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ABSTRACT 
A number of different concepts have been proposed that, loosely 
speaking, revolve around the notion of software testability. 
Indeed, the concept of testability itself has been interpreted in a 
variety of ways by the software community. One interpretation is 
concerned with the extent of the modifications a program 
component requires, in terms of its input and output variables, so 
that the entire behaviour of the component is observable and 
controllable. Another interpretation is the ease with which faults, 
if present in a program, can be revealed by the testing process and 
the propagation, infection and execution (PIE) model has been 
proposed as a method of estimating this. It has been suggested 
that this particular interpretation of testability might be linked 
with the metric domain-to-range ratio (DRR), i.e. the ratio of the 
cardinality of the set of all inputs (the domain) to the cardinality 
of the set of all outputs (the range). This paper reports work in 
progress exploring some of the connections between the concepts 
mentioned. In particular, a simple mathematical link is established 
between domain-to-range ratio and the observability and 
controllability aspects of testability. In addition, the PIE model is 
re-considered and a relationship with fault size is observed. This 
leads to the suggestion that it might be more straightforward to 
estimate PIE testability by an adaptation of traditional mutation 
analysis. The latter suggestion exemplifies the main goals of the 
work described here, namely to seek greater understanding of 
testability in general and, ultimately, to find easier ways of 
determining it. 
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1. INTRODUCTION 
There are a number of concepts concerned with program faults 
and program testability that intuitively would seem to be related. 
The concept of testability itself has been subject to a number of 
different interpretations [1,2,3,4,6,17] which one might imagine 
bear some relationship to one another. One interpretation of 
testability, due to Freedman [6], is concerned with determining 
modifications to the inputs and outputs of a given program 
component in order to make the behaviour of the component both 
observable and controllable. A different interpretation of 
testability, due to Voas and colleagues [17,19], is concerned with 
determining the ease with which faults may be revealed, if there 
are any present in the program. This latter version of testability 
can be estimated using the so-called propagation, infection and 
execution (PIE) model [15], although the necessary analysis is 
sophisticated and expensive to perform. As a consequence there is 
interest in finding easier ways to calculate testability, or at least in 
getting some indication of it, without actually performing the PIE 
technique. It has been suggested that the concept of domain-to-
range ratio (DRR) might fulfill this role [16]. One further concept 
to be considered here is semantic fault size [12]. 

This paper reports part of an ongoing project to explore the 
relationships between the concepts just mentioned. Although there 
are a variety of approaches to such an investigation that one might 
adopt, attention here is confined to consideration of the idealized 
model of programs as functions. Both DRR and semantic fault 
size necessitate taking such a functional view of software anyway 
and, by using this framework, a number of simple observations 
can be made. The next two sections briefly introduce the 
functional view of software and the notion of domain-to-range 
ratio that ensues. Subsequent sections consider the relationships 
between Freedman’s testability (observability and controllability) 
and DRR, between fault size and Voas’s testability (the PIE 
model) and between fault size and DRR. The paper finishes with a 
discussion of some other related work followed by some 
concluding remarks. 

2. A FUNCTIONAL VIEW OF SOFTWARE 
Every item of software at its most primitive level may be viewed 
as a function or mapping according to some specification, S, from 
a set of input values (its domain, D) to a set of output values (its 
range, R). 
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A program which implements specification S should also map 
from D to R. However, if a fault f exists in the program, there will 
be some subset of the domain, Df say, on which the erroneous 
program Pf computes a faulty result. The set of faulty results, 
denoted Rf, may contain values both in R and outside R. The 
effect of Pf on values outside of D remains unspecified. See 
Figure 1. Note that the domain and the range can be considered 
for an entire program, an individual program component, a 
program path or simply a single program location. 

 
 

 
 
 
 
 
 
 
 

Figure 1. Functional view of a faulty program. 

