDR(l)

whereESTLDR(l) is the estimated LDR of the link from the LQI
of the received discovery message, derived from our empirical model
shown in Figure 2.

3.3 Route pruning
To perform route pruning, each Node Table entry is assigned a

lifetime when it is created. The lifetime of each entry is refreshed
based on apath reinforcement policy. In TinyADMR, two path
reinforcement policies are implemented:active reinforcementand
passive reinforcement. Active reinforcement refreshes a forwarder
membership whenever a new RECEIVER-JOIN is received. Pas-
sive reinforcement refreshes the forwarder membership based on
passive acknowledgment of each transmitted data packet. Details
and impact of these two reinforcement methods are discussed in
Section 4.4.
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Figure 3: Link delivery ratio (LDR) asymmetry observed in our
testbed.

3.4 Routing state
As specified in Section 2.4, each node maintains three tables in

order to support the multicast functionality. The size of the Node
Table depends on how many nodes are in the network that are act-
ing as multicast senders and receivers. The size of the Sender and
Membership Tables can be determined by the number of multicast
groups expected to exist in the network. Having enough space in
the routing tables, especially the Node Table, is critical because
ADMR will not perform properly without large enough table sizes.

4. EVALUATION AND LESSONS LEARNED
Implementing ADMR in TinyOS and obtaining good communi-

cation performance in a realistic network environment has not been
a trivial undertaking. There is a significant disconnect between the
original ADMR protocol as published and the conditions encoun-
tered in a real sensor network. In particular, ADMR assumes sym-
metric links, uses hop count as its path selection metric, and ig-
nores memory space issues when maintaining routing tables. This
section presents a detailed evaluation of our TinyOS-based ADMR
implementation and a series of lessons learned in the process of
developing and tuning the protocol. We believe these lessons will
be useful to other protocol designers working with resource limited
sensor nodes.

4.1 Evaluation environment
We have focused exclusively on real implementation and eval-

uation on a sensor node testbed, rather than simulations, to un-
derstand the performance and behavior of TinyADMR. All of our
results have been gathered on Motelab [30]1, an indoor testbed of
30 MicaZ motes installed over three floors of our Computer Science
building. This testbed provides facilities for remote reprogram-
ming of each node over an Ethernet back-channel board (the Cross-
bow MIB600). Each node’s serial port is exposed through a TCP
port permitting detailed instrumentation and debugging. Motes are
installed in various offices and labs and are typically placed on
shelves at a height of 1-2 m.

Because of the relatively sparse node placement, this testbed ex-

1http://motelab.eecs.harvard.edu/

hibits a high degree of variation in radio link quality and many
asymmetric links. Figure 3 shows the forward and reverselink de-
livery ratio (LDR) calculated for every pair of nodes in the testbed.
Using a technique similar to the SCALE benchmark [3], the link
delivery ratio is measured by having each node broadcast a fixed
number of messages in turn, while all other nodes record the num-
ber of messages received from each transmitter. The LDR is the
ratio of received messages to transmitted messages for each pair of
nodes. As the figure shows, the LDR is highly variable and often
asymmetric.

The CC2420 radio provides an internal Link Quality Indicator
(LQI) for each received message [1]. This value represents the abil-
ity of the CC2420 to correlate the first eight 32-chip symbols fol-
lowing the start-of-frame delimiter, and has an effective range from
110 (highest quality) to 50 (lowest quality). As we will discuss in
Section 3.2, the LQI is highly correlated with the link delivery ratio
and is useful for route discovery.

In each of the cases presented below, we measure routes between
28 different sender/receiver pairs. These pairs were selected to
present a diverse view of potential routes in our testbed. Four of the
28 pairs were within a single radio hop, 11 were within two radio
hops, and the remaining 13 pairs were chosen so that the endpoints
were on opposite ends of the building. In each case, senders gener-
ated data at a rate of 5 Hz, each experiment was run for 100 sec, and
route discovery process was invoked every 5 sec. Once the bench-
mark is started, we wait for 30 seconds before collecting packet
reception statistics, to avoid measuring warmup effects.

Original ADMR evaluation.It is worth contrasting our envi-
ronment to that used in the original ADMR paper. In [9], ADMR
was measured usingns-2simulations with a network of 50 nodes
roaming in a 1500 m× 300 m area. A 2 Mbps 802.11 radio with
a radio range of 250 m was simulated; this implies that most nodes
are within a small number of hops of each other. Most importantly,
nodes have perfect connectivity to all other nodes within this range
and links are always symmetric.

