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Fun
tional Polytypi
 ProgrammingPatrik JanssonDepartment of Computing S
ien
eChalmers University of Te
hnology and G�oteborg UniversityAbstra
tMany algorithms have to be implemented over and over again for di�erent data-types, either be
ause datatypes 
hange during the development of programs, orbe
ause the same algorithm is used for several datatypes. Examples of su
h al-gorithms are equality tests, pretty printers, and pattern mat
hers, and polytypi
programming is a paradigm for expressing su
h algorithms. This dissertationintrodu
es polytypi
 programming for fun
tional programming languages, showshow to 
onstru
t and prove properties of polytypi
 algorithms, presents the lan-guage extension PolyP for implementing polytypi
 algorithms in a type safe way,and presents a number of appli
ations of polytypi
 programming. The appli
a-tions in
lude a library of basi
 polytypi
 building blo
ks, PolyLib, and two largerappli
ations of polytypi
 programming: rewriting and data 
onversion.PolyP extends a fun
tional language (a subset of Haskell) with a 
onstru
t forde�ning polytypi
 fun
tions by indu
tion on the stru
ture of user-de�ned data-types. Programs in the extended language are translated to Haskell.PolyLib 
ontains powerful stru
tured re
ursion operators like 
atamorphisms,maps and traversals, as well as polytypi
 versions of a number of standard fun
-tions from fun
tional programming: sum, length, zip, (==), (6), et
. Both thespe
i�
ation of the library and a PolyP implementation are presented.The �rst larger appli
ation is a framework for polytypi
 programming on terms.We show that an interfa
e of four fun
tions is suÆ
ient to express polytypi
 fun
-tions for pattern mat
hing, uni�
ation and term rewriting. Using this framework,a term rewriting fun
tion is spe
i�ed and transformed into an eÆ
ient and 
orre
timplementation.In the se
ond appli
ation, a number of fun
tions for polytypi
 data 
onversionare implemented and proved 
orre
t. The 
onversions 
onsidered in
lude prettyprinting, parsing, pa
king and unpa
king of stru
tured data. The 
onversion fun
-tions are expressed in an embedded domain spe
i�
 language for data 
onversion(a hierar
hy of Haskell's 
onstru
tor 
lasses).Keywords: Programming languages, Fun
tional programming, Algebrai
 data-types, Polytypi
 programming, Generi
 programmingAMS 1991 subje
t 
lassi�
ation 68N15, 68N20
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Chapter 1Introdu
tion
The ability to name and reuse 
ommon patterns of 
omputation as higher-orderfun
tions is at the heart of the power of fun
tional languages. Higher-orderfun
tions like maps and 
atamorphisms 
apture very general programming idiomsthat are useful in many 
ontexts. This kind of polymorphi
 fun
tions enables usto abstra
t away from the unimportant details of an algorithm and 
on
entrateon its essential stru
ture.The type of a polymorphi
 fun
tion has type parameters, but all monomorphi
instan
es of the fun
tion 
an use identi
al 
ode. A generalization is to parametrizealso the fun
tion de�nition on types. Fun
tions that are parametrized in this wayare 
alled polytypi
 fun
tions [61℄. Equality fun
tions, pretty printers and parsers,traversal fun
tions and other re
ursion 
ombinators are all examples of polytypi
fun
tions.While a normal polymorphi
 fun
tion is an algorithm that is independent of thetype parameters, the 
lass of instan
es of a polytypi
 fun
tion 
ontains fun
tionsthat are di�erent, but whi
h share a 
ommon stru
ture. Any algorithm in the
lass 
an be obtained by instantiating a template algorithm with (the stru
tureof) a datatype.Other terms used for polytypism in the literature are stru
tural polymorphism(Ruehr [94℄), type parametri
 programming (Sheard [97℄), generi
 programming(Bird, de Moor and Hoogendijk [7℄), polynomial polymorphism (Jay [55℄), shapepolymorphism (Jay [56℄) and type indexed fun
tions (Hinze [35℄). A detailedoverview of polytypi
 programming in related work is presented in Chapter 8.In the sequel we will assume that the reader has some knowledge of a fun
tionalprogramming language, preferably Haskell [90℄. This 
hapter explains brie
ywhat polytypi
 fun
tions are, why they are useful and how they 
an be imple-mented. It also des
ribes the s
ope of this dissertation and presents an overviewof the following 
hapters. 1