3. DOMAIN-TO-RANGE RATIO (DRR) 
The domain-to-range ratio (DRR) has been proposed by Voas and 
Miller [16] as a specification metric. Put simply: 

Domain-to-Range Ratio = 
R
D

       (1) 

where |D| is the cardinality of the domain of the specification and 
|R| is the cardinality of the range. DRR can be determined for 
mathematical or computational functions. Consider, for example, 
the function f(d) = d mod 2, where the input d is a member of the 
set of natural numbers not greater than 100, i.e. D = {1,2,3, …, 
100}. Clearly the function generates only two possible outputs, 
namely 0 when d is even and 1 when d is odd, so that R = {0,1} 
and DRR = 100 / 2 = 50. Admittedly this is a simple example, but 
when a functional view of software is taken, as in the preceding 
section, it should, in principle, be possible to determine DRR for 
more realistic software components. Clearly difficulties arise 
when the domain, and more particularly the range, are infinite, 
although of course the corresponding sets for software must 
necessarily be finite, albeit very large in many cases. 

Part of the rationale for the DRR metric is that it provides an 
approximate measure of information loss, i.e. the situation when 
two or more different values are used as input to a function and 
generate the same output. Voas et al. [18] have argued that this 
information loss may become manifest as ‘internal data state 
collapse’ when the specification is implemented as a program. 
Internal data state collapse occurs when two different data states 
are input to some sub-component in a program and yet that sub-
component produces the same output state. As Voas and Miller 
[16] remark: “When internal state collapse occurs, the lost 
information may have included evidence that internal states were 
incorrect. Since such evidence is not visible in the output, the 
probability of observing a failure during testing is reduced”. This 
connection between DRR and state collapse, or unlikelihood of 

fault exposure, is of course implying, in essence, a link between 
DRR and testability, as defined in the sense of Voas and 
colleagues. Indeed Voas et al. [18] conjectured that “the 
testability of a program is correlated with the domain-to-range 
ratio”. More explicitly they hypothesized that: “as the DRR of the 
intended function increases, the testability of an implementation 
of that function decreases”. In other words, high DRR is thought 
to lead to low testability and vice versa. 

4. DOMAIN TESTABILITY AND DRR 
Freedman [6] proposed what he termed ‘domain testability’ which 
involves use of the concepts of observability and controllability. 
Previously these latter two concepts had been used for assessing 
the testability of hardware components and Freedman showed 
how they could be used in the software context. 

A software component is observable “if distinct outputs are 
generated from distinct inputs” [6] so that, if a test input is 
repeated, the output is the same. If the outputs are not the same, 
the component is dependent on hidden states not identified by the 
tester and Freedman calls this an ‘input inconsistency’. Using a 
functional model (as introduced in Section 2) for component P 
mapping from domain D to range R, i.e. P: D → R, then 
observability can be characterised as: 

∀  a, b ∈ D  •  P(a) ≠ P(b)  ⇒   a ≠ b     (2) 
A software component is controllable “if, given any desired 
output value, an extra input exists which ‘forces’ the component 
output to that value” [6]. If an output identifier is specified to be a 
certain range of values and there are particular instances of values 
that cannot be generated by any test input values, those are termed 
‘output inconsistencies’. Again using the functional model P: D 
→ R, then controllability can be characterised as: 

∀  r ∈ R  • ∃  d ∈ D  •  P(d) = r     (3) 
Most functions and procedures are not a priori observable and 
controllable. The modifications required to achieve domain 
testability are called extensions. Observable extensions are 
achieved by introducing new input variables so that the 
component becomes observable, i.e. distinct outputs can only 
arise from distinct inputs. Freedman suggested that Ob, a measure 
of observability, could be obtained by taking log2 of the product 
of the cardinalities of the types of the additional input variables. 
The cardinality of a type is the cardinality of the set of values 
represented by that type and taking logarithm to base 2 
determines, in effect, the number of extra binary inputs. In other 
words, if there are n extra input variables and Ti represents the 
type of the ith input variable, then: 