4.2 Impact of path selection metrics
This section describes the results and comparison of the three

routing metrics described in Section 3.2.
Figure 4 shows a CDF of the path delivery ratio for the set of

28 paths. As the figure shows, PATH-DR results in the highest
delivery ratio over all paths, with nearly all paths resulting in a PDR
of over 80%, and a median of 92.4%. MAX-LQI also performs
well, with a median PDR of 79.6%. MIN-HOP is noticeably worse,
with a median PDR of just 60.7%.

PATH-DR and MAX-LQI achieve higher robustness at the cost
of higher overhead. With all three metrics, multiple routing paths
may be active between a sender and receiver at once depending on
timeout of the path reinforcement policy. The existence of mul-
tipath routes should result in higher path delivery ratios. Figure 5
shows the overhead for each path selection metric in terms of the ra-
tio between the total number of transmitted messages and the num-
ber of messages generated by each sender. This ratio is at least as
high as the number of routing hops from sender to receiver, and
will be higher when multiple routes are involved.

The path length for each RECEIVER-JOIN is shown in Figure 6,
while the total number of active forwarders for each node pair is
shown in Figure 7. The median path length for MIN-HOP is 2 hops,
where it is about 4 hops for both PATH-DR and MAX-LQI. The
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Figure 4: Comparison of MIN-HOP, MAX-LQI, and PATH-DR rout-
ing metrics. This CDF shows the path delivery ratio measured over
28 separate pairs of nodes using each of the three metrics. PATH-DR
produces the best results with 50% of the paths obtaining a delivery ratio
of over 92.4%.

number of forwarders is somewhat higher than the number of hops
because PATH-DR and MAX-LQI may activate multiple paths on
subsequent route selection phases. The impact of pruning these
extra routes is presented in Section 4.4.

These results show that the routing selection metric has a large
impact on performance and communication overhead. The PATH-
DR metric provides high reliability using a simple model mapping
the CC2420’s LQI to LDR, making it straightforward to implement
without incurring additional measurement overhead. We can imag-
ine a wide range of alternate path selection metrics as part of future
work.

4.3 Impact of limited bandwidth
Another shortcoming of most MANET protocol designs is that

they assume relatively high link bandwidths. The original ADMR
protocol was evaluated using a simulated 802.11 network with a
raw transmission rate of 2 Mbps. MAC overhead leaves roughly
1 Mbps to applications. In contrast, 802.15.4-based radios provide
substantially less capacity. While 802.15.4 operates at a nominal
transmission rate of 250 Kbps, our measurements of the CC2420
using the default radio stack in TinyOS results in an application
data rate of just 25 Kbps with small packets (28 bytes) and up to
60 Kbps for larger packets (100 bytes). This is 17 times less than
802.11 at 2 Mbps (1 Mbps for applications), or 93 times less than
802.11b operating at 11 Mbps (5.5 Mbps for applications).

For these reasons we expect protocol overheads to have a serious
impact on the performance of ADMR on 802.15.4. We have not at-
tempted to minimize these overheads; rather, our goal is to demon-
strate the practical implications of limited channel bandwidth.

Protocol overhead in ADMR arises primarily due to route dis-
covery and route reply messages. In sender-initiated discovery,
each sender periodically floods the network, which allows node
tables to be maintained on each intermediate node. When a re-
ceiver wishes to establish a path it sends a route reply back to each
sender. The periodic per-sender floods induce the highest overhead
in ADMR and unfortunately scale with network size. For example,
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Figure 5: Overhead incurred by each path selection metric.This CDF
shows the ratio of the number of data packets transmitted in the network
(including forwarded messages) to the number of data packets originated
by each sender. For example, for 70% of the 28 paths, MAX-LQI resulted
in an overhead of 6 transmissions for every original packet.

in a network of 30 nodes propagating per-node floods every 5 sec,
the per-node protocol overhead is302/5 = 180 packets/sec.

Because the size of our testbed is limited, we cannot generate an
arbitrary amount of protocol overhead (which might be seen in a
much larger network) directly. Instead, we cause all nodes in the
network to generateinterferencepackets at a rate that we control.
We then show the impact on the achieved delivery ratio for several
paths as this interference rate varies.

Figure 8 shows the results of this experiment with the per inter-
fering node interference rate increasing from 0 to 50 packets/sec.
To eliminate effects where a node drops its own transmissions be-
cause it is also generating interference messages, whenever a node
is configured as a forwarder, it generates no interference messages
of its own. While this is not entirely realistic (a node will still prop-
agate discovery floods while it is acting as a forwarder), we wanted
to avoid losing data transmissions due to queue overflow on the
transmitter.