2 CHAPTER 1. INTRODUCTION1.1 What is a polytypi
 fun
tion?To give an example of what a polytypi
 fun
tion is we show that the de�nitionsof the fun
tion sum on di�erent datatypes share a 
ommon stru
ture. The sumfun
tion takes a stru
ture 
ontaining integers and returns the sum of all theintegers in the stru
ture. The normal sum fun
tion for lists 
an be de�ned asfollows in the fun
tional language Haskell:sum :: [Int ℄ ! Intsum [ ℄ = 0sum (x : xs) = x + sum xsWe de�ne sum on the following datatypes:data [a ℄ = [ ℄ j a : [a ℄data Tree a = Leaf a j Bin (Tree a) (Tree a)data Maybe a = Nothing j Just adata Rose a = Fork a [Rose a ℄We 
an de�ne the fun
tion sum for all of these datatypes (instantiated on integers)using 
atamorphisms. A 
atamorphism is a fun
tion that re
ursively repla
es
onstru
tors with fun
tions. We write 
ataD fCi 7! eig for the 
atamorphism onthe datatype D a that repla
es the 
onstru
tors Ci with the expressions ei.sum[ ℄ :: [Int ℄! Intsum[ ℄ = 
ata[ ℄ f[ ℄ 7! 0; (:) 7! (+)gsumTree :: Tree Int ! IntsumTree = 
ataTree fLeaf 7! id ;Bin 7! (+)gsumMaybe :: Maybe Int ! IntsumMaybe = 
ataMaybe fNothing 7! 0; Just 7! id gsumRose :: Rose Int ! IntsumRose = 
ataRose fFork 7! �a l ! a + sum[ ℄ l gWe 
an already see some patterns in the parameters of the 
atamorphism: thetwo nullary 
onstru
tors [ ℄ and Nothing are both repla
ed by 0 and the twounary 
onstru
tors Leaf and Just are repla
ed by the identity fun
tion id . Thebinary 
onstru
tors ((:), Bin and Fork) are repla
ed by fun
tions that sum thesubexpressions. All the de�nitions of sum are instan
es of the following polytypi
de�nition of psum:psum :: Regular d ) d Int ! Intpsum = 
ata fsum



1.2. POLYMORPHISM AND POLYTYPISM 3polytypi
 fsum :: f Int Int ! Int= 
ase f ofg + h ! either fsum fsumg � h ! �(x ; y)! fsum x + fsum yEmpty ! �x ! 0Par ! idRe
 ! idd�g ! psum Æ pmap fsumConst t ! �x ! 0Figure 1.1: The de�nition of fsumFun
tion fsum is de�ned (in Figure 1.1) by indu
tion over the pattern fun
torf that 
aptures the stru
ture of the regular type 
onstru
tor d . The polytypi
de�nition of fun
tion 
ata and the explanation of fun
tion fsum will have to waituntil the polytypi
 
onstru
t is de�ned in Se
tion 3.6.Higher-order fun
tions and polytypi
 fun
tions 
an be used together to obtaineven more general de�nitions. Exa
tly the same stru
ture as that used for psum,
an be used to de�ne the polytypi
 fun
tion 
on
, whi
h 
on
atenates all lists ina stru
ture of type d [a ℄. We just repla
e 0 by [ ℄ and (+) with list 
on
atenation(++) in the de�nition of fsum to obtain f
on
.
on
 :: Regular d ) d [a ℄! [a ℄
on
 = 
ata f
on
Both psum and 
on
 are polytypi
 fun
tions and thus parametrized on the type
onstru
tor d . By abstra
ting over the operator and its unit, we 
an generalizepsum (fsum) and 
on
 (f
on
) to the polytypi
 fun
tion 
rush (f
rush).
rush :: Regular d ) (a ! a ! a)! a ! d a ! a
rush op e = 
ata (f
rush op e)where fsum = f
rush (+) 0 and f
on
 = f
rush (++) [ ℄. These fun
tions, andmany others, are des
ribed in PolyLib (Chapter 5 and Appendix A).1.2 Polymorphism and polytypismA parametri
 polymorphi
 fun
tion su
h ashead :: [a ℄! a



4 CHAPTER 1. INTRODUCTION
an be seen as a family of fun
tions | one for ea
h instan
e of a as a monomorphi
type. Parametri
ity implies that head 
an make no assumptions about the type a.Thus all the fun
tions in the family are essentially the same.An ad ho
 polymorphi
 fun
tion su
h as(+) :: Num a ) a ! a ! ais also a family of fun
tions, one for ea
h instan
e in the Num 
lass. Theseinstan
es may be 
ompletely unrelated and ea
h instan
e is de�ned separately.In almost all 
ases, automati
 type inferen
e 
an be used to �nd the appropriateinstan
e for any given o

