
 168

Testability, Fault Size and the Domain-to-Range Ratio:
An Eternal Triangle

Martin R. Woodward
University of Liverpool,

Computer Science Department,
Chadwick Building, Peach Street,

Liverpool L69 7ZF, U.K.
Tel: +44-151-794-3676

m.r.woodward@csc.liv.ac.uk

Zuhoor A. Al-Khanjari
Sultan Qaboos University,

Computer Science Department,
P.O. Box 36, Al-Khod, PC 123,

Sultanate of Oman.
Tel: +968-515400

zuhoor@squ.edu.om

ABSTRACT
A number of different concepts have been proposed that, loosely
speaking, revolve around the notion of software testability.
Indeed, the concept of testability itself has been interpreted in a
variety of ways by the software community. One interpretation is
concerned with the extent of the modifications a program
component requires, in terms of its input and output variables, so
that the entire behaviour of the component is observable and
controllable. Another interpretation is the ease with which faults,
if present in a program, can be revealed by the testing process and
the propagation, infection and execution (PIE) model has been
proposed as a method of estimating this. It has been suggested
that this particular interpretation of testability might be linked
with the metric domain-to-range ratio (DRR), i.e. the ratio of the
cardinality of the set of all inputs (the domain) to the cardinality
of the set of all outputs (the range). This paper reports work in
progress exploring some of the connections between the concepts
mentioned. In particular, a simple mathematical link is established
between domain-to-range ratio and the observability and
controllability aspects of testability. In addition, the PIE model is
re-considered and a relationship with fault size is observed. This
leads to the suggestion that it might be more straightforward to
estimate PIE testability by an adaptation of traditional mutation
analysis. The latter suggestion exemplifies the main goals of the
work described here, namely to seek greater understanding of
testability in general and, ultimately, to find easier ways of
determining it.

Keywords
Testability, observability, controllability, domain-to-range ratio,
fault size.

1. INTRODUCTION
There are a number of concepts concerned with program faults
and program testability that intuitively would seem to be related.
The concept of testability itself has been subject to a number of
different interpretations [1,2,3,4,6,17] which one might imagine
bear some relationship to one another. One interpretation of
testability, due to Freedman [6], is concerned with determining
modifications to the inputs and outputs of a given program
component in order to make the behaviour of the component both
observable and controllable. A different interpretation of
testability, due to Voas and colleagues [17,19], is concerned with
determining the ease with which faults may be revealed, if there
are any present in the program. This latter version of testability
can be estimated using the so-called propagation, infection and
execution (PIE) model [15], although the necessary analysis is
sophisticated and expensive to perform. As a consequence there is
interest in finding easier ways to calculate testability, or at least in
getting some indication of it, without actually performing the PIE
technique. It has been suggested that the concept of domain-to-
range ratio (DRR) might fulfill this role [16]. One further concept
to be considered here is semantic fault size [12].

This paper reports part of an ongoing project to explore the
relationships between the concepts just mentioned. Although there
are a variety of approaches to such an investigation that one might
adopt, attention here is confined to consideration of the idealized
model of programs as functions. Both DRR and semantic fault
size necessitate taking such a functional view of software anyway
and, by using this framework, a number of simple observations
can be made. The next two sections briefly introduce the
functional view of software and the notion of domain-to-range
ratio that ensues. Subsequent sections consider the relationships
between Freedman’s testability (observability and controllability)
and DRR, between fault size and Voas’s testability (the PIE
model) and between fault size and DRR. The paper finishes with a
discussion of some other related work followed by some
concluding remarks.

2. A FUNCTIONAL VIEW OF SOFTWARE
Every item of software at its most primitive level may be viewed
as a function or mapping according to some specification, S, from
a set of input values (its domain, D) to a set of output values (its
range, R).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSTA’00, Portland, Oregon.
Copyright 2000 ACM 1-58113-266-2/00/0008…$5.00.