Ob = log2( |T1| ×  . . . × |Tn| )     (4) 
Controllable extensions are achieved by modifying outputs for the 
given component so that it becomes controllable, i.e. all claimed 
outputs are attainable with some input. In fact, although called an 
extension, Freedman makes it clear that controllability is achieved 
by an appropriate reduction of the range. Controllability, Ct, can 
be measured by taking log2 of the product of the cardinalities of 
the types of the modified output variables, i.e. if there are m 
modified output variables and Tk represents the type of the kth 
output variable, then: 

Ct = log2( |T1| ×  . . . × |Tm| )     (5) 
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In order to consider the relationship between domain testability 
and domain-to-range ratio, let ∆D denote the extension to the 
domain D required to achieve an observable component. Similarly 
let ∆R denote the reduction to the range R required in order to 
achieve a controllable component. Let the domain and range of 
the component after modification with observable and 
controllable extensions in this way be denoted D′ and 
R′ respectively. Clearly: 

D′ =  D ∪ ∆D   and   R′ =  R − ∆R      (6) 

Since by definition ∆D is an extension of D and has no overlap 
with it, the following can be deduced: 

|D ∪ ∆D| = |D| + |∆D|     (7) 

Similarly, since ∆R is wholly contained within R: 

|R − ∆R| = |R| − |∆R|     (8) 

Then it follows that DRR′, the domain-to-range ratio of the now 
extended and domain testable component can be written as: 

(9) 
 

By rearranging terms and noting that |D| / |R| corresponds to DRR, 
the domain-to-range of the original program component (without 
extensions), the formula becomes: 

 
(10) 

 
In words, this says that the domain-to-range ratio of a program 
component, after modification to make it domain testable, is the 
domain-to-range ratio of the component before modification 
multiplied by one plus the relative size of the domain extension 
and divided by one minus the relative size of the range reduction. 
Finally, note that since |∆D| is 2Ob and |R′| is 2Ct, formula (9) can 
be written: 

(11) 
 

5. SEMANTIC FAULT SIZE 
In an attempt to obtain greater understanding of program faults, 
Offutt and Hayes [12] drew a distinction between the syntactic 
and the semantic nature of faults. The syntactic nature can be 
described by the syntactical differences between the faulty 
program and the correct program. Indeed Offutt and Hayes went 
further and defined the syntactic size of a fault as “the number of 
statements or tokens that need to be changed to get a correct 
program”. The semantic nature of a fault, on the other hand, 
results from the view that for some subset of the input domain a 
faulty computation takes place producing incorrect output. 
Corresponding to the syntactic size of a fault, Offutt and Hayes 
defined the semantic size of a fault as “the relative size of the 
subdomain of D for which the output mapping is incorrect”. 
Referring to Figure 1 the following formula is obtained: 

Semantic fault size = 
D

D f
   (12) 

where |D| is the cardinality of the entire input domain and |Df| is 
the cardinality of just that subpart which results in faulty output. It 
should be obvious that there is no reason why there should be a 
link between syntactic fault size and semantic fault size. Indeed it 
is perfectly possible to find situations where a syntactically small 
fault results in a very large semantic fault size, and vice versa. 

5.1 Semantic Fault Size and Testability 
Offutt and Hayes [12] suggested that semantic fault size is closely 
related to testability in the sense of Voas et al. [19]. That is, if a 
statement in the subject program has low testability, then any 
faults associated with that statement might be expected to have 
small semantic size and any statement containing a fault with 
large semantic size could be expected to exhibit high testability. 

To explore this connection between semantic size and testability 
further, consider the propagation, infection and execution (PIE) 
model that provides the basis for testability estimation. Consider a 
program with a single fault f at one location in the program. 
According to the PIE model, the probability of failure under a 
particular input distribution, Pr[Failure], is a combination of the 
individual probabilities: (1) that the fault is executed 
(E=execution); (2) that execution of the fault causes corruption of 
the data state (I=infection); and (3) that the faulty data state 
propagates to the output (P=propagation). This can be written [7]: 

Pr[Failure] = Pr[E] × Pr[I | E] × Pr[P | I]   (13) 

 
 
 
 
 
 
 
 
 
 

Figure 2. Input domain view of the PIE model. 
 
