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Functional Polytypic Programming

Patrik Jansson

Department of Computing Science

Chalmers University of Technology and Gdéteborg University

Abstract

Many algorithms have to be implemented over and over again for different data-
types, either because datatypes change during the development of programs, or
because the same algorithm is used for several datatypes. Examples of such al-
gorithms are equality tests, pretty printers, and pattern matchers, and polytypic
programming is a paradigm for expressing such algorithms. This dissertation
introduces polytypic programming for functional programming languages, shows
how to construct and prove properties of polytypic algorithms, presents the lan-
guage extension PolyP for implementing polytypic algorithms in a type safe way,
and presents a number of applications of polytypic programming. The applica-
tions include a library of basic polytypic building blocks, PolyLib, and two larger
applications of polytypic programming: rewriting and data conversion.

PolyP extends a functional language (a subset of Haskell) with a construct for
defining polytypic functions by induction on the structure of user-defined data-
types. Programs in the extended language are translated to Haskell.

PolyLib contains powerful structured recursion operators like catamorphisms,
maps and traversals, as well as polytypic versions of a number of standard func-
tions from functional programming: sum, length, zip, (==), (<), etc. Both the
specification of the library and a PolyP implementation are presented.

The first larger application is a framework for polytypic programming on terms.
We show that an interface of four functions is sufficient to express polytypic func-
tions for pattern matching, unification and term rewriting. Using this framework,
a term rewriting function is specified and transformed into an efficient and correct
implementation.

In the second application, a number of functions for polytypic data conversion
are implemented and proved correct. The conversions considered include pretty
printing, parsing, packing and unpacking of structured data. The conversion func-
tions are expressed in an embedded domain specific language for data conversion
(a hierarchy of Haskell’s constructor classes).

Keywords: Programming languages, Functional programming, Algebraic data-
types, Polytypic programming, Generic programming
AMS 1991 subject classification 68N15, 68N20
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Chapter 1

Introduction

The ability to name and reuse common patterns of computation as higher-order
functions is at the heart of the power of functional languages. Higher-order
functions like maps and catamorphisms capture very general programming idioms
that are useful in many contexts. This kind of polymorphic functions enables us
to abstract away from the unimportant details of an algorithm and concentrate
on its essential structure.

The type of a polymorphic function has type parameters, but all monomorphic
instances of the function can use identical code. A generalization is to parametrize
also the function definition on types. Functions that are parametrized in this way
are called polytypic functions [61]. Equality functions, pretty printers and parsers,
traversal functions and other recursion combinators are all examples of polytypic
functions.

While a normal polymorphic function is an algorithm that is independent of the
type parameters, the class of instances of a polytypic function contains functions
that are different, but which share a common structure. Any algorithm in the
class can be obtained by instantiating a template algorithm with (the structure
of) a datatype.

Other terms used for polytypism in the literature are structural polymorphism
(Ruehr [94)), type parametric programming (Sheard [97]), generic programming
(Bird, de Moor and Hoogendijk [7]), polynomial polymorphism (Jay [55]), shape
polymorphism (Jay [56]) and type indexed functions (Hinze [35]). A detailed
overview of polytypic programming in related work is presented in Chapter 8.

In the sequel we will assume that the reader has some knowledge of a functional
programming language, preferably Haskell [90]. This chapter explains briefly
what polytypic functions are, why they are useful and how they can be imple-
mented. It also describes the scope of this dissertation and presents an overview
of the following chapters.
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1.1 What is a polytypic function?

To give an example of what a polytypic function is we show that the definitions
of the function sum on different datatypes share a common structure. The sum
function takes a structure containing integers and returns the sum of all the
integers in the structure. The normal sum function for lists can be defined as
follows in the functional language Haskell:

sum :: [Int] — Int

sum || = 0
sum (z:xs) = 1+ sum xs

We define sum on the following datatypes:

data [a] = []|a:]a]

data Tree a = Leaf a | Bin (Tree a) (Tree a)
data Maybe a = Nothing | Just a

data Rose a = Fork a [Rose a]

We can define the function sum for all of these datatypes (instantiated on integers)
using catamorphisms. A catamorphism is a function that recursively replaces
constructors with functions. We write catap { G — ¢;} for the catamorphism on
the datatype D a that replaces the constructors C; with the expressions e;.

sumy : [Int] — Int

sy = catay {[] = 0,() = (+)}

SUM Tree v Tree Int — Int

SUTM Tree = catapyee { Leaf — id, Bin — (+)}
SUMpaghe = Maybe Int — Int

SUMMagbe =  Catapaype { Nothing — 0, Just — id }
SUMRyse w Rose Int — Int

SUMRpse = catapese { Fork — Xa | — a + sumy 1}

We can already see some patterns in the parameters of the catamorphism: the
two nullary constructors [] and Nothing are both replaced by 0 and the two
unary constructors Leaf and Just are replaced by the identity function id. The
binary constructors ((:), Bin and Fork) are replaced by functions that sum the
subexpressions. All the definitions of sum are instances of the following polytypic
definition of psum:

psum :: Regular d = d Int — Int
psum = cata fsum
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polytypic fsum :: f Int Int — Int
= case [ of

g+h —  either fsum fsum
g*h — Mz, y) — fsum z + fsum y
Empty — Az —0
Par — id
Rec — id
dQg —  psum o pmap fsum
Const t — Ar—0

Figure 1.1: The definition of fsum

Function fsum is defined (in Figure 1.1) by induction over the pattern functor
f that captures the structure of the regular type constructor d. The polytypic
definition of function cata and the explanation of function fsum will have to wait
until the polytypic construct is defined in Section 3.6.

Higher-order functions and polytypic functions can be used together to obtain
even more general definitions. Exactly the same structure as that used for psum,
can be used to define the polytypic function conc, which concatenates all lists in
a structure of type d [a]. We just replace 0 by [] and (+) with list concatenation
(4#) in the definition of fsum to obtain feonc.

conc i Reqular d = d [a] — [a]
conc = cata feconc

Both psum and conc are polytypic functions and thus parametrized on the type
constructor d. By abstracting over the operator and its unit, we can generalize
psum (fsum) and conc (fconc) to the polytypic function crush (ferush).

crush :: Regular d = (a > a—a) > a—da—a
crush op e = cata (ferush op e)

where fsum = ferush (4+) 0 and feonc = ferush (+) []. These functions, and
many others, are described in PolyLib (Chapter 5 and Appendix A).

1.2 Polymorphism and polytypism

A parametric polymorphic function such as

head :: [a] — a
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can be seen as a family of functions — one for each instance of a as a monomorphic
type. Parametricity implies that head can make no assumptions about the type a.
Thus all the functions in the family are essentially the same.

An ad hoc polymorphic function such as
(+) = Numa=a—>a—a

is also a family of functions, one for each instance in the Num class. These
instances may be completely unrelated and each instance is defined separately.
In almost all cases, automatic type inference can be used to find the appropriate
instance for any given occurrence of the (+) operator.

The polymorphism of a polytypic function such as
psum :: Regular d = d Int — Int

is somewhere in between parametric and ad hoc polymorphism. A polytypic
function can be seen as a type indexed family of functions. A single definition
of psum suffices, but psum has different instances in different contexts. Here the
compiler generates instances from the definition of the polytypic function and the
type in the context where it is used. A polytypic function may also be parametric
polymorphic: function size :: Regular d = d a — Int, which returns the size of
a value of an arbitrary datatype, is both polytypic and parametric polymorphic.

Meertens [76] gives a nice example of the power of parametric polymorphism:
Suppose we want a function to swap two integers: swap :: (Int, Int) — (Int, Int).
This is not a very hard problem to solve, but there are infinitely many type correct
but wrong solutions. (Two are id and \(z,y) — (y + 1, z).) If we generalize this
function to the polymorphic function swap :: (a, b) — (b, a), then we get a much
more useful program and we can’t make it wrong while type correct. (Strictly
speaking this is true only in a strongly normalizing language. If we have bottoms,
or non-terminating computations, as in CP0O and in Haskell, then we can still
write a few non-terminating (wrong) versions.) Similarly, even when a function
may be needed only for one specific datatype, it may be helpful to define it
polytypically to reduce the risk of making a mistake.

1.3 Why polytypic programming?
Polytypic programming offers a number of benefits:

Reusability: Polytypism extends the power of polymorphic functions to allow
classes of related algorithms to be described in one definition. For example,
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the class of printing functions for different datatypes can be expressed as
one polytypic show function. Thus polytypic functions are very well suited
for building program libraries. PolyLib (Chapter 5) is an example of such
a library.

Adaptivity: Polytypic programs automatically adapt to changing datatypes.
For example, if we add a constructor Node (Tree a) a (Tree a) to the
datatype Tree a, then the same polytypic sum function can still be used to
sum all integers in elements of the (new) tree type. This adaptivity reduces
the need for time consuming and boring rewrites of trivial functions and
eliminates the associated risk of making mistakes.

Closure and orthogonality: Currently some polytypic functions can be used
but not defined in ML (the equality function(s)) and Haskell (the members
of the derived classes). This asymmetry can be removed by extending these
languages with polytypic definitions.

Applications: Some problems are polytypic by nature: maps and traversals
(Section 5.4), pretty printing and parsing (Section 7.6), data compression
(Section 7.5), matching (Section 6.3.2), unification (Section 6.3.3), term
rewriting (Section 6.4), ...

Provability: More general functions means more general proofs. If we consider
polytypic proofs, then each of the earlier benefits obtains an additional in-
terpretation: we get reusable proofs, adaptive proofs, less ad hoc semantics
of programming languages and new proofs of properties of printing and
parsing (Section 7.6), packing (Section 7.5), term rewriting (Section 6.4)
etc.

1.4 Scope

As the title suggests this dissertation is about polytypic programming for func-
tional programming languages. More specifically, the programs in this disserta-
tion are written in the functional programming language Haskell 98 [90] extended
with with support for polytypic definitions provided by the authors language ex-
tension PolyP (Chapter 4).

A polytypic function can be applied to values of a large class of datatypes, but
some restrictions apply. We require that a polytypic function is applied to values
of reqular datatypes only. A datatype D a is regular if it is not mutually recursive,
contains no function spaces, and if the arguments of the datatype constructor on
the left- and right-hand side in its definition are the same. The collection of
regular datatypes contains most conventional recursive datatypes, such as Nat,
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[a], and different kinds of trees. We use the constructor class Regular to represent
the collection of regular datatypes.

Polytypic functions can be defined on a larger class of datatypes, including multi-
ple parameter datatypes [58], mutually recursive datatypes [14,35,45], datatypes
with function spaces [26, 78] and nested datatypes [8,34] but we will not discuss
these extensions.

1.5 Approaches to writing polytypic programs

There are various ways to implement polytypic programs in a typed language.
(Polytypic programs can be implemented in untyped languages like Lisp or C but
without any (static) type safety. We only consider strongly typed languages in
this dissertation.) Three possibilities are:

e using a universal datatype;
e using higher-order polymorphism and constructor classes;

e using a special syntactic construct.

Polytypic functions can be implemented by defining a universal datatype, on
which we define the functions we want to have available for large classes of data-
types. These polytypic functions can be used on a specific datatype if we provide
translation functions to and from the universal datatype. An advantage of using
a universal datatype for implementing polytypic functions is that we do not need
a language extension for writing polytypic programs. However, using universal
datatypes has several disadvantages: type information is lost in the translation
phase to the universal datatype, and type errors can occur when programs are
run. Furthermore, different people will use different universal datatypes, which
will make program reuse more difficult.

If we use higher-order polymorphism and constructor classes for defining polytypic
functions (as in Jones [65]), then type information is preserved, and we can use
a functional language such as Haskell for implementing polytypic functions. In
this style all regular datatypes are represented by the type

data Mu f a = In (f a (Mu f a))

and the class system is used to overload functions like map and cata. However,
writing such programs is rather cumbersome: programs become cluttered with
instance declarations, and type declarations become cluttered with contexts. And
the user still has to write all translation functions.
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Because the first two solutions to writing polytypic functions are unsatisfactory,
we have extended (a subset of) Haskell with a syntactic construct for defining
polytypic functions. We will use the name PolyP both for the extension and the
resulting language.

1.6 The PolyP system

PolyP is an extension of a functional language that allows programmers to define
and use polytypic functions. The underlying language in this dissertation is
a subset of Haskell and hence lazy, but this is not essential for the polytypic
extension. The extension introduces a new kind of (top level) definition, the
polytypic construct, used to define functions by induction over the structure of
datatypes. Because datatype definitions can express sum-, product-, parametric
and recursive types, the polytypic construct must handle these cases.

PolyP type checks polytypic value definitions and, when using polytypic values,
types are automatically inferred. (Just as in Haskell, sometimes explicit type
annotations are needed to resolve overloading.) The type inference algorithm
is based upon Jones’ theories of qualified types [64] and higher-order polymor-
phism [66]. The semantics of PolyP is defined by adding type arguments to
polytypic functions in a dictionary passing style. We give a type based transla-
tion from PolyP to Haskell that uses partial evaluation to remove all dictionary
values at compile time. Thus we avoid run time overhead for creating instances
of polytypic functions.

The compiler for PolyP is still under development, and has a number of limita-
tions. Polytypic functions can only be applied to values of regular datatypes. The
underlying subset of Haskell lacks many useful constructs such as modules and
instance declarations. Extensions to handle multiple type arguments, mutually
recursive datatypes and all of Haskell are planned for the forthcoming successor
of PolyP: Generic Haskell [33].

1.7 Overview

The dissertation contains an introduction to polytypic programming, a descrip-
tion of the language extension PolyP and its library PolyLib and two larger
polytypic applications: term rewriting and data conversion.

Chapter 2 is a non-polytypic prelude to the rest of the dissertation. It defines
notation, useful functions and laws to be used in the sequel.

Chapter 3 is an introduction to functional polytypic programming. This chapter
is the one you should read if you want to learn how to write and use polytypic
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functions: it defines catamorphisms, polytypic map functions, function psum used
in the preceding example and presents the polytypic construct which is used
for defining polytypic functions by induction over the structure of user-defined
datatypes. This chapter also presents some polytypic proof rules and uses these
rules to prove properties about polytypic functions.

Chapter 4 briefly describes the theory and implementation of PolyP: the type sys-
tem that preserves Haskell-like type inference provided the polytypic construct
is explicitly typed, and the semantics in terms of a translation of PolyP-programs
into Haskell. The theory from this chapter is not essential for reading the rest
of the dissertation. The chapter is based on the POPL’97 paper PolyP a
polytypic programming language extension [46].

Chapter 5 presents a library of polytypic building blocks that can be used in
applications. Each function is presented with its type and a brief description
of what it does and how it is related to other polytypic functions. The chapter
is a revised version of the paper PolylLib a polytypic function library [51].
An implementation of PolyLib in the language extension PolyP is incuded in
Appendix A.

Chapter 6 presents the first larger polytypic application: term rewriting. This
chapter presents an interface for polytypic programming on terms, and uses this
interface to describe polytypic algorithms for matching, unification and efficient
term rewriting together with some correctness proofs. The chapter is an extended
version of the article A framework for polytypic programming on terms, with an
application to rewriting [52].

Chapter 7 is the second larger polytypic application: data conversion. It presents
polytypic functions for maps and traversals, data compression, and pretty print-
ing. For each conversion, a pair of inverse functions is constructed together with
a proof of correctness. The conversion functions are expressed in an embedded
domain specific language for data conversion. The embedded language is defined
as a hierarchy of Haskell’s constructor classes, based on Hughes’ Arrows [42].

Chapter 8 gives an overview of polytypism in related work. It describes the origins
of polytypism, the different approaches used to express, type check and implement
polytypism and gives many references to further reading about polytypism.



Chapter 2

Prelude

This chapter is for the dissertation what the standard prelude is for Haskell: a
collection of common resources which can be used everywhere without explicitly
having to define them locally or import them. The prelude is divided into sections
that present some notation and a few basic datatypes with associated operations
and laws.

2.1 Context

For specifications, program code and proofs, we use Haskell [90] notation with
a few typographical enhancements to improve readability. In a few places these
enhancements clash with the formal syntax for Haskell. For example, we use (;)
for forward composition (that is, f ; ¢ = go f) although Haskell uses the semicolon
only as a separator. Where possible, included program code is automatically
pretty printed from Haskell or PolyP source code to avoid errors.

In category theory, a functor is a mapping between categories that preserves the
algebraic structure of the category. Because a category consists of objects (types)
and arrows (functions), a functor consists of two parts: a definition on types, and
a definition on functions. We normally work in the category CPO of complete
partial orders and continuous functions between them.

2.2 The function type

The Haskell type of partial functions from a to b is written ¢ — b and a lambda
expression with pattern a and body b is written Aa — b. The identity function,
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constant function and function composition are defined as follows:

1d Tooa—a

id = =z

const Toa—=b—>a

constk _ =k

(o) o (b—=c¢)=(a—=b)— (a—c)
(feg)z = f(g1)

Functions of multiple arguments are normally curried in contrast to languages
like Ada, Java and SML where functions normally take a tuple of arguments.
The functions curry and uncurry convert between these two views:

curTy ((a,b) = ¢) = (a = b —c)
curry frzy = f(z,y)

uncurry 2 (a—=b—=c¢)—((a,b) = ¢)
uncurry fp = f (fst p) (snd p)

2.3 The disjoint sum type

The disjoint sum type Fither a b in Haskell consists of left-tagged elements of
type a, and right-tagged elements of type b, and has constructors Left and Right,
which inject elements into the left and right component of a sum respectively.

data Fither a b = Left a | Right b

Left :: a — FEither a b
Right :: b — Fither a b

Function [ v r (written either | r in Haskell) is a shorthand notation for case
analysis. Function ( v ) is the catamorphism on Either. It takes a function [ of
type @ — ¢ and a function r of type b — ¢, and replaces Left with [ and Right
with r:

(v):u(a—=c)— (b— c¢)— (Fither a b — ¢)
(Lvr)(Leftz) = lux
(lvr)(Righty) = ry

The operator ( —+ ) is used to apply either [ or r inside Left or Right. It is a
two-argument mapping function on FEither.

(—+):=(a—¢)— (b— d) — (Either a b — FEither ¢ d)
(Il + ) (Leftz) = Left (Il )
(I 4+ r) (Right y) = Right (r y)
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The following functional definition of ( + ) is equivalent and easier to calculate
with:

I +r = (Leftol) v (Right or)

Function ( -+ ) satisfies two functor laws and operator ( v ) satisfies two fusion
laws:

id -+ id = id

(f +g)o(h—+i) = (foh)+ (goi)
folgvh) = (fog)v (foh)
(fvgloh—+1i) = (foh)v(goi)

2.4 The unit type

The nullary product type and its only constructor are both written as ():

data () = ()

2.5 The pair type

The binary product type and its elements are written as pairs (a, b). Functions
fst and snd are the two projections.

data (a,b) = (a,b)
fst (a,b) = a
snd (a,b) = b

The duals of (v ) and ( —+ ) are ( & ) and ( - ), respectively.

(2 ):(a—=0b)—(a—c¢)—= (a— (b,c))

f 2 s)e = (fzsz)
The operator ( - ) is the analogue of map on products.

()u(a—c)=(b—d)— ((a,b) = (¢, d))
(f =+ s) (z.y) = (fz,5y)

By analogy with the definition of ( + ) we have an equivalent function level
definition:

f g = (fofst) & (gosnd)
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Function ( -« ) satisfies two bifunctor laws and operator ( 2 ) satisfies two fusion
laws:

1d == 1d = id
(f *=glo(h=i) = (foh) (goi)
(f » g)oh = (foh) 2 (goh)

(f 5 g)o(h & i) = (foh) » (goi)

2.6 The Haskell bottom

All Haskell types have a bottom element denoting a non-terminating computa-
tion and we can define a polymorphic value L by the following trivial recursive
definition:

In contrast to most theoretical frameworks the function type, the empty and the
binary product type in Haskell are all lifted:

Me—1) # Luia—b

() # L0
(L, 1) # 1 (a,b)

Among other things, this means that for Haskell:

e 7-expansion is not semantics preserving: if f = 1 :: a — b, then

M—ofr=M—>1lx =X x—>1L # 1L =Ff.

e The type () is not a terminal object as it has two elements: | and ().

e And we do not have surjective pairing: if p = L :: (a,b), then

(fst posmd p) = (fst Losnd 1) = (L, 1) # L = p.

To sum up  almost no laws from CPO hold in Haskell! As this would lead to
considerable problems in the detailed proofs, we restrict ourselves to the unlifted
versions of these types. As we use Haskell for the implementations this means,
strictly speaking, that most of the results presented in this dissertation are not
proved for the actual running code but for idealized versions. This has not turned
out to be a problem in practice.
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2.7 Booleans, truth values and predicates

The boolean values False and True are the constructors of the type Bool:

data Bool = False | True

Note that the Haskell type Bool contains a least value, 1, in addition to the two
truth values. When we really need only truth values we use the type Truth =
{ False, True} and convert from Bool to Truth by identifying False and L:

|| :: Bool —  Truth
| True | = True
| ] = Fualse

The expression |b| means “the calculation of b terminates with the value True”
and is pronounced “b is true” for short.

We have the common operations implication (=), and (A ), or (V ), and negation
(=) for calculating with Booleans and with Truth values, and if-expressions to
select, between two expressions. We use the same syntax for operations on Bool
and operations on Truth.

We often work with predicates instead of booleans to simplify calculations. We
often use the same syntax for the pointwise lifted operations.

false, true  a — Bool

false = const False

true = const True

(=), (N), (V) .2 (a = Bool) = (a — Bool) = (a — Bool)
P = q = M —=pr=qzx

p A q = X —=pr ANqrz

pV q = M —>prVaqr

iff pthentelsee = M —if prthentzelseex

| | . (a — Bool) — (a — Truth)

p] = Az —|[pz]

As an example of the use of the lifted boolean operations we can specify pre- and
post-conditions for a function f:

|pre| = |postof] .
Expanding the definitions of the lifted operators this is equivalent to:

Az — |pre x| = |post (f z)] .
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If this predicate equals true (that is, for all z the body is True), then f satisfies
its specification.

The Haskell equality test (==) :: Fq a = a — a — Bool is also lifted:

(===) 2 FEqb= (a—>b)—(a—b)— (a = Bool)
f===9 = M—=>fz==ygz
The lifted version of the law (f z == f y) < (£ == y) becomes:

Lemma 2.1 Cancel (fo):
(fog===foh) <= (g===1)

We will often reason about functions that are equal when restricted to a subset
of their domains:

Definition 2.2 Function equality on a subset:

(===)uEqa= (b— Bool) = (b —a) = (b— a) = (b = Truth)
f=F=g9g == |pz| = |fz==gz]

or, equivalently, using the lifted operations:

[===g = [p] = |f ===y4]
We will later use the following property of ( =£=):
Lemma 2.3 Fuctor (=%=):
gof T=hof === (g=2=h)of
The lifted version of | | satisfies the following laws:
Lemma 2.4 Factor out f from | |:
pofl===Iplof

Lemma 2.5 Cancel (of):

lpof] <= [p]
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Simple laws for booleans lift immediately to predicates:

Law 2.6 (expl): (aVb)=c = (a=c) AN (b= c)
Law 2.7 (exp2): a=(bVe = (a=0b)V(a=c).
Laws for iff then else:

Lemma 2.8 iff then else -fusion:

For all strict f:

f (iff b then p else q) = iff b then f p else f ¢

Lemma 2.9 iff p then p

(iff p then |p| else ) = (iff p then true else z)

Lemma 2.10 FEzpressing (V) using iff then else :

lp V q] = iff |p] then true else ||

2.8 Computations that may fail

The datatype Maybe a is used to model computations that may fail to give a
result.

data Maybe a = Nothing | Just a

For example, we can define the expression divide m n to be equal to Nothing if n
equals zero, and Just (m / n) otherwise. A function that handles values of type
Maybe a consists of two components: a component that deals with Nothing, and
a component that deals with values of the form Just x.

maybe :: b — (a — b) — Maybe a — b
maybe n 7 Nothing = n
maybe n j (Just ) = jz

Function maybe is an example of a catamorphism. Function mapM takes a func-
tion f, and a value of type Maybe a, and returns Nothing in case the argument
equals Nothing, and Just (f x) in case the argument equals Just z.

mapM :: (a — b) — Maybe a — Maybe b
mapM [ = maybe Nothing (Just o f)
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Function mapM satisfies two functor laws and function maybe satisfies two fusion
laws:

mapM id === 1id

mapM [ o mapM g === mapM (f © g)

f o maybe n j === maybe (f n) (f oj)
maybe n j o mapM f === maybe n (j o f)

It is sometimes useful to have predicates to test for Just and Nothing:

1sJust, isNothing w Maybe a — Bool
isJust (Just _) = True
1sJust Nothing = Fulse
1sNothing Nothing =  True
isNothing (Just ) = False

2.9 Polymorphic lists

The polymorphic list datatype in Haskell is written [a] and has a constructor []
for the empty list and an infix (:) for prepending a value to a list. There is also
syntactic sugar for lists: for example [1,2,3] means 1:2:3:]].

data [a] = []|| a:[a]

The syntax for the list constructors is a little different from other datatypes. We
will sometimes use a definition more in line with other user-defined datatypes:

data List a = Nil | Cons a (List a)

You can think about this just as a different syntax for the built-in lists.

The Haskell function foldr (@) e is a catamorphism for lists — it replaces uses
of the constructor (:) with (@ ) and uses of [] with e:

foldr (@) e[] e
foldr (@) e (a:as) = a@® foldr (@) e as

Function map f maps the function f over all elements in a list:

map f = foldr ((:) o f) []
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Function map satisfies two functor laws and function foldr satisfies two fusion
laws: (h is strict)

map id === 1id

map f o map g === map (f og)

h o foldr f e === foldr g (he) =Vzy h(fzy) ==gz(hy)
foldr f eomap g === foldr (fog)e

For reference we present a few other list functions here as well:

null 2 [a] = Bool

null || = True

null (_:_) = False

nil b —[al

nil = ]

singleton o a—[al
singleton x = [x]

(+) = [a] = [a] = [a]
s H ys = foldr (:) ys xs

2.10 Overloading and classes

We will often use Haskell’s class system [66] to write generic overloaded code. This
is visible in types as contert = normaltype where contezt lists the class constraints
the variables in normaltype must satisfy. An example is sort :: Ord a = [a] — [a]
where a is restricted to be in the class Ord of types with a comparison operator.
We use the Haskell class Monad for monadic computations [102].

class Monad m where

return 1 a4 — m a

(>=) = ma—=(a—>mb —>mb
(>) : ma—>mb—mb

fail o String — m a

2.11 Fixed points

For calculations and proofs involving recursively defined values, we often use an
explicit fixed point combinator to express recursive definitions. Haskell has built
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in support for recursive definitions over all types and we can directly define a
fixed point combinator fix:

fir (e —a) = a

fiw f = f (fir f)

We call f an improvement function — it takes an approximation of the fixed
point to a better approximation.

2.11.1 Fixed point induction

Theorem 2.11 Fized point fusion:
fog = hof = f (fixg) = fir h

The requirement of the fixed point fusion law is often too strong a weaker
requirement can be obtained by observing that the equality is only needed for a
chain of finite approximations of g:

Vi. f(9a) = h(fa)wherea; = g' L
This in turn can be expressed inductively:

P (L) AVz. P(z) P (g z)
where P (z) = f (gz) ==h (f z)

The rolling rule [84] is a simple application of fixed point fusion:

Lemma 2.12 The rolling rule: for all functions f ::a — b and g :: b — a
fix (fog)===[ (fix (gof))

In the sequel we will use a powerful fixed point law that relates n fixed points.
For the formulation of the fixed point law we need to introduce the concept of an
inclusive relation as defined in Schmidt [95] (other names used in the literature
are “admissible” and “limit closed”).

Definition 2.13 A relation P is inclusive iff for all chains of tuples (al al)

(Vi P (a0 ap)) = P (i, [ ai)

i
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Inclusive relations are used to prove properties about fixed points from properties
of finite approximations of these fixed points. The expression | |; a; denotes the
least upper bound of the chain a; with respect to the approximation ordering (C)
of the CPQO. Tuples are ordered pointwise. A useful source of inclusive relations
is the following theorem.

Theorem 2.14 A class of inclusive relations: [95, def. 6.28]
A relation P is inclusive if P (fy, ..., fn) has the form:

k I}
Vdi €D, ....dy € Dy N\ (V Qi)
7=1

i=1 j
where Q;; can be either

1. A predicate using only the d; as free identifiers.

2. An inclusion e; T ey where e; and ey are expressions using continuous
functions and only the f; and the d; as free identifiers.

A function is continuous if it is monotone with respect to the (C) ordering and
if it preserves least upper bounds. All constructions in a functional language like
Haskell are continuous, but some operators in the semantic domain are not. On
Truth, the operators (A ) and (V) are continuous but negation (—) is not even
monotone and as ¢ = b = —a V b, neither is (=).

Two examples of inclusive relations are

7 i Bool — Truth

rn(b) = [b]

Ty o ruth, Truth) — Trut
Truth, Truth Truth

r(a,b) = a=0b

Proof: Functions r; and ry are inclusive, because we can rewrite their definitions
to match the form of Theorem 2.14:

(b C True) A (True C b)

n(b) = [b] =
a=b=alCbh.

m (a,b) =
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Theorem 2.15 Fized point induction: [95, def. 6.26]

For every inclusive relation P, and for all improvement functions iy, ..., 0,:

(P Ly L) AY fro foo P (frses fa) = P (i1 fioosin fa))
= P (fiz ir, ... fix i)

A typical example application of this theorem is found in proving that two func-
tions ¢ = fix ig and h = fix ih are equal on the set where a predicate
p = fiz ip holds. Note that the predicate is also defined as a fixed point.
We use fixed point induction with n = 3, the relation P (z,y,2) = 1z === 1
and improvement functions ig, h and ip.

The base case is easy: the predicate L is never true, and all functions are trivially
equal on the empty set, so what is left is the following:

Theorem 2.16 fiz-equality:

Vryz o=2=y = iguz SRS y) = fix ig Jizip fix ih

2.11.2 Explaining fixed point induction

To prove a property of a fixed point definition using fixed point induction we have
to identify a relation that implies the desired property if instantiated with the
fixed points, and which holds for all approximations of the fixed point as well.
The proof of such a property is similar to a proof by normal induction and consists
of a series of steps. We formulate a relation Py to be proved, we prove the base
case and we start working on the inductive case until we need a property that we
cannot prove without some side condition. Assuming that the original theorem
is true (and provable) it should be possible to prove the side condition together
with Fy. So then we formulate a relation P; that implies the side condition, and
strengthen the inductive hypothesis to P = Py A P;. This means extra work
in proving a new base case and inductive case for P;, but on the other hand the
inductive case for Fy makes a good leap forward. We repeat this procedure until
we have an inductive proof of P = Py A ... N P, this trivially implies P,
and we are done.

If, more specifically, we want to prove that a function has a certain property when
restricted to a particular set, where both the functions and the set are defined as
fixed points, then the new relations to prove are of two kinds — those relating all
the parameters and those restricting only the set. An example (covered in detail
in Chapter 6) is proving that a rewriting function always produces a term in
normal form when restricted to the set of normalizing terms. As we are interested
in proving a number of properties for the same set but with different function
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definitions, the set-only properties can be proven separately and reused for all
the proofs. This can be viewed as specializing the fixed point induction principle
to an equality over a specific set, or rather specializing the inductive step to a
known set improvement function 1.

A very useful set-only property is

InLim :: ((a = Bool) — (a — Bool)) — (a — Bool) — (a — Truth)
InLim; p = |p| = |fix 1]

This restricts the sets we need to consider to subsets of the fixed point (for ex-
ample finite terms, or normalizing terms). Without this restriction the inductive
step has to be proven for an arbitrary p and that is often hard. Fortunately,
InLim itself is easy to prove inductively:
Lemma 2.17 InlLim:
If i :: (a = Bool) — (a — Bool) is an improvement function for predicates that
s monotone in the following sense:

Vp g ()] = L) = (Lip] = Lliq))

then InLim; can be used as a fized point induction side condition:

InLim; L N (Y p. InLim; p = InLim; (i p))

Base case: InLim; L = |L| = |[firi] = true.
Inductive case: By calculation:
InLim; p
{ Definition of InLim }
lp] = Lfiz ]
= { Monotonicity of i }
[i9) = Li (s 1)
{ Definition of fiz: fiz i = i (fix i)}
lip] = Lfiwi]
{ Definition of InLim }
InLim; (i p)
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Chapter 3
Basic polytypic programming

The essence of funtional polytypic programming is that functions can be defined
by induction on the structure of datatypes. The structure of a datatype is de-
scribed by means of a pattern functor that captures the top level structure of
elements of the datatype. Just as in imperative languages where it is preferable
to use structured iteration constructs such as while-loops and for-loops instead of
unstructured gotos, it is often advantageous to use structured recursion operators
instead of unrestricted recursion when using a functional language. Structured
programs are easier to reason about and more amenable to (possibly automatic)
optimizations than their unstructured counterparts. Two very useful structured
recursion operators are the catamorphism operator cata and the polytypic map-
ping function pmap. This chapter defines not only cata and pmap, but also a
construct with which it is possible to define new recursion operators, tailored for
specific needs. (Examples of such operators are the monadic traversal functions
in Chapter 5 and the arrow maps and data conversion programs in Chapter 7.)