As the figure shows, the path delivery ratio drops rapidly with
even a modest amount of interference traffic. Keep in mind that
this isnot because forwarders are dropping outgoing packets (due
to MAC backoff or queue overflow). The only explanation is that
nodes are unable toreceivepackets as well in the presence of in-
terfering traffic. That is, the interference traffic “jams” receivers
along the ADMR path and prevents them from correctly decoding
incoming messages. This is likely due to collisions caused by hid-
den terminal and capture effects.

4.4 Impact of route pruning
In ADMR, nodes are configured as routers when they receive

a route reply message from a receiver. Over time, different routes
may be activated as link conditions change. Also, at any given time,
multiple routes may exist between a single pair of nodes. By prun-
ing redundant routes from the network over time, communication
overheads can be reduced, although this may also have a negative
impact on path reliability.
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Figure 6: Path lengths for RECEIVER-JOIN for each path selection
metric. This CDF shows the length of the paths selected by receivers
for each metric. The MIN-HOP metric minimizes the hop count, while
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We investigate the impact of two approaches to path pruning in
ADMR. The first, active reinforcement, requires that nodes con-
tinue to receive route reply messages from a receiver in order to
stay active as forwarders. If a node has not received a route reply
for 10 sec, it clears its forwarder status. This time is equivalent to
2 discovery cycles. The second approach,passive reinforcement,
causes a node to remain active as a forwarder as long as it over-
hears another node retransmitting its own messages (or it continues
to receive route replies).

Figure 9 compares the delivery ratio for the active and passive
reinforcement schemes. Not surprisingly, passive reinforcement
keeps more forwarders active, resulting in much higher reliability
than active reinforcement.

4.5 Impact of limited node state
The final lesson that we explore involves the impact of limited

node state. Sensor nodes such as the Telos and MicaZ have noto-
riously small memory sizes: the MSP430 microprocessor has only
10 KB of RAM, while the Atmega 128L has just 4 KB. We cannot
expect that the routing layer can consume an arbitrary amount of
memory to store its routing state. This is especially true if there is a
substantial application running on top of the routing layer that has
its own memory requirements.

The node table maintained by every ADMR node potentially
contains one entry for every other node in the network. In our im-
plementation, each entry consumes 9 bytes. In a large network, it
is clear that the number of entries in this table can quickly saturate
memory.

The original ADMR paper [9] suggests using an LRU strategy
to prune node table entries over time. However, in a network with
many active senders it may not be possible to guarantee an upper
bound on the node table size. We are concerned with how to deal
with overflowin the node table given some fixed limit on its size.

Upon receipt of a discovery message, ADMR will consult the
node table and either update the existing entry for this sender, or
attempt to create a new entry. If the table is full, we must ei-
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ther drop the new entry or evict some other entry to make room.
Dropping a node table entry has two effects. The first is that the
node loses information on the routing cost from the sender. This is
only needed when establishing new routes, so these entries are only
needed shortly after a discovery message has been received (in case
the receiver wishes to reinforce this route).

The second effect is that the last sequence number received from
this node, used for duplicate suppression, is lost. This information
is required for all senders for which this node is a forwarder. This
suggests that ADMR should keep the last sequence number and
reverse-path information in separate tables, although this is not the
case in the current protocol design.

We explore several different policies for evicting table entries.
The most naive policy simply drops the new entry if the table is
full, only allowing updates to entries already in the table. Another
simple policy is FIFO, which drops the oldest entry (where entries
are ordered by time of insertion). FIFO is intended to time out
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Figure 9: Comparison of delivery ratio for active vs. passive route
reinforcement.

stale entries from the table in favor of new entries. However, if the
routing cost for the new entry is very high, it may not be worthwhile
maintaining information on this route.

A better approach may be to maintain node table entries for high-
quality routes, with the expectation that this node will be called
upon to act as a forwarder. In some sense, the impact of dropping
discovery messages for low-quality paths should not be too severe.

Figure 10 shows a comparison of each of these table-management
policies with 6 senders and 1 receiver. We emulate the impact of a
large network by artificially limiting the node table size to 4 entries
on each node. This implies that nodes will not be able to maintain
routing state for all 6 senders. As the results show, none of the pro-
posed policies works well in all cases. The naive drop-new-entry
policy performs very poorly. The FIFO and drop-worst policies
work reasonably for only for 3 out of the 6 routes.

Another approach to managing limited memory size is to swap
node table entries to external memory (such as flash) on demand.
We have not yet explored this approach, although the results pre-
sented above suggest it may be necessary to do so in large networks.