Referring to Figure 2, where, as before, D represents the entire 
input domain of the subject program, there will be some subset E 
of D such that all test values in E cause the fault to be executed. 
Amongst those input values that cause fault execution, some will 
result in data state infection, as represented by the region I. 
Finally amongst those input values that cause data state infection, 
some will propagate the faulty state to the output, as represented 
by the region P. Assuming a uniform input distribution, the 
probabilities of formula (13) can be replaced by the ratios of the 
cardinalities of the relevant sets giving: 

Pr[Failure] = 
D
E

 × 
E
I

 × 
I
P

 = 
D
P

   (14) 

Since |P| is the cardinality of the input set that causes execution of 
the fault f, resulting in data state infection which propagates to the 
output, this is none other than the cardinality of that region of the 
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input space previously labelled Df. Hence formula (14) is just the 
semantic size of fault f. 

In practice Voas [15] suggests estimating testability at a location 
by separate estimation processes for the three individual 
components of the model. Execution probability is estimated for 
some given input distribution by determining the proportion of 
cases that execute the location of interest. Infection probability is 
estimated by introducing mutations of the location and 
determining the proportion of input cases that give rise to a 
different state from the non-mutated location. Propagation 
probability is estimated by determining the proportion of cases for 
which perturbed data states at the location propagate and give rise 
to faulty results. 

It would seem, as a result of the connection between semantic 
fault size and the testability of a location L (TestabilityL), that an 
alternative testability estimation procedure could be based just on 
considering versions of the chosen program with location L 
mutated. Let ML denote a representative such mutant of location 
L. The mutation change, provided it does not generate an 
equivalent mutant, can be regarded as a seeded fault that has a 
semantic size in the same way as naturally occurring faults. The 
smallest semantic size of such mutants, being a worst case, could 
provide an estimate for testability at the location L, i.e. the 
following approximation holds: 

TestabilityL ≈ min (semantic size of ML)   (15) 
where the minimum is over an appropriate set of non-equivalent 
mutants of location L. In practice this would require using a 
traditional (strong) mutation testing tool such as Mothra [5] in a 
slightly different mode from normal. It requires establishing a 
large number of input test cases chosen randomly from the input 
domain and then determining for each mutant generated by the 
tool, the proportion of test cases that kill that mutant. This is 
different from normal usage where, once a mutant is killed with 
some test case, no further test cases are applied to that mutant. 
Offutt and Hayes [12] did adopt this procedure to estimate the 
semantic size of all mutants created by the same mutation operator 
in an attempt to measure the size of given fault types. What is 
being suggested here, however, is slightly different again, in that 
mutants resulting from different mutation operators are grouped 
and considered according to the program location affected. The 
aim is to determine the minimum semantic size of all mutations at 
a location. Although still an expensive process, this has the merit, 
superficially at least, of being considerably more straightforward 
than using separate estimation procedures for the three 
components of the PIE model. 

A study by Rothermel et al. [14] used mutation analysis in an 
apparently similar way to assess the fault exposing potential of a 
test suite of test cases with respect to locations (statements). 
However, the aim in that work was to prioritize individual test 
cases based on their ability to kill mutants rather than, as here, to 
assess testability of a location by measuring the proportion of all 
test cases in the domain that kill mutants of that location. 

It is noted in passing that since propagation analysis is akin to 
strong mutation testing, and infection analysis is akin to weak 
mutation testing, a similar distinction could be made for semantic 
fault size. This would entail re-labelling the existing notion of 
semantic fault size as strong semantic fault size since it can be 
considered as the proportion of the input domain that causes the 

fault to produce erroneous output. On the other hand, weak 
semantic fault size can be considered as the proportion of the 
input domain that merely results in an infected data state 
immediately after executing a fault, i.e. 

