1. THE DEFINITION OF FUNCTIONS

It has been pointed out by Strachey [7].that many mathemati-
cians treat functions as 'second class objects', denying them the
full generality which is accorded to variables. This attitude is
found right at the beginning of algebraic teaching. For example, in
an expression like (x+y)x(x-y) it is understood that z and y may
vary but, of course, +, x and - may not, Later, in the notation
f(zx), the student tends to think of x as the variable, and f as a
'constant' function. Similarly, in ALGOL we can write

(if z > 1 then a else b) + 6
but hot
(if 2 > 1 then Sin else Cos)(x).

Now when we come to consider the problem of defining functions in
all their generality it is necessary to be rid of these mental
restrictions, We shall mark our emancipation by writing fx instead
of f(zx), and understand that f is some element drawn from a set of
functions and z from a set of operands; or better still, that they
are drawn from the same set since there is then no restriction on
using functions as arguments of functions. The muitiplicity of
operators (addition, multiplication, etc.) is replaced by one,
application, which is denoted by the juxtaposition of symbols in fzx.
If a = Sum, b = Difference and ¢ = Product then c(axy)(bxy) denotes
(x+y)x(x-yn - but it may equally well denote many other expressions

when a,b and ¢ are different functions.
Having said this much, we must add a few qualifying comments.

(1) It is agreed that applicafion associate from the left; thus

abe denotes (gb)e.

(2) From time to time we shall revert to the conventional nota-

tions, in the interests of readability, when no ambiguity is likely.

(3) Using a single domain for functions and arguments leads to
a great simplification of our theory, but it also gives rise to the
fundamental problem referred to in the introduction. It might seem
better to put up with the added complexity of multiple domains in

order- to avoid the problem. However, Scott [5] has shown that the
same problem is inherent in the idea of stored program, which is

clearly not a thing we can dispense with,

Suppose S is a domain of the type we have in mind: if a € S
then ¢ : S » S§S. Using functional application we may write down ex-
pressions involving constants from S or variables ranging over S, but
these expressions are not in themselves functions., This can be
seen by an example: 1f we regard x+1 as the successor function, we
are soon enmeshed in ambiguities. Is x+c¢ a function of one or two
variables, and if the latter, in which order are they applied? To
define the successor function unambiguously we need to write some-
thing like

f. where fzx = x+1 for all non-negative integral =x.

Similarly in our domain S we may define the function f corresponding
to the expressionx,... by writing

f, where y x € S, fr = (...%.... .

This serves the purpose, but it has the disadvantage that we cannot
define a function without giving it a name. It turns out that we
often want to use a function in an expression without needing to
name it, so that this method of definition leads to unnecessarily

complex notation.

Church [2] avoided this difficulty by introducing a second
operation of 'abstraction' which is complementary to application and
which he represented by the lambda-notation. This specifies a

function in the following manner:

1.1 Definition. Let M be an expression which takes values in the

domain D. Then the function f : D' » D given by
yxexeD' fo = XM

is denoted by Ax:D',M. If the domain D' is understood from the
context this may be simply written Ax.M. The operation of forming

a function from an expression in this way is called abstraction.

In the example used previously we noticed that the successor
function could be represented by £ in y z € D,fxr = « + 1 where D is
here the set of non-negative integers. Thus the lambda-notation

allows us to write it as Ax:D.x + 1, or simply as ix.x + 1 if D is

understood. Hence we have (Az.x+1)0 = 1, (Az.x+1)1 2 etc.

The last observation can clearly be generalized. Let N be
an expression taking values in D' (and enclosed in parentheses,
if necessary for what follows). Then (Azx.¥)¥ is equivalent by 1.1
to f¥ wherey z € D',fxr = ¥, Thus we may evaluate'(kx.N)N by sub-

stituting ¥ for every occurrence of x in M,

When the lambda-calculus is set up as a formal mathematical
system this is given the force of an axiom (called the g-Conversion
Rule). Since our point of view is different, being concerned with
the problem of defining functions, we regard it as a consequence
of 1.1. However, we will also give the usual formulation later,

together with a precise definition of 'substitution'.

So far we have been using notation rather 1oose1y.' We must
now define the well formed formulae (wff) of the lambda-calculus

rigorously.