 2

A program which implements specification S should also map
from D to R. However, if a fault f exists in the program, there will
be some subset of the domain, Df say, on which the erroneous
program Pf computes a faulty result. The set of faulty results,
denoted Rf, may contain values both in R and outside R. The
effect of Pf on values outside of D remains unspecified. See
Figure 1. Note that the domain and the range can be considered
for an entire program, an individual program component, a
program path or simply a single program location.

Figure 1. Functional view of a faulty program.

3. DOMAIN-TO-RANGE RATIO (DRR)
The domain-to-range ratio (DRR) has been proposed by Voas and
Miller [16] as a specification metric. Put simply:

Domain-to-Range Ratio =
R
D

 (1)

where |D| is the cardinality of the domain of the specification and
|R| is the cardinality of the range. DRR can be determined for
mathematical or computational functions. Consider, for example,
the function f(d) = d mod 2, where the input d is a member of the
set of natural numbers not greater than 100, i.e. D = {1,2,3, …,
100}. Clearly the function generates only two possible outputs,
namely 0 when d is even and 1 when d is odd, so that R = {0,1}
and DRR = 100 / 2 = 50. Admittedly this is a simple example, but
when a functional view of software is taken, as in the preceding
section, it should, in principle, be possible to determine DRR for
more realistic software components. Clearly difficulties arise
when the domain, and more particularly the range, are infinite,
although of course the corresponding sets for software must
necessarily be finite, albeit very large in many cases.

Part of the rationale for the DRR metric is that it provides an
approximate measure of information loss, i.e. the situation when
two or more different values are used as input to a function and
generate the same output. Voas et al. [18] have argued that this
information loss may become manifest as ‘internal data state
collapse’ when the specification is implemented as a program.
Internal data state collapse occurs when two different data states
are input to some sub-component in a program and yet that sub-
component produces the same output state. As Voas and Miller
[16] remark: “When internal state collapse occurs, the lost
information may have included evidence that internal states were
incorrect. Since such evidence is not visible in the output, the
probability of observing a failure during testing is reduced”. This
connection between DRR and state collapse, or unlikelihood of

fault exposure, is of course implying, in essence, a link between
DRR and testability, as defined in the sense of Voas and
colleagues. Indeed Voas et al. [18] conjectured that “the
testability of a program is correlated with the domain-to-range
ratio”. More explicitly they hypothesized that: “as the DRR of the
intended function increases, the testability of an implementation
of that function decreases”. In other words, high DRR is thought
to lead to low testability and vice versa.

4. DOMAIN TESTABILITY AND DRR
Freedman [6] proposed what he termed ‘domain testability’ which
involves use of the concepts of observability and controllability.
Previously these latter two concepts had been used for assessing
the testability of hardware components and Freedman showed
how they could be used in the software context.

A software component is observable “if distinct outputs are
generated from distinct inputs” [6] so that, if a test input is
repeated, the output is the same. If the outputs are not the same,
the component is dependent on hidden states not identified by the
tester and Freedman calls this an ‘input inconsistency’. Using a
functional model (as introduced in Section 2) for component P
mapping from domain D to range R, i.e. P: D → R, then
observability can be characterised as:

∀ a, b ∈ D • P(a) ≠ P(b) ⇒ a ≠ b (2)
A software component is controllable “if, given any desired
output value, an extra input exists which ‘forces’ the component
output to that value” [6]. If an output identifier is specified to be a
certain range of values and there are particular instances of values
that cannot be generated by any test input values, those are termed
‘output inconsistencies’. Again using the functional model P: D
→ R, then controllability can be characterised as:

∀ r ∈ R • ∃ d ∈ D • P(d) = r (3)
Most functions and procedures are not a priori observable and
controllable. The modifications required to achieve domain
testability are called extensions. Observable extensions are
achieved by introducing new input variables so that the
component becomes observable, i.e. distinct outputs can only
arise from distinct inputs. Freedman suggested that Ob, a measure
of observability, could be obtained by taking log2 of the product
of the cardinalities of the types of the additional input variables.
The cardinality of a type is the cardinality of the set of values
represented by that type and taking logarithm to base 2
determines, in effect, the number of extra binary inputs. In other
words, if there are n extra input variables and Ti represents the
type of the ith input variable, then:

Ob = log2(|T1| × . . . × |Tn|) (4)
Controllable extensions are achieved by modifying outputs for the
given component so that it becomes controllable, i.e. all claimed
outputs are attainable with some input. In fact, although called an
extension, Freedman makes it clear that controllability is achieved
by an appropriate reduction of the range. Controllability, Ct, can
be measured by taking log2 of the product of the cardinalities of
the types of the modified output variables, i.e. if there are m
modified output variables and Tk represents the type of the kth
output variable, then:

Ct = log2(|T1| × . . . × |Tm|) (5)

Df

D
R

Rf Faulty
result

Correct
result

Mapping not
specified

169

 3

RR
DD

R
D

RDR
∆−
∆+

=
′
′

=′

In order to consider the relationship between domain testability
and domain-to-range ratio, let ∆D denote the extension to the
domain D required to achieve an observable component. Similarly
let ∆R denote the reduction to the range R required in order to
achieve a controllable component. Let the domain and range of
the component after modification with observable and
controllable extensions in this way be denoted D′ and
R′ respectively. Clearly:

D′ = D ∪ ∆D and R′ = R − ∆R (6)

Since by definition ∆D is an extension of D and has no overlap
with it, the following can be deduced:

|D ∪ ∆D| = |D| + |∆D| (7)

Similarly, since ∆R is wholly contained within R:

|R − ∆R| = |R| − |∆R| (8)

Then it follows that DRR′, the domain-to-range ratio of the now
extended and domain testable component can be written as:

(9)

By rearranging terms and noting that |D| / |R| corresponds to DRR,
the domain-to-range of the original program component (without
extensions), the formula becomes:

(10)

In words, this says that the domain-to-range ratio of a program
component, after modification to make it domain testable, is the
domain-to-range ratio of the component before modification
multiplied by one plus the relative size of the domain extension
and divided by one minus the relative size of the range reduction.
Finally, note that since |∆D| is 2Ob and |R′| is 2Ct, formula (9) can
be written:

(11)

5. SEMANTIC FAULT SIZE
In an attempt to obtain greater understanding of program faults,
Offutt and Hayes [12] drew a distinction between the syntactic
and the semantic nature of faults. The syntactic nature can be
described by the syntactical differences between the faulty
program and the correct program. Indeed Offutt and Hayes went
further and defined the syntactic size of a fault as “the number of
statements or tokens that need to be changed to get a correct
program”. The semantic nature of a fault, on the other hand,
results from the view that for some subset of the input domain a
faulty computation takes place producing incorrect output.
Corresponding to the syntactic size of a fault, Offutt and Hayes
defined the semantic size of a fault as “the relative size of the
subdomain of D for which the output mapping is incorrect”.
Referring to Figure 1 the following formula is obtained:

Semantic fault size =
D

D f
 (12)

where |D| is the cardinality of the entire input domain and |Df| is
the cardinality of just that subpart which results in faulty output. It
should be obvious that there is no reason why there should be a
link between syntactic fault size and semantic fault size. Indeed it
is perfectly possible to find situations where a syntactically small
fault results in a very large semantic fault size, and vice versa.

5.1 Semantic Fault Size and Testability
Offutt and Hayes [12] suggested that semantic fault size is closely
related to testability in the sense of Voas et al. [19]. That is, if a
statement in the subject program has low testability, then any
faults associated with that statement might be expected to have
small semantic size and any statement containing a fault with
large semantic size could be expected to exhibit high testability.

