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Abstract

Artificial neural networks (ANNs) are an information processing paradigm inspired by the way the brain processes
information. Using neural networks requires the investigator to make decisions concerning the architecture or structure used.
ANNs are known to be universal function approximators and are capable of exploiting nonlinear relationships between
variables. This method, called Automated ANNs, is an attempt to develop an automatic procedure for selecting the
architecture of an artificial neural network for forecasting purposes. It was entered into the M-3 Time Series Competition.
Results show that ANNs compete well with the other methods investigated, but may produce poor results if used under
certain conditions.  2000 Elsevier Science B.V. All rights reserved.
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1. Introduction cess. Learning in biological systems involves
adjustments to the synaptic connections that

An artificial neural network (ANN) is an exist between the neurons. This is true of ANNs
information processing paradigm that is inspired as well. In statistical parlance, the ANN net-
by the way the brain processes information. The work corresponds to a nonlinear model and the
key element of this paradigm is the novel learning process to parameter estimation. For an
structure of the information processing system. introduction to ANNs see, for example, Hinton
It is composed of highly interconnected process- (1992) or Lippmann (1987), and for a review
ing elements (neurons) working in unison to from a statistical perspective, see Cheng and
solve specific problems. ANNs, like people, Titterington (1994).
learn by example. An ANN is configured for a Recently, ANNs have been investigated as a
specific application, such as pattern recognition tool for time series forecasting. A survey of the
or data classification, through a learning pro- literature is given in Zhang, Patuwo, and Hu

(1998). The most popular class, used exclusive-
ly in this study, is the multilayer perceptron, a*Corresponding author.
feedforward network trained by backpropaga-E-mail addresses: sandy.balkin@ey.com (S.D. Balkin),

ordk@msb.edu (J. . Ord). tion. This class of network consists of an input
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the important relationships in the time series
being forecast.

For a feedforward neural network with one
hidden layer, the prediction equation, given by
Faraway and Chatfield (1998), for computing
forecasts x using selected past observations,t

x , . . . , x , at lags ( j , . . . , j ) and h nodest2j t2j 1 k1 k

in the hidden layer will be referred to as
NN[ j , . . . , j ; h]. Thus, the network in Fig. 11 k

is NN[1, 12, 13; 2]. The functional form may be
written as

x̂ 5 f w 1O w f w 1O w xt o co ho h ch ih t2jS S DDi
h i

(1)

where hw j denote the weights for the con-chFig. 1. Multilayer perceptron.
nections between the constant input and the
hidden neurons and w denotes the weight ofco

the direct connection between the constant input
layer, a number of hidden layers and an output and the output. The weights hw j and hw jih ho
layer. Fig. 1 is an example of an ANN of this denote the weights for the other connections
type with three neurons in the input layer, a between the inputs and the hidden neurons and
single hidden layer with two neurons, and one between the hidden neurons and the output,
neuron in the output layer. Using this type of respectively. The two functions f and fh o
ANN requires the investigator to make certain denote the activation functions that define the
decisions concerning the structure, known as the mappings from inputs to hidden nodes and from
architecture of the network. Neural networks hidden nodes to output(s), respectively. The

2xare known to be universal function approx- logistic function, y 5 f(x) 5 1/(1 1 e ) is
imators (Hornik, Stinchcombe, & White, 1989). widely used in the ANN literature. Faraway and
This property does not necessarily hold for time Chatfield (1998) recommend that for forecasting
series where forecasting involves extrapolation. applications f be logistic and f be theh 0

It holds when an unknown function is defined identify function. Forecasts are generated itera-
over a finite range of its arguments. The proper- tively by performing successive one-step ahead

forecasts using previous forecasts as estimatesty may be of limited value in forecasting where:
of observables.

1. processes are stochastic so that, at best, only
the signal can be estimated;

2. prediction necessarily involves moving 2. Description of method
beyond the time range of historical inputs.

Our goal is to develop a set of rules on which
In general, for an ANN to perform well, the to base the design decisions. Our primary

inputs and number of nodes in the hidden layer concern is to make the model selection process
must be carefully chosen. Since they learn by data dependent. We tried to follow the paradigm
example, it is vital that the inputs characterize used in more traditional forecasting methods



S.D. Balkin, J.K. Ord / International Journal of Forecasting 16 (2000) 509 –515 511

Table 1while not inhibiting the flexibility of the neural
Lags used as inputs based on time resolutionnetwork method. The following is a detailed

explanation of the decision-making process we Time unit Yearly Quarterly Monthly Other
Lags 1–4 1–6 1–15 1–6implemented.

Since the parameters of the ANN are esti-
mated by least squares, efficient estimates result
only when the error terms are independent and 2. The possible lags are chosen based on the
have equal variances. If the process is intrinsi- time resolution of the series shown in Table
cally non-stationary, the error terms may well 1. The inputs to the neural network are then
be dependent and have different variances. chosen by considering all models that re-

sulted in an F-statistic greater than 4.0 and
• For the purposes of this exercise, we decided choosing the one with the greatest number of

not to apply differencing, since proponents included lags. For quarterly and other types
of ANN forecasting seem to regard such a of series, if the series length is less than 20,
step as unnecessary. This question is ex- we only investigate lags 1–4. This rule is not
plored in greater detail elsewhere (Balkin, parsimonious in terms of the number of lags,
1999, 2000). but our empirical studies suggest than an

• Thus, the first step is to determine if a ANN may perform better with more lags
natural log transformation of the series is than would be usual for an ARIMA model.
necessary. This step is accomplished using However, Faraway and Chatfield (1998)
the likelihood ratio. Let present evidence suggesting one may easily

go too far in that regard.12 2
] ¯w 5 O (x 2 x ) • The neural network is now trained on thein i inputs with the number of hidden nodes in

and the single hidden layer ranging from 1 to the
number of inputs. The best network is21 12