This chapter is organized as follows: Sections 3.1-3.3 explain the structure of two
example datatypes (lists and binary trees) in terms of pattern functors. These
sections also introduce catamorphisms, maps and fusion laws for the example
datatypes, and use fusion to prove a few laws in a calculational style. Section 3.4
defines regular datatypes and shows how pattern functors are used to capture the
structure of regular datatypes. Section 3.5 defines the isomorphisms inn and out
that convert values between a regular datatype and the top level structure of that
datatype. Section 3.6 introduces the polytypic construct to express polytypic
functions by induction over pattern functors. The definition of the polytypic
sum function psum from the introduction is used as an example. Section 3.7
defines polytypic catamorphisms and maps and Section 3.8 explains how use
a catamorphism as an evaluator for a small expression language. Section 3.9
presents a self-contained polytypic program, together with the code that the
PolyP generates for that program. Finally, Section 3.10 states and proves some
polytypic function laws.

23
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3.1 The structure of lists

Consider the datatype List a that is defined by
data List a = Nil | Cons a (List a) .

This datatype can be viewed as the fixed point with respect to the second argu-
ment of the datatype FList a r defined by

data FList a v = FNil | FCons a 1 .

The datatype FList a r describes the structure of the datatype List a. Note
that F'List has one argument more than List. The extra argument is used to
represent the recursive occurrence of the datatype List a in the right-hand side
of its definition. Because we are only interested in the structure of List a, the
names of the constructors of FList are not important. As an element of FList is
either a nullary constructor or a binary constructor with its two arguments, we
can instead represent the type FList by:

type FList a r = Fither () (a,r)

We call FlList a pattern functor as it captures the recursion pattern of a datatype.

We now abstract from the arguments a and r to obtain a variable free description
of FList. We represent the first argument by the pattern functor Par and the
second argument by Rec.

type Par ar = a
type Recar = r

The type constructors in FList are lifted to work on pattern functors: Fither is
lifted to +, the pair type constructor (_, _) is lifted to * and the unit type () is
lifted to Empty.

type (f +g)ar = FEither (far)(gar)
type (fxg)ar = (far.gar)
type Empty ar = ()

As usual, * binds stronger than +. Using these pattern functor constructors we
can express FlList in a variable free form.

FList = Empty + Par x Rec
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The initial object in the category of FList a-algebras (that is, the fixed point
of FList with respect to its second component) models the datatype List a.
The initial object consists of two parts: the datatype List a, and a single strict
constructor function inng;y, that combines the constructors Nil and Cons.

inngis 2 FList a (List a) — List a
nngig = const Nil v uncurry Cons

As an example, the list containing only the integer 3, Cons 3 Nil, is represented
by inngis (Right (3, inng (Left ()))). Function outr, is the inverse of function
INNList -

outris 1 List a —  FList a (List a)
outris Nil = Left ()
outrise (Cons a b) = Right (a,b)

In the polytypic programming system PolyP these functions are automatically
supplied by the system for each user-defined datatype.

The pattern functor FlList takes two types and returns a type. FList is a bi-
functor, which is witnessed by the existence of a corresponding action, called
fmap2p;is. on functions. Function fmap2p;,, takes two functions and returns a
function.

fmap2pp. 2 (a = ¢) = (b — d) — (FList a b — FList ¢ d)
fmap2ppig pr = id 4= p 1

That fmap2p;,, is indeed a bifunctor follows immediately from the corresponding
laws for ( =+ ) and ( = ).

fmap2ppi [ g0 fmap2ppi h i === fmap2py (f © h) (9 © 7)

As an example of a program written using the combinators defined so far we show
mapr,, | rs that applies function f to all elements of the list zs:

MaPyis : (a—=b) — (List a — List b)
mappy [ = inngig o fmap2ppiy [ (mapgy f) o outpis

Function map;,,, is really the same function as map in Haskell but we define it
differently here to allow for a simple generalization to the polytypic case.

Just as FList and fmap2,,, form a functor, so do List and the function map,,,:

mapy,q td === id

mapr [ omapy, 9 === mapp, (f © ,q)
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3.2 Catamorphisms and fusion for lists

Function sizep;, returns the number of elements in a List a (corresponding to
the function [ength in Haskell). The result of applying sizer; to an argument list
can be computed by replacing uses of the constructor Nil by 0, and uses of the
constructor Cons by 1+.

Cons 17 (Cons 3 (Cons 8 Nil ))
1+ (14 (14 0 )

Thus the size of this list is 3. We use a higher-order function to describe functions
that replace constructors by functions: the catamorphism. The catamorphism is
a basic structured recursion operator and on lists it is equivalent to function foldr
in Haskell:

foldr f e = catars ¢
where ¢ :: FList a b — b
¢ = const e v uncurry f

The catamorphism catay;s ¢ replaces Nil by e, and Cons by f.

Cons 17 (Cons 3 (Cons 8 Nil ))
;oo 3¢ 8 )

Function catay, is defined using function outr;, to avoid a definition by pattern
matching. Function fmap2p;,, id (catays f) applies catags f recursively to the
rest of the list.

cataris : (FList a b — b) — List a — b
catarisy f = [ o fmap2p;. id (cataris f) o outrg

The theoretical justification for this definition is that in the category of FlList a-
algebras the FList a-algebra (List a, inny;s) is an initial object. This means that
there is a unique arrow from (List a, inng;s) to every FList a-algebra (b, f). This
unique arrow is the function catar;, f. The initiality of this algebra also means
that catar;y inngs is the identity function on List a.

As examples we use function catay;s to define the function sizey;s (corresponding
to length :: [a] — Int in Haskell) and list concatenation (+-).

S12€rist o List a — Int

S12€List = catagig (const 0 v inc)
where inc (_,n) = 1+n

(+#) o List a — List a — List a

zsHys = catayg (const ys v uncurry Cons) xs
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Function catay;s satisfies the so-called fusion law. The fusion law gives conditions
under which intermediate values produced by a catamorphism can be eliminated.

Law 3.1 List-fusion: for strict h,

ho catapsy f = catagiq g <<= hof = gofmap2pp, id h .
Using List-fusion we can prove a lemma relating sizer;s, and (4).
Lemma 3.2 The sizepy-(+)-lemma:

sizerisy (18 H ys) = Sizeris TS + Sizeris YS

Proof: In the calculations we abbreviate sizer;,; with #.

# (zs H ys) = #zs+# ys
= { Abstract from zs }

#o(Hys) = (+(F# ys)) o #
= { Assume both sides can be written as a catamorphism }
# o (Hys) = catagig (n v ¢) = (+(# ys)) o #
= { Two subcalculations using List-fusion }
True
In the first subcalculation we fuse # with (+ys).

# o (4ys) = catagy (n v c)
= { Definition of (+ys) }

# o catagisy (const ys v uncurry Cons) = catagiy (n v c)
= { Fusion }
# o (const ys v uncurry Cons) = (n v ¢)o fmap2p; . id #
= { Definition of fmap2p,,, }

# o (const ys v uncurry Cons) = (n v ¢)o (id + (id - #))
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{Laws for (v )}
(# o const ys) v (# o uncurry Cons) = n v (co (id % #))

{ Split the ( v )s and simplify }
# oconst ys = n N # ouncurry Cons = co (id *« #)

{Introduce arguments: () and (z,n) }
#Huys = n() N #(Cons zzs) = c(z, #1xs)

{Let n = const (#ys)}
True N 1+ #1s = ¢ (z, # 13)

= {Letc = inc}

True
In the second subcalculation we let m = # ys and we fuse (+m) with #.
(+m)o # = calagig (n v inc)

{ Definition of # }

(+m) o catags (const 0 v inc) = catagy (n v inc)

{ Fusion }

(+m) o (const 0 v inc) = (n v inc) o fmap2ps id (+m)

{ Definition of fmap2p;, }
(+m) o (const 0 v inc) = (n v inc)o (id + (id = (+m)))

{Laws for (v )}
((+m) o const 0) v ((+m)oinc) = n v (inco (id + (+m)))
= {Split the ( v )s and simplify }
(+m)oconst 0 = n A (+m)oinc = inco (id + (+m))

{ Introduce arguments: () and (z,n) }

m = n () A (inc(z,n))+m = inc (z,n+ m)

{ Definitions of n and inc }

m=mANIl+n+m =14+n+m

{ Trivially }

True
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3.3 The structure of trees

The datatype Tree a is defined by

data Tree a = Leaf a | Bin (Tree a) (Tree a)

Applying the same procedure as for the datatype List a, we obtain the following
functor that describes the structure of the datatype Tree a.

FTree = Par + Rec x Rec

Functions innp.. and outq., are defined in the same way as functions inny;, and
OUtList-

iy o2 FTree a (Tree a) — Tree a

nnmee = Leaf v uncurry Bin

0Ulyee : Tree a —  FTree a (Tree a)
outyree (Leaf a) = Left a

outyre (Bin a b) = Right (a,b)

The functions mapq,,, and catare are defined in terms of functions imny.ee, 0UtTree
and fmap2p e

fmap2prye. v (@ = ¢) = (b — d) — (FTree a b — FTree ¢ d)
Jmap2ppyee pr = p =1 7

mapp., 2 (@ — b) — (Tree a — Tree b)

MaPryee f = INNTpee © fma'ng‘Tree f (mapTree f) O OULTyee

catarpree 2 (FTree a b — b) — (Tree a — b)
CataTree f = f o fmapQF’Pree Zd (CataTree f) o OUtTree

Note that the definitions of mapq,,, and catar.. are almost identical to the def-

initions map,,,, and catar;s, only the indices are different. Function sizep. is
defined by

SizeTree o Tree a — Int
Sizerree =  Catrpee (const 1 v uncurry (4))

The function flattens,,,, which returns a list containing the elements of the argu-
ment tree, can also be defined using function cataqye.:

flatteny,,, = Tree a — [a]
flatteny,,, = catape (singleton v uncurry (+))



30 CHAPTER 3. BASIC POLYTYPIC PROGRAMMING

The fusion law for trees looks the same as the fusion law for lists:

Law 3.3 Tree-fusion: for strict h,

hocatape f = catare. g < hof = gofmap2ppe. td h .
We can use this law to prove that sizepy o flatten ., = Sizeqpee.

# o flatteny,., = Siz€rree

{ By definition, introducing the abbreviations ¢ and o }

# o cataryee ¢ = CatQryee O
= { Fusion }

# o¢ = 009 (fma’ngTree 7d#)

{ By definition of fmap2up,,

#o¢ = oolid+ (# + #))

= {New abbreviations: ¢ = 0, v oy and ¢ = ¢; v ¢ }
# o(dr1v ¢2) = (01 v 0x)o(id + (# =+ #))

= {Lawsfor (v )}

(# 0d1) v (# o0¢a) = (0104d) v (020 (# » #))

{ Split the ( v )s and simplify }

#op = 01 N #Hopy = 0g0(H#H  #)

{ Introduce arguments, implicitly V-quantified }

#(d12) = ora A #(d2 (L) = o2 (#1, #1)

{ Definition of ¢; and o; }

#Hlz]) = 1N #AHT) = #1+ #I

{Lemma 3.2 }

True N True
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3.4 Pattern functors

A pattern functor captures the (top level) structure of a datatype. We repre-
sent a pattern functor in a variable free form by means of a number of functor
constructors. We have already introduced Par for the datatype parameter, Rec
for the recursive parameter, Empty for the empty product and (4) and (x) for
lifted versions of Fither and (,) and we have used them to define the pattern
functors for lists and trees. In general, PolyP’s pattern functors are generated by
the following grammar:

f,9,h 2= g+h|gxh| Empty| Par | Rec | dQg | Const t

where d generates regular datatype constructors, and ¢ generates monomorphic
types. We note the following about the functor constructors:

e The pattern functor for a datatype with more than two constructors is
represented by a nested binary sum associating to the right. Therefore, in
the concrete syntax, the constructor + is right-associative, so that f +¢g+h
means f + (g + h). Constructor + may only occur at top level, so f x(g+h)
is an illegal functor. This restriction corresponds to the syntactic restriction
in Haskell which says that the vertical bar | that separates constructors may
only occur at the top level of datatype definitions.

e Constructor * is right-associative and binds stronger than +.
e The constructor Empty is the empty or nullary product.

e Composition of functors d and g is denoted by d@g and is only defined
for a unary functor d and a binary functor g. Functor composition is used
to describe the structure of types that are defined in terms of other user-
defined datatypes, such as the datatype of rose-trees:

data Rose a = Fork a (List (Rose a))
-- FRose = Par x (ListQRec)

e The pattern functor Const t denotes a constant pattern functor with value ¢.
The ¢ stands for a monotype such as Bool, Char or (Int,|[Float]). This
is used when a datatype definition mentions a type other than the type
parameter and datatype itself. An example is the structure of the following
simple datatype of types:

data Type a = Con String | Var a | Fun (Type a) (Type a)
-- FType = Const String + Par + Rec * Rec
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Griss = FList = Empty + Par x Rec

DPree = FTree = Par 4+ Rec * Rec

Prose = FRose = Par * (List@Rec)

Drype = FType = Const String + Par + Rec x Rec

Figure 3.1: Examples of pattern functors.

The type context Bifunctor f = is used to indicate that f is a pattern functor.

Every regular recursive datatype d a in Haskell is implicitly defined as a fixed
point of a pattern functor @, a, that is d a = u(®, a). PolyP provides a type
constructor FunctorOf d (we use @, as a shorthand) for this pattern functor.
Pattern functors for the types defined in this chapter are summarized in Fig-
ure 3.1. A datatype d a is regular (satisfies Regular d) if it contains no function
spaces, and if the argument of the type constructor d is the same on the left-
and right-hand side of its definition. For each regular datatype d a, PolyP auto-
matically generates @, using roughly the same steps as those used manually for
FList and FTree in previous sections. Pattern functors are only constructed for
datatypes defined by means of the data construct. If, somewhere in a program,
a polytypic function is applied to a value of type Maybe (List a), then PolyP will
generate an instance of the polytypic function on the datatype Maybe b (with
b = List a), not on the type (Maybe@List) a.

A regular datatype is defined as the fixed point of a pattern functor. The pattern
functor @, may, in turn, refer to other (previously defined) regular datatypes in
the d@Qg case. Thus the descriptions of regular datatypes and pattern functors
are mutually recursive. In practice, this means that most polytypic definitions
are given as two mutually recursive bindings — one for the datatype level and
one for the pattern functor level. Similarly, laws for polytypic functions are often
proved by mutual induction over the grammars for regular datatypes and pattern
functors. This induction is well-founded as we don’t allow mutually recursive
datatypes and thus a datatype can only refer to a datatype that is defined earlier.

In the rest of the paper we always assume that d a is a regular datatype and
that f is a pattern functor, and we often omit the contexts (Regular d =
or Bifunctor f =) from the types for brevity. This is purely a notational
convention in the dissertation, explicit types in actual PolyP programs must
contain the proper context.

3.5 In and out of a regular datatype

In the definition of a function that works for an arbitrary (as yet unknown)
datatype we cannot use the constructors to build values, nor pattern match
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against values. Instead, we use two built-in functions, inn and out, to construct
and destruct a value of an arbitrary datatype from and to its top level com-
ponents. Functions inn and out are the fold and unfold isomorphisms showing

daZ=d,;a(da).

inn :: Regular d = ®4a (d a) > d a
out :: Regular d = d a — @4 a (d a)

Theorem 3.4 Functions inn and out are inverses.

For every Reqular datatype d a:

mnoout =—=1d :da—da
outoinmn ===1d :: Py ab—> d;ab

Note that functions inn and out are only defined for Regular datatypes d a.
PolyP automatically generates instances of inn and out for all regular datatypes.
Example instances were given in Sections 3.1 and 3.3.

3.6 The polytypic construct

PolyP introduces a new construct polytypic for defining polytypic functions by
induction over pattern functors:

polytypic p :: [ Bifunctor f =]t = [Axy ...z, =] case f of {f; = ¢}

Here p is the name of the value being defined, £ is its type, f is a functor vari-
able, f; are functor patterns and e; are PolyP expressions. The optional function
abstraction Az ... z,, — is syntactic sugar for a polytypic definition with this
abstraction in each of the branches e;. The explicit type in the polytypic con-
struct is needed because we cannot in general infer the type from the cases. As
the case analysis is over pattern functors, f must be restricted by the context
Bifunctor f =, but it is optional in the syntax.

The informal meaning is that we define a function that takes (a representation
of) a pattern functor as its first argument. This function selects the expression
in the first branch of the case matching the functor, and the expression may in
turn use the polytypic function (on subfunctors). Thus the polytypic construct is
a (recursive) template for constructing instances of polytypic functions given the
pattern functor of a datatype. The functor argument of the polytypic function
need not (and cannot) be supplied explicitly but is inserted by the compiler during
type inference.
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psum :: Regular d = d Int — Int

psum = cata fsum
polytypic fsum :: f Int Int — Int
= case f of

g+nh —  fsum v fsum
g*h — Mz, y) — fsum z + fsum y
Empty — Az —0
Par — id
Rec —  ad
dQg —  psum o pmap fsum
Const t — Ar—0

Figure 3.2: The definition of psum

As an example we take the polytypic sum function discussed already in the intro-
duction. Function psum (defined in Figure 3.2) sums the integers in a structure
with integers. The definitions of cata and pmap are given later in Section 3.7.
When psum is used on an element of type Tree Int, the compiler produces the
code in Figure 3.3 for psumy,,, and fsumpqp,... Together with the code generated

DSUM e o Tree Int — Int

DSUM e = CalQree fsumFTree

JSUMpryer . Either Int (Int, Int) — Int
fsumF’f‘ree = fsumpar v fsumRec*Rec

fsump,, i Int — Int

fsump,, = id

fsumpeeipee = (Int, Int) — Int

fsumRec*Rec = )\(Tv y) - fsumRec T+ fsumRec Y
fsump,, o Int — Int

fsump,, = id

Figure 3.3: Generated Haskell code for psumy,,, and fsumgq.,

for catare. (presented later in Figure 3.5), this is a complete definition of the
instance psumyq,,,. Function fsumg,.,p.. can be rewritten as uncurry (+) and,
if we inline all the instances of fsum, then we obtain the following function for
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summing a tree:

PSUM gy, = Tree Int — Int
PSUM e = Calarree (id v uncurry (+))

As expected, psumy,,, is a Tree-catamorphism that replaces the constructor Leaf
with id and the constructor Bin with (+).

3.7 Catamorphisms and maps

This section defines the functions cata and pmap that were used in the definition
of function psum in Figure 3.2.

The catamorphism, or generalized fold, on a datatype takes as many functions
as the datatype has constructors (combined into a single argument by means of
function (v )), and recursively replaces constructor functions with corresponding
argument functions. It is a generalization to arbitrary regular datatypes of the
function foldr that is defined on lists. In spite of its generality, function cata can
be defined in just one line in terms of the functor map, fmap2 (defined later in
Figure 3.4):

cata :: Regular d = (P4 a b —b) — (d a — b)
cata f = f o fmap2id (cata f) o out

Function out makes the top level structure of the input explicit, fmap2 applies
(cata f) recursively to the immediate substructures, and f combines the results
of the recursive calls into the final result. Except for the indices, the definition of
the polytypic cata is the same as the instances on List @ and Tree a. Similarly,
we can define a polytypic version of map:

pmap :: Regular d = (a - b) = (d a — d b)
pmap p = inn o fmap2 p (pmap p) o out

Function pmap p applies function p to all elements of type a in a value of type
d a. Function out takes the argument apart, fmap2 applies f to parameters and
(pmap f) recursively to substructures and inn puts the parts back together again.
We call it pmap to avoid a name clash with the normal Haskell function map.
The types of cata and pmap are best explained by commuting diagrams:

t t
da—22 Py a(da) da—22 Py a (da)
cata f fmap?2 id|(cata f) pmap|f fmap?2 f|(pmap f)
@, b (d b)

b+———D5ab db+~—
f nn
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As explained in the prelude, a functor is a mapping between categories that
preserves the algebraic structure of the category. As a category consists of objects
(types) and arrows (functions), a functor consists of two parts: a definition on
types, and a definition on functions. A pattern functor in PolyP is a function
that takes two types and returns a type. The part of the functor that takes two
functions and returns a function is called fmap2, see Figure 3.4.

polytypic fmap2:: (a 5 ¢) = (b—d) = (fab—f cd)
= Ap r — case [ of

g+h —  fmap2pr + fmap2p r
g*h —  fmap2p r « fmap2 p r
Empty — id

Par — p

Rec —

dQgq —  pmap (fmap2p )
Constt — id

Figure 3.4: The definition of fmap2.

Function fmap2, is the function action of the pattern functor g, and we can show
that pmap, is the function action of the type constructor d, viewed as a functor.
As an example of an instance, Figure 3.5 presents the code generated by PolyP
for catagy.. Function outp,, was defined in Section 3.3.

CatQryee 0 (Either a (b,b) — b) — Tree a — b

catyee 1 = 0 fmap2prye. 1d (catarree 1) © 0Ubpree

Tmap2 e 2 (a—b) = (¢ = d) — Fither a (¢, c) — FEither b (d, d)
Jmap2p e = Apr — fmap2p, p T —+ fmap2repe. P T

fmap2p,, t (a—=b)—=(c—>d)—a—b

Jmap2p,, = Apr—p

fmap2peespee. = (a—b) = (¢ = d) — (¢, c) = (d, d)

Jmap2pecipee = AP T = fmap2p, p v fmap2p p T

fmap2p.. t (a—=b)—=(c—=d)—>c—d

fmapy, = Apror

Figure 3.5: Generated code for catary.. and fmap2pp,..

Function fmap2 and function pmap are mutually recursive through the dQg case.
This recursive dependence is only in the code generation phase. Take the instance
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PMapg,s. as an example: The generated instances of pmap and fmap2 are shown
in Figures 3.6 and 3.7 respectively (except for functions fmap2p,,., fmap2g..,
inng;s; and outpy which have been defined already). Function pmappg,,, uses
fmap2ppy.. and fmap2pp,.. uses pmapr,,. We see that the instances are not
mutually recursive as pmap is instantiated on different types.

PMAPRyse 2 (a— b) = Rose a — Rose b

PMaPRose f = innRose © fmapQFRose f (pmapRose f) O 0UtRose
Tmap2ppose 2 (a—=b) = (c—d)— (a,List ¢) — (b, List d)
Jmap2ppose = Apr = fmap2p,, p v o fmap2pigape P T
fmap2r,gare . (a—=b) = (¢ = d) — List ¢ — List d
fmap2,40p.. = Ap T — pmappy (fmap2g.. p 1)

INNMRose 0 (a, List (Rose a)) — Rose a

MNRese = uncurry Fork

0UtRyse =2 Rose a —  (a, List (Rose a))
oUtpose (Fork a b) = (a,b)

Figure 3.6: Generated code for pmapp,,,

PMap,;.; (e — b) — List a — List b

pmappy f = inngis © fmap2ppy [ (pmapgy f) o outris

fmap2ppi : (a—b) = (¢ > d) — FEither () (a, c) — Either () (b, d)
fmap2pris, = Ap v = fmap2pgyy, p v~ fmapZpgge. P T

fmap2g,,00, t (a—=b)—=(c—=d) = ()=

Jmap2p,0n, = Apr—id

fmap2paripee. = (a—b0) = (¢ > d) = (a,¢) = (b, d)

fmap2porapee = AP T = fmap2p,, p v s fmap2p, p r

Figure 3.7: Generated code for pmap;,,,

3.8 Catamorphisms on specific datatypes

The first argument of function cata is a function of type @, a b — b. Polytypic
functions of this form, that is functions polymorphic in d, can only be constructed
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by means of functions inn, out, and functions defined by means of the polytypic
construct (like fsum). In all these cases the resulting function is also polytypic. If
we only want to use cata to define a function from one specific datatype D a, then
we do not need a polytypic argument, but can construct an ordinary function of
type ®p a b — b where @, is the concrete type constructor representing the
pattern functor of the datatype D a.

As an example we define the function eval on the datatype BoolFzp a by means
of a cata:

Con a

Not (BoolEzp a)

And (BoolExp a) (BoolExp a)
Or (BoolExp a) (BoolExp a)

data BoolEzp a =
|
|
|

- Dpooimzy = Par + Rec + Rec x Rec + Rec * Rec

eval ' BoolExp Bool — Bool
eval = cata feval
feval 1 Ppegipy Bool Bool — Bool
feval = id
v ()

uncurry (A )
uncurry (V)

- eval = cata { Con > id, Not — (=), And — (A),Or — (V)}

This evaluation function is an example of a function that cannot be made poly-
typic: The pattern functor for BoolEzp contains two occurrences of the functor
Rec x Rec (for And and Or), and each polytypic function will behave in the same
way on these functors. That eval cannot be made polytypic should not be all too
surprising, it simply means that the there is no general algorithm that given the
abstract syntax for an expression language produces the intended semantics for
that language!

3.9 Separate: a simple PolyP program

This section presents a simple PolyP program for separating a datatype value
into its shape and its content, together with the code PolyP generates for this
program. To make the program self-contained, we repeat those definitions from
preceding sections that are used in the algorithm. In fact, the remainder of this
section is a literal script containing the complete PolyP program Separate and
Figure 3.8 contains the code generated from this program by the PolyP compiler.
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The default starting point for code generation in a PolyP file is the value main.
Everything possibly reachable from main is instantiated. In this example we
choose to test separate on a tree.

main, = print test >> print answer >> print (test == answer)
test, answer = (Tree (), [Int])

test = separate (Bin (Leaf 17) (Leaf 38))

answer = (Bin (Leaf () (Leaf ()),[17,38])

data Tree a = Leaf a | Bin (Tree a) (Tree a) deriving (Show, Eq)

Function separate takes an element of a regular datatype (of type d a) and
generates a pair. The first component of the pair is just the structure of the
datatype without the contents (of type d ()) and the second component is just
the contents without the structure (of type [a]). We return to function separate
in Chapter 6.

separate :: Regular d = d a — (d (),[a])
separate z = (pmap (const ()) z, flatten x)

Mapping

pmap :: Regqular d = (a - b) > da—db

pmap f = inn o fmap2 f (pmap f) o out

polytypic fmap2:: (a - ¢) = (b—d)—>fab—fcd
= Ap r — case f of

g+h —  (fmap2p r) + (fmap2p r)
gxh = (fmap2p r) + (fmap2p r)
Empty — id
Par — p
Rec — T
dQgq —  pmap (fmap2p )
Constt — id
Non-polytypic help functions
() 2 (a—c¢)=(b—=d)— ((a,b) = (¢, d))
(+) (a = ¢) = (b — d) — (Fither a b — Either ¢ d)
fg = Mzy)—=(fz,99)
f—+9 = Leftofv Rightog
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Flattening

flatten :: Regular d = d a — [a]
flatten = fflatten o fmap2 singleton flatten o out

polytypic fflatten = f[a][a] — [a]
= case f of
g+nh —  fflatten < fflatten
g*h —  Az,y) — fflatten z + fflatten y
Empty —  nil
Par — id
Rec —  id
dQg —  concat o flatten o pmap fflatten
Const t —  nil
Help functions for lists

singleton o a—[al

singleton x = [x]

nil o a— [b]

nil x = ]

3.10 Polytypic laws

Function cata satisfies a generalization of the fusion law. The fusion law gives
conditions under which intermediate values produced by the catamorphism can
be eliminated. The fusion law is polytypic, that is, it holds for every regular
datatype.

f o Daab—0b
hocata f = cata g g w byac—c
= { Fusion } where < h t b—c
cata f : da—Db
hof = gofmap2id h cata g = da—c

The formulation of the fusion is an instance of the free theorem [101] of func-
tion cata. If we allow partial or infinite objects, then we must add the extra
requirement that A be strict.



3.10. POLYTYPIC LAWS

data Tree a = Leaf (a) | Bin (Tree a) (Tree a) deriving (Show, Eq)
main :: 10 ()

main = ((print test) >>(print answer)) >>(print (test == answer))
test :: (Tree (), [Int])

test = separateq,, (Bin (Leaf 17) (Leaf 38))

answer :: (Tree (), [Int])

answer = (Bin (Leaf () (Leaf (), 17: (38 : ([1)))

separateq,,, :: Tree a — (Tree (), [a])

separateq, © = (pmapp. (const ()) z, flatteny,,, )

PMAP e - (6 — b) — Tree a — Tree b

pmappe f = it © (1092t | (P61 1)) © o)
flattenyy,, =: Tree a — [a]

flatteny,,, = [flattenppe, © ((fmap2pg,.. singleton flatteng,,,) © 0Ulqye)
iy = Bither a (Tree a, Tree a) — Tree a

nnmee = Leaf v uncurry Bin

fmap2prye. - (@ = b) — (¢ — d) — Either a (¢, ¢) — FEither b (d, d)
fmap2ppyee = Ap 1 — (fmap2p,, p 1) —+ (fmap%ec*m pr)
OUlpyee 22 Tree a — Either a (Tree a, Tree a)
0UtTree ¥ = case 1 of
(Leaf a) — Left a
(Bin a b) — Right (a,b)
[attengq,,, = Either [a] ([a],[a]) — [a]

fattenpp,.. = fflattenp,, v fflatteng,.. pe.
singleton :: a — [a]
singleton x = z: ([])

(—+):=(a—0b)— (¢ = d) — Either a ¢ — Fither b d
f—+ g9 = Leftof v Rightog

fmap2p, i (a = b) = (¢ > d) > a—b

fmap2p,, = Apr —p

fmap2peeipec (@ = b) = (¢ = d) — (¢,¢) — (d, d)
fmap2pecipee = Ap T — (fmap2p,, p 1) * (fmap2g,. p )
fattenp,, :: [a] = [a]

ffattenp,, = id

flatteng, . pe. = ([a], [a]) = [a]

.ﬁclaﬁPnRec*Rec = AMz,y) = (fflatteng,, z) + ([flatteng,, y)
()= (a— )—)((’—)d) (a,c¢) = (b,d)

fog= My = (z,9Y9)

fmap2p,. 2 (a = b) = (¢ > d) = ¢c— d

fmapgRec - )‘p r—=r

fatteng,, :: [a] = [a]

ffatteng,, = id

Figure 3.8: The Haskell code generated from Separate.
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Proof: Assume hof = g o fmap2 id h is true. Use fixed point induction
(Theorem 2.15) with n = 2 and improvement functions and inclusive relation
given by

T = fofmap2id x o out
o Y = go fmap2 id y o out
P(z,y) = hox===y.
Base case: P (L, 1) = hol === 1 = trueif h is strict.

Inductive case: We calculate as follows.

hoty x ===19 y
= { Definitions of i; and iy }

hofofmap2id z o out === g o fmap?2 id y o out

< { Cancel (cout) }

hofofmap2id r === g o fmap2 id y

{ Use the assumption on the left }

g o fmap2 id h o fmap2 id x === g o fmap2 id y

{ Function fmap2 is a functor (preserves composition) }

go fmap2id (hoz) === go fmap2id y
=  {Induction hypothesis: P (z,y) = hozx ===y}
True

O

As an example of the use of the fusion law we can prove that the function pmap f
also can be defined as a catamorphism:

pmap’ :: Regular d = (a > b) > da— db
pmap' f = cata (inn o fmap2 f id)
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Proof: The proof is by calculation:

O

pmap f === pmap' f
{ identity }

pmap f o id === pmap' f

{identity is a catamorphism, definition of pmap’ }

pmap f o cata inn === cata (inn o fmap2 f id)
{ fusion (pmap f is strict) }
pmap f o inn === (inn o fmap2 f id) o fmap2 id (pmap f)
{ definition of pmap, fmap?2 is a bifunctor }
inn o fmap?  (pmap f) o out o inn === inn o fmap? { (pmap f)
{ out is the inverse of inn, identity }
inn o fmap2 f (pmap f) === inn o fmap2 f (pmap f)
{ Trivially }
True

43

As examples of laws for polytypic functions we present the laws expressing that
pmap and fmap2 are functors:

pmap id === id

pmap f o pmap g === pmap (f o g)

fmap2 id id === 1d

fmap2 f go fmap2 hi === fmap2 (foh) (goi)

The functor laws for fmap2 are easily proved from corresponding laws for (—+)
and (=) by induction over the structure of regular datatypes. The functor laws
for pmap are proved by fixed point induction using the laws for fmap2. These
laws, and many others, are presented in PolyLib (Chapter 5).
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Chapter 4

PolyP — a polytypic

programming language extension!

This chapter briefly presents the underlying theory of the functional programming
language extension PolyP. In PolyP, definitions of polytypic functions are type
checked, and for all other expressions the types are inferred, using an extension of
Jones’ theories of qualified types and higher-order polymorphism. The semantics
of PolyP programs is obtained by first adding functor arguments to polytypic
functions in a dictionary passing style and then eliminating these arguments
using partial evaluation to obtain a Haskell program. The notation and many
definitions in this chapter are based on the work of Jones [63 66]. We are in the
process of moving from the PolyP system and the theory presented in this paper,
to a system called Generic Haskell [33] and Hinze’s [35] theory of type indexed
values.