1.2 Definition. A wff is either

(1) a variable;

(2) the application ¥y of two wff ¥ and ¥
(with application associating from the left);

(3) the abstraction Xx:D.¥ (or Az.M) of a wff ¥, where
x is a variable; or

(4) (M), where M is a wff,

The point (.) used in abstraction is a type of bracket. When
Ax.M occurs in a larger expression, ¥ is taken as extending either
to the first unmatched closing parenthesis or to the end of the
expression, whichever is first. This means that in a case like
(Axr.Xy.N)ab we may insert parentheses to give (xz.(Ay.N))ab, and
then, using association, ((Ax.(Ay.N))a)b. Thus in the evaluation
a is first substituted for x in Ay.¥; b is then substituted for y
in the result.

There are two axioms expressing important properties of

application and abstraction.

1.3, Aziom of Extensionality. If, for some f,g € D, fx = gx for
all « € D, then f = g,

1.4. Axiom of Comprehension. If M is a wff in x (including the case

of a wff which is independent of -x), then there is a function f € D
such that vy x € D, fx = M,

The Axiom of Comprehension guarantees that the abstraction can
always be formed; for every wff M,Az.¥ € D. The Axiom of Extensionality

then ensures that the result of an abstraction is unique.

Before we can define substitution and give the conversion
rules 1t is necessary to define the terms 'occurs free' and 'occurs
bound'. This is done by showing how to decide whether x occurs free
(bound) in (a) a variable, (b) an application, (c) an abstraction.
To decide whether z occurs free (bound) in an arbitrary expression
we make the decision firstly for the variables it contains and then

for successively larger sub-expressions up to the expression itself.

1.5. Definition,

(1) (a) &« occurs free in « (but not in y # x);
(b) « occurs free in XY iff x occurs free in either X or ¥
(or both);
(c) &« occurs free in Ay.X iff x # y and x occurs free in X.

(2) (a) No variable occurs bound in an expression consisting of
' a'single variable; ,
(b) « occurs bound in XY iff it occurs bound in X or Y
(or both)

(c) « occurs bound in Ay.X iff x = y or z occurs bound in X.

Take, for example, the expression (Ax.ax)x. a and x both occur
free in ax. In (Ax.ax) a is still free, but x occurs bound and not

free. In (Ax.ax)x, x occurs both free and bound.

It was said above that (Ax.M)N is evaluated by substituting
N for = in M. However this is only true if a rather elaborate
definition of 'substitution' is used, since otherwise incorrect
evaluation occurs. For example, we have already seen that the first
step in evaluating say (Axz.\y.yx)yz is to 'substitute' y for x 1in
(Ay.yx). But a simple literal substitution will give (Ay.yy) whereas
the correct result is something like (Au.uy) - the bound occurrence of
y in (Ay.yx) must not be confused with the free occurrence in yz
so we first rewrite (Ay.yzx) as (Au.uz) before performing the literal

substitution.

The definition of a substitution operator which achieves the desired

result is given by Curry and Feys [3]; the reader will find a detailed
justification in chapter 3 of their book, ‘

1.6. Subgtitution Rules Let x be a variable and X and ¥ wff. Then
[M/x1x is the wff X' defined as follows: resd 9¢ﬁM$-W\§R” chﬂnx

Case 1. X is a variable,
(a) If X = x then X' = ¥
— (b)) If X =y # «x then X' = x

Case 2. X YZ. Then x' = y'z"',

i

Case 3. X Ay.Y.
(a) If y = =z then X' X.
(b) If y # « then X! Az . [M/x]1([=/y1Y)

where z is defined as follows:

(i) if « does not occur free in Y
or if y does not occur free in ¥
then z = y;

(ii) if x does pccur free in Y and y does occur free in ¥
then z is the first variable in a list of variables
such that z # x and z does not occur free in either
M or Y.

The crux of 1.6 is in case 3 (b)(ii). We can see how this
works by considering again the evaluation of (Ax.(ly.yx))yz. The
result of substituting ¥ for x in (Ay.yxz) is denoted [y/x1(Xy.yx) so
that we have, for the purposes of 1.6, M=y, x=x, X=Ay.yx, y=y and

Y = yx. Case 3(b) holds, and since both x occurs free in 'Y and y occurs

free in M alternative (ii) holds. Thus

[y/x](xy.yx) + da.ly/x](La/ylyx)
+ da.ly/x](ax)

+ Aa.ay
which is essentially the result previously given.