To explore this connection between semantic size and testability
further, consider the propagation, infection and execution (PIE)
model that provides the basis for testability estimation. Consider a
program with a single fault f at one location in the program.
According to the PIE model, the probability of failure under a
particular input distribution, Pr[Failure], is a combination of the
individual probabilities: (1) that the fault is executed
(E=execution); (2) that execution of the fault causes corruption of
the data state (I=infection); and (3) that the faulty data state
propagates to the output (P=propagation). This can be written [7]:

Pr[Failure] = Pr[E] × Pr[I | E] × Pr[P | I] (13)

Figure 2. Input domain view of the PIE model.

Referring to Figure 2, where, as before, D represents the entire
input domain of the subject program, there will be some subset E
of D such that all test values in E cause the fault to be executed.
Amongst those input values that cause fault execution, some will
result in data state infection, as represented by the region I.
Finally amongst those input values that cause data state infection,
some will propagate the faulty state to the output, as represented
by the region P. Assuming a uniform input distribution, the
probabilities of formula (13) can be replaced by the ratios of the
cardinalities of the relevant sets giving:

Pr[Failure] =
D
E

 ×
E
I

 ×
I
P

 =
D
P

 (14)

Since |P| is the cardinality of the input set that causes execution of
the fault f, resulting in data state infection which propagates to the
output, this is none other than the cardinality of that region of the










 ∆
−









 ∆
+=′ ×

R
R

D
D

DRRRDR 11

CtObDRDR 22 


 +=′

P
I

E
D

170

 4

input space previously labelled Df. Hence formula (14) is just the
semantic size of fault f.

In practice Voas [15] suggests estimating testability at a location
by separate estimation processes for the three individual
components of the model. Execution probability is estimated for
some given input distribution by determining the proportion of
cases that execute the location of interest. Infection probability is
estimated by introducing mutations of the location and
determining the proportion of input cases that give rise to a
different state from the non-mutated location. Propagation
probability is estimated by determining the proportion of cases for
which perturbed data states at the location propagate and give rise
to faulty results.

It would seem, as a result of the connection between semantic
fault size and the testability of a location L (TestabilityL), that an
alternative testability estimation procedure could be based just on
considering versions of the chosen program with location L
mutated. Let ML denote a representative such mutant of location
L. The mutation change, provided it does not generate an
equivalent mutant, can be regarded as a seeded fault that has a
semantic size in the same way as naturally occurring faults. The
smallest semantic size of such mutants, being a worst case, could
provide an estimate for testability at the location L, i.e. the
following approximation holds:

TestabilityL ≈ min (semantic size of ML) (15)
where the minimum is over an appropriate set of non-equivalent
mutants of location L. In practice this would require using a
traditional (strong) mutation testing tool such as Mothra [5] in a
slightly different mode from normal. It requires establishing a
large number of input test cases chosen randomly from the input
domain and then determining for each mutant generated by the
tool, the proportion of test cases that kill that mutant. This is
different from normal usage where, once a mutant is killed with
some test case, no further test cases are applied to that mutant.
Offutt and Hayes [12] did adopt this procedure to estimate the
semantic size of all mutants created by the same mutation operator
in an attempt to measure the size of given fault types. What is
being suggested here, however, is slightly different again, in that
mutants resulting from different mutation operators are grouped
and considered according to the program location affected. The
aim is to determine the minimum semantic size of all mutations at
a location. Although still an expensive process, this has the merit,
superficially at least, of being considerably more straightforward
than using separate estimation procedures for the three
components of the PIE model.

A study by Rothermel et al. [14] used mutation analysis in an
apparently similar way to assess the fault exposing potential of a
test suite of test cases with respect to locations (statements).
However, the aim in that work was to prioritize individual test
cases based on their ability to kill mutants rather than, as here, to
assess testability of a location by measuring the proportion of all
test cases in the domain that kill mutants of that location.

It is noted in passing that since propagation analysis is akin to
strong mutation testing, and infection analysis is akin to weak
mutation testing, a similar distinction could be made for semantic
fault size. This would entail re-labelling the existing notion of
semantic fault size as strong semantic fault size since it can be
considered as the proportion of the input domain that causes the

fault to produce erroneous output. On the other hand, weak
semantic fault size can be considered as the proportion of the
input domain that merely results in an infected data state
immediately after executing a fault, i.e.