The chapter is organized as follows. Section 4.1 discusses the type inference and
checking algorithms used in PolyP. Section 4.2 gives the semantics of PolyP, and
Section 4.3 shows how to generate Haskell code from PolyP programs. Section 4.4
presents a short overview of the implementation of PolyP. Section 4.5 concludes
the chapter.

4.1 Type inference

Polytypic value definitions can be type checked, and for all other expressions the
type can be inferred. This section discusses the type checking and type inference
algorithms.

!This chapter is a revised version of an article with the same title, presented at the ACM
Symposium on Principles of Programming Languages in 1997 [46].
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E =z variable

| EEFE application

| A\z.E abstraction

| let @ in F let-expression
Q = r=F variable binding
cr o= X" constants

| aF variables

| C¥=rC"  applications
T = C* types
p = P=r qualified types
o u= Vitfp type schemes

Figure 4.1: The core language QML

Section 4.1.1 introduces the core language without the polytypic construct, but
with qualified and higher-order polymorphic types. Section 4.1.2 extends the
core language with the polytypic construct and some built-in functions, types
and classes. Section 4.1.3 discusses unification in the extended language, and the
Section 4.1.4 shows how to type check a polytypic value definition.

4.1.1 The core language

Our core language is an extension of core-ML with qualified types and higher-
order polymorphism [66], see Figure 4.1. The non-terminal for types in this
grammar is really a kind-indexed family of non-terminals where the superscript
denotes its kind. For example, a basic type is in C* (has kind *), and a parametric
datatype constructor such as List is in C*7* (has kind * — ). We call the
resulting language QML. The set of constructor constants contains:

(_))a(,),Eitherj;*_)*_)*

A program consists of a list of datatype declarations and a binding for main.

The typing rules and the type inference algorithm are based on the extensions
of the standard rules and algorithm [17] that handle qualified and higher-order
polymorphic types, see Jones [64,66]. Compared to the traditional Hindley-Milner
system the type judgments are extended with a set of predicates P. The rules
involving essential changes in the predicate set are shown in Figure 4.2. The
other rules and the algorithm are omitted. The entailment relation { relates sets
of predicates and is used to reason about qualified types, see Jones [64].



4.1. TYPE INFERENCE 47

P|Tre:m=p PHnr
(=F) P|Tke:p
Pr|Tke:p
(=) PlTre:r=p

Figure 4.2: Some of the typing rules for QML

4.1.2 The polytypic language extension

The polytypic extension of QML consists of two parts — an extension of the type
system and an extension of the expression language. We call the extended QML
language polyQML.

Extending the type system

The type system is extended by generalizing the unification algorithm and by
adding new types, kinds and classes to the initial type environment. The initial
type environment of the language polyQML consists of four components: a family
of functor constructors @4, the types of the functions inn and out, the type classes
Regular and Bifunctor, and the collection of functor constructors (+, *, Empty,
Par, Rec, @ and Const t).

e For every regular datatype D a the type constructor @, (written FunctorOf
D in the actual code) represents its pattern functor. The constructor @
has kind 1 — 2 where 1 abbreviates the kind of regular type constructors
(* — %) and 2 abbreviates the kind of pattern functors (x — % — x).

e The class Regular contains all regular datatypes and the class Bifunctor
contains the functors of all regular datatypes. To reflect this, the entailment
relation is extended as follows for polyQML:

 Regular D, for all regular datatypes D a
Regular d - Bifunctor &,

e The functor constructors obtained from Section 3.4 are added to the con-
structor constants, and have the following kinds:

*, + n2=2—=2
Empty, Par, Rec :: 2

@ D 1—=2-2
Const Dok — 2

The corresponding rules in the entailment relation are the following:
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Bifunctor f, Bifunctor g + Bifunctor (f + g), Bifunctor (f * g)
- Bifunctor Empty, Bifunctor Par, Bifunctor Rec

Regular d, Bifunctor g + Bifunctor (dQg)

- Bifunctor (Const t)

e Functions inn and out were introduced in Section 3.5.

out : Regular d = d a — @4 a (d a)
inn . Regular d = @40 (da) — da

Note that these functions have qualified higher-order polymorphic types.

The resulting type system is quite powerful; it can be used to type check many
polytypic programs in a context assigning types to a number of basic polytypic
functions. But although we can use and combine polytypic functions, we cannot
define new polytypic functions by induction on the structure of datatypes.

At this point we could choose to add some basic polytypic functions that really
need an inductive definition to the type environment. This would give us roughly
the same expressive power as the language given by Jay [55] extended with quali-
fied types. As a minimal example we could add fmap2 to the initial environment:

fmap2 :: Bifunctor f = (a > b) > (¢c—d)—>fac—fbd

This would allow us to define and type check polytypic functions like pmap and
cata. The type checking algorithm would for example derive

pmap (+1) (Leaf 4) :: Regular Tree = Tree Int

but it would, at best, be hard to write a polytypic version of a function like
zip. Adding the polytypic construct to our language makes writing polytypic
programs much simpler.

Adding the polytypic construct

To add the polytypic construct, the production for variable bindings in the
let-expression, (), is extended with

polytypic z :: p=-case f*7*7" of {f;, — e}

where f is a functor variable?, f; are functor patterns (the grammar for functors
was defined in Section 3.4). The functor patterns can be nested and overlapping,

2(Case analysis over more than one functor can be simulated by handling all but the first
functor in the e; by other polytypic constructs. In the future we might extend the syntax to
simplify this.
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I"'=(T,y), v=(x:0), FB|T'ke:{f— fi}o
Pi,...,P, |T F polytypic z::0=case f of {f; —e}:v

Figure 4.3: The typing rule for polytypic

type (9 +h)pr = Fither (gpr)(hpr)
type (9xh)pr = (gpr,hpr)

type Empty pr = ()

type Par p r =

type Recp r =

type (dQg)pr = (gpr)

type Constt pr =

S~V B~

Figure 4.4: Interpreting functors as type synonyms

but they must be linear. The resulting language is polyQML. To be able to do the
case analysis over a functor, the functor must be constructed from the operators
+, *, @ and the type constants Empty, Par, Rec and Const t. This is equivalent
to being in the class Bifunctor and thus the context Bifunctor f must always
be included in the type p of a function defined by the polytypic construct. As
Bifunctor f must always be in the type, PolyP inserts it automatically if it is not
given explicitly.

The typing rules for polyQML are the rules from QML together with the rule
for typing the polytypic construct given in Figure 4.3. For the notation used,
see Jones [64]. Note that the polytypic construct is not an expression but a
binding, and hence the typing rule returns a binding. The rule is not as simple as
it looks  the substitution {f — f;} replaces a functor variable with a functor
interpreted as a partially applied type synonym, see Figure 4.4. For example,
interpreting the functors in the pattern functor for List as type synonyms, we
have:

¢List pr
{ @Liss = Empty + Par x Rec }

(Empty + Par x Rec) p r

{ Type synonym for + }

FEither (Empty p r) ((Par * Rec) p )

{ Type synonyms for Empty and * }

Fither () (Par p r,Rec p r)
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{ Type synonyms for Par and Rec }

FEither () (p,r)

4.1.3 Unification

The (standard but omitted) typing rule for application uses a unification algo-
rithm to unify the argument type of a function with the type of its argument.

The unification algorithm we use is the kind-preserving unification algorithm of
Jones [66], which is an extension of Robinson’s well-known unification algorithm.
We write C & C" if C' and C' are unified by substitution o.

Theorem 4.1 If there is a unifier for two given types C, C', then C' X C" using
Jones [66] algorithm for kind-preserving unification, and o is a most general uni-
fier for C and C'. Conversely, if no unifier exists, then the unification algorithm

fails.

4.1.4 Type checking the polytypic construct

Instances of polytypic functions generated by means of a function defined with
the polytypic construct should be type correct. For that purpose we type check
polytypic functions.

Type checking a polytypic value definition amounts to checking that the inferred
types for the case branches are more general than the corresponding instances of
the explicitly given type. So for each polytypic value definition

polytypic z::p=-case f of {f, — e}
we have to do the following for each branch of the case:

e Infer the type of ¢; : 7;.

e Calculate the type the branches should have according to the explicit type:
pi =1{f— fitp.

e Check that p; is an instance of 7;.

When calculating the types of the alternatives the functor constructors are treated
as type synonyms defined in Figure 4.4. The complete type inference/checking
algorithm W is obtained by extending Jones’ type inference algorithm [66] with
the alternative for the polytypic construct. Some of the rules of the algorithm
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(var) (x:Vt;.,P=71)eTl, s;new, S={t— s}
var SP|TH x:St
(let) SOYF q:v, Q|T(ST,y)He:T
- QITST)H let gine: 7
(bind) P|ST)Fe:r, vy=(x:Y%r(P=1))
STz =e:vy
"=T7), ~v=(z:Y(p)
P | Si(T; ATy e m;
Vi, 10 (Sn - Si1 (B = 7)) > {f = fi}p
(poly) Ty={}, T,=ST,
' [ polytypic = ::p=case f of {f;—e}:v

Figure 4.5: Some parts of W

are given in Figure 4.5. As an example we will sketch how the ¢ x h and Rec
branches in the definition of fsum in Figure 1.1 are type checked:

polytypic fsum ' f Int Int — Int
= case f of
g*h = AMz,y) — fsum x + fsum y
Rec — ad

In the ¢ x h branch of the polytypic case, we first infer the type of the ex-
pression e, = A(z,y) — fsum z H fsum y. Using fresh instances of the ex-
plicit type p = f Int Int — Int for the two occurrences of fsum we get 7, =
(z Int Int,y Int Int) — Int. We then calculate the type p,:

p« ={f = gxh}lp=(g=h) Int Int — Int = (g Int Int, h Int Int) — Int

Because p, = {z — ¢,y — h}7. we see that p, is an instance of 7.

In the Rec branch of the polytypic case, we first infer the type of the expression
€rec = td. The type of this expression is 7g.. = a — a. We then calculate
the type prec = {f — Rec}p = Rec Int Int — Int = Int — Int. Because
Prec = {a — Int}Tpe. we see that pge. is an instance of 7g... The other branches
are handled similarly.



52 CHAPTER 4. POLYP

If a polytypic binding can be type checked using the typing rules, then algorithm
W also manages to type check the binding. Conversely, if algorithm W can type
check a polytypic binding, then the binding can be type checked with the typing
rules too. Together with the results from Jones [64] we obtain the following
theorem.

Theorem 4.2 The type inference/checking algorithm is sound and complete.

Proof sketch. Both the proof of soundness and of completeness are by induction
on the structure of the expression. The only part of the inference algorithm
that is new is the handling of the polytypic construct. Because the polytypic
construct is explicitly typed, all that soundness and completeness states is that
the algorithm succeeds if and only if a type can be inferred for the case branches.
Using Jones’ lemmas about substitutions and type ordering (>) together with
the induction hypothesis we can show that the algorithm succeeds if and only if
there is a derivation using the type rules.

4.2 Semantics

The meaning of a QML expression is obtained by translating the expression into
a version of the polymorphic A-calculus called QP that includes constructs for
evidence application and evidence abstraction. Evidence is needed in the code
generation process to construct code for functions with contexts. As an example,
the evidence for Regular D is a dictionary containing inn and out for D a, and
a symbolic representation of the corresponding functor @,. Again, the results
from this section are based on Jones” work on qualified types [64].

The language QP has the same expressions as QML plus three new constructs:

E = same as for QML expressions
| F. evidence application
| Mu.E evidence abstraction
| case v of {e; = E;} dependent case over evidence
o = C* types
| P=o qualified types
|  Vitf.o polymorphic types

The special case-statement is used in the translation of the polytypic construct.
The typing rules for QP are standard except for the dependent case over bifunc-
tors.
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z:Vt;, P=71€Tl, s;andvnew, S={t— s;}

(var) v:SP|TH 2~ x,: ST

ST)YF" g~ ¢ : v
(let) Q|ITST,y)Fe~e 7
Q|TS(T)H (let ¢gine) ~ (let ¢"ine’) : 7

v:P|SO)Fe~e:1, vy=(x: Y (P=r1))

(blnd) S(F) w (3: - 6) ~> (.’E = )\v_e/) Ly
I'=(T,7), 7="(z:Y%(p)
v+ Py | Si(TiAT") F ey~ €)ooy
Vi (Sp - Siz1 (P = 7)) > Vi ({f = fi}p)
(poly) e

' polytypic z:: p=-case f of {f, —>e} ~
x = Av.case v of {f; — Ci(A\v;.e})v} v

Figure 4.6: Some translation rules

The translation rules for variables, let expressions, variable bindings and for the
polytypic construct are given in Figure 4.6. The remaining rules are simple and
omitted. A translation rule of the form P | S(T') F e ~ €’ : 7 can be read as an
attribute grammar. The inherited attributes (the input data) consist of a type
context [ and an expression e and the synthesized attributes (the output data)
are the evidence context P, the substitution S, the translated QP expression ¢’
and the inferred type 7.

fsum = Av.case v of
g+nh — fsum, v fsum,
gxh — Mz, y) — fsum, v+ fsumy, y
Empty — Az —0
Par — id
Rec — d
dQg —  psumy o pmap, fsum,
Constt — Ax —0

Figure 4.7: The translation of function fsum into QP

For example, if we translate function fsum :: Bifunctor f = f Int Int — Int, then,
after simplification, we obtain the code in Figure 4.7. Note that the branches of
the case expression in the translated code have different (but related) types. This
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case expression is a restricted version of a dependent case.

In this translation we use a conversion function C', which transforms evidence
abstractions applied to evidence parameters into an application of the right type.
Function C is obtained from the expression o >¢ ¢', which expresses that o is
more general than ¢’ and that a witness for this statement is the conversion func-
tion C': 0 — o'. Function C is a non-recursive function distributing (parts of)
the evidence parameters to their positions on the right hand side. In a polytypic
value definition, such as fsum, where the structure of the patterns on the left hand
sides corresponds directly to the structure of the expressions on the right hand
sides, the conversion function will behave exactly as the matching operation in
the case statement. In this case, the conversion function is essentially the identity
(just a variable renaming). The conversion function might be more complex in
the case where the recursive structure of the polytypic value definition does not
correspond directly to the recursive structure of the functor.

The inputs to function > are the two type schemes o and ¢', and the output (if
it succeeds) is the conversion function C. It succeeds if the unification algorithm
succeeds on the types and the substitution is from the left type to the right
type only, and if the evidence for the contexts in o can be constructed from the
evidence for the contexts in ¢’. The function C' is constructed from the entailment
relation extended with evidence values.

As evidence for the fact that a functor f is a bifunctor we use the symbolic
representation of f as an element of the datatype described by the grammar for
pattern functors from Section 3.4:

f,9,h == g+h|gxh| Empty | Par | Rec| dQg | Const t .

The evidence for regularity of a datatype D a is a dictionary with three com-
ponents: the definitions of inn and out on the datatype and evidence that the
corresponding functor is indeed a bifunctor.

Theorem 4.3 The translation from polyQQML to QP preserves well-typedness
and succeeds for programs with unambiguous type schemes.

Proof sketch. The proofs are by induction on the structure of the expression.
The use of a special syntax for the dependent case expression and the fact that
this expression only is introduced by the translation of the polytypic construct
allows us to reuse most of the proofs from Jones’ dissertation for the other syn-
tactic constructs.
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4.3 Code generation

To generate code for a polyQML program, we generate a QML expression from
a polyQML expression in two steps:

e A polyQML expression is translated to a QP expression with explicit evi-
dence parameters (dictionaries).

e The QP expression is partially evaluated with respect to the evidence pa-
rameters giving a program in QML.

When the program has been translated to QP all occurrences of the polytypic
construct and all references to the classes Regular and Bifunctor have been re-
moved and the program contains evidence parameters instead. We remove all
evidence parameters introduced by polytypism by partial evaluation (in the style
of Jones [63]). The partial evaluation is started at the main expression (which
must have an unambiguous type) and is propagated through the program by
generating requests from the main expression and its subexpressions. A problem
with this scheme is that does not support separate compilation: it requires the
whole program to be available for translation at once.

The evidence for regularity of a datatype D a (the entailment [ Regular D)
is a dictionary containing the functions inn, out and the bifunctor @p,. PolyP
constructs these dictionaries using a few straightforward inductive functions over
the abstract syntax of regular datatypes. Functions inn and out are obtained by
selecting the correct component of the dictionary.

In practice, a PolyP program (a program written in a subset of Haskell extended
with the polytypic construct) is compiled to Haskell. Section 3.9 contains an
example of a simple PolyP program and the code that is generated by PolyP for
this program (in Figure 3.8) .

If the size of the original program is n, and the total number of subexpressions of
the bifunctors of the regular datatypes occurring in the program is m, then the
size of the generated code is at most n x m. Each request for an instance of a
function defined by means of the polytypic construct on a datatype D a results
in as many functions as there are subexpressions in the bifunctor f for datatype
D a (including the bifunctors of the datatypes used in f). The efficiency of the
generated code is only a constant factor worse than hand-written instances of
polytypic functions. Most of the overhead is caused by the inn and out transfor-
mations which, as they are isomorphisms, could probably be removed by a more
clever implementation.
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4.4 Implementation

This section presents a brief overview of the implementation of the PolyP com-
piler.

The implementation of PolyP is written in Haskell and it is divided into about
30 Haskell modules with a total of about 7000 lines of literate Haskell code. The
accumulated time spent on the implementation of PolyP is close to one man-
year, but most of that time was spent on non-polytypic parts of the system. As
the knowledge base in the field of polytypic programming has grown, and more
standard tools for Haskell compiler construction have become available, a new
implementation with enhanced functionality could probably be completed in less
time. A re-implementation of the type inference algorithm, for example, could
be based on “Typing Haskell in Haskell” by Jones [67].

The information flow inside PolyP is as follows:

e The parser takes an input file to a list of equations expressed in the abstract
syntax.

e Dependency analysis splits these equations into datatype declarations and
mutually recursive groups of function definitions.

e For each regular datatype the corresponding functor is calculated.

e The equation groups are labeled with type information and evidence values
using the type inference algorithm from Section 4.1.

e The labeled equations are traversed to collect requests for instances of poly-
typic functions.

e For every request, code for an instance of a polytypic function is generated
and appended to the equation list.

e The final equation list is pretty printed.

More details about the implementation of PolyP are presented in Jansson’s licen-
tiate thesis [50].

4.5 Conclusions and future work

We have shown how to extend a functional language with the polytypic con-
struct. The polytypic construct considerably simplifies writing programs that
have the same functionality on a large class of datatypes (polytypic programs).
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The extension is a small but powerful extension of a language with qualified types
and higher-order polymorphism. We have developed a compiler that compiles
Haskell with the polytypic construct to plain Haskell.

A lot of work remains to be done. The compiler has to be extended to handle
mutual recursive datatypes with an arbitrary number of type arguments and in
which function spaces may occur. These extensions are planned for the successor
of PolyP: Generic Haskell [33].
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Chapter 5

PolyLib — a polytypic function
library!

During the last few years we have used PolyP to construct a number of polytypic
programs, for example for pattern matching, unification, rewriting (Chapter 6),
parsing (Chapter 7), etc. These polytypic programs use several basic polytypic
functions, such as the relatively well-known cata and pmap, but also less well-
known functions such as propagate and thread. We have collected these basic
polytypic functions in the library of PolyP: PolyLib. This chapter describes the
polytypic functions in PolyLib, motivates their presence in the library, and gives
a rationale for their design.

Of course, a library is an important part of a programming language. Languages
like Java, Delphi, Perl are popular partly because of their useful and extensive
libraries. For a polytypic programming language it is even more important to
have a clear and well-designed library: writing polytypic programs is difficult,
and we do not expect many programmers to write polytypic programs. On the
other hand, many programmers use polytypic programs such as parser generators,
equality functions, etc.

We expect that both the form and content of this description will change over
time, in fact this is already the second attempt at describing the library of PolyP;
the first was presented at the Workshop on Generic Programming, 1998 [47]. One
of the goals of that paper was to obtain feedback on the library design from other
researchers working within the field. This feedback has led to a few minor cor-
rections and additions, and two bigger changes: we have added laws relating the
polytypic functions (mainly free theorems [101]) and included the complete im-
plementation in Appendix A. At the moment the library only contains the basic
polytypic functions, but we are actively developing special purpose sub-libraries

I This chapter is a revised version of an article with the same title, presented at the Workshop
on Generic Programming, 1998 [47].

29
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for polytypic functions with more advanced functionality. Examples are the ap-
plications in the later chapters: matching, unification, rewriting (Chapter 6),
pretty printing, parsing, packing and unpacking (Chapter 7).

5.1 Describing polytypic functions

This section introduces the format that we use for describing polytypic library
functions, and gives an overview of the contents of the library.

The description of a polytypic function consists of (some of) the following com-
ponents: its name and type; an informal description of the function; properties
and laws the function satisfies; other names the function is known by; known uses
of the function; and its background and relationship to other polytypic functions.

A few related functions at a time are presented as a manual page enclosed in
brackets like those surrounding this sentence.

A problem with describing a library of polytypic functions is that it is not com-
pletely clear how to specify polytypic functions. The most basic combinators have
immediate category theoretic interpretations that can be used as a specification,
but for more complicated combinators the matter is not all that obvious. Thus,
we will normally not provide formal specifications of the library functions, though
we try to give references to more in-depth treatments. We also include examples
of laws that relate the different functions.

5.1.1 Notation and naming

For the polytypic functions that have Haskell counterparts we prepend the let-
ter p (for polytypic) to the Haskell name to avoid a name clash. The bifunctor
variants instead begin with an f. A polytypic function can be thought of as tak-
ing (a representation of) a functor as its first argument. This implicit argument
is normally omitted but sometimes written as a subscript for clarity: pmap,.
Polytypic functions are only defined for regular datatypes d a. In the type this
is indicated by adding a context Regular d = ..., but we will omit this here for
brevity. (The implementation of PolyLib in Appendix A contains the full type
declarations.)

5.1.2 Library overview

We have divided the library into six parts, as shown in Figure 5.1. The first



5.2. RECURSION OPERATORS

pmap, fmap2, cata
ana, hylo, para
crush, ferush

(a) Recursion operators
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pzip, fzip
punzip, funzip
pzipWith, pzip With'
pequal, fequal
pcompare, fcompare

(b) Zips etc.

pmapM , fmap2M, cataM
anaM , hyloM , paraM
thread, fthread
propagate, cross
(¢) Monad operators

flatten, fflatten
fi_par, fl_rec, substructures

(d) Flatten functions

psum, prod, comp, conc, pand, por
size, flatten, flatten', pall, pany, pelem

(e) Miscellaneous
Figure 5.1: Overview of PolyLib

part of the library contains powerful recursion combinators such as pmap, cata
and ana. This part is the core of the library in the sense that it is used in
the definitions of all the functions in the other parts. The second part deals
with zips and some derivatives, such as the equality function. The third part
consists of functions that manipulate monads. The fourth and fifth parts consist
of simpler (but still very useful) functions, like flattening and summing. The
following sections describe each of these parts in more detail.

5.2 Recursion operators

pmap = (a = b) —>da—db
fmap2:: (a = ¢c)—>(b—d)—>fab—fcd

Function pmap takes a function f and a value z of datatype d a, and applies f
recursively to all occurrences of elements of type a in z.

Properties: With d as a functor acting on types, pmap, is the corresponding
functor action on functions. Function fmap2; is the corresponding functor action
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for a pattern functor f.

pmap id === 4d

pmap g o pmap h === pmap (goh)

fmap2 id id === id

fmap2 g ho fmap2ij === fmap2 (goi) (hoj)

Also known as: Function pmap is often called map. In Jay et al. [58], pmap is
called map,, fmap2 is called map, and, in general, an n-argument map is called
map,. In charity [16], pmap, f = is written d{f }(z).

Known uses: Everywhere! Function fmap?2 is used in the definition of pmap,
cata, ana, hylo, para and in many other PolyLib functions.

Background: The map function was one of the first combinators distinguished
in the work of Bird and Meertens [10,74]. The traditional map :: (a — b) —
[a] — [b] in functional languages maps a function over a list of elements. Haskell
98 also contains an overloaded version of map:

fmap :: Functor f = (a = b) = fa—fb

Function fmap can be used as the polytypic pmap if instance declarations for all
regular type constructors are given. Function pmap can be used to give default
instances for the Haskell fmap.

cata 2 (Pgab—b)— (da—0)

ana (b — @5 ab)— (b—da)

hylo =z (fab—0) = (c—=fac)— (c—b)
para :: (da— P43ab—0b)— (da—b)

Four powerful recursion operators on the type d a: The catamorphism, cata c,
“evaluates” a value of a regular datatype by recursively replacing the construc-
tors with functions. The anamorphism, ana a, works in the opposite direction
and recursively builds a value of a regular datatype from some other data. The
hylomorphism, hylo ¢ a, is the generalization of these two functions that simul-
taneously builds and evaluates a structure. Finally, the paramorphism, para p,
is a generalized form of cata that gives its parameter function access not only to
the results of evaluating the substructures, but also the structure itself.
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Properties: The catamorphism cata f satisfies the fusion law (proved in Sec-
tion 3.10) for every strict h:

hocata f = cata g

= { fusion }
hof = gofmap2id h .

A dual law holds for the anamorphism, and corresponding laws hold for hylo and
para, see Hoogendijk [37]. The hylomorphism can be specified as:

hylo © 0 = cata i o ana o

Also known as:

PolyLib  Functorial ML [58] Squiggol charity [16]
cata i fold,i () {l71}

ana o - (o) (o)

Functions cata and para are closely related to the Visitor pattern [27].

Known uses: Many polytypic functions can be defined using cata: pmap,
crush, thread, flatten, propagate, and many of our applications use it.

Background: The catamorphism, cata, is the generalization of the Haskell
function foldr and the anamorphism, ana, is its (category theoretic) dual. Cata-
morphisms were introduced by Malcolm [71,72]. A hylomorphism is the fused
composition of a catamorphism and an anamorphism. The paramorphism [75],
para, is the elimination construct for the type d a from Martin-Lof type the-
ory [83]. It captures the recursion pattern of primitive recursive functions on the
datatype d a.

crush == (a - a—a) > a—da—a
ferush :: (a > a—a) > a—faa—a

The function crush (@) e takes a structure z and inserts the operator (&) from
left to right between every pair of values of type a at every level in z. (The value
e is used in empty leaves.)
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Properties: We can push a function f through a crush
focrush (@) e===crush (®) (f ¢) o pmap f
provided f is strict and the following distributive law holds:

Va,y.f(z@y) = fa®fy

This can be used to prove that, for an associative operator ( @ ) with unit e:

crush (@) e === foldr (@) e o flatten

Known uses: A number of applications of cruch within the library are pre-
sented in Section 5.6. Many of the functions in that section are, in turn, used in
the different applications.

Background: The crush operator was first proposed in “Calculate polytypi-
cally” by Meertens [76]. As crush has the same arguments as fold on lists it can
be seen as an alternative to cata as the generalization of fold to regular datatypes.

5.3 Zips

I

pzip  :: (d a,d b) = Maybe (d (a,b))

punzip :: d (a,b) = (d a,d b)

fip  x (f ab.fcd)— Maybe (f (a,0) (b, d))

funzip = f (a,¢) (b,d) — (f a b,f cd)

Function punzip takes a structure containing pairs and splits it up into a pair of
structures containing the first and the second components respectively. Function
pzip is a partial inverse of punzip: it takes a pair of structures and zips them
together to Just a structure of pairs if the two structures have the same shape,
and to Nothing otherwise.

Properties: Function punzip always produces a pair of structures of the same
shape, and for such pairs pzip always succeeds. Conversely, if pzip succeeds, then
punzip recovers the original pair.

(z,y) == punzip z
(z,y) == funzip z

pzip (z,y) == Just z
fzip (z,y) == Just z

Naturality laws:

mapM (pmap (f ~ g)) o pzip === pzip o (pmap f + pmap g)
mapM (fmap2 (f = g) (h > i)) o fzip === fzip o (fmap2 f h ~ fmap2 g 1)



5.3. ZIPS 65

Also known as: The zip functions are called zip,, in Jay et al. [58] (with
m = 1 for pzip and m = 2 for fzip), and pzip is called zip.x.d in Hoogendijk
and Backhouse [38].

Known uses: Function fzip is used in the definition of pzipWith.
Background: The traditional function zip
zip i [a] = [b] = [(. )]

combines two lists and does not need the Maybe type in the result as the longer
list can always be truncated. (In general such truncation is possible for all types
that have a nullary constructor, but not for all regular types.) A more general
(“doubly polytypic”) variant of pzip: transpose (called zip.d.e in by Hoogendijk
and Backhouse [38])

transpose :: d (e a) — e (d a)
was first described by Ruehr [94]. For a formal and relational definition, see

Hoogendijk and Backhouse [38].

pzipWith :: ((a,b) = Maybe ¢) — (d a,d b) — Maybe (d c)
pzipWith' :: (@4 ce—e)— ((da,db)—e)—
((a,b) > ¢) = (da,db) —e

Function pzipWith (® ) works like pzip but uses the operator (® ) to combine the
values from the two structures instead of just pairing them. As the zip might fail,
we also give the operator a chance to signal failure by giving it a Maybe-type as
a result. The type constructor Maybe can be replaced by any monad with a zero,
but we didn’t want to clutter up the already complicated type with contexts.

Function pzip With' is a generalization of pzipWith that can handle two structures
of different shape. In the call pzip With' ins fail ( ® ), the operator (® ) is
used to combine values of the structures as long as the structures have the same
shape, fail is used to handle the case when the two structures mismatch, and ins
combines the results from the substructures. (The type of ins is the same as the
type of the first argument to cata.)

Properties: Function pzip is just pzipWith Just and pzipWith is a special case
of pzip With':

PzIp === pzipWith Just
pzipWith === pzipWith' (mapM inn o fthread) (const mzero)
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Also known as: Function pzipWith is called zipop,, in Jay et al. [58].

Known uses: Function pzip With' is used in the definition of polytypic equality
and can be used for matching and even unification.

Background: Function pzipWith is the polytypic variant of the Haskell function
zipWith

zipWith = (a — b — ¢) = [a] = [b] = [(a, )]

but pzip With' is new.

pequal :: (a — b — Bool) — d a — d b — Bool
fequal :: (a — b — Bool) — (¢ = d — Bool) = f a ¢ — f b d — Bool

The expression pequal eq = y checks whether or not the structures z and y are
equivalent using the equivalence operator eq to compare the elements pairwise.
Function fequal is the corresponding equivalence check for the pattern functor
level. Function fequal eqp eqr performs a top level equivalence check and pequal eq
a deep equivalence check.

Properties: A partial equivalence relation (a per) is a relation that is symmet-
ric and transitive, but not necessarily reflexive. (In CPO no interesting relations
are reflexive. In fact, if e L | = True, then, by monotonicity, eq x y = True
for all z and y!) If eq is a per, then function pequal eq is also a per.

Known uses: Function fequal is used in matching, unification and rewriting to
determine when two terms are top level equal. Function pequal is used almost
everywhere (indirectly through (==)).

Background: An early version of a polytypic equality function was presented
by Sheard in 1991 [98]. Function pequal can be instantiated to give a default for
the Haskell Fq¢-class for regular datatypes:

(==) :: (Regular d,Eq a) = d a — d a — Bool

In Haskell the equality function can be automatically derived by the compiler,
and our polytypic equality is an attempt at moving that derivation out of the
compiler into the prelude.
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pcompare :: (a — a — Ordering) — d a — d a — Ordering
feompare :: (a — a — Ordering) — (b — b — Ordering) —
fab—fab— Ordering

The comparison operators ((<), (<), etc.) in Haskell are defined in terms of the
method compare of the Ord class.

data Ordering = LT | EQ | GT
compare 2 Ord o« = a — a — Ordering

Function pcompare is the polytypic version of compare. The expression pcompare
comp x y compares the structures z and y with lexicographical ordering, using
the function comp to compare the elements pairwise.

Also known as: Function pcompare is called emp by Hinze [35].

Background: Function pcompare can be instantiated to give a default for the
Haskell Ord-class for regular datatypes:

compare :: Ord a = d a — d a — Bool
compare = pcompare compare

5.4 Monad operations

pmapM :: Monad m = ( ) (
pmapMl :: Monad m = (a - m b) = d a — m (
pmapMr :: Monad m = (a — m b) ) (
fmap2M . Monad m = (a — m ¢) — (b—)md)—)fab—)m(f('d)
cataM 2 Monad m = (@5 ab— mb) — (d a — mb)

anaM  :: Monad m = (b — m @4 ab) = (b — m (d a))

hyloM . Monad m = (fab—mb)— (c—m (fac))—c—mb
paraM  :: Monad m = (da— Pgab—>mb) —>da—>mb

Function pmapM is a variant of pmap that threads a monad m from left to right
through a structure after applying its function argument to all elements in the
structure. Function pmapMr is the same but for threading a monad m from
right to left through a structure. For symmetry’s sake, the library also contains
a function pmapMI, which is equal to pmapM. Furthermore, the library also
contains the left and right variants of functions like cataM etc. A monadic map
can, for example, use a state monad to record information about the elements in
the structure during the traversal. The other recursion operators are generalized
in the same way to form even more general combinators.
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Properties: The monadic map is closely related to thread (presented later):

pmapM f === thread o pmap f
thread === pmapM id

There are many more laws as well, but we only give these examples here.

Also known as: Function pmapM (thread) is called active (passive) traversal
in Jay et al. [58].