urren
e of the (+) operator.The polymorphism of a polytypi
 fun
tion su
h aspsum :: Regular d ) d Int ! Intis somewhere in between parametri
 and ad ho
 polymorphism. A polytypi
fun
tion 
an be seen as a type indexed family of fun
tions. A single de�nitionof psum suÆ
es, but psum has di�erent instan
es in di�erent 
ontexts. Here the
ompiler generates instan
es from the de�nition of the polytypi
 fun
tion and thetype in the 
ontext where it is used. A polytypi
 fun
tion may also be parametri
polymorphi
: fun
tion size :: Regular d ) d a ! Int , whi
h returns the size ofa value of an arbitrary datatype, is both polytypi
 and parametri
 polymorphi
.Meertens [76℄ gives a ni
e example of the power of parametri
 polymorphism:Suppose we want a fun
tion to swap two integers: swap :: (Int ; Int)! (Int ; Int).This is not a very hard problem to solve, but there are in�nitely many type 
orre
tbut wrong solutions. (Two are id and �(x ; y)! (y +1; x ).) If we generalize thisfun
tion to the polymorphi
 fun
tion swap :: (a; b)! (b; a), then we get a mu
hmore useful program and we 
an't make it wrong while type 
orre
t. (Stri
tlyspeaking this is true only in a strongly normalizing language. If we have bottoms,or non-terminating 
omputations, as in CPO and in Haskell, then we 
an stillwrite a few non-terminating (wrong) versions.) Similarly, even when a fun
tionmay be needed only for one spe
i�
 datatype, it may be helpful to de�ne itpolytypi
ally to redu
e the risk of making a mistake.1.3 Why polytypi
 programming?Polytypi
 programming o�ers a number of bene�ts:Reusability: Polytypism extends the power of polymorphi
 fun
tions to allow
lasses of related algorithms to be des
ribed in one de�nition. For example,



1.4. SCOPE 5the 
lass of printing fun
tions for di�erent datatypes 
an be expressed asone polytypi
 show fun
tion. Thus polytypi
 fun
tions are very well suitedfor building program libraries. PolyLib (Chapter 5) is an example of su
ha library.Adaptivity: Polytypi
 programs automati
ally adapt to 
hanging datatypes.For example, if we add a 
onstru
tor Node (Tree a) a (Tree a) to thedatatype Tree a, then the same polytypi
 sum fun
tion 
an still be used tosum all integers in elements of the (new) tree type. This adaptivity redu
esthe need for time 
onsuming and boring rewrites of trivial fun
tions andeliminates the asso
iated risk of making mistakes.Closure and orthogonality: Currently some polytypi
 fun
tions 
an be usedbut not de�ned in ML (the equality fun
tion(s)) and Haskell (the membersof the derived 
lasses). This asymmetry 
an be removed by extending theselanguages with polytypi
 de�nitions.Appli
ations: Some problems are polytypi
 by nature: maps and traversals(Se
tion 5.4), pretty printing and parsing (Se
tion 7.6), data 
ompression(Se
tion 7.5), mat
hing (Se
tion 6.3.2), uni�
ation (Se
tion 6.3.3), termrewriting (Se
tion 6.4), . . .Provability: More general fun
tions means more general proofs. If we 
onsiderpolytypi
 proofs, then ea
h of the earlier bene�ts obtains an additional in-terpretation: we get reusable proofs, adaptive proofs, less ad ho
 semanti
sof programming languages and new proofs of properties of printing andparsing (Se
tion 7.6), pa
king (Se
tion 7.5), term rewriting (Se
tion 6.4)et
.1.4 S
opeAs the title suggests this dissertation is about polytypi
 programming for fun
-tional programming languages. More spe
i�
ally, the programs in this disserta-tion are written in the fun
tional programming language Haskell 98 [90℄ extendedwith with support for polytypi
 de�nitions provided by the authors language ex-tension PolyP (Chapter 4).A polytypi
 fun
tion 
an be applied to values of a large 
lass of datatypes, butsome restri
tions apply. We require that a polytypi
 fun
tion is applied to valuesof regular datatypes only. A datatype D a is regular if it is not mutually re
ursive,
ontains no fun
tion spa
es, and if the arguments of the datatype 
onstru
tor onthe left- and right-hand side in its de�nition are the same. The 
olle
tion ofregular datatypes 
ontains most 
onventional re
ursive datatypes, su
h as Nat ,



6 CHAPTER 1. INTRODUCTION[a ℄, and di�erent kinds of trees. We use the 
onstru
tor 
lass Regular to representthe 
olle
tion of regular datatypes.Polytypi
 fun
tions 
an be de�ned on a larger 
lass of datatypes, in
luding multi-ple parameter datatypes [58℄, mutually re
ursive datatypes [14,35,45℄, datatypeswith fun
tion spa
es [26, 78℄ and nested datatypes [8, 34℄ but we will not dis
ussthese extensions.1.5 Approa
hes to writing polytypi
 programsThere are various ways to implement polytypi
 programs in a typed language.(Polytypi
 programs 
an be implemented in untyped languages like Lisp or C butwithout any (stati
) type safety. We only 
onsider strongly typed languages inthis dissertation.) Three possibilities are:� using a universal datatype;� using higher-order polymorphism and 
onstru
tor 
lasses;� using a spe
ial synta
ti
 
onstru
t.Polytypi
 fun
tions 
an be implemented by de�ning a universal datatype, onwhi
h we de�ne the fun
tions we want to have available for large 
lasses of data-types. These polytypi
 fun
tions 
an be used on a spe
i�
 datatype if we providetranslation fun
tions to and from the universal datatype. An advantage of usinga universal datatype for implementing polytypi
 fun
tions is that we do not needa language extension for writing polytypi
 programs. However, using universaldatatypes has several disadvantages: type information is lost in the translationphase to the universal datatype, and type errors 
an o