Weak semantic fault size = 
D
I

   (16) 

5.2 Semantic Fault Size and DRR 
Since semantic fault size has been related to the testability 
concept, it is interesting to speculate whether it could be related to 
the domain-to-range ratio (DRR). However, since semantic fault 
size depends solely on the input domain, whereas DRR depends 
on both the domain and the range, there is unlikely to be a direct 
connection. What can be deduced is a relationship involving fault 
size, measured in terms of input and output, and DRR both for the 
correct program and also for a faulty version when executed over 
just that portion of the domain that exposes the fault. Suppose, as 
in Section 2, that Pf is an incorrect version of some program P 
containing a single fault f and that Pf maps Df into Rf . Then 
‘strong’ semantic fault size which is based purely on the input 
domain is given by formula (12), repeated here for clarity: 

Input semantic fault size = 
D

D f
   (17) 

However, one could also define a fault size based purely on the 
output range in the following manner: 

Output semantic fault size = 
R

R f
   (18) 

Then denoting DRR for the correct program P with input domain 
D by DDRRP  and for faulty program Pf with just the fault-
exposing input domain Df by ff DDRRP the following is obtained: 

DDRRP  = 
R
D

 = 
R

R

R

D

D

D f

f

f

f
××    (19) 

Rearranging: 

DDRRP  = 
sizefault input 
sizefault output ×

ff DDRRP    (20) 

This equation captures the (admittedly) rather limited connection 
between DRR and semantic fault size. 

6. OTHER RELATED WORK 
This section briefly mentions some of the most significant related 
work (besides that already cited) which is concerned with fault 
models, fault propagation and fault-based testing. 

The PIE model bears some similarity to the RELAY model [13] in 
which a fault originates a potential failure that must then transfer 
through computations to produce a state failure and ultimately be 
revealed as an external failure. Morell [11] developed a theory of 
fault-based testing that placed emphasis on fault propagation and 
then used symbolic testing to explore its limitations. The work of 
Goradia [8] was also concerned with fault propagation and a 
technique known as ‘dynamic impact analysis’ was formulated to 
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determine the extent of the effect of program components on the 
program output for a specific test case. Hamlet and Voas [9] 
showed just how useful a PIE testability estimate could be when 
used in conjunction with conventional reliability testing to 
provide, via so-called ‘squeeze play’, a confidence bound for the 
correctness of a program. On a more cautionary note however, 
they also provided a stark critique of the assumptions underlying 
the PIE model. 

7. CONCLUSIONS 
Testability is an important attribute of software as far as the 
testing community is concerned since its measurement leads to the 
prospect of facilitating and improving the testing process. 
Unfortunately testability has various guises. Two distinct and 
significant interpretations are due to Freedman [6] and Voas et al. 
[19]. Freedman’s notion of testability has two facets, observability 
and controllability, both of which can be measured by the extent 
of certain modifications to a program component. Voas’s notion 
of testability can be estimated by the computationally expensive 
PIE technique and Voas himself has suggested a possible link 
with the rather simpler concept of domain-to-range ratio. 

By taking a functional view of software, this paper has produced a 
succinct characterisation of controllability and observability and 
developed a simple mathematical relationship involving them and 
the domain-to-range ratio. Semantic fault size has also been 
considered and its relationship with Voas’s testability has been 
explored. A consequence of this is the suggestion that testability 
of a program location could be estimated more straightforwardly 
by a small adaptation of the traditional strong mutation testing 
process, to find the minimum semantic size of all mutants at the 
location. Finally some refinements of semantic size have been 
introduced and their relationship with DRR has been considered. 

The authors recognise the desirability of validating the 
connections between the concepts as discussed here and this is the 
focus of ongoing work. Validation could take the form of 
empirical evidence, but could also consider a more analytical 
approach along the lines adopted by How Tai Wah [10] who has 
modelled software as finite functions to deduce theoretical results 
concerning fault coupling. In the meantime, this paper has made a 
limited start at putting together the various separate pieces of what 
might be considered a rather complex jigsaw of related concepts. 
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