In the usual formulations of the X -calculus there are
several 'conversion rules' which have the force of axioms. We have
already noticed the B-rule, which we regard as deriving from 1.1,
Also, we have made implicit use of @¢-conversion, which provides

that bound variables may be changed systematically when no confusion

results, so that for example we may write (Au,ux) or (la.ax) for
(Ay.yx) before substituting y for z. A third conversion rule is
relevant here also, n-conversion. This is justified by the fact
that both Ax.(Mx) and ¥ give My when applied to y.

1.7. Conversion Rules.

(a) If y is not free in X Ax.X cnv, Ayly/x1x;

(B) (Ax.M)N cnvg (V/x]1M;

(n) if x is not free in M, Am.(Mx)cnvn M.
In these rules cnv indicates that either side may be replaced by
the other. A

In using the A-calculus we are particularly interested in
evaluating A-expressions, which means in practice that we wish to
eliminate abstractions as far as possible. Both B- and n-conversion
allow us to do this by replacing an expression in the form occurring
on the left of the cnv symbol by the corresponding expression on the
right, as we shall see in the examples 1.8. When a conversion is
applied in this way it is called a reduction and the expression which

was converted is called a redex. Thus for any wff ¥ and ¥

(Ax.M)V 1is a PR-redex, and

Ax.(Mx) 1is an n-redex {x not free in M).
The notation used for reduction is

(B-reduction) (Ax.MIN r‘edB (N/x]1M
(n-reduction))\x.(Mx)r‘edn M.

An expression containing no redexes is said to be in normal form.

1.8. Examples

(1) (Az.Ay.y)ab redy, (\y.y)b

redB b

Notice that whenever ¢ is independent of x Ax.c is the
constant function which has the value ¢ for all values of its
argument. Thus Ax.Ay.y is the constant function whose value 1is

Ay.y = I, the identity function.

(2) (Af.Ax.f(fx))ab r‘edB (Ax.alax))b

r‘edB a(ab)

(3) An expression which illustrates n-reduction:

Ax. Ay ..axy r‘edn Ax.ax
red a
n

(4) Next consider (Ax.xx)(Az.xx). (Ax.xx) has the form iz.(Mx),
but is not n-reducible because x occurs free in M. An attempt at
B-reduction yields

(Ax.xx)(Ax.xx) r‘edB (Ax.xx)(Ax.xx)
so that the expression has no normal form.

(5) (Axz. Ay ..y)((Ax.xx) (Ax.xx))b
r‘edB (Ay.y)b
, redB b.

In all these examples we have used mormal order reduction
which proceeds by always reducing the leftmost redex. If in case (5)
we had attempted instead to reduce (Ax.xx)(Ax.xx) the reduction
would not have terminated. This raises an important question con-
cerning the order of reduction: since one reduction sequence may
terminate and another not, is it possible for two sequences to
terminate differently? Could we, for example, reduce the same
expression to p by one sequence and to g by another? The conversion
rules are an essential part of the evaluation 'mechanism' of the
A-calculus, and ambiguity would be serious. The answer is given by
the following theorem. A prbof may be found in Curry and Feys [3]

chapter 4, but less arduous proofs are also known.

1.9, Theorem (Church-Hosser)

I. If ¥ ¢cnv Y, then there is a wff Z such that X red Z and

Y red Z,
11, If 4 red B then there is a normal order reduction from
4 to B. | '
The uniqueness of the normal form up to
W a-conversion follows from 1.9, for suppose
////f \\\\\ a wff y had two distinct normal forms;
X Y ¥ and ¥ which were not o-convertible. Then

\\\\\ ///// X cny ¥ (by the route ¥ » ¥ » v, if by no
Z

other), so that there is a Zz to which both

X and Y reduce, contrary to the assumption that

10

X and Y are in normal form and not a-convertible. Part II guarantees

that normal order reduction will always reach the normal form, if one

exists,

The Church-Rosser Theorem indicates the feasibility of using

the conversion rules to define an evaluation mechanism for A-expressions.

Before going into the theory further it is worth while spending a

little time exploring the expressive power of the A-calculus by looking

at some practical examples.