ur when programs arerun. Furthermore, di�erent people will use di�erent universal datatypes, whi
hwill make program reuse more diÆ
ult.If we use higher-order polymorphism and 
onstru
tor 
lasses for de�ning polytypi
fun
tions (as in Jones [65℄), then type information is preserved, and we 
an usea fun
tional language su
h as Haskell for implementing polytypi
 fun
tions. Inthis style all regular datatypes are represented by the typedata Mu f a = In (f a (Mu f a))and the 
lass system is used to overload fun
tions like map and 
ata. However,writing su
h programs is rather 
umbersome: programs be
ome 
luttered withinstan
e de
larations, and type de
larations be
ome 
luttered with 
ontexts. Andthe user still has to write all translation fun
tions.



1.6. THE POLYP SYSTEM 7Be
ause the �rst two solutions to writing polytypi
 fun
tions are unsatisfa
tory,we have extended (a subset of) Haskell with a synta
ti
 
onstru
t for de�ningpolytypi
 fun
tions. We will use the name PolyP both for the extension and theresulting language.1.6 The PolyP systemPolyP is an extension of a fun
tional language that allows programmers to de�neand use polytypi
 fun
tions. The underlying language in this dissertation isa subset of Haskell and hen
e lazy, but this is not essential for the polytypi
extension. The extension introdu
es a new kind of (top level) de�nition, thepolytypi
 
onstru
t, used to de�ne fun
tions by indu
tion over the stru
ture ofdatatypes. Be
ause datatype de�nitions 
an express sum-, produ
t-, parametri
and re
ursive types, the polytypi
 
onstru
t must handle these 
ases.PolyP type 
he
ks polytypi
 value de�nitions and, when using polytypi
 values,types are automati
ally inferred. (Just as in Haskell, sometimes expli
it typeannotations are needed to resolve overloading.) The type inferen
e algorithmis based upon Jones' theories of quali�ed types [64℄ and higher-order polymor-phism [66℄. The semanti
s of PolyP is de�ned by adding type arguments topolytypi
 fun
tions in a di
tionary passing style. We give a type based transla-tion from PolyP to Haskell that uses partial evaluation to remove all di
tionaryvalues at 
ompile time. Thus we avoid run time overhead for 
reating instan
esof polytypi
 fun
tions.The 
ompiler for PolyP is still under development, and has a number of limita-tions. Polytypi
 fun
tions 
an only be applied to values of regular datatypes. Theunderlying subset of Haskell la
ks many useful 
onstru
ts su
h as modules andinstan
e de
larations. Extensions to handle multiple type arguments, mutuallyre
ursive datatypes and all of Haskell are planned for the forth
oming su

essorof PolyP: Generi
 Haskell [33℄.1.7 OverviewThe dissertation 
ontains an introdu
tion to polytypi
 programming, a des
rip-tion of the language extension PolyP and its library PolyLib and two largerpolytypi
 appli
ations: term rewriting and data 
onversion.Chapter 2 is a non-polytypi
 prelude to the rest of the dissertation. It de�nesnotation, useful fun
tions and laws to be used in the sequel.Chapter 3 is an introdu
tion to fun
tional polytypi
 programming. This 
hapteris the one you should read if you want to learn how to write and use polytypi




8 CHAPTER 1. INTRODUCTIONfun
tions: it de�nes 
atamorphisms, polytypi
map fun
tions, fun
tion psum usedin the pre
eding example and presents the polytypi
 
onstru
t whi
h is usedfor de�ning polytypi
 fun
tions by indu
tion over the stru
ture of user-de�neddatatypes. This 
hapter also presents some polytypi
 proof rules and uses theserules to prove properties about polytypi
 fun
tions.Chapter 4 brie
y des
ribes the theory and implementation of PolyP: the type sys-tem that preserves Haskell-like type inferen
e provided the polytypi
 
onstru
tis expli
itly typed, and the semanti
s in terms of a translation of PolyP-programsinto Haskell. The theory from this 
hapter is not essential for reading the restof the dissertation. The 
hapter is based on the POPL'97 paper PolyP | apolytypi
 programming language extension [46℄.Chapter 5 presents a library of polytypi
 building blo
ks that 
an be used inappli
ations. Ea
h fun
tion is presented with its type and a brief des
riptionof what it does and how it is related to other polytypi
 fun
tions. The 
hapteris a revised version of the paper PolyLib | a polytypi
 fun
tion library [51℄.An implementation of PolyLib in the language extension PolyP is in
uded inAppendix A.Chapter 6 presents the �rst larger polytypi
 appli
ation: term rewriting. This
hapter presents an interfa
e for polytypi
 programming on terms, and uses thisinterfa
e to des
ribe polytypi
 algorithms for mat
hing, uni�
ation and eÆ
ientterm rewriting together with some 
orre
tness proofs. The 
hapter is an extendedversion of the arti
le A framework for polytypi
 programming on terms, with anappli
ation to rewriting [52℄.Chapter 7 is the se
ond larger polytypi
 appli
ation: data 
onversion. It presentspolytypi
 fun
tions for maps and traversals, data 
ompression, and pretty print-ing. For ea
h 
onversion, a pair of inverse fun
tions is 
onstru
ted together witha proof of 
orre
tness. The 
onversion fun
tions are expressed in an embeddeddomain spe
i�
 language for data 
onversion. The embedded language is de�nedas a hierar
hy of Haskell's 
onstru
tor 
lasses, based on Hughes' Arrows [42℄.Chapter 8 gives an overview of polytypism in related work. It des
ribes the originsof polytypism, the di�erent approa
hes used to express, type 
he
k and implementpolytypism and gives many referen
es to further reading about polytypism.