] ]s 5 O log(x ) 2 O log(x) . chosen based on the minimum GCV value asS Din ni i described in Nychka, Bailey, Ellner, Haa-
land, and O’Connell (1996) whereThe likelihood is greater for the transformed

series than the raw series when
1 22 ]2 2 GCV(c) 5 3 RSS/(1 2 p 3 c /n)

]log(s ) . log(w ) 1 O log(x ) ; nS Din i

where p denotes the number of parametersif the inequality holds, take the log trans-
fitted and c is a cost coefficient, set equal toform. When necessary, making the trans-
2 in this study. Thus, the number of hiddenformation should yield more efficient esti-
nodes is limited even further for small seriesmates since the ANN is fitted using the
to ensure that enough degrees of freedomordinary least squares criterion which re-
exist to estimate all the model parameters.quires constant error variance over time for

• Then, a simple linear auto-regression is fitefficient estimation.
with the same lags as variables selected by• Next, we need to select the inputs used to
the GCV criterion. The linear AR model,train the network. The inputs to the network
ANN model and Naive (random walk)are chosen using a forward stepwise regres-
models are compared using the SBC criter-sion procedure with critical F-value equal to
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ion. The one with smallest value is chosen to 4. Numerical example [1
generate the forecasts. The comparison al-

As an example of how this method works,lows us to see whether a neural network is
consider series N0702 from the M-3 Competi-even necessary. For if the series is truly
tion data set, which is a quarterly microeconom-linear and a nonlinear model is used, the
ic series with 37 observations. The first step isextra structure will add noise to the system
to determine if a log transform is required. Weand distort the forecasts.

2 2first determine that s 5 33 669.8 and w 5• Forecasts are now generated from the select-
0.002815279 and test whethered model in an iterative fashion. A reverse

transformation is applied, if necessary. 2
]log(33 669.8) . log(0.002815279) 1 37

3 301.2136
3. Method analysis 10.4244 . 10.4091

Estimating the weights of (or training) the These values correspond to a likelihood ratio
neural network requires that the training data be test marginally in favor of a logarithmic trans-
representative of the process being forecast. The formation. Next, we determine which lags to
more training data, the more the network can use as inputs. Since this series is quarterly, lags
learn about the series. How well a neural 1 through 6 are considered as candidates. We
network does in forecasting stems from this then run a forward stepwise regression. Lags 1,
idea. Thus, this method will not perform well 2, 4 and 5 are chosen to be the inputs to the
for extremely short series or a series that is not neural network. We now train the neural net-
representative of the process being modeled. An works with one and two nodes in the hidden
instance of the latter would be a series that layer. The results are given in Table 2, which
requires intervention analysis to account for shows that model 1 with one node in the hidden
some uncharacteristic movements in the past. layer is the preferred neural network model.

A majority of the research on neural networks We now fit a linear regression model with the
concerns classification and pattern recognition same lags and compare its SBC with that of the
(cf. Cheng & Titterington, 1994). When ANNs neural network. The SBC for the linear model is
are described as being robust to noisy data, it is 276 while that of the neural network is 2296.
with reference to classification and pattern The Naive model has a SBC equal to 2117.
recognition. Typically, either the noise level is These results indicate that the neural network
low or the data set is very large. It is still under model provides a better fit for this series and
investigation when and whether these charac- will be used to generate the forecasts. The
teristics apply to time series forecasting as well. actual series and forecasts are shown in Fig. 2.

Table 2
Neural network fit statistics

Model No. hidden units DF model DF residuals Root MSE GCV(1) GCV(2)

1 1 7 25 0.10930 0.015290 0.02949
2 2 13 19 0.07042 0.008353 0.08376
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Fig. 2. Series N0702 and forecasts.

5. Numerical example [2 the ANN model is particularly susceptible to
outliers or level shifts that occur at the very end

As an example of how this method may fail of the series and project unwarranted rapid
to provide reasonable forecasts, consider series exponential growth.
N1386, from the M-3 Competition data set,
which is a quarterly demographic data with 36
observations. The original series is shown in 6. Conclusion
Fig. 3.

Our analysis indicates that a log transforma- Our paradigm attempts to provide an intelli-
tion is desirable and we select lags 1, 3, 4, 5 and gent choice of inputs using recognized statistical
6 as inputs to the neural network. A neural procedures. An ANN typically has more param-
network model with one node in the hidden eters than most time series models. Therefore, it
layer is found to be the best. The SBC for the is expected that they will perform better on
ANN is 2180 whereas that for the linear model longer series with stable patterns for training.
is 276 and 264 for the Naive model. Thus, we By construction, we would expect the ANN to
find that the neural network model provides a provide superior forecasts when the process is
better fit for this series and is used to generate nonlinear. The reason for using a complex
the forecasts. The actual series and forecasts are method must be that a process contains ele-
shown in Fig. 4. It is obvious that these ments not captured by simple forecasting meth-
forecasts are characteristically different than the ods, notably nonlinearity in the case of ANNs.
data used to generate them. Thus, in this For an ANN to outperform simple methods, we
example, the neural network model produced must have a sufficiently long series to detect the
very poor forecasts. A possible reason for this is nonlinearity and to provide reliable estimates of
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Fig. 3. Series N1386.

Fig. 4. Series N1386 and forecasts.

the parameters. When these conditions are satis- content. Results for the M3 and other competi-
fied, we can expect ANN to outperform simpler tions are generalized over a large number of
methods. Conversely, a simple method like series. So, simple methods may produce overall
exponential smoothing may well be adequate better results, but the complex models will
for forecasting most series, particularly when perform better for those series with the relevant
the series are short or have low information structure. Such distinctions require that we
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