Known uses: Monadic traversals are very useful for data conversion (Chap-
ter 7).

Background: Monadic maps and catamorphisms are described in Fokkinga [25]
and monadic anamorphisms and hylomorphisms are defined in Pardo [87]. A
category theoretical description of pmapM and thread can be found in Moggi et
al. [81].

thread :: Monad m = d (m a) — m (d a)
fthread :: Monad m = f (m a) (m b) — m (f a b)

Function thread is used to tie together the monad computations in the elements
from left to right.

Properties: Function thread can be used to define the monadic map, and vice

versa:
pmapM f === thread o pmap f
thread === pmapM id

Also known as: Other names for thread are dist; (used by Fokkinga [25]) and
traverse (used by Moggi et al. [81]).

Known uses: Function thread can be instantiated (with d = []) to the Haskell
prelude function

sequence :: Monad m = [m a] — m [a] .

It can also be instantiated (with m = Maybe) to propagate and (with m = []) to
cross defined later.
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propagate :: d (Maybe a) — Maybe (d a)
cross i da] — [d a]

Function propagate propagates Nothing to the top level. Function cross is the
cross (or tensor) product that given a structure z containing lists, generates a list
of structures of the same shape. This list has one element for every combination
of values drawn from the lists in z. These two functions can be generalized to
thread any monad through a value.

Known uses: propagate is used in the definition of pzip.
Background: Function propagate is an instance of transpose [94], and both

propagate and cross are instances of thread.

5.5 Flatten functions

flatten i da—[al
[Aatten : fla] [a] = [a]
fl_par 2 fab—a]
fl_rec 2 fab—[b]

substructures :: d a — [d a]
Function flatten z traverses the structure z and collects all elements from left
to right in a list. Functions fflatten, fl_par and fl_rec are variants of this for a
pattern functor f. The list substructures = contains all substructures of z.

Properties: The free theorem for flatten:

flatten o pmap f === map [ o flatten
Flatten can be defined in terms of conc = crush (+) [] and pmap:

flatten = conc o pmap (:[])
With normal Haskell lists and concatenation this has quadratic asymptotic com-
plexity, but we can apply the standard accumulating parameter trick to obtain a

linear implementation: (comp = crush (o) id)

flatten' = comp o pmap (3)
flatten | = flatten' 1 []
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Functions conc, comp and flatten' are also defined in Section 5.6.

Function substructures can be defined in terms of fl_rec and para:

substructures  : Regular d = d a — [d a]
substructures = para (Ar y — x: concat (fl_rec y))

Also known as: The integer-indexed family eztract,, ; defined in Jay et al. [58],
contains flatten when (m, i) = (1,0), fi_par when (m, i) = (2,0) and fl_rec when
(m,i) = (2,1). Another name for flatten is listify (used in Hoogendijk and
Backhouse [38]).

Known uses: Function fl_rec is used in the unification algorithm to find the
list of immediate subterms of a term.

Background: In the relational theory of polytypism [38] there is a membership
relation mem.d for every relator (type constructor) d. Function flatten can be
seen as a functional implementation of this relation:

a mem.d x = a € flatten; z

5.6 Miscellaneous

A number of simple polytypic functions can be defined in terms of crush and
pmap. For brevity we present this part of PolyLib by providing only the name,
the type and the definition of each function.

psum :: d Int — Int

prod 2 d Int — Int

comp : d(a— a)—= (a— a)
conc : dla]—[a]

pand :: d Bool — Bool
por :: d Bool — Bool
psum = crush (+) 0
prod = crush (%) 1
comp = crush (o) id
conc = crush (4) []
pand = crush (A) True
por = crush (V) False
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All these are defined using crush only, and by combining crush and pmap we
immediately get a few more useful functions.

size 2 oda— Int

flatten 1 d a — [a]

flatten' 1 d a— [a] — [a]

pall . (a = Bool) = d a — Bool
pany = (a — Bool) = d a — Bool
pelem :: Eqa = a— d a— Bool
size = psumopmap (A_—1)
flatten = conc o pmap (A\z — [z])
flatten’ = comp o pmap (:)

pall p = pand o pmap p

pany p = poropmapp

pelem z = pany (A\y — © == y)

5.7 Conclusions

We have given a description of PolyLib: the library of PolyP. This library has
grown out of our experience with implementing polytypic functions. PolyLib
is very likely incomplete, but we think we have included most basic polytypic
combinators. We have used PolyLib in the construction of special purpose sub-
libraries for matching, unification and rewriting (Chapter 6) and data conversion
(Chapter 7), and some of these applications will be included in future versions of
PolyLib. Both PolyP and PolyLib are available from the author’s homepage.
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Chapter 6

Rewriting!

Abstract

Given any value of a datatype (an algebra of terms), and rules to
rewrite values of that datatype, we want a function that rewrites the
value to normal form if the value is normalizable. This chapter de-
velops a polytypic rewriting function that uses the parallel innermost
rewriting strategy. It improves upon our earlier work on polytypic
rewriting in two fundamental ways. Firstly, the rewriting function
uses a term interface that hides the polytypic part from the rest of
the program. The term interface is a framework for polytypic pro-
gramming on terms. This implies that the rewriting function is in-
dependent of the particular implementation of polytypism. We give
several functions and laws on terms, which simplify calculating with
programs. Secondly, the rewriting function is developed together
with a correctness proof.

6.1 Introduction

A term rewriting system is an algebra (a datatype of terms) together with a
set of rewrite rules. The rewrite rules describe how to rewrite the terms of the
algebra. A rewrite rule is a pair (lhs, rhs) of terms containing variables with
the interpretation that any term that matches the left hand side (lhs) may be
rewritten to the right hand side (rhs) with the variables replaced by the matches
from the left hand side.

IThis chapter is a revised and extended version of the article “A framework for polytypic
programming on terms, with an application to rewriting”, Workshop on Generic Programming,
2000 [52].
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6.1.1 An example rewriting system

An example of a term datatype is the type Ezpr:

data Fxzpr = EVar Int | Z | S Expr | Expr :+: Expr | Expr :x: Expr
type Rulet = (t,1)
plusZero :: Rule Expr
plusZero = (z:+ 7, 1)
wherez = FEVar0

For example, with the rule plusZero the left hand side z :+: Z matches the
expression S Z :+: Z with the substitution {z — S Z}. Thus the rewritten term
is the right hand side z after the substitution is applied: S Z. To introduce the
notation we can express this in Haskell syntax: the following expression evaluates
to True.

let (lhs,rhs) = plusZero
Just s = match lhs (S Z :+: Z)
in appSubst s rhs == S Z

The functions involved are the following:

appSubst = Termt = Subt —1t —t
match . Termt = t — t — Maybe (Sub t)
(==) 0 Termt = t —t — Bool

Function appSubst takes a substitution and a term, and applies the substitution
to the term. The type Fzpr is an instance of a type class for Terms defined in Sec-
tion 6.2.1. The definitions of appSubst and the type constructor for Substitutions
are given in Section 6.3.1. Function match (defined in Section 6.3.2) takes a term
containing variables, and a term without variables, and returns Just a substitu-
tion s if the terms can be matched by means of s, and Nothing otherwise. The
operator (==) is the Haskell equality operator, defined for terms in Section 6.2.3.

A rule set is a collection of rules, and a rule set matches a term if at least one of
the rules matches that term. To keep the system deterministic, even when more
than one rule matches, we order the rules and always use the first match. In
practice this means that our rule set is a rule list.

type Rules t = [Rule t]
exprrules . Rules Expr
exprrules = [plusZero, plusSucc, timesZero, timesSucc]
where plusZero = (z:+: 7, 1)

plusSuce = (z:4+: S5y, S (z:4: y))

timesZero = (z:x: Z,7)

timesSuce = (z % Sy, (z % y) +: 1)

(E

(z,9) = Var 0, EVar 1)
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Function rewrite (defined in Section 6.4.2) rewrites a term to normal form by
repeatedly applying rules from a rule list:

rewrite :: Term t = Rulest —t — ¢

Because the rule list erprrules is normalizing, function rewrite will rewrite any
expression of type Ezpr to normal form. In general, rewrite rs t terminates if
and only if the term ¢ is normalizing with respect to the rule list rs.

6.1.2 Polytypic rewriting

For other kinds of terms, rewriting behaves exactly as on expressions. We would
like to have a polytypic rewriting function: a rewriting function that can be
applied to any kind of terms.

This chapter develops a polytypic rewriting function that uses the parallel inner-
most rewriting strategy. We have chosen the parallel innermost rewriting strategy
because this lets us transform the rewriting function into an asymptotically op-
timal solution. The results in this chapter improve upon our earlier work on
polytypic rewriting [62] in two fundamental ways.

Firstly, the program uses an interface that hides the polytypic part from the rest
of the program. The term interface is a framework for polytypic programming
on terms. We assume that we have a type of terms, on which several functions,
such as a function that determines whether or not a term is a variable and a
function that returns the children of a term, are defined. The rewriting function
(including functions for matching and for applying a substitution) uses just these
functions on terms. This idea was also present in our previous work [2,51],
but it was only applied to unification. It turns out that the same interface for
terms can be used for matching and term rewriting. We also introduce some
combinators on terms such as map Term, which maps a function over all variables
in a term, and bup which applies a term transformer bottom up to all levels of
a term. Furthermore, to facilitate calculating with programs, we give a number
of laws for these functions. Programming against an interface for terms implies
that our rewriting functions are independent of the particular implementation
of polytypism, so that we can use our rewriting functions in future polytypic
programming languages such as Generic Haskell [33] too.

Secondly, the program is developed together with a correctness proof, which says
that our rewriting function rewrites any normalizable term to normal form. A
specification of rewriting is transformed in a few steps into an efficient rewriting
function. We prove that the transformation steps are semantics preserving.

This chapter is organized as follows. Section 6.2 introduces terms, combinators
on terms, and laws for these combinators. Section 6.3 gives three applications
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of terms: substitutions, matching and unification. Section 6.4 specifies and im-
plements polytypic functions for rewriting and states the theorems they satisfy.
Section 6.5 contains detailed proofs of some of the theorems. Section 6.6 con-
cludes.

6.2 A term interface

This section introduces an interface for terms and shows that every regular data-
type supports this interface. Furthermore, it defines a few combinators that work
on terms, and states some laws that relate these combinators. The proofs of these
laws are presented in Section 6.5.

6.2.1 Terms
This subsection defines a Haskell class for types that can be used as terms for

matching, unification and in a term rewriting system. A careful analysis of the
properties we need from terms reveals that

e a term has (updatable) children,
e two terms can be tested for top level equality,

e and a term can be a variable.

Each of these requirements is captured in a class and the class of terms is the
intersection of these requirements.

class (Children t, TopEq t, VarCheck t) = Term t

In the following subsections we will define the three classes Children, TopFEq
and VarCheck together with the laws we require from the instances to make the
rewriting proofs go through later.

Children

The children (immediate subterms) of a term can be extracted or mapped over.

class Children t where children 1t — [t]
mapC o (t—=t) ot —t
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The functions children and mapC should be related by the following law:

children o mapC f === map f o children
Function mapC should preserve identities and composition:

mapC' id = id
mapC (fog) = mapC fomapC g

Top level equality

Function topFEq is a shallow equality test. A typical topEq checks if two terms
have the same outermost constructor.

class TopFEq t where topEq :: t — t — Bool
We require topFEq to be almost an equivalence relation:
- (zr = 1) = |topEq z |
[topEq = y] = [topEq y x|
[topEq z y] = ([topEq y 2] = [topEq z z])
It should not depend on the children:
\topEq x y| = |topEq z (mapC [ y)]|
And the number of children should be part of the top level:

\topEq x y| = |length (children ) == length (children y) |

Checking for variables
We model variables with the type Var (any type with equality would do), and it
should be possible to check whether or not a term is a variable, and if it is, which

variable.

newtype Var = MkVar Int deriving FEq
class VarCheck t where varCheck :: t — Maybe Var

If a term is a variable, then it cannot have children.

|varCheck t == Just v| = |children t == []]
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6.2.2 Polytypic Term instances

In this subsection we show that all Reqular datatypes are, in fact, Terms. We do
this by defining polytypic instances for children, mapC, topEq and varCheck.

Functions children and mapC

Function children :: Children t = t — [t] returns the immediate subterms of a
term. We find these subterms by unfolding the term one level, using out, mapping
the parameters to empty lists and the subterms to singletons using fmap2 and
flattening the result to a list using fflatten:

instance Regular d = Children (d a) where
children = fflatten o fmap2 (const []) (:[]) o out
mapC [ = inn o fmap2 id f o out

Function fflatten :: f [a] [a] — [a] takes a value v of type f [a] [a], and returns
the concatenation of all the lists (of type [a]) occurring in v. The polytypic
definition of fflatten was given in Section 3.9.

Function topFEq

Function topEq :: TopEqt = t — t — Bool compares the top level of two terms
for equality. It is defined in terms of the polytypic equality function fequal de-
scribed in PolyLib. The first argument to fequal compares parameters for equality,
the second argument (which compares the subterms) is constantly true (to get
top level equality) and the third and fourth arguments are the two (unfolded)
terms to be compared:

instance (Regular d, Eq a) = TopEq (d a) where
topEq t t' = fequal (==) (A_ _ — True) (out t) (out t')

Function varCheck

Function varCheck :: VarCheck t =t — Maybe Var checks whether or not a term
is a variable. A polytypic varCheck must recognize the datatype constructor that
represents variables, using only information about the structure of the datatype.
We have for simplicity chosen to represent variables by the first constructor in
the datatype, which should have one parameter of type Var.

instance Regular d = VarCheck (d a) where
varCheck = fvarCheck o out
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polytypic fvarCheck :: f a b — Maybe Var
= case [ of
g+h —  fvarCheck v const Nothing
Const Var —  Just
g —  const Nothing
Summary

We have made all regular datatypes instances of the class Term. Thus all ap-
plications written using only Term operations are automatically polytypic in the
sense that they can be used with PolyP. Of course any such application could
have used PolyP directly, but restricting the use of polytypic functions to a min-
imal interface (the class Term), makes the code more reusable and opens it up
for experimentation with alternative implementations of polytypism.

6.2.3 Combinators on terms

In this section we define a few general purpose functions on terms. A first example
is the function size that calculates the number of nodes in a term.

size :: Children t = t — Int
size t = 14 sum (map size (children t))

Using children we can easily extend the top level equality to deep equality:

(==):: (TopEq t, Children t) = t — t — Bool
r==y = topEqz y N and (zipWith ( == ) (children x) (children y))

If topEq is almost an equivalence relation (as defined in section 6.2.1), then ( ==)
is an equivalence relation for all finite terms.

A simple application of the equality check is to define a predicate fizedBy [ that
is true for the set of fixed points of f:

fizedBy :: (TopEq t, Children t) = (t — t) — t — Bool
fixedBy f 0 = v ==fx

Function bup f applies a term transformer at all levels of a term bottom up. It
is as close we can get to a generic catamorphism for types in the Children class.
Function bup is more restricted than a normal catamorphism as the output is
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always of the same type as the input, but it is sufficient to specify and implement
rewriting.

bup :: Children t = (t > t) >t —t
bup f = f omapC (bup f)

Function map Term is one possible generic map function for Terms with variables.
The application map Term s maps s over all variables in a term, leaving the rest of
the structure unchanged. It is implemented in terms of the more general function
foldTerm p s that also applies the function p to post-process the results from
the children. Function foldTerm can be seen as the combination of a bup (a
catamorphism) and a map.

map Term 0 Termt = (Var — Maybe t) -t — ¢
map Term s = foldTerm id s
foldTerm i Termt = (t —t) — (Var — Maybe t) -t — t
foldTerm p st = maybe (p (mapC (foldTerm p s) t))
(maybe (p t) id o s)
(varCheck t)

Function foldTerm traverses all nodes in a term containing variables bottom up.
If a node is a variable, then it is replaced by the term to which that variable is
bound in the finite map s, or transformed by p if it is not bound by s. If a node
is not a variable, then foldTerm is applied recursively to the children (if any) and
the result is transformed by p.

6.2.4 Laws for term combinators

Using the properties required for the functions from the Term class we can derive
a number of laws for the term combinators. The proofs of these laws are given in
Section 6.5. The theorems for bup are restricted to finite terms as captured by
the predicate fin:

Definition 6.1 Finite terms:

fin = Children t = t — Bool
fin = fiz deeper
deeper 2 Children t = (t — Bool) — (t — Bool)

deeper p = all p o children
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The predicate fin is defined as the fixed point of deeper or equivalently as the
limit of a chain of approximations deeper™ L. The predicate deeper" L is true
for all terms of depth less than n. Proofs by fixed point induction using fin and

deeper are closely related to proofs using the generic approximation lemma by
Hutton and Gibbons [44].

Using fixed point induction we can prove a characterization of bup:

Theorem 6.2 bup-characterization:

(f 2= gomapC f) = (f 2= bup g)

If we let f === g === id in the bup-characterization theorem, then the premise
id =2 ido mapC id follows trivially from the requirement mapC' id === id of
the class Children. Thus we get the following corollary to bup-characterization:

Corollary 6.3 bup-identity:
id =2 bup id

A law similar to the fiz-equality law but for proving equality of functions defined
using bup is an easy consequence of bup-characterization:

Theorem 6.4 bup-equality:
fin fin

(gomapC f === homapC f) = (bup g === bup h)
where f = bup g

Function bup is closely related to foldTerm; both traverse the term bottom up,
but bup does not distinguish variables from other (sub)terms. The behavior of
bup can be simulated by foldTerm if the substitution argument does Nothing for
all variables:

Theorem 6.5 bup is a foldTerm:
foldTerm f (const Nothing) i bup f

The final theorem of this section says that we can fuse the composition of a
bottom-up traversal with a map Term s, where s is a function that maps variables
to Maybe some value, into a foldTerm, provided that the bottom-up traversal is
the identity on the result of s.

Theorem 6.6 bup-map Term-fusion:

|mapM (bup f)os===s] = (foldTerm [ s fn_ bup f o mapTerm s)
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6.3 Substitutions, matching and unification

This section presents three applications expressed in terms of the methods of the
Term class: substitutions, matching and unification. Substitutions and matching
are used in the following section on rewriting.

6.3.1 Substitutions

A substitution is a mapping from variables to terms that changes only a finite
number of variables. As the concrete representation of substitutions is irrelevant
for the definition of rewriting, we use an abstract datatype Sub t for finite maps
from variables to terms.

1dSubst o Subt
modBind  :: (Var,t) — Sub t — Sub t
lookupIn = Sub t — Var — Maybe t

This could be implemented as a constructor class in Haskell, but we avoid that
because we don’t want to clutter up the types with an extra type context. The
value idSubst represents the identity substitution, the call modBind (v, t) s mod-
ifies the substitution s to bind v to ¢ (leaving the bindings for other variables
unchanged) and lookupIn s v looks up the variable v in the substitution s, giving
Nothing if the variable is not bound in s.

Using lookupIn a substitution can be viewed as a function from variables to terms.
To use substitutions as functions from terms to terms we define appSubst:

appSubst :: Term t = Subt —t —t
appSubst s = map Term (lookupIn s)

We can also define a variant of appSubst that does the equivalent of a bottom-
up traversal with f after the substitution has been applied. A straightforward
implementation would be the following:

fromVarsUpAfterSubst :: Term t = (t — t) — (Sub t,t) — ¢
fromVarsUpAfterSubst f (s,t) = bup f (appSubst s t)

Instead, we use a simple corollary of bup-map Term-fusion (Theorem 6.6) to obtain
a more efficient definition (for some combinations of f and s).

fromVarsUpAfterSubst :: Term t = (t — t) — (Sub t,t) — ¢
fromVarsUpAfterSubst f (s,t) = foldTerm f (lookupIn s) t
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Corollary 6.7 bup-appSubst-fusion:

| mapM (bup f) o lookupIn s === lookupIn s |
= | fromVarsUpAfterSubst f (s,t) == bup f (appSubst s t) |

For example, if bup f is an implementation of rewriting to normal form and the
substitution binds all variables to terms in normal form, then the condition is
satisfied.

6.3.2 Matching

Matching a pattern p with a term ¢ yields Just a substitution s such that
appSubst s p == t or, if no such substitution exists, then the matching fails
with Nothing. Both the pattern and the term may contain variables, but the
matching only allows variables in the pattern to be instantiated — any variable
in the term is treated as a term constant. Function match is defined in terms
of match' that carries around a current substitution, starting with the identity
substitution.

match :: Term t = t — t — Maybe (Sub t)
match' :: Term t = t — t — Sub t — Maybe (Sub t)

match p t = match’ p t idSubst
match’ p t s = maybe no yes (varCheck p)
where no = if topEq p t then
threadList (zipWith match' (children p) (children t)) s
else
Nothing
yes v = Just (modBind (v,t) s)

We assume that the patterns are linear - that is, no variable occurs twice in
the same pattern. It is easy to extend this definition to work in the presence of
nonlinear patterns; we do not, however, include the details here.

The utility functions threadList and (@QQ@) compose monadic functions in se-
quence.

threadList = Monad m = [a — m a] — (a — m a)
threadList = foldr (QQ) return
(Q@) :: Monad m = (a —>mb)— (¢c—>ma)— (¢c—mb)

f@ag = X —=gr>=f
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6.3.3 Unification

The unification algorithm described in this section is included for completeness
only and it is not used in the rewriting algorithm. The reader may skip this
section without loss of continuity.

If we change the pattern matching function from Section 6.3.2 to allow also vari-
ables in the second term to match expressions in the first term, thus making the
matching symmetric, then we obtain unification. A unification algorithm tries
to find a most general unifier (mgu) of two terms. A most general unifier of
two terms is a smallest substitution of terms for variables such that the substi-
tuted terms become equal. (If two first order terms are unifiable, then their mgu
is unique up to renaming [93].) Use of unification is widespread; it is used in
type inference algorithms, rewriting systems, compilers, etc. (see the survey by
Knight [68]).

Descriptions of unification algorithms normally deal with a general datatype of
terms, containing variables and applications of constructors to terms, but each
real implementation uses one specific instance of terms and a specialized version
of the algorithm for this term type. This section describes a functional unification
program that works for all regular term types. However, we do not prove that it
is a correct implementation of unification.

Substitutions and unifiers

A unifier of two terms is a substitution that makes the terms equal. We start
with an example. Consider the unification of the two terms F(z, F(A, B)) and
F(G(y,A),y), where z and y are variables and F'; G, A and B are term construc-
tors. Because both terms have an F' on the outermost level, these expressions
can be unified if z can be unified with G(y, A), and F(A, B) can be unified with
y. As these two pairs of terms are unified by the unifier o0 = {z — G(y, A),y —
F(A, B)}, the original pair of terms is also unified by applying the unifier o,
yielding the unified term F(G(F(A, B), A), F(A, B)).

As the example shows we use a slightly different variant of appSubst for unification
than the one used for matching:

appSubst w Termt = Subt —>t—t
appSubst s = mapTerm (mapM (appSubst s) o lookupln s)

When calling appSubst s t, the substitution s is applied to all variables in the
term ¢ as in the version for matching, but here s is also applied recursively to
all variables in the substituted terms. A substitution o is at least as general as
a substitution ¢’ if and only if ¢’ can be factored by o, that is, if there exists a
substitution p such that appSubst o' = appSubst p o appSubst o.
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We want to define a function that given two terms finds a most general unifier
that unifies the terms or, if the terms are not unifiable, reports this.

The unification algorithm

Function wunify takes two terms, and returns their most general unifier. It is
implemented in terms of wunify’, which updates a current substitution that is
passed around as an extra argument. The unification algorithm starts with the

unify :: Term t = t —> t —  Maybe (Sub t)
unify' = Term t = t —t — Sub t —  Maybe (Sub t)

unify tr ty = unify’ tx ty idSubst
unify’ tx ty s = uni (varCheck tz, varCheck ty) where
uni (Nothing, Nothing) | topEq tz ty uniTerms tx ty s

| otherwise = Nothing
uni (Just i, Just j) | i ==j = Justs
uni (Just i, ) = (i—ty)s
uni (_, Just j) = (Jrtr)s

uniTerms :: Term t = t — t — Sub t — Maybe (Sub t)
uniTerms x y = threadList (zipWith unify’ (children z) (children y))

(=) Termt = Var —t — Subt —  Maybe (Sub t)
(i = t) s = if occursCheck i s t then Nothing
else case lookuplIn s i of
Nothing —  Just (modBind (i, t) s)
Just t' — unify’ t t's

Figure 6.1: The core of the unification algorithm

identity substitution, traverses the terms and tries to update the substitution
(as little as possible) while solving the constraints found. If this succeeds, then
the resulting substitution is a most general unifier of the terms. The algorithm
distinguishes three cases depending on whether or not the terms are variables.

e If none of the terms is a variable, then we have two sub-cases; either the
constructors of the terms are different (that is, the terms are not top level
equal) and unification fails, or the constructors are equal and we unify all
the children pairwise.
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vars = (Children t, VarCheck t) = t — [ Var]
vars t = [v | Just v < map varCheck (subTerms t)]

subTerms :: Children t = t — [t]
subTerms t = t: concat (map subTerms (children t))

occursCheck :: Term t = Var — Sub t — t — Bool

occursCheck i s t = i € reachlist (vars t)
where
reachlist | = | 4 concat (map reachable 1)
reachable v = reachlist (maybe [] vars (lookupIn s v))

Figure 6.2: Auxiliary functions in the unification algorithm

e If both terms are variables and the variables are equal, then we succeed
without changing the substitution. (If the variables are not equal, then the
following case matches.)

e If one of the terms is a variable, then we try to add the binding of this
variable to the other term, to the substitution. This succeeds if the variable
does not occur in the term and if the new binding of the variable can be
unified with the old binding (in the current substitution).

A straightforward implementation of this description gives the code in Figure 6.1
using the auxiliary functions in Figure 6.2. Part of a correctness proof of this
implementation can be found in the introduction to generic programming from
the summer school on Advanced Functional Programming 1998 [2].

6.4 Rewriting

This section specifies polytypic rewriting by means of a clearly correct, but inef-
ficient function. The specification can be transformed, using the proof tools for
fixed points and terms presented in the previous sections, in a number of steps
into an efficient rewriting function.

We start in Section 6.4.1 with defining a function rewrite_step, which performs a
single rewrite step on a term. Function rewrite_step is then used in a specification
(a clearly correct, but very inefficient version) of function rewrite in Section 6.4.2.
Using laws about least fixed points and the definitions of concrete fixed points in
Section 6.4.3, function rewrite is transformed into an efficient rewriting function
in a sequence of four steps in Section 6.4.4.
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Many of the functions defined in sequel are parametrized on the rule list (rep-
resenting the rewriting system). As the rule list argument is fixed during the
rewriting calculations, we write this argument as a subscript to improve readabil-
ity. For example, we write rewrite,; t for the application of function rewrite to
the rule list rs and the term ¢.

6.4.1 One step rewriting

Given a rule list rs and a term ¢ to match we can select the first matching rule
with firstmatch,, t:

firstmatch :: Term t = Rules t — t — Maybe (Sub t,1t)
firstmatch,, t = firstJust (map (try t) rs)
where try t (lhs, rhs) = mapM (s — (s, rhs)) (match lhs t)

firstJust :: [ Maybe a| — Maybe a
firstJust = foldr mplus Nothing

mplus :: Maybe a — Maybe a — Maybe a
mplus (Just z) m = Just
mplus Nothing m = m

If a rule matches, then firstmatch,, t returns Just a pair (s, rhs) of the substi-
tution and the right hand side of the matching rule. A note on notation: we
use subscripts for the rule list parameter to various rewriting functions, as in
firstmatch,,. The subscript is used as a convenient syntax for normal function
application.

Using firstmatch and appSubst we can transform a rule list to a top level reduction
function reduceM that gives Just the rewritten term or Nothing. An immediate
variant is reduce that returns the term unchanged if no rule matches.

reduceM 2 Term t = Rulest — t — Maybe t
reduceM,s = mapM (uncurry appSubst) o firstmatch,.,
reduce i Termt = Rulest -t —t

reduce,s t = maybe t id (reduceM, t)

The reduce functions only apply the rewrite rules on the top level of the term,
but we want to apply the rules at any level. In a relational treatment of rewriting
this corresponds to extending the top level reduction relation to a congruence. To
retain the deterministic functional view we have to choose a rewriting strategy.
We have chosen the parallel innermost rewriting strategy as this lets us transform
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the rewriting function into an asymptotically optimal solution. Innermost means
that we order the subterms by their depth and apply the reduction function bot-
tom up until the first match, and parallel means that all subterms at the same
depth are reduced at the same time. Function parallelInnermost takes any top
level term transformer to a global one step transformer, using the parallel inner-
most rewriting strategy. (The corresponding function for the parallel outermost
rewriting strategy, parallelOutermost, is included here for comparison, but is not
used in the sequel.)

parallelInnermost :: (Children t, TopEq t) = (t > t) =t —
parallellnnermost f = contlfFizedBy f (mapC (parallellnnermost f))

parallelOutermost :: (Children t, TopEq t) = (t = t) =t =t
parallelOutermost f = contlfFizedBy (mapC (parallelOutermost f)) f

contlfFizedBy :: (Children t, TopEqt) = (t = t) = (t = t) >t — 1
contlfFizedBy r f = iff firedBy f then r else f

Combining parallelInnermost with reduce we arrive at one-step rewriting:

rewrite_step :: Term t = Rulest —t — ¢
rewrite_step,, = parallelInnermost reduce s

6.4.2 Rewriting to normal form

The final step needed to obtain rewriting to normal form is, in relational termi-
nology, the transitive closure. As a functional counterpart we use a fixed point
operator fp that takes a one step reduction function r to a normalizer by applying
r until the input term doesn’t change:

forTermt = (t —>t) >t —t
fo f = iff firedBy f then id else fp f o f

The result res == fp f z, when fp terminates, is a fixed point in the sense that
res == f res, that is, firedBy f res holds. Now we are ready to define rewriting
to normal form:

rewrite :: Term t = Rulest —t —t
rewrite,s = fp rewrite_step,,

Function rewrite,; rewrites a term until no rule applies anymore, that is, it
rewrites a term to normal form. A term is in normal form for a rule list rs
if it is unchanged by rewrite_step,,:

normal :: Term t = Rules t — t — Bool
normal,s = firedBy rewrite_step,,
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For rule lists rs corresponding to strongly normalizing rewrite systems, rewrite,.
will take any term to its normal form, but rewrite,s also works for the subset of
normalizing terms of any other rewriting system. If a term has multiple normal
forms, then rewrite,; calculates only the one (if any) reachable by the parallel
innermost rewriting strategy. If this strategy does not terminate for a certain
term, then neither does rewrite,,. More formally, we define normalizing terms
and the first theorem for rewrite:

Definition 6.8 Normalizing terms:

normalizing v Term t = Rules t — t — Bool

normalizing . = fir moreNormal

moreNormal 0 Term t = Rules t — (t — Bool) — (t — Bool)
moreNormal,s p = normal,s V p o rewrite_step,,

Theorem 6.9 Rewriting gives a normal form:

| normalizing,, | = |normal,s o rewrite s |

The proof of this theorem by fixed point induction is in the next section.

Function rewrite,; can be seen as an executable specification of rewriting to nor-
mal form for a given rule list and a given term. It can be useful for experimenting
with different rule lists but for larger terms it is unacceptably inefficient. We de-
fine the norm of a term (with respect to a specific rule list) to be the number of
(parallel innermost) reduction steps that it takes to reach normal form:

norm . Termt = Rulest — t — Int
normys t = if normal,s t then 0 else 1 + norm,s (rewrite_step,, t)

The time it takes to execute rewrite,s is linear in the norm, n, of the input
term but quadratic in the (average) size, s, of the term being rewritten. Clearly
it should be possible to do better than that - optimally we hope to obtain a
running time of O(n + s). Using the laws for fixed points and terms given in
the previous sections, we can transform the specification of rewriting, rewrite,.,
into an optimal function. The result of this transformation, which is linear in the
norm of the input term, is presented in Section 6.4.4.
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6.4.3 Concrete fixed points

Using fiz we can give the following equivalent definition of function fp presented
in Section 6.4.2:

fp 2 Termt = (t—t) >t —>t

fof = fiw(fipf)

fiv o Termt = (t—1t) = (t—>t) = (t—=t)
ffo fr = iff firedBy f then id else r o f

The two parameters of ffp f r are both functions. The first parameter is used
to test if we have reached a concrete fixed point. It does not change during
the calculation of fiz (ffp f). The second parameter, on the other hand, is an
approximation of fp f. It starts out as | and improves in each iteration of fiz.
Thus ffp f is an example of an improvement function.

Calculating fixed points using ffp is often very inefficient because of the expensive
equality test in fizedBy. For some functions f, the efficiency can be improved if
the equality test is fused with f, so that f £ is Nothing if the term is left unchanged
and Just the changed term otherwise. The corresponding change to ffp results in

JfpM:

ffioM :: (a — Maybe b) — (b — a) > a — a
oM fM r = Az — maybe z r (fM z)

A typical example of a function f with the desired property is, as we will see
later, reduce,.