Weak semantic fault size =
D
I

 (16)

5.2 Semantic Fault Size and DRR
Since semantic fault size has been related to the testability
concept, it is interesting to speculate whether it could be related to
the domain-to-range ratio (DRR). However, since semantic fault
size depends solely on the input domain, whereas DRR depends
on both the domain and the range, there is unlikely to be a direct
connection. What can be deduced is a relationship involving fault
size, measured in terms of input and output, and DRR both for the
correct program and also for a faulty version when executed over
just that portion of the domain that exposes the fault. Suppose, as
in Section 2, that Pf is an incorrect version of some program P
containing a single fault f and that Pf maps Df into Rf . Then
‘strong’ semantic fault size which is based purely on the input
domain is given by formula (12), repeated here for clarity:

Input semantic fault size =
D

D f
 (17)

However, one could also define a fault size based purely on the
output range in the following manner:

Output semantic fault size =
R

R f
 (18)

Then denoting DRR for the correct program P with input domain
D by DDRRP and for faulty program Pf with just the fault-
exposing input domain Df by ff DDRRP the following is obtained:

DDRRP =
R
D

 =
R

R

R

D

D

D f

f

f

f
×× (19)

Rearranging:

DDRRP =
sizefault input
sizefault output ×

ff DDRRP (20)

This equation captures the (admittedly) rather limited connection
between DRR and semantic fault size.

6. OTHER RELATED WORK
This section briefly mentions some of the most significant related
work (besides that already cited) which is concerned with fault
models, fault propagation and fault-based testing.

The PIE model bears some similarity to the RELAY model [13] in
which a fault originates a potential failure that must then transfer
through computations to produce a state failure and ultimately be
revealed as an external failure. Morell [11] developed a theory of
fault-based testing that placed emphasis on fault propagation and
then used symbolic testing to explore its limitations. The work of
Goradia [8] was also concerned with fault propagation and a
technique known as ‘dynamic impact analysis’ was formulated to

171

 5

determine the extent of the effect of program components on the
program output for a specific test case. Hamlet and Voas [9]
showed just how useful a PIE testability estimate could be when
used in conjunction with conventional reliability testing to
provide, via so-called ‘squeeze play’, a confidence bound for the
correctness of a program. On a more cautionary note however,
they also provided a stark critique of the assumptions underlying
the PIE model.

7. CONCLUSIONS
Testability is an important attribute of software as far as the
testing community is concerned since its measurement leads to the
prospect of facilitating and improving the testing process.
Unfortunately testability has various guises. Two distinct and
significant interpretations are due to Freedman [6] and Voas et al.
[19]. Freedman’s notion of testability has two facets, observability
and controllability, both of which can be measured by the extent
of certain modifications to a program component. Voas’s notion
of testability can be estimated by the computationally expensive
PIE technique and Voas himself has suggested a possible link
with the rather simpler concept of domain-to-range ratio.

By taking a functional view of software, this paper has produced a
succinct characterisation of controllability and observability and
developed a simple mathematical relationship involving them and
the domain-to-range ratio. Semantic fault size has also been
considered and its relationship with Voas’s testability has been
explored. A consequence of this is the suggestion that testability
of a program location could be estimated more straightforwardly
by a small adaptation of the traditional strong mutation testing
process, to find the minimum semantic size of all mutants at the
location. Finally some refinements of semantic size have been
introduced and their relationship with DRR has been considered.

The authors recognise the desirability of validating the
connections between the concepts as discussed here and this is the
focus of ongoing work. Validation could take the form of
empirical evidence, but could also consider a more analytical
approach along the lines adopted by How Tai Wah [10] who has
modelled software as finite functions to deduce theoretical results
concerning fault coupling. In the meantime, this paper has made a
limited start at putting together the various separate pieces of what
might be considered a rather complex jigsaw of related concepts.