5. RELATED WORK

5.1 MANET routing protocols
Researchers in the MANET community have put in a great deal

of effort into the design of routing protocols for ad hoc networks.
For unicast use, DSDV [18], AODV [19] and DSR [10] are three of
the most commonly-studied routing protocols for MANET appli-
cations. We do not describe these protocols in detail but they can
be divided into two categories: Proactive and On-demand. Proac-
tive protocols, such as DSDV, periodically exchange routing ta-
ble among neighboring nodes while on-demand protocols, such as
AODV and DSR, only acquire routes when needed.

A wide range of ad hoc multicast routing protocols have also
been proposed. For brevity we only discuss three examples here:
ADMR [9], ODMRP [13] and MAODV [20]. ODMRP and MAODV
are both similar to ADMR. The route establishment mechanism is
basically equivalent in all three protocols, although ODMRP only
supports sender-initiated discovery model. The major differences
between ODMRP and ADMR are in the tree-pruning mechanisms
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Figure 10: Comparison of delivery performance with different node
table management strategies.This experiment uses 6 senders and 1 re-
ceiver. In each case except forLarge Table, the node table size is limited
to 4 entries to simulate the effect of scaling in a large network. None of
the proposed schemes for prioritizing node table entries works well in all
cases.

and how broken links are repaired.
In MAODV, route discovery is also carried out with network

flooding. However, MAODV does not differentiate data senders
from receivers in the multicast tree. All nodes in a multicast group
answer the discovery message with a unicast packet. The node that
sends out the discovery message picks the best route according to
the multiple reply messages. MAODV also broadcasts ahellomes-
sage periodically to detect link failure.

5.2 Studies of real-world link quality
Studies of link-level data delivery characteristics of wireless net-

works have confirmed that the assumption of fixed-range, symmet-
ric links is unrealistic [2, 3, 6]. New routing metrics based on dy-
namic link quality estimation [4, 27] have been proposed to allevi-
ate this problem by selecting longer but more reliable routes. Un-
fortunately, the MANET routing protocols described in this section
all adopt hop count as the path routing cost. Therefore, it is unclear
from the current literature how well the proposed MANET multi-
cast routing protocols will work if they are deployed in a wireless
network.

5.3 Routing in TinyOS-based sensor networks
Routing in sensor networks has primarily been focused on build-

ing a single spanning tree that routes messages from every node to
a single base station [27, 5, 16, 17, 8]. Such a global spanning tree
is useful for a broad range of sensor network applications involving
network-wide data collection [24, 25, 23].

Woo et al. [27] carefully studied design strategies for many-to-
one spanning trees in sensor networks. They found maintaining a
spanning tree with highly-reliable links is non-trivial and requires
dynamic link estimation on each sensor node. The evaluation is
based on a simulation model derived from two-node link quality
measurements. Yarvis et al. [29] created and evaluated an imple-
mentation of DSDV on motes. They also point out that high-quality
link outperforms shortest-hop-count paths.



6. FUTURE WORK AND CONCLUSIONS
This paper has presented an investigation of the issues that arise

when translating MANET-based protocol designs into a sensor net-
work context. As sensor networks become more widespread, new
applications will be developed that present a broad set of commu-
nication requirements. Given that the MANET community has in-
vested a great deal of effort into routing protocols for mobile wire-
less environments, we believe that there is real value in understand-
ing to what extent this work can be reapplied.

Many of the lessons arising from our TinyOS-based implemen-
tation of ADMR stem from the enormous differences in the as-
sumed hardware environment. ADMR was developed for relatively
high-powered devices with significantly more radio bandwidth and
memory than is found on typical motes. It is not surprising, then,
that we faced some challenges implementing ADMR on this plat-
form. We feel that it is significant that we were able to produce a
working and fairly robust implementation of ADMR despite these
challenges.

While our goal was to remain faithful to the original ADMR de-
sign as much as possible, the most substantial modification was the
introduction of alternate path-selection metrics. Minimizing hop
count performs poorly, while a simple LQI-based estimation of the
path delivery ratio works well and incurs no additional measure-
ment overhead. We have also investigated techniques for active ver-
sus passive route reinforcement as well as managing limited routing
state.

Our results demonstrate that there is still significant work to be
done if ADMR is to be effective in large networks. With a large
number of nodes, protocol overhead will readily saturate available
bandwidth. Most MANET protocols use a fixed transmission rate
for protocol packets such as discovery messages. Dynamically tun-
ing these rates based on interference traffic or node density would
permit overhead to scale with available bandwidth.

Protocol state management under severe memory limitations is
another area for future work. We have explored various node ta-
ble eviction policies, although results demonstrate that deliberately
dropping this state has an adverse effect on performance. More
efficient data structure design and swapping state to external flash
may be viable solutions.
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