A fusion lemma for ffpM is an easy consequence of the maybe - mapM - fusion
law from the prelude (Chapter 2):

Lemma 6.10 ffpM - mapM - fusion:

fioM (mapM f o g) r == ffipM g (r o f)

6.4.4 Improving rewriting

In this section we transform the definition of rewrite step by step until we reach
a linear algorithm. Each transformation step is reasonably small and the correct-
ness of the whole sequence is proved by a chain of equalities of the intermediate
versions. As each function is a version of rewrite we will use names such as
rewrite? | rewrite” etc. Proofs of some of the theorems of this section are given
in Section 6.5.
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Children first

As a first step, we transform the specification into a definition that actually has
a slightly worse running time than the original, but which simplifies the coming
transitions. We are aiming at using the bottom up nature of the parallel innermost
rewriting strategy to obtain an efficient rewriting algorithm that is a bottom up
traversal on the outermost level. With rewriting defined using bup we can make
optimizations based on the invariant that all children already are in normal form
when a certain level is to be rewritten. For the first “improved” variant we thus
choose:

7‘ew7‘itefg = bup rewrite,

The correctness of this first step follows from the fact that we can always rewrite
the children to normal form first and only then start working on the top level.

Theorem 6.11 Children first:

rewrite,s === rewrite,, o mapC rewrite,

Intuitively this theorem follows immediately from the use of an innermost rewrit-
ing strategy, but the proof by fixed point induction is rather long and omitted
from this presentation.

Corollary 6.12 Version B equals the specification:
~ _fin_ B
rewrite,s === rewrite,,

The corollary follows from theorem 6.11 by bup-characterization.

Using the normal children invariant

For the next transformation we need to look more closely at the definition of
rewrite®. The first thing to note is that the outermost bup means that we know
that all children are in normal form when the argument to bup is applied. Then
it is clearly overkill to use the full fledged rewrite function at that stage, when
a simpler variant would suffice, but it is important that the simpler variant is
guaranteed to produce only normal forms so that the “normal children” invariant
is preserved. To get an idea of where to go next, we expand the definitions of
rewrite and fp to arrive at this equivalent definition of rewrite®:

rewrite;; = bup (fiw (ffp rewrite_step,,))
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If we unfold fiz one level, then we see that the argument to bup is of the form
r = ffp rewrite_step,, r'. The “normal children” invariant means that the
function r will receive a term whose children are in normal form. If we expand

the definition of ffp, then we get
r = iff firedBy rewrite_step,, then id else r' o rewrite_step,,

As the children of the input term are in normal form, the bottom up rewrit-
ing strategy implemented by rewrite_step,, will not find a reducible term until
possibly at the top level. More formally, this is captured by the following lemma.

Lemma 6.13 Rewrite with normal children s reduce:

. deeper normal s
rewrite_step ., === reduce

Proof: Expand the definition of rewrite_step one level and use Lemma 6.18. O

Thus we can replace rewrite_step by reduce in r to obtain r == [fp reduce,s r'.
Unfortunately we cannot immediately make the same transformation also for r’
as the term argument of r' is reduce,; ¢t whose children need not be in normal
form. But if we replace r’ with bup r, then the function r will only be applied to
normal terms. (That this is really the case is not easy to see, but it is confirmed
by a proof using fixed point induction.)

To summarize, we can replace fiz (ffp rewrite_step,,) by fix (ffp reduce,s o bup)
to arrive at the definition:

rewrite. = bup (fir (ffp reduce,, o bup))

This mind boggling creature can be simplified somewhat by the rolling rule:

ffix (gof)) = fir (foy)

rewrite. = fiz (bup o ffp reduce,)

Theorem 6.14 Version B equals version c:

B normalizing

rewrite,, === rewrite,

The asymptotic complexity is not changed by this transformation.
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Removing equality checks

Function reduce can be expressed in terms of ffpyM and reduceM.

reduce,, = [ffpM reduceM,, id

If we expand this definition in version ¢, then we get:

rewriteC. = fix (bup o ffp (fipM reduceM,, id))

We can simplify the expression ffp (ffpM reduceM,s id) to ffpM reduceM,s and
thus remove all equality checks, if we make an assumption about the rule list:

| reduceM,s t == Just | = |- (t == z) |

By examining the implementation of reduceM,,, we can express the requirement
as follows: in the rule list rs, a rule should only match a term, if applying that
rule changes the term. This is a reasonable requirement. Otherwise, if a rule
can match but leave the term unchanged, then rewrite” will loop even though
rewriteC. would have terminated (with the unchanged term).

°rs

The new version of the rewriting function is the following:

rewrite? = fix (bup o ffpM reduceM,)

Theorem 6.15 Version ¢ equals version p:

. normalizing ., .
7“6’11)7“7,156?; R 7“611)7“7,156?3

The simple proof is presented in Section 6.5.

This transformation reduces the asymptotic complexity of rewriting: version a-c
are quadratic in the size (as calculated by function size in Section 6.2.3) but ver-
sion p is linear in the size. They are all linear in the norm (that is, the number
of rewrite steps as calculated by function norm is Section 6.2.3). Moreover, re-
moving the equality tests is essential to obtain a version with a better complexity
than linear in the size.
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Avoiding unnecessary traversals of normal children

An analysis of rewrite” shows that quite some time is spent on trying to rewrite
terms that are already normal. After each successful rewrite step with a rule
(lhs, rhs), the resulting term is traversed bottom up in search of redeces. But
as the incoming term has normal children, the resulting term is rhs with normal
terms substituted for its variables. Clearly any redeces in this result must be
in the topmost part coming from rhs. The following transformation changes
rewrite” to limit the search for redeces to this topmost part.

We start by using the rolling rule on version p.

D
rewrite,

{ Definition }

fix (bup o ffpM reduceM,)

{Rolling rule (Lemma 2.12) }

bup (ﬁ.T (ﬁpM TeduceM,,s o bup))

{ Introduce reduce”, = ffpM reduceM,, o bup }
bup (fiz reduce?’)
Now we transform reduce®.

E
reduce,, T

{ Definition of reducefq }

oM reduceM s (bup )

{ Def.: reduceM,; = mapM (uncurry appSubst) o firstmatch, }

ffioM (mapM (uncurry appSubst) o firstmatch,,) (bup r)

{ ffipM -mapM -fusion (Lemma 6.10) }
fipM firstmatch,; (bup r o uncurry appSubst)

= { bup-appSubst-fusion (Corollary 6.7) }

oM firstmatch,, (fromVarsUpAfterSubst r)
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The real improvement comes in the last step. In the next to last expression,
remember that firstmatch,, t gives Just a pair (s, 7hs) of a substitution and
the right hand side of the matching rewrite rule, or Nothing if no rule applies.
Function appSubst applies s to rhs, and bup r applies r at all levels in the
resulting term. We know that all children of the incoming term are normal, and
this means that all variables in the substitution s will be bound to normal terms.
But when appSubst is applied the information about which terms are normal is
lost, and the bottom up traversal is used to restore the invariant.

The improved version is obtained by fusing bup r with appSubst to a function
fromVarsUpAfterSubst r. The improved version only applies r from the variables
in the right hand side of the matching rule and upwards upwards, and leaves the
normal children alone. The improved version is thus:

rewrite’. = bup (fir (fpM firstmatch,, o fromVarsUpAfterSubst))

Theorem 6.16 Version p equals version E:

p normalizing .,

rewrite,; = rewrite,.,

This version of rewrite is linear in the number of steps needed to rewrite a term,
and independent of the size of the intermediate terms. This big improvement
is obtained by avoiding repeated traversals of already normal children. The im-
proved version instead only traverses the right hand sides from the matching
rules.

6.4.5 Efficiency comparison

A very simple measure of the running time for the different rewriting functions is
the number of Hugs-reduction steps (not to be confused with rewriting steps in the
rewriting system) required to run the functions on some examples. The following
table shows some measurements of the number of Hugs reductions required by
the different versions to rewrite the expression 2" for n = 6,7,8. The number 2
abbreviates S (S Z) :: Expr and the exponentiation notation (2"), is a shorthand
for repeated multiplications (uses of ( :x: )). The expression is normalized using
the rewrite rules exprrules defined in Section 6.1.

Hugs-reductions for version

expression rewrite steps A B c D E
26 107 74AM  T4AM  2.7TM 478k T2k
27 179 4TM ATM 20M  1.6M 122k
28 323 344M  344M  156M  5.7TM 218k

e n O(e*n) Of(e*n) O(e*n) Ofen) O(n)
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The last line in the table gives the asymptotic complexity for the different versions
in terms of the size of the answer e and the number of parallel innermost rewrite
steps n. The number of rewrite steps n increases more slowly than the size of
the answer e as the parallel rewriting strategy performs more and more inner
reductions in parallel as the terms grow. Hence, n is not quite proportional to
e, and we can analyze the complexity in terms of both variables. As we can see
from the table all versions are linear in n but the dependence on e differs. As
n is the number of rewrite steps, we can think of the dependence on e as the
complexity per rewrite step.

For versions 4-c the complexity can be explained by the test for equality at every
node in the term. As the equality check and the number of nodes are both linear
in e, we get a quadratic dependency in total. An equality test that reports False
is often quick, but determining that two terms are completely equal is of course
linear. As the equality checks are performed to see if a term is in normal form, we
can confirm the suspicion that these versions do a lot of work on already normal
(sub)terms.

Version p reduces the e complexity to linear, by removing the equality checks,
but in every rewrite step it still traverses the normal subterms and applies match
in search for reducible terms. Version E completely removes the unnecessary
traversals of normal subterms, and thus reduces the cost of each rewrite step to
a constant (determined by the rule list).

6.5 Proofs

In this section we prove the term combinator laws from Section 6.2.4 and a
selection of the rewriting function laws from Section 6.4. We start with a few
lemmata used in the proofs.

As variables have no children, they cannot be changed by mapC'"
Lemma 6.17 mapC does not change variables:

|isJust o varCheck | = |mapC f === id |

Lemma 6.18 Fized by mapC':

firedBy (mapC' f) === deeper (fizredBy f)

The following lemma (used in the proof of bup-characterization) is an easy con-
sequence of the laws required for Term instances and the definition of ( == ).
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Lemma 6.19 Deep equality and mapC':
mapC' f === mapC g = deeper (f === g)

The improvement function deeper used in the definition of fin = fix deeper is
monotone in the following sense:

Lemma 6.20 deeper is monotone:

For all p and q:

(lp] = la)) = (ldeeper p| = |deeper q])

6.5.1 Proofs of term combinator laws

In this subsection we restate and prove the laws from Section 6.2.4.

Theorem 6.2 (with proof) bup-characterization:
fin _ fin
(f ===gomapC [) = (f === bup g

Proof: The < implication follows immediately from the definition of bup. For
the other implication we first assume the left hand side is true and expand the
definition of the right hand side to expose the fixed points:

JTEEE fig ((go) 0 mapC)
We use fixed point induction with n = 2, improvement functions i; = (go) o
mapC and iy = deeper and relation P:

P (h,p) = f=%2=h A InLim,, p

The side condition InLim;, p = |p| = |fin] follows from Lemma 6.20 (mono-
tonicity of deeper) and Lemma 2.17 (InLim), thus we only need to prove the
equality here.

Base case: P (L, 1) is trivially true as | L| = false and (false = q) = true.

Inductive case: We prove P (gomapC h, deeper p) <= P (h,p) by calculation:
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P (g o mapC' h, deeper p)
{ Definitions }
f L g o mapC h
{ Transitivity: a =ZL— ¢ &« (a =L ) A (b =4 ) }

(f “EZ gomapC f) A (g0 mapC f “EZ gomapC h)

{ Use the assumption f n_ gomapC f on the left }
gomapC f decper p gomapC h
{ Cancel g, definition of ( =4 )}
| deeper p| = |mapC f === mapC h|
{ Lemma 6.19 }
| deeper p| = |deeper (f === h) |
{ Lemma 6.20: deeper is monotone }
lp] = |f ===h]
{ Definition of (=%=) and P (h,p)}
P (h,p)

Theorem 6.4 (with proof) bup-equality:

(g omapC f b o mapC f) = (bup g = bup h)
where f = bup g

Proof: We calculate as follows:

fin

gomapC f === homapC f

{ By definition: f = bup g}

fin

g o mapC (bup g) === h o mapC (bup g)

{ By definition: g o mapC (bup g) === bup g }

fin

bup g === h o mapC (bup g)

{ bup-characterization }

bup g n_ bup h
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Theorem 6.5 (with proof) bup is a foldTerm:

foldTerm f (const Nothing) fn_ bup f

Proof: By bup-characterization the theorem follows from:

foldTerm f (const Nothing) fn_ fomapC (foldTerm f (const Nothing))

We let s = const Nothing and calculate:

foldTerm f s
- { Definition of foldTerm }

At — maybe (f (mapC (foldTerm f s) t))
(maybe (f t) id o const Nothing)
(varCheck t)

= { Simplify maybe: maybe n j o const Nothing === const n }

At — maybe (f (mapC (foldTerm f s) t))

(const (f 1))
(varCheck t)

= {Lemma 6.17: mapC does not change variables }

At — maybe (f (mapC (foldTerm f s) t))
(const (f (mapC (foldTerm f s) t)))
(varCheck t)
= { Simplification: maybe n (const n) m == n if m is not L }
At — f (mapC (foldTerm f s) t)
= { Definition of (o) }
fomapC (foldTerm f s)

The value m in the second last step is not L because the input term is finite and
varCheck terminates for finite terms. O

Theorem 6.6 (with proof) bup-mapTerm-fusion:

|mapM (bup f)os===s] = foldTerm f s fn_ bup f o mapTerm s
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Proof: We give a calculational proof by induction over the depth of the incom-
ing term. Thus the induction hypothesis is that the equality holds for terms of
lower depth.

bup f o mapTerm s

= { definition of mapTerm, foldTerm }
bup f o At — maybe (mapC (mapTerm s) t)

(maybe t id o s)
(varCheck t)

= { maybe-fusion: g o maybe n j = maybe (¢ n) (goj)}
At — maybe (bup f (mapC (mapTerm s) t))

(maybe (bup f t) (bup f) o s)
(varCheck t)

= { Subcalculations below of the first two arguments of maybe }

At — maybe (f (mapC (foldTerm f s) t))
(maybe (f t) id o s)
(varCheck t)

= { definition of foldTerm }

foldTerm f s

The second but last step, where we simplify the first two arguments to maybe, is
motivated by the following calculations. For the first argument we have

bup f o mapC (mapTerm s)
= { Definition bup }

fomapC (bup f) o mapC (mapTerm s)
= { mapC preserves composition }
fomapC (bup f o mapTerm s)

= { Induction hypothesis: |[bup f o mapTerm s === foldTerm f s| }

fomapC (foldTerm f s)
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In the simplification of the second argument of maybe, we know that the incoming

term is a variable. Thus we can calculate as follows:

maybe (bup f t) (bup f)o s

= { Unfold the first bup one level }
maybe (f (mapC (bup f) 1)) (bup f) o s

= {Lemma 6.17: mapC does not change variables }

maybe (f ) (bup f)os

= { maybe-law: maybe n (j o g) === (maybe n j) o mapM g }

maybe (f t) id o mapM (bup f)os

= { Assumption mapM (bup f)os ===s}

maybe (f t) id o s

6.5.2 Proofs of rewriting transformations

In this subsection we restate and prove a selection of the rewriting function laws

from Section 6.4.

Lemma 6.21 moreNormal is monotone:

For all p and q:

(lp] = lg]) = (|moreNormal, | = |moreNormal,])

Theorem 6.9 (with proof) Rewriting gives a normal form:

| normalizing,, | = |normal,s o rewrite s |
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Proof: Expand the definitions of normalizing and rewrite to expose the fixed
points:

| fir moreNormal,s | = |normal,s o fix (ffp rewrite_step,,) |

Use fixed point induction with n = 2, predicate
P (f,p) = |p| = |[normal,sof]|

and the improvement functions iy = [fp rewrite_step,, and is = moreNormal,.
The base case P (L, L) is trivial as the left hand side of the implication is false.
For the inductive step start by transforming normal,; o ffp rewrite_step,, f.

| normal,s o ffp rewrite_step,, f |
{ Definition of ffp }

| normal 5 o iff normal,s then id else f o rewrite_step,, |

{Lemma 2.8: iff then else -fusion }

iff normal,s then |normal, | else |normal,s o f o rewrite_step,, |

{Lemma 2.9 }

iff normal,s then true else | normal,s o f o rewrite_step,, |

{Lemma 2.10: V expressed with iff then else .}

|normal,s V (normal,s o f o rewrite_step,,) |

{ Definition of moreNormal }

| moreNormal,s (normal,s o f) |

Thus prepared the calculation is simple:

P(f.p)
{ Definition of P }

\lp| = |normal,sof]

= { Monotonicity of moreNormal }

| moreNormal,s p| = |moreNormal,s (normal,s o f) |

{ Preceding calculation }

| moreNormal,s p| = |normal,s o ffp rewrite_step,, f |

{ Definition of P }
P (ffp rewrite_step,,, moreNormal,s f)
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Theorem 6.15 (with proof) Version ¢ equals version p:

¢ normalizing,.,
rs -

rewrite rewrite)

Proof: The definitions of rewrite$, and rewritel are very similar:

rewrite. = fiz (bup o ffp reduce,)
rewrite? = fix (bup o ffpM reduceM,.)

Thus it is enough to show that ffp reduce,, === ffpM reduceM,s. Remember
that reduce,s t = maybe t id (reduceM,, t) and calculate as follows:

ffp reduce,s v t == ffpM reduceM,; r t
= { Definition of ffp and ffpM }

if t == reduce,s t then t else r (reduce, t)
== maybe t r (reduceM, t)

{ Case analysis on reduceM, t }

case reduceM,, t of
Nothing — (if t ==t then t else r t) ==
Justz ~ — (ift===xzthentelserz)==rz

{ Simplify }

case reduceM,, t of
Nothing — t==1

Just x — ift==zxthent==rzelserz==rzx
=  { Reflexivity and assume — (t == z) is true }
True
Thus ffp reduce,; === ffpM reduceM,, follows from the assumption

|reduceM,s t == Just | = |- (t ==1z)] .
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6.6 Conclusions

We have presented a framework for polytypic programming on terms, with which
polytypic programs for matching, unification, rewriting, etc. can be constructed.
The framework is an interface consisting of four functions. Using these four basic
functions we have defined a set of combinators on terms, and we have proved
several laws for these combinators. The framework has been used to calculate an
efficient rewriting program from an inefficient, clearly correct specification.

Because the only polytypic components of the functions for rewriting, matching
and unification are the functions in the term interface, our functions are inde-
pendent of the particular implementation of polytypism. This is an important
advantage. Other, less domain specific, frameworks for polytypic programming
are the monadic traversal library of Moggi, Bellé and Jay [81] and the basic com-
binator library PolyLib (Chapter 5). Very likely there are other domain specific
polytypic libraries, but they can only be determined by developing many example
polytypic programs.



Chapter 7

Polytypic Data Conversion
Programs1

Abstract

Several generic programs for converting values from regular datatypes
to some other format, together with their corresponding inverses,
are constructed. The formats considered are shape plus contents,
compact bit streams and pretty printed strings. The different data
conversion programs are constructed using John Hughes’ arrow com-
binators along with a proof that printing (from a regular datatype
to another format) followed by parsing (from that format back to
the regular datatype) is the identity. The printers and parsers are
described in PolyP, a polytypic extension of the functional language
Haskell.

7.1 Introduction

Many programs convert data from one format to another, for example, parsers,
pretty printers, data compressors, encryptors and functions that communicate
with a database. Some of these programs, such as parsers and pretty printers,
critically depend on the structure of the input data. Other programs, such as most
data compressors and encryptors, more or less ignore the structure of the data.
Using the structure of the input data in a program for a data conversion problem
almost always gives a more efficient program with better results. For example,

! An article version of this chapter has been submitted to Science of Computer Programming
in 2000 [53]. A shorter version, “Polytypic compact printing and parsing”, appeared in the
proceedings of the European Symposium on Programming in 1999 [48].
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a data compressor that uses the structure of the input data runs faster and
compresses better than a conventional data compressor. This chapter constructs
several polytypic data conversion programs that make use of the structure of the
input data. We construct programs for determining the shape of data, packing
and pretty printing data.

7.1.1 Data conversion programs
Shape.

A value of a container type d a can be uniquely represented by its shape (of type
d ()) and a list of its contents (of type [a]). As an example, consider the datatype
of binary trees with leaves containing values of type a.

data Tree a = Leaf a | Bin (Tree a) (Tree a)

The following example binary tree

tree :: Tree Int

tree. = Bin (Bin (Leaf 1) (Bin (Leaf 7) (Leaf 3))) (Leaf 8)

can be represented by a pair of its shape

treeShape :: Tree ()
treeShape = Bin (Bin (Leaf () (Bin (Leaf () (Leaf ()))) (Leaf ()

and its contents [1, 7,3, 8].

Our first data conversion program is a program for separating a value into its
shape and its contents, together with its inverse: a program that combines a
shape and some contents into a datatype value. The construction proves that
the two functions are each others’ inverses. Note that shapes are at the heart of
Jay’s [56] theory of polytypism, but here we only use separate and combine as
examples of simple data conversion programs.

We start with this almost trivial data conversion problem because these con-
version functions serve as nice examples of simple polytypic programs, but also
because much of the essential structure of the packing and pretty printing pro-
grams is present already at this stage.
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Packing.

Many files that are distributed around the world, either over the Internet or on
CD-rom, possess structure — examples are databases, HTML files, and Java-
Script programs  and it pays to compress these structured files to obtain faster
transmission or fewer CDs. Structure-specific compression methods give much
better compression results than conventional compression methods such as the
Unix compress utility [6,15]. Structured compression is also used in heap com-
pression and binary [/O [104].

The idea of designing structure-specific compression programs has been around
since the beginning of the 1980s, but, as far as we are aware, there is no generic
description of the program, only example instantiations appear in the literature.
This chapter describes the compression program generically by combining a poly-
typic parser with a polytypic packing program. The uncompression program is
similarly composed of a polytypic unpacker and a polytypic pretty printer.

Our packing algorithm compresses data by compactly representing the structure
of the data using only static information — the type of the data. Traditional
(bit stream) compressors that use dynamic (statistical) properties of the data
are largely orthogonal to our approach and thus the best compression results are
obtained by composing the packer with a bit stream compressor.

Pretty printing.

Modern programming languages allow the user to define new kinds of data. When
testing or debugging a program, the user often wants to see values of these new
datatypes. Many languages support the automatic derivation of printing func-
tions for user-defined datatypes. For example, by writing deriving Show after a
Haskell datatype definition, the function show for this datatype is obtained for
free. Thus in Haskell one can use a built-in polytypic function show, but show
can not be expressed in the language, and one can not define alternative polytypic
pretty printing functions.

This chapter shows how one can define polytypic versions of the functions show
and its inverse read that work for values of arbitrary regular datatypes. Again,
the functions show and read are each others inverses by construction. Thus
we externalize the definitions of these functions (in Haskell they are part of the
compiler and cannot be inspected), and we show that our definitions are correct.

7.1.2 Constructing data conversion programs

The fundamental property of the three printing functions print just described is
that each of them has a right inverse with respect to forward composition: the
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parsing function parse. That is, print ; parse = id, but parse ; print need not be
id.? In the rest of the chapter we will write just inverse, when we really mean right
inverse. This is a very common specification pattern: all data conversion problems
are specified as pairs of inverse functions with some additional properties. In this
chapter, the driving force behind the definitions of the functions print and parse is
inverse function construction. Thus correctness of print and parse is guaranteed
by construction. Interestingly, when we forced ourselves to only construct pairs of
inverse functions, we managed to reduce the size and complexity of the resulting
programs considerably compared with our previous attempts.

The conversion programs are expressed using arrows — John Hughes’ suggestion
for generalizing monads [42]. The arrow combinators can be seen as defining a
small (impure) functional language embedded in Haskell. We use constructor
classes to allow for varying interpretations of this embedded language. Thus the
conversion programs are implicitly parametrized with respect to the choice of
implementation and semantics for this embedded language, and the laws needed
to prove the correctness of the conversion programs are expressed as restrictions
on the possible implementations.

This chapter has the following goals:

e construct a number of polytypic programs for data conversion problems,
together with their inverses;

e show how to construct and calculate with polytypic functions.

The implementation of the data conversion programs as PolyP code can be ob-
tained from the polytypic programming WWW page [49].

The rest of this chapter is organized as follows. Section 7.2 constructs poly-
typic programs for separating a datatype value into its shape and its contents,
and for combining shape and contents back to the original value. Section 7.3
introduces an abstract function concept called arrows, which is used a lot in the
following sections. Section 7.4 defines two kinds of arrow maps and proves that
they are inverses. Section 7.5 sketches the construction and correctness proof of
the packing program. Section 7.6 constructs polytypic programs for showing and
reading values of datatypes. Section 7.7 defines instances of the various arrow
classes. Section 7.8 concludes with an overview of the results, a discussion and
some suggestions for future work.

2The composition parse : print is automatically almost id: if s = print £ then
(parse ; print) s = (print ; parse ; print) x = (id ; print) x = print £ = s. Thus it is id on
the image of the print function (a subset of the set of values that can be parsed) but the
behavior for other values is not specified.
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7.2 Shape

The shape of a value is its structure without its contents. This section defines
functions for separating a datatype value into its shape and its contents, and for
combining shape and contents to a datatype value. Furthermore, it proves that
the composition of these functions is the identity.

7.2.1 Function separate

A first definition of function separate, using the functions flatten and pmap, was
presented already in Section 3.9.

separate i Regular d = d a — (d (),[a])
separate = (pmap (const ()) z, flatten x)

It is more difficult to define the function combine, the inverse of function separate.
A standard implementation of function combine traverses the shape, carrying
around the content list, and inserts one element from the list at each of the
parameter positions in the shape. Because it is not easy to prove that such a
function is the inverse of function separate, we redefine function separate to make
the inverse construction straightforward.

The preceding definition of function separate traverses its input datatype value
twice: once with pmap (const ()), and once with flatten. We can fuse these two
traversals into a single traversal that carries around an accumulating state pa-
rameter. This traversal is carried out by a function similar to pmap which we
call an arrow map. The arrow map takes as argument a function, in this case
the function put, which at each parameter position prepends the element to the
accumulating list, and replaces the element by the empty tuple. To avoid ‘pol-
lution’ of the types with state information, we introduce a new type constructor
SA for functions that side-effect on a state.

newtype SA s a b = SA ((a,s) — (b,$))

We use the notation a ~, b for SA s a b. Using this type and an arrow map
called pmapAr, we obtain the following definition for function separate.

separate  d a -~ d ()
separate = pmapAr put
put  a~>pg ()

put = SA (Ma,zs) = ((), a: z5))

pmapAr 2 (a~sb) = (d a~s d b)
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where pmapAr is defined in Section 7.4. The r in pmapAr denotes the direction
of the traversal: pmapAr is a right to left traversal. This means that given a
tree node with two subtrees, function pmapAr first traverses the right subtree,
and then the left subtree. Direction doesn’t matter for normal maps, but for
maps that carry around and update a state direction is important. For separate
we could have used put’ = SA (A(a,zs) — ((), zs + [a])) and the left to right
traversal, pmapAl, but it turns out that the (somewhat counterintuitive) right to
left traversal with put is lazier, more efficient and easier to prove correct.

7.2.2 Function combine

Using the left to right traversing variant of the arrow map, pmapAl, we can write
the inverse of separate, called combine, as follows.

combine = d ()~ da
combine = pmapAl get
get 2 () ~qq 0

get = SA (M(),a: as) = (a,as))
pmapAl 2 (a~sb) = (d a~4 d b)

It remains to define the arrow maps, and to prove that combine is the inverse
of separate, that is, separate followed by combine is the identity. Note that, due
to the constructor SA, we cannot use normal function composition for values of
type a ~ b. Instead we define a new composition operator (>>):

(>) = (a~sb) = (b~ ) = (a~0)
SA [ > SA g=5A(f:9)

It is easy to see that get is the inverse of put, but we include the proof as a
reminder of the notation we use for calculational equality proofs.

put > get
= Definitions of get and put

SA (Ma,zs) = ((),a:zs)) > SA (M(),a: xs) — (a,x5))
= Definition of (>>)

SA (Ma,zs) = (O),a:zs)); (M(),a:xs) — (a,zs)))
= Simplification

SA id

Here SA id :: a~»[q a is the identity on SA and the operator ( =) is equality
on SA.
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7.2.3 Function combine is the inverse of separate

The main ingredient of the proof that combine is the inverse of separate is a law
about inverting arrow maps. More specifically, we have that pmapAl is the inverse
of pmapAr provided the arguments of the maps are inverses:

pmapAr = (a~>gb) = (d a~s d b)
pmapAl = (b~sa) = (d b~ d a)

f> g=SA1id = pmapAr f > pmapAl g = SA id (7.1)

Using this law (which is proved in Section 7.4) we have:

separate => combine

= Definitions of separate and combine
pmapAr put => pmapAl get

= Law (7.1); put >> get = SA id
SA id

This proves the correctness of functions separate and combine.

7.3 Arrows and laws

This section generalizes the type constructor SA s to Hughes’ abstract class for
arrows [42]. The arrow class can be seen as a minimal signature of an embedded
domain specific language as described by Paterson [89]. For additional motivation
and background for using arrows, see the papers by Hughes and Paterson [42,
89]. We use a hierarchy of arrow classes as embedded domain specific languages
for expressing data conversion programs. We introduce the arrow combinators
together with example implementations for the SA s arrow. In definitions and
laws that hold for arbitrary arrows we write a ~ b instead of a ~» b.

7.3.1 Basic definitions and laws for arrows

To define the arrow maps and to prove (a generalization of) Law (7.1), we need a
few combinators to construct and combine arrows (that is, values of type a ~ b),
together with some laws that relate these combinators. The implementations are
given for the type a ~» b (that is, SA s a b) to exemplify a typical arrow type
but as we will see later, the types and the laws for the combinators form the
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signature of a more general class of arrows. Thus, any program written using
these combinators will automatically be parametrized over the instances of this
class. The arrow class and the arrow combinators come from Hughes’ arrow
paper [42].

Lifting.
The function that lifts normal functions to functions that also take and return a
state value is called arr.

arr 2 (a —=b) — (a~4b)
arr f = SA (f + id)

We will often write f instead of arr f. Function arr is a functor from the
category of types and functions to the category of types and arrows: it distributes
over composition (and trivially preserves the identity).

T>5=7:0

Arrow composition.

Composition of arrows (defined already in Section 7.2) satisfies the usual laws: it
is associative, and ﬁ is its unit.

i f=f=f>1id

(f>g)>h=Ff>(g>h)

We denote reverse composition with (<), where f << g = g > f.

Arrows between pairs.

Function first applies an arrow to the first component of a pair, leaving the second
component unchanged.

first i (a~4b) = ((a,c) ~; (b, c))
first (SA f) = SA (A((a,¢c),s) —let (b,s") = [ (a,s)
in ((b,¢),s"))

Function first is a functor, that is, it preserves (arrow) identities and distributes
over (arrow) composition.

first 7 =f = id
first (f > g) = first f > first g
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The dual function second that applies an arrow to the second component of a
pair, can be defined in terms of first :

second :: (a~b) = ((¢,a) ~ (¢, b))
second f = swap > first f > swa

swap :: (a,b) = (b, a)
swap (a,b) = (b, a)

Using first and second we can define two candidates for product functors, but
when the arrows have side-effects, neither of these are functors because they fail
to preserve composition.

(#), (<) = (a~c) = (b~d)— ((a,b) ~ (c,d))
f# g = first f > second g
f<«g = second g> first f

If one of the two arguments of first and second is side effect free (doesn’t change
the state), then first commutes with second . The canonical form of a side effect
free arrow is j for some function j.

first ? > second g = second g > first ?

Arrows with a choice.

We can view the arrow combinators as a very small embedded language. With
the combinators defined thus far we can embed functions as arrows using =, we
can plug arrows together using (>>) and we can simulate a value environment
by using first , second etc. However, we cannot write conditionals — there is no
way to choose between different branches depending on the input.

We lift the operator (v) = (a — ¢) = (b — ¢) — (Fither a b — ¢) to the arrow
level to model a choice between different arrow branches. For state arrows the
implementation is straightforward:

(1) = (a~s¢c) = (b~g ) = (Either a b~ c)
SAf |l SA g=S8A (Az,s) = (Aa —f (a,s)) v (Ab— g (b,5))) z)

As a simple exercise in arrow plumbing we define if-expressions:

ifA 1 (a~> Bool) = (a~>b) = (a~b) — (a~b)
ifApte= (m >> first p >> bool2Either >> (t ||| e)

where dup a = (a,a)
bool2Either (b,z) = if b then Left = else Right x
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The lifted variant of operator (—) for arrows is defined by:

(H) = (a~ ¢) = (b~ d) — (Either a b~ Either ¢ d)
f 4 g=(f 3> Left) || (9 > Right)

Operator (4#) is a bifunctor on arrows — it preserves identities and distributes
over composition.

T#7=F+¢
(f 4t 9) > (f"H-¢)=(f>f) H (9> 7)

7.3.2 A class for arrows

The type SA s a b encapsulates functions from a to b that manipulate a state of
type s. However, most of the programs and laws we want to express don’t refer to
the state. Therefore, we go one step further in the abstraction by introducing the
Haskell constructor class Arrow [42,89]. An arrow type constructor (~) is any
two-parameter type constructor that supports the operations of the class Arrow.
We require a number of laws to hold for the instances of the arrow class and for
documentation purposes, we include these laws in the class definition although
they can’t be directly expressed in Haskell.