1,10, Examples

(1) The truth values may be represented as follows:

true by Azx.\y.x and
false by JXx.\y.y

Edach representation is a function; true selects the first and false
second of the two arguments which follows. To see how this works,
suppose a predicate Gr is defined by

Gr a b = Ax.A\y.x if a>b

Ax.AY.Y if a < b
Then

Gr x 0 x (-x) x 1f x > 0,

[}

-x if x < 03

this computes the function 4bs normally expressed by if x > 0 then
xz else -x. In general, if b is a Boolean expression and b' the
corresponding expression taking values in {Ax.Ay.x, Az.Xy.y}, then
b'(e)(e,) corresponds to if b then ¢, else e¢,. For example the

1 2
logical function 4And which may be written

Au.dv. if-u then v else false

is represented by

AuAv.u v(dx.Ay.y).

(2) The use of the A-notation enables us to apply a function of
several variables to its variables one at a time. Take for
example Sum:R x R + R defined by Sum<a.,b> = a + b (or in the more

usual notation, Sum(a,b) = a + b). Then
Ax., Sum<a x>

is a function which adds g to its (single) argument. It is a con-

the

11

vention that we represent this function by Sum a, or Sum(a) if the
notation f(m) is being used. (This convention is called Schonfinkel's
Device, and Sum(a) is a 'curried function' in honour of H. B. Curry.)
Thus we have, in the two notations,

Sum a b = Sum<a,b> = g + b and

Sum(a)(b) = Sum(a,b) = a + b.

(3) The combinators of Curry and Feys,

Irked by the untidiness of the process of substituting for bound
variables in A-expressions and. elsewhere, Curry experimented with
the expedient of eliminating variables altogether. The main com-

binators in the system of Curry and Feys [3] may be defined in the
A-notation. ‘

I = Xx.x
K= Az.ry.x
S = Az.Ay.Az.x3(y2)
B = Az.dy.Az.x(y=)
Notice that
KI = (Az.dy.z)(Az.2)

cnv, Ay. Ar.x
cnv Ax. Ay .Y

so that K and KI correspond respectively to true and false in the
representation which was used earlier. ‘

(4) Pairing functions 1In 2.38 we shall define three functions,

P, ¥, and M, , associated with ordered pairs by

P(xo)(xl) = <xo,x1>,MO(<%o,m1>) =z, and M1(<xo,m1>) = .
O,:ci>vby Au.u T Ty This 1is

a function which yields z and x4 respectively when applied to the

representations of true and false used in 1.10(1). For example,

Suppose we represent the pair <x

(Au.u moxl)K r‘edB Kmoml

r‘edB x ,
Thus M and M, are represented by Az.zK and Az.z(KI) respectlvely
p 1tse1f is represented by Aa.Ab.(Au. uab).

12

(5)- Representation of the non-negative integers. Suppose we

represent 0 by
0 = Af.Az.x
and the successor function by
Sue = Ak Af. A x.f(kfx).
Then

T = Sue 0 = (A Af Az f(Rfx))(AFf hx.ox)

cnvg Af.Ax, fx

and

2 = Sue 1 can Af Az f(fx)

and so on. (We have already met Z in 1.8(2).) In general, if »n is
an integer, the representation 7z has the property that nfz = f'z -
in other words, n causes its first argument to be applied n times
to 1ts second. ‘

From what has just been said, it follows that

)

m+n
r

m+n fx

[

mf(nfzx)

so that
min = Af.Ax.mf(nfx),
and hence we may represent the addition function by
Sum = Am.An AFf.Ax.mf(nfx).

products and powers may easily be defined using similar methods.

To define the equality predicate takes a little longer.
We first define

F = Az, u.u(Sue(xK))Y(xK).

This has the property that F<m,n> = <m+1
represented as in (4). Thus kF<0,0> = F <0,0>
=<k,Pred k> (&)

13

where

Pred k

I
ol x
AR

. e
(s

x

v

o

Using (o), we may now define Pred itself by
Pred = k. (kF<0,0>)(KI),

The reader should verify that the predicate Iszero, which maps 0

into K and every other numeral into KI, is given by
Iszero = Mk,k(K(KI))(K).

Next we notice that

m Pred n = n-m if n > m

]

0 otherwise,

so that Iszero(m Pred n) has the value K iff = < m. Hence the
equality predicate is given by

Equal = Am.An.Iszero(m Pred n) A Iszero(n Pred m)
where A is the infix notation for the logical function 4nd defined

at the end of example (1).