Chapter 2Prelude
This 
hapter is for the dissertation what the standard prelude is for Haskell: a
olle
tion of 
ommon resour
es whi
h 
an be used everywhere without expli
itlyhaving to de�ne them lo
ally or import them. The prelude is divided into se
tionsthat present some notation and a few basi
 datatypes with asso
iated operationsand laws.2.1 ContextFor spe
i�
ations, program 
ode and proofs, we use Haskell [90℄ notation witha few typographi
al enhan
ements to improve readability. In a few pla
es theseenhan
ements 
lash with the formal syntax for Haskell. For example, we use (;)for forward 
omposition (that is, f ; g = gÆf) although Haskell uses the semi
olononly as a separator. Where possible, in
luded program 
ode is automati
allypretty printed from Haskell or PolyP sour
e 
ode to avoid errors.In 
ategory theory, a fun
tor is a mapping between 
ategories that preserves thealgebrai
 stru
ture of the 
ategory. Be
ause a 
ategory 
onsists of obje
ts (types)and arrows (fun
tions), a fun
tor 
onsists of two parts: a de�nition on types, anda de�nition on fun
tions. We normally work in the 
ategory CPO of 
ompletepartial orders and 
ontinuous fun
tions between them.2.2 The fun
tion typeThe Haskell type of partial fun
tions from a to b is written a ! b and a lambdaexpression with pattern a and body b is written �a ! b. The identity fun
tion,9



10 CHAPTER 2. PRELUDE
onstant fun
tion and fun
tion 
omposition are de�ned as follows:id :: a ! aid x = x
onst :: a ! b ! a
onst k = k(Æ) :: (b ! 
)! (a ! b)! (a ! 
)(f Æ g) x = f (g x )Fun
tions of multiple arguments are normally 
urried in 
ontrast to languageslike Ada, Java and SML where fun
tions normally take a tuple of arguments.The fun
tions 
urry and un
urry 
onvert between these two views:
urry :: ((a; b)! 
)! (a ! b ! 
)
urry f x y = f (x ; y)un
urry :: (a ! b ! 
)! ((a; b)! 
)un
urry f p = f (fst p) (snd p)2.3 The disjoint sum typeThe disjoint sum type Either a b in Haskell 
onsists of left-tagged elements oftype a, and right-tagged elements of type b, and has 
onstru
tors Left and Right ,whi
h inje
t elements into the left and right 
omponent of a sum respe
tively.data Either a b = Left a j Right bLeft :: a ! Either a bRight :: b ! Either a bFun
tion l r r (written either l r in Haskell) is a shorthand notation for 
aseanalysis. Fun
tion ( r ) is the 
atamorphism on Either . It takes a fun
tion l oftype a ! 
 and a fun
tion r of type b ! 
, and repla
es Left with l and Rightwith r :( r ) :: (a ! 
)! (b ! 
)! (Either a b ! 
)(l r r) (Left x ) = l x(l r r) (Right y) = r yThe operator ( �+� ) is used to apply either l or r inside Left or Right . It is atwo-argument mapping fun
tion on Either .( �+� ) :: (a ! 
)! (b ! d)! (Either a b ! Either 
 d)(l �+� r) (Left x ) = Left (l x )(l �+� r) (Right y) = Right (r y)