(>)

first

-- Laws :

IT=>7=f:y
d>f=f=f>id
(f>g)>h=f> (g>h)

first 7 = f = id

first (f >> g) = first f >> first g

first 7 > second g = second g =>> first ?

(
arr = (a

(

(

For arrows with a choice operator, (|||), we define the subclass ArrowChoice. We
include both the operator (|||) and (++), but it is sufficient to define either of them
in every instance because of the defaults. The default declarations are part of the
Haskell class definition and can be seen as laws with immediate implementations.
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class Arrow (~) = ArrowChoice (~) where
(H) == (a~c¢) = (b~ d) — (Either a b~ Either ¢ d)
(1) = (a~c¢)—= (b~ ¢c) = (Either a b~ c)
-— Defaults :
[ty = (13 Lefl) || (g 3> Righl)
7
flllg = (f#g)>idvid
-— Laws :

Twg=7+g
(f H-9) > (f' H#-¢')

=(f>f)H(9>7)
(flllg)>h=(f>h)]

| (9> h)

The type constructor SA s is made an instance of Arrow and ArrowChoice by
taking the definitions of arr, (=), first , (]||) and (++) from Section 7.3.1.
Normal functions are trivially Arrows and they support choice:

instance Arrow (—) where

arr f = f
f>g = fig
first f = [ d

instance ArrowChoice (—) where
fHrg = f+yg
fllg = fvy

With the definitions from these instances, three of the laws from the Arrow and
the ArrowChoice classes can be rewritten to a form which more clearly indicates
that = lifts composition, first and choice from normal functions to arrows:

T>79 = >4
first ? = first
T g = [y

Many side effecting computations can be captured by the Arrow signature, in-
cluding all functions returning monadic results: we can define a Kleisli arrow for
every Haskell Monad [102]:

newtype Kleisli m a b = Kleisli (a — m b)

instance Monad m = Arrow (Kleisli m) where

arr f = Kleisli (Aa — return (f a))
Kleisli f >> Kleisli g = Kleisli (Aa — f a >= g)
first (Kleisli f) = Kleisli (Ma,c) = f a>= \b— return (b, ¢))

instance Monad m = ArrowChoice (Kleisli m) where
Kleisli f ||| Kleisli g = Kleisli (f v g)



116 CHAPTER 7. DATA CONVERSION

7.3.3 An inverse law for arrow products

The two product operators (#>) and (<) are inverses in a certain sense:
(f# g = [y

We will prove this equality in a slightly more general form, which will turn out to
be useful in the following sections. We generalize the inverse law by weakening the
inverse requirement to require only the side-effects to be inverses. If f > f' = 7},
then the arrow f’ un-does the side-effects of the arrow f, leaving just a side-effect
free computation 7. If i is chosen to be id, then we regain the usual (left-)
inverse concept. The more general inverse concept will be used in the rest of the
chapter. The generalized inverse law for the product operators is:

(<) = (a~c) = (b~d)— ((a,b) ~ (e, d))
(®) = (c~a) = (d~b)— ((¢,d)~ (a, b))

f>f=7=2g>g=7 = fxg>wogd)=ix] (12

Perhaps a word on notation is appropriate here. We present the types of the
product operators together with the inverse law, to stress that we are not dealing
with just a pair of inverse functions, but rather with a triple containing two
functions and a proof that they are inverses. We take a curried view of functions
with two arguments, that is, they have type a — b — ¢ rather than (a,b) — c.
Similarly, we prefer to write a proof term with two premises as P = () = R,
instead of the more traditional PA() = R. Thus we stress that the components
of the triple share the same structure: they take two arrows (two proofs) and
return an arrow (a proof).

— —
Proof: We assume f > f'= 7 and ¢ > ¢’ = j and calculate as follows:

(f < g)> (f' #» ¢)
= Definitions of <« and %>
second g =>> first f > first f' > second ¢’
= first is a functor
second g >> first (f > f') > second g’
= Assumption 1
second g > first 7 > second q
= 7 is side-effect free
first 7 > second g > second g¢'

= second is a functor
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first T > second (9> ¢)
= Assumption 2

— —
first i > second j

= first , second and (>>) preserve

(i + id) ; (id + §)

— (=) is a bifunctor

—
i ]

7.3.4 Fixed point induction and arrows

Section 7.4 proves an inverse law (7.4) for arrow maps. A similar law for normal
maps can be proved with the fusion law for catamorphisms. This fusion law is
derived from the fact that datatypes are defined as initial functor-algebras. A
catamorphism on arrows is defined in terms of the function TR, but because
TR is not a functor, we cannot prove, let alone apply, a fusion law. In the
proof of the law for arrow maps we will use instead the fixed point induction
theorem from Section 2.11.1. We can instantiate Theorem 2.15 to a form that
is more suitable for our purposes by letting n = 3 and the (inclusive) relation
P(z,y,2) = > y = 7. The instance takes the following form:

—
(p'>>>u':7:>fp'>>>gu':hi')

= fir f>> fix g=fir h (7.3)

where we have left out the proposition I >> | = | which is true for the arrows
considered in this chapter.

7.4 Arrow maps

In Section 7.2, separate and combine were defined using the arrow maps pmapAr
and pmapAl. The arrow maps can be seen as simple data conversion programs,
which change the contents but leave the shape of the data unchanged. Using the
arrow combinators from Section 7.3 we can now define the arrow maps, and prove
a generalization of (7.1): if u is the inverse of p, then a left traversal with u is
the inverse of a right traversal with p.

pmapAr = ArrowChoice (~) = (a~b) = (d a~ d b)
pmapAl = ArrowChoice (~) = (a~b) = (d a~ d b)

p>u= 1 = pmapAr, p > pmapAl, u = pmap, 1 (7.4)
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polytypic TRy = (a~¢) = (b~ d) = (fab~f cd)
= Apr — case [ of
g+h — TRy pr+#Tr,pr
gxh — TRypr<«TRrR,pr
Empty —)ﬁ
Par — D
Rec —
d@g — pmapAr, (TR, p 1)
Const t — 1

Figure 7.1: The definition of TR

The definitions of the arrow maps are obtained by a straightforward generaliza-
tion of pmap to arrows.

pmapAr, p = outy > TRe, p (pmapAr, p) >> inng
— —
pmapAl; p = ouly > TLg, p (pmapAl; p) > inny

Functions TR and TL are the corresponding generalizations of fmap2. All func-
tions used in the definition of fmap2 are lifted to the arrow level. For all cases
except the product functor case there is only one choice for a reasonable lifting,
but when we lift the operator (=) we have two possible choices: (<) and (#>).
This is the only difference between two two traversal functions: the right to left
traversal, TR, uses (<#) and the left to right traversal, TT, uses (#>). Function
TRris defined in Figure 7.1 and function TL is completely analogous and therefore
omitted. Functions TR and TL satisfy the following inverse law:

Try = (a~c¢)=>(b~d)—=(fab~fcd)
Ty = (c~a) = (d~b) = (fcd~fab)

p>u=1 = p’>>>u’:?> = Trrpp' > TL u u’:fma,pgfzz' (7.5)

Note the close correspondence between this law and the inverse law for the
product operators (7.2).

7.4.1 The arrow maps are inverses

The proof of Equation (7.4) can be interpreted either as fusing pmapAr p with
pmapAl u to get a pure arrow pmap, ¢ or, equivalently, as splitting the func-
tion pmap, ¢ into a composition of two arrow maps. We use induction over the
structure of a regular datatype d a. As the grammars for datatypes and pattern
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functors are mutually recursive we get two induction hypotheses. The datatype
level hypothesis is, that Equation (7.4) holds for datatypes defined earlier, and
the pattern functor level hypothesis is, that Equation (7.5) holds for the sub-
functors. We rewrite the definitions of pmapAr, pmapAl and pmap to expose the
top level fixed points:

pmapAr p = fir (\p' — oul > Trp p' > m?)
pmapAl v = fix (A — out s> TLu ' > Wz)
pmap i = fix (Ni' = out; fmap2 i ' ; inn)

—
We assume p > u = ¢ and calculate as follows:

—
pmapAr p > pmapAl v = pmap 1
= Definitions of pmapAr, pmapAl, fixed point law (7.3)
P> u = 7 =

— — — —
out > TR p p' > inn>> out > TLu u' > inn=

. .7
out ; fmap2 i i ; inn

= P> g=Figim;out=id f3>id=f
-

p>u =1 =
m>>>TRp p'>TLu u > inh = oul > fmap2 i 1’ > nn
. —
= Law (7.5) and the assumption: p > u = i

True

We prove Law (7.5) by induction over the structure of the pattern functor f.
Because there are seven constructors for functors, we have to verify seven cases.
Although this is laborious, we want to show at least one complete proof of a
statement about polytypic functions.

The sum case, g + h:
TRysn p p' > Thyyp u v

= Definitions

(TR p p' # TRy p p') > (T, u v’ H T, u W)
= (+H+) is a bifunctor

(TR, p p' > Tr, u v') 4 (TR, p p' > TL, u )
= Induc'gion hypothesis \7.5 (twice)

fmap2, i i fmap2, i
_ ? +H ¢ = f + g, definition of fmap2, .,

Y
fmap2, ., i 0
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The product case, g * h:
TRyun p p' > TLypup u '

= Definitions
(TR, p p' <« TRy p p') > (TL, u u' % T, u u')
= Inverse law for products (7.2), induction hypothesis (7.5) (twice)

fmap2, i i' « fmap2y i i
= definition of fmap2,,,

4
fmap2y., i i

The empty case, Empty:
TRempty P p' > TLlempy, v o'
= Definitions
= ;} is the unit of >

id

=
fmapQE'mpty bt

The constant case Const t is proved in exactly the same way as the empty case;
the calculation is omitted.

The parameter case, Par:
TRPar p p’ > TLPar u u'
= Definitions
p=>=>u
= Assumption
—
7
= Definition of fmap2p,,

R
fmap2p,, i

The recursive case, Rec, is proved in exactly the same way as the parameter case;
the calculation is omitted.

The composition case, d @ g:
TRyay p p' > Tlijay v v

= Definitions
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pmapAr, (TR, p p') > pmapAl, (TL, u u')
The top level induction hypothesis (7.4) is
f3>g=T = pmapArf > pmapAl g = pmap h
where we take f = TR, p p', g = TL, u o' and h = fmap2 i @'
and induction hypothesis (7.5) is precisely f > g = 7.
pmapy (fmap2, i i)
= Definition of fmap2,q,

fmapgd@g Qi

This concludes the proof.

In the conclusions we will spend some words on (how to simplify) proving state-
ments about polytypic functions.

7.5 Packing

This section sketches the construction and correctness proof of a polytypic packing
program. The basic idea of the packing program is simple: given a datatype value
(an abstract syntax tree), construct a compact (bit stream) representation of the
abstract syntax tree. For example, the following rather artificial binary tree,
called treeShape in the introductory section,

treeShape :: Tree ()
treeShape = Bin (Bin (Leaf ()) (Bin (Leaf ()) (Leaf ()))) (Leaf ())

can be pretty-printed to a text representation of treeShape requiring 55 bytes.
However, because the datatype Tree a has only two constructors, each constructor
can be represented by a single bit. Furthermore, the datatype () has only one
constructor, so the single element (also written ()) can be represented by 0 bits.
Thus we get the following representations:

Bin (Bin (Leaf ()) (Bin (Leaf ()) (Leaf ()))) (Leaf ())
1 1 0 1 0 0 0

The compact representation consists of 7 bits, so only 1 byte is needed to store this
tree. In fact, the pretty-printed text of a value of type Tree () is asymptotically
64 times bigger than the compact representation.® Of course, this is an unusually
simple datatype, but the average case is still very compact.

3A value of type Tree () with n leaves has n — 1 internal nodes. A leaf is printed as the
seven character string "Leaf ()" and a node as "Bin (", left subtree, ") (", right subtree, ")"
a total of nine characters per node. Thus the pretty printed string representation of a tree
contains exactly 7n+9(n—1) = 16n—9 bytes while the compact representation with one bit per
constructor contains 2n—1 bits. The ratio is then 8(16n—9)/(2n—1) ~ 8(16n—8)/(2n—1) = 64.
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Given a datatype value, the polytypic packing function prepends the compact
representation of the value to a state, on which it side effects. Let Text be the
type of packed values, for example String or [Bit]. Then the packing function can
be implemented using the state arrow type constructor SA Tezt, but we will keep
the arrow type abstract and only require that it supports packing of constructors.

To pack a value of type d a we need a function that can pack values of type a.
We could use separate and combine to reduce the packing problem to packing the
structure and the contents separately, but instead we parametrize on the element
level (un)packing function. With Hinze style polytypism [35], this parametriza-
tion comes for free.

Our goal is to construct two functions and a proof:

e A function ppack (‘polytypic packing’) that takes an element level packer
to a datatype level packer.

ppack : (a~ () = (d a~ ()

For example, the function that packs the tree treeShape :: Tree () is obtained
by instantiating the polytypic function ppack on Tree and applying the
instance to a (trivial) packing program for the type ().

e A function punpack (‘polytypic unpacking’) that takes an unpacker on the
element level a to an unpacker on the datatype level d a:

punpack = (()~a) = (()~ d a)

For the Tree example the element level parsing program is a function that
parses nothing, and returns (), the value of type ().

e A proof that if p and u are inverses on the element level a, then ppack p
and punpack u are inverses on the datatype level d a.

Representing constructors.

To construct the printer and the parser we need a little more structure than
provided by the Arrow class we need a way of handling constructors. Be-
cause a constructor can be coded by a single natural number, we can use a class
ArrowPack to characterize arrows that have operations for printing and parsing
constructor numbers:

class ArrowChoice (~) = ArrowPack (~) where

packCon . Nat ~ ()
unpackCon () ~ Nat
-- Laws :

—
packCon > unpackCon = idy,
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With Text = [Nat], the instances for SA Text are just put and get from Sec-
tion 7.2, and the printing algorithm constructed in the following section will in
its simplest form just output a list of numbers given an argument tree of any
type. A better solution is to code these numbers as bits and here we have some
choices on how to proceed. We could decide on a fixed maximal size for numbers
and store them using their binary representation but, as most datatypes have
few constructors, this would waste space. We will instead statically determine
the number of constructors in the datatype and code every single number in only
as many bits as needed. For an n-constructor datatype we use just [log, n] bits
to code a constructor. An interesting effect of this coding is that the constructor
of any single constructor datatype will be coded using 0 bits! We obtain better
results if we use Huffman coding with equal probabilities for the constructors,
resulting in a variable number of bits per constructor. Even better results are
obtained if we analyze the datatype, and give different probabilities to the differ-
ent constructors. However, our goal is not to squeeze the last bit out of our data,
but rather to show how to construct the polytypic program. Because the number
of bits used per constructor depends on the type of the value that is compressed,
packCon and unpackCon need in general be polytypic functions. Their definitions
are omitted, but can be found in the code on the web page for this dissertation.

In the rest of this section (~) will always stand for an arrow type constructor
in the class ArrowPack but, as with Regular, we often omit the type context for
brevity.

7.5.1 The construction of the packing function

We construct a printing function ppack, which promotes an element level packer to
a datatype level packer, together with a parsing function punpack, which similarly
promotes an unpacker to the datatype level. If the element level arguments are
inverses, then we want punpack to be the inverse of ppack:

ppack - (a~s () = (d a~ ()
punpack = (()~ a) = (() ~ d a)

PS> u= 7T = ppack p =>> punpack v = pmap 1 (7.6)
In the following proofs we will assume that the argument packer p and the

. —
unpacker u satisfy p > u = 1 .

Overview of the construction.

Again, the construction can be interpreted as fusing the ‘printer’ ppack with
‘ , — : .
the ‘parser’ punpack to get a pure arrow pmap 1. As we are defining polytypic
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functions the construction follows the structure of regular datatypes: a regular
datatype is a fixed point of a pattern functor, the pattern functor is a sum of
products of type terms, and the terms can involve type parameters, other types,
etc.

The arrow ppack p prints a compact representation of a value of type d a. It
does this by recursing over the value, printing each constructor by computing
its constructor number, and each element by using the argument printer p. The
constructor number is computed by means of function Ps (‘Pack Sum’), which
also takes care of passing on the recursion to the children. An arrow packCon
prints the constructor number with the correct number of bits. Finally, function
Pp (‘Pack Product’) makes sure the information is correctly threaded through
the children.

Top level recursion.

We want function ppack to be ‘on-line’ or lazy: it should output compactly printed
data immediately, and given part of the compactly printed data, punpack should
reconstruct part of the input value. Thus functions ppack and punpack can also
be used to pack infinite streams, for example. Function ppack cannot be defined
with a standard recursion operator such as the catamorphism because the side
effecting arrows would be threaded in the wrong order. Instead of a recursion
operator we use explicit recursion on the top level, guided by PT (‘Pack Top-
level’) and UT (‘Unpack Top-level’).

As ppack decomposes its input value, and compactly prints the constructor and
the children by means of a function PT (defined later), punpack must do the
opposite: first parse the components using UT and then construct the top level
value:

ppack p = PT p (ppack p) < oul
—
punpack v = UT u (punpack u) >> inn

Here (<) is used to reveal the symmetry of the definitions. Thus we need
two new functions, PT and UT, and we can already guess that we will need a
corresponding fusion law:

Pt = (a~ ()= (b~
UT = (O~ 1) = (0~
- / ' ! b
p>u=1i = p>u= = Prpp' >Ur ud =fmap2ii (7.7)

Given (7.7) we can now prove (7.6).
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— —
P> u= 1 = ppack p > punpack u = pmap 1
= Definitions of ppack, punpack, pmap, fixed point law (7.3)
_ / r_ 7
p>u=1 = p S uUu=1 =

AN

oul > Pt pp' > UT u v > inn= out; fmap2 i i ; inn
= Equation (7.7), simplification

True

Packing constructors.

We want to construct functions PT and UT such that (7.7) holds. Furthermore,
these functions should do the actual packing and unpacking of the constructors
using packCon :: Nat ~ () and unpackCon :: () ~ Nat from the ArrowPack
class:

Pt pp' = packCon < Ps p p'
Ut uw v = unpackCon > US u v

The arrow Ps p p’ packs a value (using the argument packers p and p’ for the
parameters and the recursive structures, respectively) and returns the number of
the top level constructor, by determining the position of the constructor in the
pattern functor (a sum of products). The arrow packCon prepends the construc-
tor number to the output. As packCon > wunpackCon = ﬁ by assumption,
the requirement that function PT can be fused with UT is now passed on to Ps
and Us (‘Unpack Sum’):

Ps = (a~()—= (b~ () —(f a b~ Nat)
Us ()~ a)—= ()~ b) = (Nat ~ f a b)

—
p>>>u:7):>p’>>>u':?:>PSpp’>>>USuu’:fmap2iz" (7.8)

The arrow unpackCon reads the constructor number and passes it on to the arrow
Us u u', which selects the desired constructor and uses its argument parsers u
and u to fill in the parameter and recursive component slots in the functor value.

Calculating constructor numbers.

The pattern functor of a Haskell datatype with n constructors is an n-ary sum
(of products) on the outermost level. In PolyP this sum is represented by a
nested binary sum, which associates to the right. Consequently, we define Ps by
induction over the nested sum part of the pattern functor and defer the handling
of the product part to PP (‘Pack Product’). (The definitions of inny, and outyg
are in Figure 7.2.)
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data Nat =7 | S Nat

innyg 2 Either () Nat — Nat
innyge = (const 7)< S

outyg = Nat — — FEither () Nat
0UlNa (Z) = Left ()
0UtNa1 (Sn) = Right n

Figure 7.2: The definitions of inny, and outy, as Haskell code.

polytypic Ps; = (a~()) = (b~ ()) = (f a b~ Nat)
= Ap p' — case [ of
g+h—>W<<<(PPpp'4+l—PSpp’)
g —)A()—)ii<<<PPpp’
polytypic Us; = (()~a) — (() ~ b) = (Nat ~ f a b)
= \u v’ — case f of
g+h—>m>>>(UPuu'—|+l-USuu’)
g —))\0—>(;>>>UPU71,'

The types for PP and UP (‘Unpack Product’) and the corresponding fusion law
are unsurprising:

Pp = (a~ ()= (0b~(0)—=(fab~()
Up = (O0~a)=(()~b)—=(0)~fab)
p>>>u:7) = p’>>>u':? = PP pp' > UPuu =fmap2ii (7.9)

We prove Equation (7.8) by induction over the nested sum structure of the
functor. The induction hypothesis is that (7.8) holds for Psy,.

The sum case, g + h:
PSgin p p' > Usgyp u v

= Definitions

(Pp, p p' H Psy p p') > innyg >
— ! !
outng > (UP, u u' 44 Usy, u o)

= INNNgs 5 0Ulng = 1d

(Pp, pp"H Psypp') > (Up, u v + Us, uu)
= () is a bifunctor
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polytypic PPy = (a~ () = (b~ () = (f a b~ ()
= Ap p' — case [ of
gxh — X(),0)) = () < (Ppypp <« PprP,pp)
Empty — ﬁ
Par —p
Rec — 9/
d@g —— ppack, (PP, p p')

polytypic Up; == (() ~a) = (()~b) = (()~ [ ab)
= A\u v — case [ of

g*h —>)\()—>((),();>>>(UP_Q u u' %> UpPy u u')
Empty — 1

Par — u

Rec — '

d Qg — punpack; (UP, u u')

Figure 7.3: The definition of PP (‘Pack Product’) and UpP (‘Unpack Product’).

(Pp, pp'>Upr, uu')H (Ps,pp > Us,uu)
= Equation (7.9) and the induction hypothesis

fmap2, i i' ++ fmap2, i i’
= =7 preserves (4), definition of fmap2, .,

Y T
fmap2, ., i 0

The base case, g:
Pngp’>>>)\()—>U>>>)\O—>( > UpP, u v

= (A0 =0); (A0 = () = idy
Prp, pp' > Upr, u

= Equation (7.9)
—H>I
fmap2, i i

Sequencing the parameters.
The last part of the construction of the program consists of the two functions Pp

and UP defined in Figure 7.3. The earlier functions have calculated and printed
the constructors, so what is left is “arrow plumbing”. The arrow PP p p’ traverses
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the top level structure of the data and inserts the correct compact printers: p at
argument positions and p’ at substructure positions. The only difference between
Up and PP is, as with pmapAr and pmapAl earlier, the traversal direction in the
product case; visible in the use of (<) and (#>) respectively. The inverse proof
is very similar to that for TR and Tr, and is omitted.

7.6 Pretty printing

Modern programming languages allow the user to define new kinds of data.
When testing or debugging a program, the user often wants to see values of
these new datatypes. Many languages support the automatic derivation of print-
ing functions for user-defined datatypes. For example, in Haskell one can write
deriving (Show, Read) after a datatype definition, and obtain the function show
(which prints values of the datatype) and read (which reads them back) for free.
Thus a Haskell programmer can use (instances of) a few predefined polytypic
functions, but she has no influence over their definitions nor any means of defin-
ing her own polytypic functions.

This section shows how one can define polytypic versions of the functions show
and read. The polytypic functions pshow and pread are each others inverses by
construction.

7.6.1 More arrow classes

This subsection introduces a class ArrowReadShow that provides the arrow opera-
tions that are used in pretty printing and parsing. The new operations are divided
into four classes: ArrowZero, ArrowPlus, ArrowSymbol and ArrowPrec. The two
first classes are used for error handling and are present, already in Hughes’ arrow
paper [42], but the last two classes are new. The operations of ArrowSymbol are
used to print and parse symbol, and the operations of ArrowPrec handle operator
precedences.

Arrows that can fail

Up to now the data conversion programs did not have to handle failure. The
unpacking algorithm would of course benefit from error handling to allow for
bad input data, but no error handling or backtracking is essential for expressing
the algorithm. But to parse a text representation of data values we really need
to choose between different parsers (for different constructors) and hence some
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parser must be able to fail. Therefore we define the class ArrowZero for arrows
that can fail:

class Arrow (~) = ArrowZero (~) where

zeroA i a~b
-- Laws :
? > zeroA = zeroA = zeroA > ?

The arrow zeroA is the multiplicative zero for composition with (at least) pure
arrows and, as we will see later, the additive zero of a plus operator for arrows.

Error handling

The operator (<) in the class ArrowPlus builds a parser that uses a second
arrow if the first one fails. The operator (<>) is a kind of dual to the choice
operator (|||) = (a~ ¢) = (b~ ¢) = (Either a b ~ c¢) from ArrowChoice.
The choice operator makes a choice depending on the input, while the operator
(<P>) makes a choice depending on some hidden state and delivers the result in
the corresponding summand in the output.

class ArrowZero (~) = ArrowPlus (~) where
(<) = (a~b) = (a~ ¢c) = (a~> Either b ¢)
) —

(&) = (a~b (@~ b) = (a~b)
-— Defaults :

f<tg = (f > Left) <> (g > Right)
f<g = (f<Pg) >idvid

-= Laws :

zeroA <> f = [ = f <> zeroA

[ <P zeroA = f > lﬁ

zeroA <> f = f > W
f>(g<th)=(f>g <(>h)

The default definitions show that only one of (<>) or (<) need be defined

the relation between the ArrowPlus operators is the same as that between the
ArrowChoice operators. The arrow zeroA is the zero of the plus operator (<>).

Reading and writing symbols

Almost all arrow classes thus far have been very general and useful for a wide
variety of applications, but for pretty printing and parsing we need a few more
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specific tools. To print and parse symbols (constructor names, parentheses and
spaces) we use the class ArrowSymbol:

class Arrow (~) = ArrowSymbol (~) where

readSym . Symbol — (a ~ a)
showSym :: Symbol — (a ~ a)
-- Laws :

showSym s > readSym s = id
showSym s >> readSym s' = zeroA <= s# s

type Symbol = String

The two laws capture the minimal requirements needed to prove that pshow and
pread are inverses: reading a symbol is the inverse of writing the same symbol
but trying to read another symbol back will fail. As examples we give one arrow
for printing and one for parsing parenthesized expressions:

parenthesize, deparenthesize :: ArrowSymbol (~) = (a~»b) — (a ~ b)
parenthesize f = showSym "(" <« f <« showSym ")"
deparenthesize f = readSym " (" > f > readSym ")"

Precedence levels

Finally, we define the class ArrowPrec to handle precedence levels and parenthe-
ses. Our formulation is inspired by the functions showsPrec and readsPrec in the
Haskell classes Show and Read.

showsPrec :: Show a = Int — a — String — String
readsPrec :: Show b = Int — String — [(b, String)]

The integer argument passed to showsPrec and readsPrec is the precedence level
of the surrounding expression. It is used to determine whether or not the element
of type a should be surrounded by parentheses. As the PolyP system does not
handle infix constructors, the precedence levels of Haskell can be collapsed to
two levels: one for atomic expressions like unary constructors (that never need
parentheses) and one for complex expressions (that need parentheses when used
as subexpressions).

Function showParen (readParen) is used to enclose its printer (parser) argument
with parentheses when used in a subexpression. When p' = showParen b p,
the printer p’ encloses p with parentheses if and only if b is True and p’ is
used as a subexpression. The printer (parser) likeParen p tells p to behave as a
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subexpression (for example by changing a precedence level hidden in the arrow
type).

class ArrowSymbol (~) = ArrowPrec (~) where

likeParen  :: (a~b) — (a~b)
readParen . Bool — (a ~ b) — (a~>b)
showParen :: Bool — (a ~ b) = (a~>b)
-- Laws :

> y=72 = likeParen z >> likeParen y =72

3> y=7 = showParen b (showSym n < ) >>
readParen b (readSym n > y) = 7

n#n' = showParen b (showSym n < ) >
readParen b' (readSym n' > y) = zeroA

Read and show

The functions pshow and pread use operations from ArrowChoice and from all
of the four classes just defined, and to capture this succinctly in the types, we
define the class synonym ArrowReadShow:

class (ArrowChoice (~), ArrowPlus (~), ArrowPrec (~))
= ArrowReadShow (~)

For the rest of this section, all occurrences of (~) will denote an arrow in the
class ArrowReadShow.

7.6.2 Definition of pshow and pread

The definition is divided into four levels, following the structure of datatype
definitions: the top level (pshow and pread) is a recursive definition, the second
level (Ss and Rs) breaks down the sum structure of the functor, the third level
(Sp and RP) analyzes the product structure and finally the forth level (Sr and
RR) deals with parameters and uses of other datatypes.

The top level calculates the list of constructors of the datatype and passes them
down to the next level. The second level shows (reads) the constructor name and
handles parentheses (depending on the precedence of the expression and arity
of the constructor). The third level inserts spaces between the arguments of
the constructors and marks the arguments as being subexpressions (potentially
needing parentheses). Finally the bottom level just applies the appropriate show
(read) functions passed down as parameters or calls pshow (pread) for occurrences
of other datatypes.
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We will define a polytypic show function pshow and a polytypic read function
pread and we will prove that pread is the inverse of pshow:

pshow = (a~ () = (d a~())
pread :: (()~a) = (() ~ d a)

s r=1 = pshow s => pread r = pmap 1 (7.10)

Top level recursion

We use the built-in polytypic definition constructors, to access the representations
of the constructors of the datatype d a.

constructorsy :: [Constructor]

A value of the abstract type Constructor can be though of as a pair of the
constructors name and its arity. In the following proofs we use two properties of
the constructor list: the list has at least one element (there are no 0-constructor
datatypes in Haskell) and all the constructor names are distinct.

Function pshow uses out to expose the top level structure of the datatype value
and handles the recursion by passing itself as an argument to Ss (‘Show Sum’,
defined later). Similarly, pread calls Rs (‘Read Sum’) and converts the result to
a datatype value using inn.

—
pshow, s = SSg, constructorsy s (pshow, s) <K outy
—
pread, = RsSe, constructorsy r (pready r) >> inng

The two helper functions Ss and Rs have their own inverse law:

Ss; i [Constructor] = (a~ () = (b~ () = (f a b~ ())
Rsy :: [Constructor] — (()~a) = ()~ b) = (() ~ f a b)

— . e
s>r=1 :>s'>>>r’:7:>SSf cs s ' > Rs cs r ' = fmap2; i 0" (7.11)

We assume s > r = ?, let ¢s be the list of constructors and calculate as follows
for Equation (7.10):

—
pshow s =>> pread r = pmap 1
= Fixed point induction (7.3)
s> = 7 =

—, — 7
out 3> S8 cs s 8" > RS cs v 1’ >> inn = out ; fmap2; i iy inn
“= Simplification
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—
s> = 7 = Sy cs s 8" > Rs es rr' = fmap2; i i
= Law (7.11)

True

Printing constructors

On the top level, every pattern functor is a right associative sum, and this is
mirrored in the definitions of Ss and Rs as well as in the corresponding part of
the proof. The abstract type Constructor has selectors for the name and the
arity of the constructor.

name ::  Constructor — String
arity ::  Constructor — Int

We use arity to check for nullary constructors, which are atomic and don’t need
parentheses.

polytypic Ss; :: [Constructor] — (a~> () = (b~ () = (f a b~ ())
= Ac:cs) s s’ — case f of
g+h — Ss; [¢] s s ||| Ss cs s s
g — showParen (arity ¢ > 0)
(showSym (name c¢) < Sp, s s')

polytypic Rs :: [Constructor] — (() ~a) = (() ~b) = (() ~ f a b)
= Ac:cs) rr’ — case f of
g+h—Rs, [c]rr" <> Rs, esrr’
g — readParen (arity ¢ > 0)
(readSym (name c¢) > Rp, r ')

where functions Sp (for ‘Show Product’) and RPp (for ‘Read Product’) have the
following properties:
Sep i (a~ () = (b~ ()
Rep o ()~ a) = ()~ b)

. , —y
S>r=1 :>s’>>>r’:7:>SPf s s> Rpprr' = fmap2; i i (7.12)

We prove (7.11) by induction over the nested sum part of the pattern functor.
We strengthen the induction hypothesis to include also the following law. For all
b, x and y, and for all ¢’ & cs’:

Rs; ¢s' r r' < showParen b (showSym (name ¢') << ) = zeroA (7.13)
Ss; ¢s' s s' >> readParen b (showSym (name ') > y) = zeroA (7.14)

We assume s > 7 = 7 and 8 > 1/ = 7 and calculate as follows for Equa-
tion (7.11):
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The sum case, g + h:
We prove the three equations separately, starting with (7.11):

!

SSytn (c:cs) s s> Rsp (cies)rr
= Definitions
(Ssy [¢] s 8" ||| Ssp s s 8") > (Rs, [¢] 7' <> Rsy es 1)
= Distribution laws for (|||) and (<)
((Ssy [¢] s 8" > Rs; [¢] r ') <> (Ssy [¢] s s> Rs, ecsrr')) |
((Ssp cs s s> Rs, [c] rr') <> (Ssy es s 8" > Rs, ¢s rr'))

The first term is identical to the term in the default-case below. Use induction
hypothesis (7.13) and (7.14) for the second and third terms, and induction
hypothesis (7.11) for the fourth term.