(6) Recursive definition of functions. Consider the definition

of the factorial function,

Fact = \n. if n =‘0 then 1 else n x Fact(n-1)
or in the notation of example (s),

Fact = in.Iszero n 1 (Prod h(Fact(Pred 7n)))

The definitions of (5) included functions defined elsewhere; for
example Pred involved 7 and F involved Sue. It would have been a
simple matter to eliminate these functions>by substitution, although
the resulting expressions might be unwieldy. In the definition of

Faget we can substitute successfully for the occurrence of Faet on

the right only if we are evaluating an expression like Faet 2. In such
a case the substitution process terminates (and this is our justi-
fication for regarding the formula as a definition of Fget); 1if we

try to eliminate Fget from the right-hand side in the general case

of Faet n we fail. Thus the definition, in the form given, is not

within the scope of the X-calculus.

14

Put
g = Af.(An.Iszero n 1(Prod n(f(Pred n))).

Then Fact = g Faet, so that Faet is a fixed point of g4, Now we can
define a function, Yl’ which maps a function into one of its fixed
points. Let

YA = da. (Ay.alyy))(Ay.alyy))
If we put f = Y,g we get, by B-conversion,
Ff= (Ay.glyy))(Ay.g(yy))
cnvg g((Ay.g(yy))(Ay.glyy)))
=gf

so that Yy does indeed map g into one of its fixed points, and the
use of Yx enables us to reduce recursive definitions to non-recursive

form. In the example we have been considering, we get

Fact = Yl(Af.Kn.Iszero n 1(Prod n(f(Pfed n)))).

Example 1.10(6) leaves some loose ends. Thus if g has more
than one fixed point, it is not clear that ng computes the parti-
cular fixed point we intended to define by the recursion f = gf; we
shall return to this question later, But a more fundamental problem
is highlighted by the fact that v,

y in yy. For suppose we define u by

involves the self-application of

u = Ay. if yy = a then b else a

where 2 and 2 are distinct elements of S. Then an attempt to evaluate

uu by B-conversion gives
uu = if uu = g then » else a

which is a contradiction. Yet if we assume the existence of § with
the property that a € S implies a : S - S, then there seems to be

no good reason for prohibiting the formation of .

The same problem can be viewed from the standpoint of the
cardinality of S. If S is any domain containing more than one
element, then the function space SS comprising 477 functions

f + 5 > S has a higher cardinality than S; thus it is not possible

15

for our space S to be identified with the whole function space SS.

The statement of the problem in terms of cardinality suggests
a strategy for its solution. The great majority of functions in
the space SS are not merely non-computable, they are completely
irrelevant for any but the most abstract considerations. Thus we
must fix our attention on a subspace of SS having the same cardinality
as S, but containing only 'interesting' functions. Needless to say,
this is a great oversimplification of a line of development which

will occupy us from now on,

[1]

[2]
[3]
[4]

[5]

6]

64

REFERENCES

G. Birkhoff, Lattice Theory, American Mathematical Society
Colloquium Publications, vol.25, Third (new)
edition (1967).

A. Church, The Calculi of Lambda-Conversion, Annals of
Mathematical Studies 6, Princeton, 1951,

H. B. Curry and R. Feys, Combinatory Logic, vol.l, North-Holland,
Amsterdam (1968).

H. Gericke, Lattice Theory, Harrap (1966),

D. Scott, Outline of a Mathematical Theory of Computation,
Proceedings of the Fourth Annual Princeton Conference
on Information Sciences and Systems (1970), pp.169-176.

D. Scott, Lattice~Theoretic Models for the A-Calculus,
(unpublished)

C. Strachey, Fundamental Concepts in Programming Languages
(unpublished).

The reader who wishes to go further into either the theory

or application of reflexive domains may consult the following papers
by Scott,

The Lattice of Flow Diagrams, Semantics of Algorithmic
Languages, Springer Lecture Notes in Mathematics, vol,188
(1871).

Lattice Theory, Data Types and Semantics, New York Symposia
in Areas of Current Interest in Computer Science (Randall
Rustin ed.) (1972).

Continuous Lattices, Proceedings of the 1971 Dalhousie
Conference, Springer Lecture Notes.

Lattice-Theoretic Models for Various Type-free Calculi,
Proceedings of the IVth International Congress for LOgic,
Methodology, and the Philosophy of Science, Bucharest (1972).