2.4. THE UNIT TYPE 11The following fun
tional de�nition of ( �+� ) is equivalent and easier to 
al
ulatewith:l �+� r = (Left Æ l) r (Right Æ r)Fun
tion ( �+� ) satis�es two fun
tor laws and operator ( r ) satis�es two fusionlaws:id �+� id = id(f �+� g) Æ (h �+� i) = (f Æ h) �+� (g Æ i)f Æ (g r h) = (f Æ g) r (f Æ h)(f r g) Æ (h �+� i) = (f Æ h) r (g Æ i)2.4 The unit typeThe nullary produ
t type and its only 
onstru
tor are both written as ():data () = ()2.5 The pair typeThe binary produ
t type and its elements are written as pairs (a; b). Fun
tionsfst and snd are the two proje
tions.data (a; b) = (a; b)fst (a; b) = asnd (a; b) = bThe duals of ( r ) and ( �+� ) are ( � ) and ( ��� ), respe
tively.( � ) :: (a ! b)! (a ! 
)! (a ! (b; 
))(f � s) x = (f x ; s x )The operator ( ��� ) is the analogue of map on produ
ts.( ��� ) :: (a ! 
)! (b ! d)! ((a; b)! (
; d))(f ��� s) (x ; y) = (f x ; s y)By analogy with the de�nition of ( �+� ) we have an equivalent fun
tion levelde�nition:f ��� g = (f Æ fst) � (g Æ snd)
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tion ( ��� ) satis�es two bifun
tor laws and operator ( � ) satis�es two fusionlaws:id ��� id = id(f ��� g) Æ (h ��� i) = (f Æ h) ��� (g Æ i)(f � g) Æ h = (f Æ h) � (g Æ h)(f ��� g) Æ (h � i) = (f Æ h) � (g Æ i)2.6 The Haskell bottomAll Haskell types have a bottom element denoting a non-terminating 
omputa-tion and we 
an de�ne a polymorphi
 value ? by the following trivial re
ursivede�nition:? :: a? = ?In 
ontrast to most theoreti
al frameworks the fun
tion type, the empty and thebinary produ
t type in Haskell are all lifted:(�x ! ?) 6= ? :: a ! b() 6= ? :: ()(?;?) 6= ? :: (a; b)Among other things, this means that for Haskell:� �-expansion is not semanti
s preserving: if f = ? :: a ! b, then�x ! f x = �x ! ? x = �x ! ? 6= ? = f :� The type () is not a terminal obje
t as it has two elements: ? and ().� And we do not have surje
tive pairing: if p = ? :: (a; b), then(fst p; snd p) = (fst ?; snd ?) = (?;?) 6= ? = p :To sum up | almost no laws from CPO hold in Haskell! As this would lead to
onsiderable problems in the detailed proofs, we restri
t ourselves to the unliftedversions of these types. As we use Haskell for the implementations this means,stri
tly speaking, that most of the results presented in this dissertation are notproved for the a
tual running 
ode but for idealized versions. This has not turnedout to be a problem in pra
ti
e.



2.7. BOOLEANS, TRUTH VALUES AND PREDICATES 132.7 Booleans, truth values and predi
atesThe boolean values False and True are the 
onstru
tors of the type Bool :data Bool = False j TrueNote that the Haskell type Bool 
ontains a least value, ?, in addition to the twotruth values. When we really need only truth values we use the type Truth =fFalse;Trueg and 
onvert from Bool to Truth by identifying False and ?:b
 :: Bool ! TruthbTrue 
 = Trueb 
 = FalseThe expression bb
 means \the 
al
ulation of b terminates with the value True"and is pronoun
ed \b is true" for short.We have the 
ommon operations impli
ation () ), and (^ ), or (_ ), and negation(:) for 
al
ulating with Booleans and with Truth values, and if -expressions tosele
t between two expressions. We use the same syntax for operations on Booland operations on Truth.We often work with predi
ates instead of booleans to simplify 
al
ulations. Weoften use the same syntax for the pointwise lifted operations.false; true :: a ! Boolfalse = 
onst Falsetrue = 
onst True() ); (^ ); (_ ) :: (a ! Bool)! (a ! Bool)! (a ! Bool)p ) q = �x ! p x ) q xp ^ q = �x ! p x ^ q xp _ q = �x ! p x _ q xi� p then t else e = �x ! if p x then t x else e xb
 :: (a ! Bool)! (a ! Truth)bp
 = �x ! bp x 
As an example of the use of the lifted boolean operations we 
an spe
ify pre- andpost-
onditions for a fun
tion f :bpre 
 ) bpost Æ f 
 :Expanding the de�nitions of the lifted operators this is equivalent to:�x ! bpre x 
 ) bpost (f x )
 :



14 CHAPTER 2. PRELUDEIf this predi
ate equals true (that is, for all x the body is True), then f satis�esits spe
i�
ation.The Haskell equality test (==) :: Eq a ) a ! a ! Bool is also lifted:(===) :: Eq b ) (a ! b)! (a ! b)! (a ! Bool)f === g = �x ! f x == g xThe lifted version of the law (f x == f y) ( (x == y) be
omes:Lemma 2.1 Can
el (f Æ):(f Æ g === f Æ h) ( (g === h)We will often reason about fun
tions that are equal when restri
ted to a subsetof their domains:De�nition 2.2 Fun
tion equality on a subset:( �=== ) :: Eq a ) (b ! Bool)! (b ! a)! (b ! a)! (b ! Truth)f p=== g = �x ! bp x 
 ) bf x == g x 
or, equivalently, using the lifted operations:f p=== g = bp
 ) bf === g 
We will later use the following property of ( p=== ):Lemma 2.3 Fa
tor ( p=== ):g Æ f pÆf=== h Æ f === (g p=== h) Æ fThe lifted version of b
 satis�es the following laws:Lemma 2.4 Fa
tor out f from b
:bp Æ f 
 === bp
 Æ fLemma 2.5 Can
el (Æf ):bp Æ f 
 ( bp