— —

(fmap2, i i’ <> zeroA) ||| (zeroA <p> fmap2,, i 1)
= Laws for zeroA and (<>)

— —

(fmap2, i i 3> Left) ||| (fmap2, i i > Right)
= Relation between (|||) and (++)

fmap2, Qi fmap2, i

= (H+) preserves

fmap2, i ' ~ fmap2, i i
= Definition of fmapQngh

—
fmap2, ., i 0
Now we turn to (7.13):

showParen b (showSym (name ¢') < x) >> RS 4y, s’ rr'
= Definition of RS;44, let (¢ : ¢s) = ¢s'
showParen b (showSym (name ¢') < ) >
(Rs, [¢] r " <> RSy, es r 1)
= Distribution law for (<>)
(showParen b (showSym (name ¢') < ) > Rs, [¢] r 1) <>
(showParen b (showSym (name ¢') < ) > RS, cs r 1)
= The second law of showParen and the induction hypothesis
zeroA <> zeroA
= Laws for (<>) and zeroA

zeroA
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The proof of (7.14) is very similar and omitted.

The default case, g:
As the constructor list has the same number of elements as the number of sub-
functors in the sum structure of the functor, there will be only one element
left in the constructor list in the base case. Thus we can match on [¢] instead

of (c: cs).

Ss, [c] s s > Rs, [¢] r 1’
= Definitions

showParen (arity ¢ > 0) (showSym (name ¢) < Sp; s s') >

readParen (arity ¢ > 0) (readSym (name ¢) > Rp, r 1)
With b = arity ¢ > 0, n = name ¢, v = SP, s s’ and
y = Rp, r r' we can apply the first law for showParen

as & 3>y = fmap2, i i is exactly (7.12).

—‘},
fmap2, i i

Both (7.13) and (7.14) follow immediately from the second law of showParen.

Printing constructor arguments

The function Sp (RP) inserts (reads) a space before each argument of a construc-
tor, and marks each argument as a subexpression (potentially needing enclosing
parentheses).

polytypic Sp; == (a~ () = (b~ () = (f a b~ ())
= As s’ — case [ of

gxh — X(),()) = () < (Sp, s s’ <« Sp;, s ')

Empty — M) — (
g — showSym " " < likeParen (SRy s s')

polytypic Ry = (()~a) = (()~b) = ()~ f ab)
= Ar r' — case | of
gxh  — ) = (0,0) > (Rp, r r' s> Rp, 1 1)
Empty — M) — ()
g — readSym " " >> likeParen (RRy r 1)

where functions Sr (for ‘Show Rest’) and RR (for ‘Read Rest’) have the following
properties:

Sky 5 (a~ () = (b~ () =
Ry = ()~ a) = ()~ 8) = ()~ f a b)
=

7

s>r=14 =>s>r=i Sry s s' > RRy 1 1! = fmap2; i i (7.15)
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We prove (7.12) by induction over the product structure of the functor f:

The product case, g * h:
SPyn 8 8" > RPyup 1 1!

= Definitions

(Sp, s 8" <« Sp, s ") > A(), () — () >

A() = (0, () > (Rp, r r' % Rpy, 1 1)

= (M0:0) = 0); (A0 = (0, 0)) = .0

(Sp, s 8" <« Sp, s ') > (Rp, r r' % Rp, r 1')

= Inverse law for (<), induction hypothesis (twice)

fmap2, i @'+ fmap2), i /
= Definition of fmap2,,,

4
fmap2y., i i

The empty case, Empty:
Trivial.

The base case, g:
Sp, s ' > Rp, r 1’

= Definitions
likeParen (SR, s s') > showSym " " >
readSym " " >> likeParen (RR, r 1)
= Law for showSym and readSym
likeParen (SR, s s') > likeParen (RR, 1 1)
= Law for likeParen and Equation (7.15)
—H)l
fmap2, i1

Printing the rest

At the bottom level all that is left is to apply the correct printer (parser): Par
and Rec select from the parameters and dQg calls the top level pshow (pread)
recursively.

polytypic Sr; :: (a~ () = (b~ () = (f a b~ ()
= As s’ — case [ of
Par — s
Rec — &
d @ g — pshow, (SR, s ')
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polytypic RR = (()~a) = (()~b) = ()~ [ ab)
= Ar r' — case | of
Par —r
Rec — 1!
d Qg — pread, (RR, r ')

The only remaining proof obligation is (7.15) and the proof is once again by
induction on the structure of the functor  the Par and Rec cases follow imme-
diately from the assumptions, and the d @ ¢ case from the top level induction
hypothesis (7.10) and the local induction hypothesis (7.15). This completes the
proof that pread is the inverse of pshow.

7.7 Generating arrow instances

Most of the code presented in this chapter is generic in two ways. We use poly-
typism to parametrize our definitions by a regular datatype, and we use Haskell’s
constructor classes to parametrize by the choice of concrete arrow implementa-
tion. Using PolyP, we obtain specific instances of the polytypic functions auto-
matically, but we do have to write instances for the arrow classes. This section
describes a few general arrow constructors and shows how to combine them to
obtain an example instance for ArrowReadShow that satisfies the necessary laws.

We have already presented three arrow instances: the trivial function arrow ¢ —
b, the Kleisli arrows Kleisli m a b for every monad m and the state arrow a ~»
b for any state type s. The state arrow can be generalized to a state arrow
transformer that adds state passing to any other arrow:

newtype StateArrT s (~) a b = SAT ((a,s) ~ (b,s))

With this definition the simple state arrow SA s is equivalent to adding state
passing to the trivial arrow: StateArrT s (—). The state arrow transformer
instances for Arrow, ArrowChoice, ArrowZero and ArrowPlus are in Figure 7.4.

The Kleisli arrows were defined in Section 7.3 together with instances for Arrow
and ArrowChoice. If the underlying monad has a zero and a plus operation (is
an instance of the Haskell class MonadPlus), then we can define instances for
ArrowZero and ArrowPlus as well:

newtype Kleisli m a b = Kleisli (a — m b)

instance MonadPlus m = ArrowZero (Kleisli m) where
zeroA = Kleisli (const mzero)

instance MonadPlus m = ArrowPlus (Kleisli m) where
Kleisli f <> Kleisli g = Kleisli (Ax — mplus (f z) (g x))
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instance Arrow (~) = Arrow (StateArrT s (~)) where

? = SAT ﬁrst;

SAT f > SAT g = SAT (f > g)
first (SAT f) = SAT (swap23 > first [ > .911)(1])2?)

swap28 1 ((a,b),s) = ((a,s),b)
swap23 = X(a,b),s) — ((a,s),b)

instance ArrowChoice (~) = ArrowChoice (StateArrT s (~)) where
SAT f ||| SAT g = SAT (eitherout > (f ||| g9))

eitherout 2 (Fither a a',s) — Either (a,s) (d',s)
eitherout (z,s) = (pairs = pairs) x where pairs a = (a, s)

instance ArrowZero (~) = ArrowZero (StateArrT s (~)) where
zeroA = SAT zeroA

instance ArrowPlus (~) = ArrowPlus (StateArrT s (~)) where
SAT f <> SAT g = SAT (f < g)

Figure 7.4: Instance declarations for the state arrow transformer.

All the arrow constructors defined so far were defined also in Hughes’ arrow
paper [42], but the following construction is new. The monad arrow constructor
MonadArrT wraps a monad around the arrow type:*

newtype MonadArrT m (~) a b = MAT (m (a~ b))

For every monad we can lift an arrow to an arrow, but to support choice, failure
and error handling we need to restrict the monad to, essentially, a reader monad.
The reader arrow transformer ReaderArrT is a special case of the monad arrow
transformer:

type ReaderArrT r = MonadArrT (r —)

The transformer ReaderArrT r adds an environment of type r to any arrow. This
can also be simulated with StateArrT but when no update is needed, ReaderArrT
is more efficient and also simplifies the proofs. We use the shorthand notation
a ~» b for ReaderArrT r (~) a b. (Note the difference between the notation

a ~ b for the state arrow and a ~» b for the reader arrow.) The instances for
MonadArrT and ReaderArrT are in Figure 7.7.

4The monad arrow constructor is a special case of an even more general static arrow con-
structor (Paterson [88]) that wraps any cartesian functor around the arrow type.



7.7. GENERATING ARROW INSTANCES 139

instance (Monad m, Arrow (~)) = Arrow (MonadArrT m (~)) where

7 = MAT (LiftM0 F)
MAT f > MAT g = MAT (liftM2 (>>) f ¢)
first (MAT f) = MAT (liftM first f)

instance ArrowChoice (~) = ArrowChoice (ReaderArrT r (~)) where
MAT f ||| MAT g = MAT (liftM2 (]|]) f g)

instance ArrowZero (~) = ArrowZero (ReaderArrT r (~)) where
zeroA = MAT (liftM0 zeroA)

instance ArrowPlus (~) = ArrowPlus (ReaderArrT r (~)) where
MAT f <> MAT g = MAT (liftM2 (<>) f g)
MAT f <> MAT ¢ = MAT (lifM2 (<>) [ ¢)

lift MO . Monad m = a— m a

LiftMo f = return f

liftM 0 Monad m = (a - b) — (m a— m b)

LiftM f m = m > \x — return (f 1)

liftM2 : Monad m = (a—b—¢)—= (ma—mb—mc)
LUftM2 f mn = m >= A x — n>= Ay — return (f z y)

Figure 7.5: Instance declarations for MonadArrT and ReaderArrT.
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Two useful operations on ReaderArrT arrows are getEnv and setEnv:

getEny 1 Arrow (~) = a5 r

getEny = MAT (Az — const 1)

setEnv i1 — (a~> b) — (a5 b)

setbEnv x (MAT f) = MAT (const (f z))

The arrow getEnv ignores its input and returns the value of the environment.
The arrow setEnv z f transforms f by shielding it from the outside environment
so that all getEnvs from f give x.

7.7.1 An instance for ArrowReadShow

We can combine the three general arrow constructors to obtain an arrow RS that
can be made an instance of ArrowReadShow:

type RS = ReaderArrT Int (StateArrT Tokens (Kleisli ([])))
type Tokens = [String]

The transformer ReaderArrT Int adds an environment containing an integer to
handle the precedence level, the transformer StateArrT Tokens adds a state con-
taining a token list and the inner arrow Kleisli ([]|) handles the list of alternative
parses. By unfolding the definitions of the arrow constructors we get

RS a b= Int — (a, Tokens) — [(b, Tokens)] .

This can be compared with the types for showsPrec and readsPrec from the
Haskell prelude.

showsPrec :: Show a = Int — a — String —  String
readsPrec :: Show b = Int — String —  [(b, String)]

These types use String where RS uses Tokens, but are otherwise very similar to
RS a () and RS () b, respectively.

The arrow RS is by construction an instance of Arrow, ArrowChoice, ArrowZero
and ArrowPlus. Hence to make RS an instance of ArrowReadShow all we need
is instances for ArrowSymbol and ArrowPrec. Function readSym is the standard
item parser and showSym is even simpler (both ignore the precedence). The func-
tions likeParen, showParen and readParen use the precedence level environment
to determine when to read or write parentheses (using readSym and showSym).
Example instantiations of ArrowSymbol and ArrowPrec for the arrow RS are in
Figure 7.6, where high is the precedence level of expressions that need parenthe-
ses. The proofs that the instances satisfy the laws of the classes are long but
relatively simple.
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instance ArrowSymbol RS where
showSym s = MAT (return (SAT (second (s‘j)))

readSym s = MAT (return (SAT (second (Kleisli (readToken s)))))
readToken t (s :ss) | s==1t = return ss
readToken t _ = mzero

instance ArrowPrec RS where

likeParen = setEnv high
showParen b f = ifHighPrec b (parenthesize f) f
readParen b f = ifHighPrec b (deparenthesize f) f

ifHighPrec :: ArrowChoice (~) = Bool — (a Qe b) = (a I b) = (a T b)

ifHighPrec b = ifA (getEnv > \p — b A p == high)

Figure 7.6: Instances for ArrowSymbol and ArroParen.
7.8 Results and conclusions

Overview of the results

We have defined the following pairs of data conversion programs and related them
with inverse laws:

e Shape plus content: (Section 7.2)

separate : d a~>q d ()
combine :: d ()~ da

separate => combine = id

e Arrow maps: (Section 7.4)

pmapAr . ArrowChoice (~) = (a~b) — (d a~ d b)
pmapAl :: ArrowChoice (~) = (a~b) — (d a~ d b)
— —

f>qg=1 = pmapAr f > pmapAl g = pmap 1

e Packing: (Section 7.5)

ppack 0 ArrowPack (~) = (a~ () = (d a~())
punpack . ArrowPack (~) = ()~ a) = (()~ d a)

p>u= 1 = ppack p > punpack v = pmap 1
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e Pretty printing: (Section 7.6)

pshow :: ArrowReadShow (~) = (a~ ()) = (d a~())
pread 1 ArrowReadShow (~) = (()~a) = (()~ d a)
—

— >
s>r= 1 = pshow s >> pread r = pmap 1

We can combine the last two applications to obtain compression and decompres-
sion. The composition of the polytypic read function pread with the packing
function ppack gives a structured compression algorithm pcompress that takes a
plain text representation of a datatype value to a bit stream. The corresponding
decompression algorithm pdecompress is a composition of the unpacking function
punpack and the polytypic show function pshow. Function pdecompress is the
inverse of pcompress for all strings that represent a value. This fact follows from
the inverse laws for pretty printing and packing.

Conclusions

We have constructed polytypic programs for several data conversion problems.
As far as we are aware, these are the first implemented generic descriptions of
programs for data conversion problems. Recent work by Hinze [33] also contains
a polytypic show function and a simple packing function, but his language still
lacks an implementation.

For each of the data conversion problems considered in this chapter we construct
a pair of functions. These pairs of functions are inverse functions by construc-
tion. Since we started applying the inverse function requirement rigorously in
the construction of the programs, the size and the complexity of the code have
been reduced considerably. Compare for example Bjork’s [13] and Huisman’s [43]
definitions, with the polytypic read and show functions defined in this chapter.
We firmly believe that such a rigorous approach is the only way to obtain elegant
solutions to involved polytypic problems. Another concept that simplified the
construction and form of the program is arrows. In our first attempts to poly-
typic programs for packing and unpacking we used monads instead of arrows.
Although it is possible to construct the (un)packing functions with monads (see
Halenbeek [31]), the inverse function construction, and hence the correctness
proof, is simpler with arrows.

We have shown how to construct programs for several data conversion problems.
We expect that our programs and proofs will be very useful in the construction
of programs for other data conversion problems.

Although all our data conversion programs are linear, both time and space ef-
ficiency of our programs leave much to be desired. We expect that sufficiently



7.8. RESULTS AND CONCLUSIONS 143

sophisticated forms of partial evaluation will improve the performance of our pro-
grams considerably. We want to experiment with partial evaluation of polytypic
functions in the future.

We have presented a few calculations of polytypic programs. We think that
calculating with polytypic functions is still rather cumbersome, and we hope to
obtain more theory, in the style of Meertens [76] and Hinze [36], to simplify
calculations with polytypic programs. If we take Hinze’s approach to polytypic
programming [35], then we only have 4 constructors for pattern functors instead
of 7, and this should reduce the length of the proofs. In collaboration with Hinze,
we are currently working on an implementation of his approach as a successor to
PolyP.
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Chapter 8

Related work

In this chapter we describe work related to functional polytypic programming. We
briefly describe a number of subject areas which have influenced the development
of polytypism and give many references to further reading.

8.1 BMF = Squiggol

Polytypism has its roots in the branch of constructive algorithmics that was
named the Bird-Meertens Formalism (BMF) [10, 74] by Backhouse [3]. BMF
is not really a well defined formalism, but rather a collection of definitions,
transformations and laws for calculating with programs. In the “Theory of
Lists” [10,11,60] many laws for calculating with programs are proved and used
to derive efficient algorithms from clearly correct (but often hopelessly ineffi-
cient) specifications. Polytypic functions are widely used in the Squiggol commu-
nity [4,7,24,72,75-77,79], where the list based calculus is generalized and extended
to datatypes that can be defined by means of a regular functor. Polytypic versions
of many list functions are defined: cata, map, zip, sum etc. and together with
the functions, also the theorems and the transformation techniques developed in
the theory of lists are generalized. Backhouse et al. [4] argues convincingly that
the basis of the theory of polytypism is best described in a relational setting.
Bird, de Moor and Hoogendijk [7] use this setting to generalize the theory of seg-
ments of lists to all datatypes. The connection between polytypic programming
and dependent types (in the context of Martin-Lof type theory [83]) has been
investigated by Backhouse [5], Pfeifer and Ruef [91] and Dybjer [18,19].

145
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8.2 Theories of datatypes

A polytypic value is a family of values indexed by (the structure of) datatypes.
Thus the choice of formalism to represent datatypes is of central importance for
polytypic programming. The Squiggol community takes the categorical view of
modeling datatypes as initial functor-algebras. This is a relatively old idea, on
which a large amount of literature exists, see, amongst others, Lehmann and
Smyth [69], Manes and Arbib [73], and Hagino [30]. Béhm and Berarducci [14]
have a more algebraic approach to modeling datatypes. They define a data system
(a group of mutually recursive datatypes) to be a finite parametric heterogeneous
term algebra. This is one of the few references where mutually recursive data-
types with multiple parameters are described in detail. Hoogendijk, de Moor and
Backhouse [37-39] argue that a datatype (or, more specifically, a container type)
is a relator with a membership relation.

8.3 Beyond regular datatypes

Polytypic functions are traditionally defined for regular datatypes. Regular data-
types are initial fixed points of regular functors or, in the relational setting, regular
relators [4].

Jay [56,57] has developed an alternative theory for polytypic functions, in which
values are represented by their structure and their contents. He uses a category
theoretic formulation of polytypism based on the notion of strong functor [80].

The class of datatypes on which polytypic functions can be defined can be ex-
tended (with some effort) to include datatypes with function spaces. Freyd [26]
provides the category theoretic background for this extension. The problem with
the extension is that if a datatype parameter occurs in a negative position (to
the left of an odd number of function arrows) in a datatype definition, then
the recursive definition of the catamorphism uses its own (right) inverse. Mei-
jer and Hutton [78] apply Freyd’s theory to the definition of catamorphisms for
datatypes with embedded functions. They solve the problem of negative param-
eters by simultaneously defining both the catamorphism and its right inverse (an
anamorphism). Fegaras and Sheard [21] point out that this solution is too re-
strictive: there are functions that can be defined as catamorphisms even though
they lack a right inverse. They give an alternative definition of the catamorphism
using an approximate inverse and give a type system that rejects the cases when
this approximation would not be safe.

Recent results extend polytypic programming to work on non-regular, so called
nested datatypes [8]. Bird and Paterson [9] suggest generalized folds and Hinze [34]
shows how one can define most other polytypic functions so that they work also
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on nested datatypes.

Fokkinga extends the theory of datatypes to include “Datatype Laws without
Signatures” [22] enabling abstract datatypes like stacks to be defined in a category
theoretic setting. To extend polytypic programming in this direction would be
an interesting subject for future work.

8.4 Specific polytypic functions

Generating instances for specific polytypic functions, such as (==), map, cata
etc. for a given type, is rather simple and has been demonstrated by several
authors [14, 45, 46, 55,75, 82,96, 98]. Catamorphisms were generated by Bohm
and Berarducci [14] (in the A-calculus) and Sheard [98] (in an ML-like language).
Sheard also gave programs to automatically generate other kinds of traversal
functions like accumulations and equality functions.

The paramorphism, a more general recursion operator than the catamorphism,
was introduced by Meertens [75]. (The recursion pattern captured by the para-
morphism in essentially the same as the pattern in the elimination rule for a
datatype in constructive type theory.) Many other recursion operators are de-
fined by de Moor and Fokkinga [24,82]. A catamorphism can also be generalized
to a monadic catamorphism [25,79] that threads a monad through the structure.
The use of anamorphisms is advocated in “The Under-Appreciated Unfold” by
Gibbons and Jones [29] and monadic anamorphisms are defined by Pardo [87].

Polytypic functions for specific programming problems, such as the maximum
segment sum problem and the pattern matching problem were first given by
Bird et al. [7] and Jeuring [61]. (The first published use of the term polytypic
function was by Jeuring [61].) Many other algorithms have also been expressed
polytypically: unification [51], pattern matching [61], data compression [46, 53],
parsing and pretty printing [53], rewriting [52,54,62], genetic programming [100],
downwards accumulations [28], etc.

All these polytypic functions are parametrized on one datatype. There is, how-
ever, no theoretical problem with defining multiply parametrized polytypic func-

tions. One example is the doubly parametric function transpose (also called zip)
defined by Ruehr [94] and Hoogendijk and Backhouse [38]. In PolyP it could
have the type:

transpose :: (Regular d, Regular e) = d (e a) — e (d a)

It is a generalization of the transpose operation on matrices.

If the inner datatype e in the type for transpose is replaced by a monad m, then
a polytypic (and monadic) traversal [47,79,81] function is obtained. Traversals
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can be used for a wide range of problems — examples are the data conversion
programs in Chapter 7. Traversals are also widely used in “imperative polytypic
programming”  the topic of the Section 8.8. As an example, the Visitor design
pattern [27] is a traversal.

8.5 Type systems

Type systems for languages which allow the use of polytypic functions have been
developed by several people:

e Ruehr [94] gives a full higher-order type pattern language. The higher-
order aspects of the type system makes the language a bit impractical but
he also presents a trade-off design for a more manageable language with
type inference.

e Jones’ type system [64,66] is based on qualified types and higher-order poly-
morphism. The type system is implemented in the Haskell system Hugs.
Haskell has no construction for writing polytypic functions by induction on
user defined datatypes but can be used to simulate and type check polytypic
functions using constructor classes.

e Sheard and Nelson [97] gives a type system for a restricted version of Com-
pile time Reflexive ML.. CRML is a two-level language and a polytypic
program is obtained by embedding second level type declarations as values
in first level computations. The restriction is that recursion in the first level
(that is executed at compile time) must be expressed using catamorphisms
only, to guarantee termination. The type system uses dependent types and
a special type construction for the types of catamorphisms.

e Harper and Morrisett [32] present a type system for a language with “inten-
sional polymorphism”. A dependently typed typecase construct for explicit
matching on predefined types is used to define generic functions that work
for different types. The typecase cannot, however, be used to match on the
structure of user defined datatypes.

e Our type system (described in Chapter 4 and in Jansson and Jeuring [46])
extends Jones’ system [64,66] with the possibility to introduce and type
check polytypic functions defined by induction on the structure of user
defined datatypes.

e Jay et al. [55,58] describe a type system for “Functorial ML”, an intermedi-
ate language with some predefined polytypic functions including map and
cata (they call it fold). The language can deal with multiple parameter
datatypes, but not mutual recursive datatypes.
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e Hinze [35,36] presents another approach to polytypic programming with
a type system for type indered values. In this setting polytypic functions
can be defined not only for regular datatypes, but for a much wider class,
including nested datatypes, mutually recursive datatypes and higher-order
datatypes.

8.6 Implementations

In this dissertation we have argued that a polytypic programming system should

e type check polytypic code,
e allow definitions of new polytypic functions, and

e generate instances of these polytypic functions for regular datatypes.

In the language Charity [16] polytypic functions like the catamorphism and map
are automatically provided for each user-defined datatype. But it is not possible
to define new polytypic functions in Charity. The functional language P2 [55]
does not satisfy the second requirement, but a few generations later, Jay’s ongoing
work with the language FISh [59] supports all three requirements. Hinze [35]
presents a promising approach to polytypic programming and proposes to add this
as a generic programming extension for Haskell [33], but it is not yet implemented.

Our system PolyP, described in Chapter 4 satisfies these requirements and we
know of only one other such system: that of Sheard [96] using a restricted compile
time reflective setting. The reason we are not using Sheard’s system is that it
uses a two level language built on ML (Compile-time Reflexive ML [40]) extended
with a type system using some dependent types. We did not want to move that
far away from the Haskell (type) system. Using the explicit type parameters of
Cayenne [1] (a language combining the programming power of Haskell with the
specification power of Martin-Lof’s type theory [83]) we could perhaps obtain a
polytypic extension with less overhead than the current Haskell based system.

We are planning for a successor of PolyP: Generic Haskell [33] in which we combine
the experiences from the PolyP system with Hinze’s new ideas (extensions to
handle multiple type arguments, mutually recursive datatypes) .

8.7 Polytypic transformations and proofs

Malcolm [72] and Fokkinga [22 24] develop categorical techniques for calculating
and transforming programs. The most well know polytypic transformation is the
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fusion law, first described by Malcolm [71,72]. (Malcolm calls it the promotion
theorem following Bird’s terminology for lists [10].) The fusion law (for appli-
cations, see Chapter 3) gives the conditions under which the composition of a
function with a catamorphism can be fused to a single catamorphism. Takano
and Meijer [99] use another polytypic law, the acid-rain theorem, to apply de-
forestation [103] transformations and Hu [41] uses a number of polytypic laws
to eliminate multiple traversals of data by combining functions that recurse over
the same structure. The calculational fusion system HYLO [85] can be used to
calculated with programs expressed in terms of hylomorphisms (a generalized
combination of catamorphisms, maps and anamorphisms).

Both the fusion law and the acid-rain theorem are examples of free theorems [101].
A free theorem can be derived automatically from the polymorphic type of a
function. For example, the fusion law is the free theorem of function cata. Fegaras
and Sheard [21, Appendix A.1] (in more detail: [20]) give a function that given a
type constructs its free theorem.

More examples of polytypic calculation of programs can be found in Jeuring [61],
Meertens [76], in the textbook ‘Algebra of Programming’ by Bird and de Moor [12]
and, of course, in this dissertation.

Hutton and Gibbons present the generic approzimation lemma [44]  a beautiful
result that can be used to prove generic properties of functions that work on
possibly infinite data. Hinze [36] presents a powerful proof rule for his kind of
polytypic functions and uses this rule to prove that the polytypic map function
is a functor.

8.8 Imperative Polytypic Programming

In the imperative world polytypic programming appears under the broader con-
cept “design patterns” [27], and more specifically as “adaptive object-oriented
programming” [70, 86]. Adaptive OOP addresses some of the same issues as
polytypic programming and, although the associated programming style is very
different from functional polytypic programming, the resulting programs have
very similar behavior. In adaptive OOP a method (corresponding to a polytypic
functions) is attached to a group of classes (corresponding to a datatype) that
usually satisfies certain constraints (such as being regular).

Lieberherr et al. [70] describes a system that allows the programmer to write
template programs containing a number of methods with associated ‘propagation
patterns’. The template programs are parametrized on (the structure of) a group
of related classes and the system automatically instantiates these templates for
different class dependency graphs. Each method in the template program has a
signature (the type of the method), a pattern (that specifies the set of paths in
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the class dependency graph on which the method should be used) and a code
part (to be executed for all matching paths).

Advanced uses of the C++ Standard Template Library (STL) [92] can also be
considered polytypic programming, but as C++ lacks recursive types the style is
very different from the style of functional polytypic programming in this disser-
tation. Much of the work with STL is programming against a “generic” interface
(for example iterators) to obtain reusable code. The closest match in this disser-
tation is the Term interface used in Chapter 6, but many things that STL adds
to C++ (for example, parametric polymorphism) are already present in Haskell
without the polytypic extensions.



152 CHAPTER 8. RELATED WORK



Acknowledgments

Special thanks to my supervisor Johan Jeuring for introducing me to the field of
polytypic programming and for countless discussions during the last few years. I
thank my opponent Mark Jones for his thorough work on reading and comment-
ing on previous versions of this dissertation. I also thank the rest of my PhD
committee, Thierry Coquand and Lennart Augustsson, and my professor John
Hughes for their support during these years. I thank the Multi group here at
Chalmers for providing an inspiring research environment, and finally I thank my
wife Tiinde Fiilop for her constant support.

Chapter 4: The discussions on type systems for polytypic programming with
Alex Aiken, Graham Hutton, Mark Jones, Oege de Moor, Rinus Plasmeijer, Fritz
Ruehr, Tim Sheard and the comments from an anonymous referee are gratefully
acknowledged. Oege de Moor, Graham Hutton and Arjan van IJzendoorn helped
implementing predecessors of PolyP.

Chapter 7: This chapter has been improved by constructive comments by
Ralf Hinze on polytypism and general presentation, by Ross Paterson on arrows
and their laws and by Roland Backhouse on the fixed point calculations. Joost
Halenbeek implemented a polytypic data compression program using monads.
The anonymous referees suggested many improvements regarding contents and
presentation.

153



154 ACKNOWLEDGMENTS



Bibliography

1]

2]

L. Augustsson. Cayenne — a language with dependent types. ACM SIG-
PLAN Notices, 34(1):239 250, 1998. Presented at ICFP’98.

R. Backhouse, P. Jansson, J. Jeuring, and L.. Meertens. Generic program-
ming: An introduction. In Advanced Functional Programming, volume 1608
of LNCS, pages 28 115. Springer-Verlag, 1999.

R.C. Backhouse. An exploration of the Bird Meertens formalism. Technical
Report Computing Science Notes CS 8810, Department of Mathematics and
Computing Science, University of Groningen, 1988.

R.C. Backhouse, P.J. de Bruin, P. Hoogendijk, G. Malcolm, T.S. Voermans,
and J.C.S.P. van der Woude. Relational catamorphisms. In B. Moller,

editor, Constructing Programs from Specifications, pages 287 318. North-
Holland, 1991.

Roland Backhouse. On the meaning and construction of the rules in Martin-
Lof’s theory of types. In A. Avron, B. Harper, F. Honsell, I. Mason, and
G. Plotkin, editors, Proceedings of the Workshop on General Logic, Edin-
burgh, February 1987. Laboratory for Foundations of Computer Science,
Department of Computer Science, University of Edinburgh, 1988. ECS-
LFCS-88-52.

Timothy C. Bell, John G. Cleary, and lan H. Witten. Texzt Compression.
Prentice Hall, 1990.

Richard Bird, Oege de Moor, and Paul Hoogendijk. Generic functional
programming with types and relations. Journal of Functional Programming,
6(1):1-28, 1996.

Richard Bird and Lambert Meertens. Nested datatypes. In J. Jeuring,
editor, Mathematics of Program Construction, volume 1422 of LNCS, pages
52 67. Springer-Verlag, 1998.

Richard Bird and Ross Paterson. Generalised folds for nested datatypes.
Formal Aspects of Computing, 11(2):200 222, September 1999.

155



156

[10]

[11]

[12]

[13]

[14]

[18]

[19]

[21]

22]

BIBLIOGRAPHY

R.S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic

of Programming and Calculi of Discrete Design, volume F36 of NATO ASI
Series, pages 5 42. Springer-Verlag, 1987.

R.S. Bird. Lectures on constructive functional programming. In M. Broy,
editor, Constructive Methods in Computing Science, volume F55 of NATO
ASI Series, pages 151-216. Springer-Verlag, 1989.

R.S. Bird and O. de Moor. Algebra of Programming. Prentice-Hall Inter-
national, 1997.

Staffan Bjork. Parsers, pretty printers and PolyP. Master’s thesis, Uni-
versity of Goteborg, 1997. Examensarbeten 1997:31. Available from the
Polytypic programming www page.

C. Béhm and A. Berarducci. Automatic synthesis of typed A-programs on
term algebras. Theoretical Computer Science, 39:135 154, 1985.

Robert D. Cameron. Source encoding using syntactic information source
models. IEEE Transactions on Information Theory, 34(4):843-850, 1988.

Robin Cockett and Tom Fukushima. About Charity. Yellow Series Report
No. 92/480/18, Dep. of Computer Science, Univ. of Calgary, 1992.

L. Damas and R. Milner. Principal type-schemes for functional programs.
In 9th Symposium on Principles of Programming Languages, POPL 82,
pages 207 212, 1982.

P. Dybjer. Inductive families. Formal Aspects of Computing, pages 440 465,
1994.

P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive
definitions. In Jean-Yves Girard, editor, Typed Lambda Calculi and Ap-
plications, volume 1581 of LNCS, pages 129 146. Springer-Verlag, April
1999.

Leonidas Fegaras. Fusion for free! Technical Report CSE-96-001, Depart-
ment of Computer Science, Oregon Graduate Institute, 1996. Available by
ftp from cse.ogi.edu in /pub/tech-reports/1996/96-001.ps.gz.

Leonidas Fegaras and Tim Sheard. Revisiting catamorphisms over data-
types with embedded functions. In Proceedings Principles of Programming
Languages, POPL ’96, 1996.

Maarten M. Fokkinga. Datatype laws without signatures. Mathematical
Structures in Computer Science, 6:1 32, 1996.



BIBLIOGRAPHY 157

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

M.M. Fokkinga. Calculate categorically! Formal Aspects of Computing,
4(4):673-692, 1992.

M.M. Fokkinga. Law and Order in Algorithmics. PhD thesis, University of
Twente, Dept INF, Enschede, The Netherlands, 1992.

M.M. Fokkinga. Monadic maps and folds for arbitrary datatypes. Memo-
randa Informatica 94-28, University of Twente, June 1994.

P. Freyd. Recursive types reduced to inductive types. In Proceedings Logic
in Computer Science, LICS 90, pages 498-507, 1990.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns —
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Jeremy Gibbons. Generic downwards accumulations. Science of Computer
Programming, 2000. In press.