8. REFERENCES
[1] Bache, R. and Müllerburg, M., “Measures of testability as a

basis for quality assurance”, Software Engineering Journal,
5(2), 86-92 (March 1990).

[2] Bainbridge, J., “Defining testability metrics axiomatically”,
Software Testing, Verification and Reliability, 4(2), 63-80
(June 1994).

[3] Bertolino, A. and Strigini, L., “On the use of testability
measures for dependability assessment”, IEEE Trans. on
Soft. Eng., 22(2), 97-108 (Feb. 1996).

[4] Boehm, B.W., Brown, J.R. and Lipow, M., “Quantitative
evaluation of software quality”, Proc. 2nd Int. Conf. on
Software Engineering, San Francisco, U.S.A., IEEE Press,
pp. 592-605 (Oct. 1976).

[5] DeMillo, R.A., Guindi, D.S., McCracken, W.M., Offutt, A.J.
and King, K.N., “An extended overview of the Mothra
software testing environment”, Proc. Second Workshop on
Software Testing, Verification and Analysis, Banff, Canada,
IEEE Press, pp. 142-151 (July 1988).

[6] Freedman, R.S., “Testability of software components”, IEEE
Trans. on Soft. Eng., 17(6), 553-564 (June 1991).

[7] Friedman, M.A. and Voas, J.M., Software Assessment:
Reliability, Safety, Testability, Wiley, New York, U.S.A.
(1995).

[8] Goradia, T., “Dynamic impact analysis: a cost-effective
technique to enforce error-propagation”, Proc. Int. Symp. on
Software Testing and Analysis (ISSTA ’93), Cambridge, MA,
U.S.A., ACM Press, pp. 171-181 (June 1993).

[9] Hamlet, D. and Voas, J., “Faults on its sleeve: amplifying
software reliability testing”, Proc. Int. Symp. on Software
Testing and Analysis (ISSTA ’93), Cambridge, MA, U.S.A.,
ACM Press, pp. 89-98 (June 1993).

[10] How Tai Wah, K.S., “A theoretical study of fault coupling”,
Software Testing, Verification and Reliability, 10(1), 3-45
(March 2000).

[11] Morell, L.J., “A theory of fault-based testing”, IEEE Trans.
on Soft. Eng., 16(8), 844-857 (Aug. 1990).

[12] Offutt, A.J. and Hayes, J.H., “A semantic model of program
faults”, Proc. Int. Symp. on Software Testing and Analysis
(ISSTA ’96), San Diego, U.S.A., ACM Press, pp. 195-200
(Jan. 1996).

[13] Richardson, D.J. and Thompson, M.C., “An analysis of test
data selection criteria using the RELAY model of fault
detection”, IEEE Trans. on Soft. Eng., 19(6), 533-553 (June
1993).

[14] Rothermel, G., Untch, R.H., Chu, C. and Harrold, M.J., “Test
case prioritization: an empirical study”, Proc. Int. Conf. on
Software Maintenance (ICSM ’99), Oxford, U.K., IEEE
Press, pp. 179-188 (Aug. 1999).

[15] Voas, J.M., “PIE: a dynamic failure-based technique”, IEEE
Trans. on Soft. Eng., 18(8), 717-727 (Aug. 1992).

[16] Voas, J.M. and Miller, K.W., “Semantic metrics for software
testability”, The Journal of Systems and Software, 20(3),
207-216 (March 1993).

[17] Voas, J.M. and Miller, K.W., “Software testability: the new
verification”, IEEE Software, 12(3), 17-28 (May 1995).

[18] Voas, J.M., Miller, K.W. and Noonan, R., “Designing
programs that do not hide data state errors during random
black-box testing”, Proc. 5th Int. Conf. on Putting into
Practice Methods and Tools for Information System Design,
Nantes, France (Sept. 1992).

[19] Voas, J.M., Morell, L.J. and Miller, K.W., “Predicting where
faults can hide from testing”, IEEE Software, 8(2), 41-48
(March 1991).

172