2.8. COMPUTATIONS THAT MAY FAIL 15Simple laws for booleans lift immediately to predi
ates:Law 2.6 (exp1): (a _ b) ) 
 � (a ) 
) ^ (b ) 
)Law 2.7 (exp2): a ) (b _ 
) � (a ) b) _ (a ) 
).Laws for i� then else :Lemma 2.8 i� then else -fusion:For all stri
t f :f (i� b then p else q) = i� b then f p else f qLemma 2.9 i� p then p(i� p then bp
 else x ) = (i� p then true else x )Lemma 2.10 Expressing (_ ) using i� then else :bp _ q 
 = i� bp
 then true else bq 
2.8 Computations that may failThe datatype Maybe a is used to model 
omputations that may fail to give aresult.data Maybe a = Nothing j Just aFor example, we 
an de�ne the expression divide m n to be equal to Nothing if nequals zero, and Just (m = n) otherwise. A fun
tion that handles values of typeMaybe a 
onsists of two 
omponents: a 
omponent that deals with Nothing , anda 
omponent that deals with values of the form Just x .maybe :: b ! (a ! b)! Maybe a ! bmaybe n j Nothing = nmaybe n j (Just x ) = j xFun
tion maybe is an example of a 
atamorphism. Fun
tion mapM takes a fun
-tion f , and a value of type Maybe a, and returns Nothing in 
ase the argumentequals Nothing , and Just (f x ) in 
ase the argument equals Just x .mapM :: (a ! b)! Maybe a ! Maybe bmapM f = maybe Nothing (Just Æ f )
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tion mapM satis�es two fun
tor laws and fun
tion maybe satis�es two fusionlaws:mapM id === idmapM f ÆmapM g === mapM (f Æ g)f Æmaybe n j === maybe (f n) (f Æ j )maybe n j ÆmapM f === maybe n (j Æ f )It is sometimes useful to have predi
ates to test for Just and Nothing :isJust ; isNothing :: Maybe a ! BoolisJust (Just ) = TrueisJust Nothing = FalseisNothing Nothing = TrueisNothing (Just ) = False2.9 Polymorphi
 listsThe polymorphi
 list datatype in Haskell is written [a ℄ and has a 
onstru
tor [ ℄for the empty list and an in�x (:) for prepending a value to a list. There is alsosynta
ti
 sugar for lists: for example [1; 2; 3℄ means 1 : 2 : 3 : [ ℄.data [a ℄ = [ ℄ j a : [a ℄The syntax for the list 
onstru
tors is a little di�erent from other datatypes. Wewill sometimes use a de�nition more in line with other user-de�ned datatypes:data List a = Nil j Cons a (List a)You 
an think about this just as a di�erent syntax for the built-in lists.The Haskell fun
tion foldr ( � ) e is a 
atamorphism for lists | it repla
es usesof the 
onstru
tor (:) with (� ) and uses of [ ℄ with e:foldr (� ) e [ ℄ = efoldr (� ) e (a : as) = a � foldr (� ) e asFun
tion map f maps the fun
tion f over all elements in a list:map f = foldr ((:) Æ f ) [ ℄



2.10. OVERLOADING AND CLASSES 17Fun
tion map satis�es two fun
tor laws and fun
tion foldr satis�es two fusionlaws: (h is stri
t)map id === idmap f Æmap g === map (f Æ g)h Æ foldr f e === foldr g (h e) ( 8 x y : h (f x y) == g x (h y)foldr f e Æmap g === foldr (f Æ g) eFor referen
e we present a few other list fun
tions here as well:null :: [a ℄! Boolnull [ ℄ = Truenull ( : ) = Falsenil :: b ! [a ℄nil x = [ ℄singleton :: a ! [a ℄singleton x = [x ℄(++) :: [a ℄! [a ℄! [a ℄xs ++ ys = foldr (:) ys xs2.10 Overloading and 
lassesWe will often use Haskell's 
lass system [66℄ to write generi
 overloaded 
ode. Thisis visible in types as 
ontext) normaltype where 
ontext lists the 
lass 
onstraintsthe variables in normaltype must satisfy. An example is sort :: Ord a) [a ℄! [a ℄where a is restri
ted to be in the 
lass Ord of types with a 
omparison operator.We use the Haskell 
lass Monad for monadi
 
omputations [102℄.
lass Monad m wherereturn :: a ! m a(>>=) :: m a ! (a ! m b)! m b(>>) :: m a ! m b ! m bfail :: String ! m a2.11 Fixed pointsFor 
al
ulations and proofs involving re
ursively de�ned values, we often use anexpli
it �xed point 
ombinator to express re
ursive de�nitions. Haskell has built