Jeremy Gibbons and Geraint Jones. The under-appreciated unfold. In
International Conference on Functional Programming, September 1998.

T. Hagino. Category Theoretic Approach to Data Types. PhD thesis, Uni-
versity of Edinburgh, 1987.

J. Halenbeek. Comparing approaches to polytypic programming. Master’s
thesis, Department of Computer Science, Utrecht University, 1998.

Robert Harper and Greg Morrisett. Compiling polymorphism using inten-
sional type analysis. In 22nd Symposium on Principles of Programming
Languages, POPL ’95, pages 130 141, 1995.

Ralf Hinze. A generic programming extension for Haskell. In Erik Mei-
jer, editor, Proceedings of the Third Haskell Workshop, Technical report of
Utrecht University, UU-CS-1999-28, 1999.

Ralf Hinze. Polytypic functions over nested datatypes. Discrete Mathemat-
ics and Theoretical Computer Science, 3(4):159 180, September 1999.

Ralf Hinze. A new approach to generic functional programming. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL’00, 2000.

Ralf Hinze. Polytypic values possess polykinded types. In Mathematics of
Program Construction, 2000.

P. F. Hoogendijk. A generic theory of datatypes. PhD thesis, Department of
Computing Science, Eindhoven University of Technology, The Netherlands,
1996.



158

[38]

[42]

[43]

[44]

[49]

BIBLIOGRAPHY

Paul Hoogendijk and Roland Backhouse. When do datatypes commute?
In Category Theory and Computer Science, volume 1290 of LNCS, pages
242 260, 1997.

Paul Hoogendijk and Oege de Moor. Container types categorically. Journal
of Functional Programming, 2000.

James Hook and Tim Sheard. A semantics of compile-time reflection. Ore-
gon Graduate Institute of Science and Technology, Beaverton, OR, USA,
1993.

Z. Hu, H. Twasaki, M. Takeichi, and A. Takano. Tupling calculation elimi-
nates multiple data traversals. In Proceedings of the 2nd ACM SIGPLAN
International Conference on Functional Programming (ICFP’97), Amster-
dam, The Netherlands, 1997. ACM Press.

John Hughes. Generalising monads to arrows. To appear in the special
issue on Mathematics of Program Construction of Science of Computer
Programming, 2000.

Marieke Huisman. The calculation of a polytypic parser. Master’s thesis,
Utrecht University, 1996. INF/SRC-96-19.

Graham Hutton and Jeremy Gibbons. The generic approximation lemma.
Submitted for publication, 2000.

P. Jansson. Polytypism and polytypic unification. Master’s thesis, Com-
puting Science, Chalmers University of Technology, 1995. Available from
the Polytypic programming WWW page [49].

P. Jansson and J. Jeuring. PolyP a polytypic programming language
extension. In Conference Record of POPL 97: The 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 470
482. ACM Press, 1997.

P. Jansson and J. Jeuring. PolyLib — a polytypic function library. Work-
shop on Generic Programming, Marstrand, June 1998. Available from the
Polytypic programming WWW page [49].

P. Jansson and J. Jeuring. Polytypic compact printing and parsing. In
Doaitse Swierstra, editor, Proceedings of the 8th European Symposium on
Programming, ESOP’99, volume 1576 of LNCS, pages 273 287. Springer-
Verlag, 1999.

Patrik Jansson. Polytypic programming. The WWW home page for poly-
typism: http://www.cs.chalmers.se/ patrikj/poly/.



BIBLIOGRAPHY 159

[50]

[51]

[52]

[53]

[54]

[55]

[60]

[61]

[62]

[63]

Patrik Jansson. Functional polytypic programming — use and implemen-
tation. Licentiate thesis, Computing Science, Chalmers University of Tech-
nology, 1997. Available from the Polytypic programming WWW page [49].

Patrik Jansson and Johan Jeuring. Functional pearl: Polytypic unification.
Journal of Functional Programming, 8(5):527 536, September 1998.

Patrik Jansson and Johan Jeuring. A framework for polytypic program-
ming on terms, with an application to rewriting. In Workshop on Generic
Programming, 2000.

Patrik Jansson and Johan Jeuring. Polytypic data conversion programs.
Submitted for publication, 2000.

Patrik Jansson and Johan Jeuring. Rewriting as a polytypic application.
Work in progress, 2000.

C. Barry Jay. Polynomial polymorphism. In Proceedings of the Fighteenth
Australasian Computer Science Conference, pages 237-243, 1995.

C. Barry Jay. A semantics for shape. Science of Computer Programming,
25:251-283, 1995. Also in ESOP '94.

C.B. Jay. Functorial lambda-calculus. Work in progress, 2000.

C.B. Jay, G. Belle, and E. Moggi. Functorial ML. Journal of Functional
Programming, 8(6):573 619, 1998.

C.B. Jay and P.A. Steckler. The functional imperative: shape! In Chris
Hankin, editor, Programming languages and systems: 7th Furopean Sym-
posium on Programming, ESOP’98, volume 1381 of LNCS, pages 139-53.
Springer-Verlag, 1998.

J. Jeuring. Algorithms from theorems. In M. Broy and C.B. Jones, editors,
Programming Concepts and Methods, pages 247 266. North-Holland, 1990.

J. Jeuring. Polytypic pattern matching. In FPCA’95, pages 238 248. ACM
Press, 1995.

J. Jeuring and P. Jansson. Polytypic programming. In J. Launchbury,
E. Meijer, and T. Sheard, editors, Advanced Functional Programming '96,
volume 1129 of LNCS, pages 68—114. Springer-Verlag, 1996.

Mark P. Jones. Dictionary-free overloading by partial evaluation. In ACM
SIGPLAN Workshop on Partial Fvaluation and Semantics-Based Program
Manipulation, Orlando, Florida, June 1994.



160

[64]

[65]

[66]

[67]

[68]

[69]

73]

[74]

[75]

[76]

BIBLIOGRAPHY

Mark P. Jones. Qualified Types: Theory and Practice. Cambridge University
Press, 1994.

Mark P. Jones. Functional programming with overloading and higher-order
polymorphism. In J. Jeuring and E. Meijer, editors, Advanced Functional
Programming, volume 925 of LNCS, pages 97 136. Springer-Verlag, 1995.

Mark P. Jones. A system of constructor classes: overloading and implicit
higher-order polymorphism. Journal of Functional Programming, 5(1):1-35,
1995.

Mark P. Jones. Typing haskell in haskell. In Erik Meijer, editor, Proceedings
of the Third Haskell Workshop, Technical Report of Utrecht University, UU-
(CS-1999-28, 1999.

K. Knight. Unification: A multidisciplinary survey. Computing Surveys,
21(1):93-124, 1989.

D.J. Lehmann and M.B. Smyth. Algebraic specification of data types: A
synthetic approach. Math. Systems Theory, 14:97-139, 1981.

K.J. Lieberherr, 1. Silva-Lepe, and C. Xiao. Adaptive object-oriented pro-
gramming using graph-based customization. Communications of the
ACM, pages 94 101, 1994.

G. Malcolm. Homomorphisms and promotability. In J.I..A. van de Snep-
scheut, editor, Mathematics of Program Construction, volume 375 of LNCS,
pages 335-347. Springer-Verlag, 1989.

G. Malcolm. Data structures and program transformation. Science of Com-
puter Programming, 14:255-279, 1990.

E.G. Manes and M.A. Arbib. Algebraic Approaches to Program Semantics.
Text and Monographs in Computer Science. Springer-Verlag, 1986.

L. Meertens. Algorithmics towards programming as a mathemati-
cal activity. In Proceedings of the CWI Symposium on Mathematics and
Computer Science, volume 1 of CWI Monographs, pages 289-334. North—
Holland, 1986.

L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413-425,
1992.

L. Meertens. Calculate polytypically! In PLILP’96, volume 1140 of LNCS,
pages 1 16. Springer-Verlag, 1996.



BIBLIOGRAPHY 161

[77]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

88

[89]

E. Meijer, M.M. Fokkinga, and R. Paterson. Functional programming
with bananas, lenses, envelopes, and barbed wire. In J. Hughes, editor,
FPCA’91: Functional Programming Languages and Computer Architecture,
volume 523 of LNCS, pages 124 144. Springer-Verlag, 1991.

E. Meijer and G. Hutton. Bananas in space: Extending fold and unfold
to exponential types. In Conference Record of FPCA 95, SIGPLAN-
SIGARCH-WG2.8 Conference on Functional Programming Languages and
Computer Architecture, pages 324-333, 1995.

E. Meijer and J. Jeuring. Merging monads and folds for functional pro-
gramming. In Advanced Functional Programming, AFP’95, volume 925 of
LNCS, pages 228 266. Springer-Verlag, 1995.

E. Moggi. Notions of computation and monads. Information and Compu-
tation, 93(1):55-92, 1991.

E. Moggi, G. Belle, and C.B. Jay. Monads, shapely functors and traver-
sals. In Category Theory and Computer Science, CTCS’99, volume 29 of
ENTCS, pages 265 286. Elsevier, 1999.

0. de Moor. Categories, relations and dynamic programming. Mathematical
Structures in Computer Science, 4:33 69, 1994.

B. Nordstrom, K. Petersson, and J. M. Smith. Programming in Martin-
Lof’s Type Theory. An Introduction. Oxford University Press, 1990.

Mathematics of Program Construction Group (Eindhoven Technical Uni-
versity). Fixed-point calculus. Information Processing Letters, 53(3):131-
136, 1995.

Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A calculational fusion system
HYLO. In IFIP TC 2 Working Conference on Algorithmic Languages and
Calculi, February 1997.

J. Palsberg, C. Xiao, and K. Lieberherr. Efficient implementation of adap-
tive software. ACM Transactions on Programming Languages and Systems,
17(2):264-292, 1995.

A. Pardo. Monadic corecursion — definition, fusion laws, and applications.
Electronic Notes in Theoretical Computer Science, 11, 1998.

Ross Paterson. General arrow constructions. Work in progress, 1999.

Ross Paterson. Embedding a class of domain-specific languages in a func-
tional language. In submission, 2000.



162

[90]

[91]

[92]

[93]

[94]

[95]

[97]

[98]

[99]

100]

BIBLIOGRAPHY

Simon Peyton Jones [editor|, John Hughes [editor]|, Lennart Augustsson,
Dave Barton, Brian Boutel, Warren Burton, Simon Fraser, Joseph Fasel,
Kevin Hammond, Ralf Hinze, Paul Hudak, Thomas Johnsson, Mark Jones,
John Launchbury, Erik Meijer, John Peterson, Alastair Reid, Colin Runci-
man, and Philip Wadler. Haskell 98 A non-strict, purely functional lan-
guage. Available from http://www.haskell.org/definition/, February
1999.

Holger Pfeifer and Harald Ruef§. Polytypic proof construction. In Y. Bertot,
G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors, Proc. 12th Intl.
Conf. on Theorem Proving in Higher Order Logics, number 1690 in Lecture
Notes in Computer Science, pages 55—72. Springer-Verlag, 1999.

P.J. Plauger, Alexander A. Stepanov, Meng Lee, and David R. Musser. The
Standard Template Library. Prentice Hall, 1997.

J.A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12:23 41, 1965.

Fritz Ruehr. Analytical and Structural Polymorphism Ezpressed Using Pat-
terns Qver Types. PhD thesis, University of Michigan, 1992.

David A. Schmidt. Denotational Semantics: A Methodology for Language
Development. Wm. C. Brown Publishers, 1988.

T. Sheard and L. Fegaras. A fold for all seasons. In Proceedings of the 6th
ACM Conference on Functional Programming Languages and Computer
Architecture FPCA 93, pages 233 242. ACM Press, June 93.

T. Sheard and N. Nelson. Type safe abstractions using program genera-
tors. Technical Report 95-013, Oregon Graduate Institute of Science and
Technology, Portland, OR, USA, 1995.

Tim Sheard. Automatic generation and use of abstract structure operators.
ACM Transactions on Programming Languages and Systems, 13(4):531
557, 1991.

A. Takano and E. Meijer. Shortcut deforestation in calculational form. In
Conference Record of FPCA 95, SIGPLAN-SIGARCH-WG2.8 Conference
on Functional Programming Languages and Computer Architecture, pages
306-313, 1995.

Mans Vestin. Genetic algorithms in Haskell with polytypic programming.
Examensarbeten 1997:36, Goteborg University, Gothenburg, Sweden, 1997.
Available from the Polytypic programming WWW page [49].



BIBLIOGRAPHY 163

[101] P. Wadler. Theorems for free! In Functional Programming Languages and
Computer Architecture, FPCA 89, pages 347-359. ACM Press, 1989.

[102] P. Wadler. Comprehending monads. In Proceedings 1990 ACM Conference
on Lisp and Functional Programming, pages 61-78, 1990.

[103] P. Wadler. Deforestation: transforming programs to eliminate trees. The-
oretical Computer Science, 73(2):231-248, 1990. Presented at ESOP’88.

[104] M. Wallace and C. Runciman. Heap compression and binary 1/0 in haskell.
In 2nd ACM Haskell Workshop, 1997.



164 BIBLIOGRAPHY



Appendix A

An implementation of PolyLib

This appendix presents the implementation of the polytypic function library
PolyLib (Chapter 5) as PolyP code. All functions from Chapter 5 are imple-
mented and also a few variants and extensions. Each section is presented as a
Haskell style module, but the current version of PolyP ignores the information in
the module head. Each module is a literate script containing the source code and
some typesetting information. The KTEX source used to typeset this appendix
was automatically generated by Ralf Hinze’s [hs2tex program.

A.1 Structured recursion operators

module Base (pmap, fmap2, cata, ana, hylo, para, ( - ),( -+ )) where

pmap :: Regular d = (a > b) >da—db

pmap [ = inn o fmap2 f (pmap f) o out

polytypic fmap2:: (a - ¢) = (b—d)—>fab—fcd
= Ap r — case [ of

g+h = (fmap2pr) -+ (fmap2p r)
g*h = (fmap2 p r) « (fmap2 p r)
Empty — id () = ()
Par — p
Rec —
dag —  pmap (fmap2 p r)
Constt — id
cata 0 Regular d = (P40 b — b) — (d a—b)
cata i = o fmap2id (cata i) o out

165
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ana :: Regular d = (b— @5 ab) — (b— d a)

ana o = inno fmap2 id (ana o) oo

hylo . Bifunctor f = (fab—0)—(c—=>fac)—>c—b
hyloi o = iofmap2id (hyloi o)o o

para . Regular d = (da— P5ab—0b)—da—b
para i x = iz (fmap2id (para i) (out x))

Non-polytypic help functions

() 2 (a—c¢)=>(b—=d)— ((a,b) = (¢, d))
(+) = (a—c¢)—(b—d)— (Fither a b — Either ¢ d)
frg = My =9y
f+9 = Leftofv Rightog
A.2  Crush

module Crush (crush, fcrush) where
import Base (cata, pmap)

crush :: Regqular d = (a - a —a) > a—da—a
crush op e = cata (ferush op e)

polytypic ferush :: (a - a —a) > a—faa—a
= Aop e — case f of

g+h —  ferush op e v ferush op e

gxh —  Az,y) — op (ferush op e x)
(ferush op e y)

Empty — Xz —e

Par — id

Rec — id

dQg —  crush op e o pmap (ferush op e)

Constt — Az —e
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A.3 Monadic recursion operators
module BaseM (pmapM , fmap2M, cataM , anaM , hyloM , paraM
innM , outM ,idM, (@QQ)) where
import Base (( « ))
pmapM :: (Regular d, Monad m) = (a = m b) = d a— m (d b)
pmapM fM = liftM inn o fmap2M fM (pmapM fM) o out
polytypic fmap2M :: Monad m = (a — m c¢) = (b - m d) —
fab—m(fecd
= Ap r — case [ of
g+h —  summapM (fmap2M p r) (fmap2M p r)
g*h —  prodmapM (fmap2M p r) (fmap2M p r)
Empty —  return
Par — p
Rec —
dQgq —  pmapM (fmap2M p r)
Constt —  return
summapM :: Monad m = (a - m ¢) — (d - me) —
FEither a d — m (Either c e)
summapM f g = (liftM Left o f) v (liftM Right o g)
prodmapM :: Monad m = (a — m ¢) — (d = m e) — (a,d) — m (c, e)

prodmapM f gp = [ (fst p) >= Az — g (snd p) >= Ay — return (x, )

prodmapMr f gp = g (snd p) >= Ay — f (fst p) >= Az — return (z,y)

cataM :: (Regular d, Monad m) = (&4 a b — m b) — (d a — m b)
cataM iM = iM QQ fmap2M idM (cataM iM) o out

anaM :: (Regular d, Monad m) = (b —m @, a b) — (b — m (d a))
anaM oM = LiftM inn o fmap2M idM (anaM oM) Q@ oM

hyloM :: (Bifunctor f, Monad m) = (f a b — mb) — (¢ = m (f a c)) —

c—mb
hyloM iM oM = iM QQ fmap2M idM (hyloM iM oM) QQ oM

paraM :: (Regular d, Monad m) = (d a - ®4ab—>mb) —>da—mb

paraM iM © = iM z =< fmap2M idM (paraM iM) (out x)
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New names for symmetry:

idM :: Monad m = a — m a

wdM = return

innM :: (Regular d, Monad m) = &4 a (d a) — m (d a)
imnM = idM o inn

outM :: (Regular d, Monad m) = d a = m @4 a (d a)
outM = idM o out

A synonym.

pmapMI :: (Regular d, Monad m) = (a — m b) — d a — m (d b)
pmapMl = pmapM

Reverse order traversals

pmapMr :: (Regular d, Monad m) = (a - m b) — d a — m (d b)
pmapMr fM = LiftM inn o fmap2Mr fM (pmapMr fM) o out

polytypic fmap2Mr :: Monad m =
(a—>mec)=(b—=md)—>fab—m(fcd)
= Ap r — case f of

g+nh —  summapM (fmap2Mr p r) (fmap2Mr p r)
gxh —  prodmapMr (fmap2Mr p r) (fmap2Mr p 1)
Empty —  return

Par — P

Rec — T

dQgq —  pmapMr (fmap2Mr p r)

Constt —  return

cataMr :: (Regular d, Monad m) = (4 a b — m b) — (d a — m b)
cataMr iM = iM QQ fmap2Mr idM (cataMr iM) o out

anaMr :: (Regular d, Monad m) = (b — m @4 ab) = (b — m (d a))
anaMr oM = liftM inn o fmap2Mr idM (anaMr oM) @Q oM

hyloMr :: (Bifunctor f, Monad m) = (f a b > m b) - (¢ > m (f a ¢)) —
c—mb
hyloMr iM oM = iM QQ fmap2Mr idM (hyloMr iM oM) QQ oM
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Traversal either way: pmapM' (True — left to right, False — right to left)

pmapM' :: (Regular d, Monad m) = Bool — (a — m b) — d a — m (d b)
pmapM' ord fM = iftM inn o fmap2M' ord fM (pmapM' ord fM) o out

polytypic fmap2M' :: Monad m = Bool — (a — m ¢) = (b - m d) —
fab—m(fcd)
= Mord p r — case f of

g+h —  summapM (fmap2M' ord p r) (fmap2M' ord p )
gxh —  opM ord o (fmap2M' ord p r » fmap2M' ord p r)
Empty  —  return

Par — P

Rec — T

dQgq —  pmapM' ord (fmap2M’ ord p )

Constt —  return

opM :: Monad m = Bool — (m a,m b) — m (a,b)

opM b p = case b of
True — fst p >= Az — snd p >= Ay — return (z,y)
False — snd p >= \y — fst p >= Az — return (z,y)

Monad operations (that are not in PolyP’s prelude)

liftM :: Monad m = (a - b) = ma—mb

LiftM f mz = mz >= Az — return (f z)

(QQ) :: Monad m = (b —-m c¢) = (a—mb) = (a — mc)
feag =y —gy>f

A.4 Thread

module Thread (thread, pmapM , fthread, fmap2M) where
import Base (cata, inn, pmap)
import BaseM (pmapM , fmap2M, (QQ))
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thread :: (Regular d, Monad m) = d (m a) — m (d a)
thread = cata (liftM inn o fthread)

polytypic fthread :: Monad m = f (m a) (m b) — m (f a b)
= case f of
g+h —  sumthread o (fthread —+ fthread)
gxh —  prodthread o (fthread - fthread)
Empty —  return
Par — ad
Rec — ad
dQg —  thread o (pmap fthread)
Const t —  return

sumthread :: Monad m = FEither (m a) (m b) — m (Fither a b)
sumthread = liftM Left v liftM Right

prodthread :: Monad m = (m a,m b) — m (a,b)
prodthread (mz, my) = mz >= \x — my >= \y — return (z,y)

Monad operations (that are not in PolyP’s prelude)

liftM :: Monad m = (a — b) > ma— mb
LiftM f mz = mzx >= Az — return (f 1)

Alternative definitions of pmapM and fmap2M:

pmapM :: (Regular d, Monad m) = (a — m b) — d a — m (d b)

pmapM f = thread o pmap f

fmap2M :: (Bifunctor f, Monad m) = (a - m c¢) = (b - m d) —
fab—m(fcd)

fmap2M [ g = fthread o fmap2 f g

A.5 ThreadFuns

module ThreadFuns (propagate, cross) where
import Thread (thread)

cross :: Regular d = d [a] — [d a]
cross = thread

propagate :: Regqular d = d (Maybe a) — Maybe (d a)
propagate = thread
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A.6 Propagate

module Propagate (propagate, fprop, sumprop, prodprop, mapM ) where
import Base (cata, inn, pmap)

propagate :: Reqular d = d (Maybe a) — Maybe (d a)
propagate = cata (mapM inn o fprop)

polytypic fprop = f (Maybe a) (Maybe b) — Maybe (f a b)
= case f of
g+h — sumprop o (fprop —+ fprop)
g*h —  prodprop o (fprop + fprop)
Empty —  Just
Par — ad
Rec — id
dQg —  propagate o (pmap fprop)
Const t —  Just

sumprop :: Fither (Maybe a) (Maybe b) — Maybe (Either a b)
sumprop = mapM Left v mapM Right

prodprop :: (Maybe a, Maybe b) —  Maybe (a,b)
prodprop p = case p of
(Just x, Just y) —  Just (z,y)
_ —  Nothing

Maybe functions

mapM :: (a — b) — Maybe a — Maybe b
mapM f = maybe Nothing (Just o f)

A7 Zip

module Zip (pzip, fzip, pzipWith, pzip With', fzipWith, fzipWith) where
import Base (pmap, fmap2, ( + ), ( = ))
import Propagate (fprop, sumprop, prodprop, propagate, mapM )
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In this module Maybe could be replaced by any Monad using fail "err" for
zeroM .

punzip :: Regular d = d (a,b) — (d a,d b)
punzip x = (pmap fst z,pmap snd x)

funzip :: Bifunctor f = f (a,¢) (b,d) — (f a b,f ¢ d)
funzip x = (fmap?2 fst fst x, fmap2 snd snd )

pzip :: Regular d = (d a,d b) — Maybe (d (a, b))
pzip = (innM QQ (fprop o fmap2 returnM pzip) QQ fzip) o (out -+ out)

pzip With' :: Regular d = (P4 c e — €) —
((da,db)—e)—
((a,b) = ¢) = (d a,d b) — ¢
pzip With' ins fail op (z,y) =
maybe (fail (z,y)) (ins o fmap?2 op (pzip With' ins fail op))
(fzip (out z, out y))

A possible variant:
pzip With' ins fail op (z,y) =
maybe (fail (z,y)) ins (fzipWith op (pzip With' ins fail op) (out z, out y))

pzipWith = Regular d = ((a,b) — Maybe ¢) — (d a,d b) — Maybe (d c)
pzipWith = pzipWith' (mapM inn o fprop) (const zeroM)

Note: the parameters to fzipWith do not have the the same types as the arguments
to pzipWith.

JzipWith =2 ((a,a’) = ¢) = ((b,b') = d) — (f a b,f ' V') — Maybe (f ¢ d)
fzipWith f g = mapM (fmap2 f g) o fzip

polytypic fzip == (f ab,f ¢ d) — Maybe (f (a,c) (b,d))
= case f of

g+nh —  (sumprop o (fzip + fzip)) QQ sumzip
gxh —  (prodprop o (fzip + fzip)) QQ prodzip
Empty  —  const (returnM ())
Par —  returnM
Rec —  returnM
dQgq —  (propagate o (pmap fzip)) QQ pzip
Constt —  constzip
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sumzip :: (Fither a b, Either ¢ d) —  Maybe (Either (a,c) (b, d))
sumzip p = case p of

(Left s, Left t) —  returnM (Left (s,t))
(Right s, Right t) —  returnM (Right (s,t))
_ —  zeroM

prodzip :: ((a,b), (¢, d)) — Maybe ((a, c), (b
prodzip ((a,b), (¢,d)) = returnM ((a, c), (

Using this definition of constzip in the Const t case, formally requires an Fq t
constraint, which is inexpressible in PolyP (in this position). However the imple-
mentation of PolyP allows this for convenience, even though it is not really type
safe.

constzip :: Eq t = (t,t) — Maybe t
constzip (z,y) = if x == y then returnM z else zeroM

The intended (and implemented) meaning is fairly clear: one branch Const T —
constzip in the polytypic case for each type T that is an instance of Ejq.

Maybe-monad functions

returnM :: a — Maybe a
returnM x = Just x

bindM :: Maybe a — (a — Maybe b) — Maybe b
bindM © f = maybe Nothing f x

(QQ) :: (a — Maybe b) — (¢ — Maybe a) — ¢ — Maybe b
gQQf = dAa— fa‘bindM'g

zeroM :: Maybe a
zeroM = Nothing

innM :: Regular d = &4 a (d a) — Maybe (d a)
innM = returnM o inn
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A.8 FEqual

module Fqual (pequal, fequal, peq) where

peq :: (Regular d, Eq a) = d a — d a — Bool
peq = pequal (==)

pequal :: Regular d = (a — b — Bool) — d a — d b — Bool
pequal eq x y = fequal eq (pequal eq) (out x) (out y)

polytypic fequal :: (a — b — Bool) — (¢ — d — Bool) —
fac—fbd— Bool
= Ap r — case f of

g+h —  sumequal (fequal p r) (fequal p )
gxh —  prodequal (fequal p r) (fequal p 1)
Empty — A__— True

Par — p

Rec — T

dQgq —  pequal (fequal p )

Constt — (==)

sumequal :: (a — b — Bool) — (¢ = d — Bool) —
Either a ¢ — FEither b d — Bool
sumequal f g a b = case (a,b) of
(Left z, Left v) — fzw
(Right y, Right w) — gy w
_ —  False

prodequal :: (a — b — Bool) — (¢ — d — Bool) — (a, c¢) — (b, d) — Bool
prodequal f g p q = f (fst p) (fst q) A g (snd p) (snd q)

A slightly less lazy variant:

prodequal f g (z,y) (v,w) = fzv A gyw
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A.9 Compare

module Compare (pcompare’, pcompare, fcompare) where

pcompare’ 2 (Regular d, Ord a) = d a — d a — Ordering
pecompare’ = pcompare compare

pcompare :: Regular d = (a — a — Ordering) — d a — d a — Ordering
pcompare eq £y = fecompare eq (pcompare eq) (out z) (out y)
polytypic fcompare :: (a — a — Ordering) — (b — b — Ordering) —
fab—fab— Ordering
= Ap r — case [ of

g+h —  sumcompare (fcompare p r) (fcompare p 1)
g*h —  prodcompare (fcompare p r) (fcompare p 1)
Empty — A__— EQ

Par — p

Rec —

dQgq —  pcompare (feompare p r)

Constt —  compare

sumcompare :: (a — a — Ordering) — (b — b — Ordering) —
FEither a b — Fither a b — Ordering
sumcompare f g a b = case (a, b) of

(Left x, Left v) — fzwo
(Right y, Right w) — gy w
(Left _, Right _) — LT
(Right _, Left _) — GT

prodcompare :: (a — a — Ordering) — (b — b — Ordering) —
(a,b) — (a,b) = Ordering
prodcompare f g p q = f (fst p) (fst q) ‘ordop* g (snd p) (snd q)

ordop :: Ordering — Ordering — Ordering
ordop xr y = case 1 of

EQ — vy

— — T
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A.10 Flatten

module Flatten (flatten, fflatten, fl_par, fl_rec, fl_all, singleton, nil) where
import Base (pmap, fmap?2)

flatten :: Regular d = d a — [a]
flatten = fflatten o fmap?2 singleton flatten o out

polytypic fflatten == f|a][a] = [a]
= case f of

g+h —  fflatten < fflatten
g*h — Mz, y) — fflatten z + fflatten y
Empty —  nil
Par — id
Rec —  id
dQg —  concat o flatten o pmap fflatten
Const t —  nil

flupar i Bifunctor f = f a b — [a]

fliree 1 Bifunctor f = f ab—[b]

filuall 2 Bifunctor f = f a a — [a]

flupar = fflatten o fmap2 singleton nil

fiiree = fflatten o fmap2 nil singleton

fi_all = fflatten o fmap2 singleton singleton

A variant: defining flatten using cata:

flatten = cata (fflatten o fmap2 singleton id)
Function flatten can also be defined using crush (see the module CrushFuns).

substructures :: Regular d = d a — [d a]
substructures © = x : fflatten (fmap?2 nil substructures (out x))

Help functions for lists

singleton D oa—|al
singleton v = [z]
nil o a—[b]

nil = ]
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A.11  Sum

module Sum (psum, fsum, size) where
import Base (cata, pmap)

psum :: Regular d = d Int — Int

psum = cata fsum
polytypic fsum :: f Int Int — Int
= case [ of

g+nh —  fsum v fsum
g*h — Mz, y) — fsum z + fsum y
Empty — Az —0
Par — id
Rec — id
dQg —  psum o pmap fsum
Const t — Ar—0

size :: Regqular d = d a — Int
size = psum o pmap (A_— 1)

The functions psum and size can also be defined using crush (see the module
CrushFuns).

A.12  CrushFuns

module CrushFuns (psum, prod, conc, pand, por,
size, flatten, pall, pany, pelem) where

import Crush (crush)
import Base (pmap)

psum  : Regular d = d Int — Int

prod ' Regular d = d Int — Int

comp = Regular d = d (a = a) = (a — a)
conc = Regular d = d [a] — [a]

pand  :  Regular d = d Bool — Bool

por ' Regular d = d Bool — Bool
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psum
prod
comp
conc
pand
por

size
flatten
pall

pany
pelem

size
flatten
pall p

pany p
pelem x

APPENDIX A.

(
crush (
crush (
crush () []
crush (A) True
crush (V') False

AN IMPLEMENTATION OF POLYLIB

Regular d = d a — Int

Regular d = d a — [a]

Regular d = (a — Bool) — d a — Bool
Regular d = (a — Bool) — d a — Bool
(Regular d, Eq a) = a — d a — Bool

psum o pmap (A_ — 1)
conc o pmap (Ax — [z])

pand o pmap p
por o pmap p

pany (A\y — z ==y)

A linear variant of flatten can be defined by using an accumulating parameter:

flatten'
flatten'

Regular d = d a — [a] — [a]

comp o pmap (:)

A.13 ConstructorName

module ConstructorName where

Functions datatypeName and fconstructorName are built in.

datatypeName :: Regular d = d a — String
feonstructorName :: Bifunctor f = f a b — String
constructorName :: Regular d = d a — String
constructorName = fconstructorName o out
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constructorNames :: Reqular d = d a — [String]
constructorNames = fconstructorNames o out

feonstructorNames :: Bifunctor f = f a b — [String]
feonstructorNames © =
map feconstructorName (feonstructors ‘asTypeOf‘ [x])

The use of asTypeOf is a way to propagate type information to the correct des-
tination. It is used to work around the lack of explicit functor arguments.

constructorNamesAndArities :: Regular d = d a — [(String, Int)]
constructorNamesAndArities = feconstructorNamesAndArities o out

feonstructorNamesAndArities :: Bifunctor f = f a b — [(String, Int)]
feonstructorNamesAndArities x =

map (mapFst feconstructorName)
(feonstructorsAndArities ‘asTypeOf [(z, L)])

constructors :: Reqular d = [d a]
constructors = map inn feconstructors

polytypic fconstructors :: [f a b] =

case [ of
g+h — map Left fconstructors + map Right fconstructors

g - [1]

polytypic fconstructorsAndArities :: [(f a b, Int)] =

case [ of
g+h — map (mapFst Left) fconstructorsAndArities+
map (mapFst Right) feconstructorsAndArities

g —  (Az = [(=z, feonstructorArity z)]) L

polytypic feconstructorArity :: f a b — Int =
case [ of
g*h —  Ap — feonstructorArity (fst p)+
feonstructorArity (snd p)
Empty —  const 0
f —  const 1
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constructor2Int :: Reqular d = d a — Int
constructor2Int = fconstructor2Int o out
polytypic fconstructor2Int :: f a b — Int =
case f of
g+h — const0 v ((An — 1+ n) o feonstructor2Int)
g —  const 0

int2constructor :: Reqular d = Int — d a
nt2constructor n = constructors!!'n

int2fconstructor :: Bifunctor f = Int — f a b
int2fconstructor n = feonstructors !!' n

mapFst :: (a = b) = (a,c) = (b, c)
mapFst f p = (f (fst p), snd p)