18 CHAPTER 2. PRELUDEin support for re
ursive de�nitions over all types and we 
an dire
tly de�ne a�xed point 
ombinator �x :�x :: (a ! a)! a�x f = f (�x f )We 
all f an improvement fun
tion | it takes an approximation of the �xedpoint to a better approximation.2.11.1 Fixed point indu
tionTheorem 2.11 Fixed point fusion:f Æ g = h Æ f ) f (�x g) == �x hThe requirement of the �xed point fusion law is often too strong | a weakerrequirement 
an be obtained by observing that the equality is only needed for a
hain of �nite approximations of g :8 i : f (g ai) = h (f ai) where ai = g i ?This in turn 
an be expressed indu
tively:P (?) ^ 8 x : P (x ) ) P (g x )where P (x ) = f (g x ) == h (f x )The rolling rule [84℄ is a simple appli
ation of �xed point fusion:Lemma 2.12 The rolling rule: for all fun
tions f :: a ! b and g :: b ! a�x (f Æ g) === f (�x (g Æ f ))In the sequel we will use a powerful �xed point law that relates n �xed points.For the formulation of the �xed point law we need to introdu
e the 
on
ept of anin
lusive relation as de�ned in S
hmidt [95℄ (other names used in the literatureare \admissible" and \limit 
losed").De�nition 2.13 A relation P is in
lusive i� for all 
hains of tuples (ai1; :::; ain)(8 i : P (ai1; :::; ain)) ) P (Gi ai1; :::;Gi ain)



2.11. FIXED POINTS 19In
lusive relations are used to prove properties about �xed points from propertiesof �nite approximations of these �xed points. The expression Fi ai denotes theleast upper bound of the 
hain ai with respe
t to the approximation ordering (v)of the CPO . Tuples are ordered pointwise. A useful sour
e of in
lusive relationsis the following theorem.Theorem 2.14 A 
lass of in
lusive relations: [95, def. 6.28℄A relation P is in
lusive if P (f1; :::; fn) has the form:8 d1 2 D1; :::; dm 2 Dm: k̂i=1 ( l_j=1 Qij)where Qij 
an be either1. A predi
ate using only the di as free identi�ers.2. An in
lusion e1 v e2 where e1 and e2 are expressions using 
ontinuousfun
tions and only the fi and the di as free identi�ers.A fun
tion is 
ontinuous if it is monotone with respe
t to the (v) ordering andif it preserves least upper bounds. All 
onstru
tions in a fun
tional language likeHaskell are 
ontinuous, but some operators in the semanti
 domain are not. OnTruth, the operators (^ ) and (_ ) are 
ontinuous but negation (:) is not evenmonotone and as a ) b = : a _ b, neither is () ).Two examples of in
lusive relations arer1 :: Bool ! Truthr1 (b) = bb
r2 :: (Truth;Truth)! Truthr2 (a; b) = a ) bProof: Fun
tions r1 and r2 are in
lusive, be
ause we 
an rewrite their de�nitionsto mat
h the form of Theorem 2.14:r1 (b) = bb
 = (b v True) ^ (True v b)r2 (a; b) = a ) b = a v b :2



20 CHAPTER 2. PRELUDETheorem 2.15 Fixed point indu
tion: [95, def. 6.26℄For every in
lusive relation P, and for all improvement fun
tions i1; :::; in:(P (?; :::;?) ^ 8 f1 ::: fn: P (f1; :::; fn) ) P (i1 f1; :::; in fn)))P (�x i1; :::; �x in)A typi
al example appli
ation of this theorem is found in proving that two fun
-tions g = �x ig and h = �x ih are equal on the set where a predi
atep = �x ip holds. Note that the predi
ate is also de�ned as a �xed point.We use �xed point indu
tion with n = 3, the relation P (x ; y ; z ) = x z=== yand improvement fun
tions ig, ih and ip.The base 
ase is easy: the predi
ate ? is never true, and all fun
tions are triviallyequal on the empty set, so what is left is the following:Theorem 2.16 �x-equality:(8 x y z : x z=== y ) ig x ip z=== ih y) ) �x ig �x ip=== �x ih2.11.2 Explaining �xed point indu
tionTo prove a property of a �xed point de�nition using �xed point indu
tion we haveto identify a relation that implies the desired property if instantiated with the�xed points, and whi
h holds for all approximations of the �xed point as well.The proof of su
h a property is similar to a proof by normal indu
tion and 
onsistsof a series of steps. We formulate a relation P0 to be proved, we prove the base
ase and we start working on the indu
tive 
ase until we need a property that we
annot prove without some side 
ondition. Assuming that the original theoremis true (and provable) it should be possible to prove the side 
ondition togetherwith P0. So then we formulate a relation P1 that implies the side 
ondition, andstrengthen the indu
tive hypothesis to P = P0 ^ P1. This means extra workin proving a new base 
ase and indu
tive 
ase for P1, but on the other hand theindu
tive 
ase for P0 makes a good leap forward. We repeat this pro
edure untilwe have an indu
tive proof of P = P0 ^ ::: ^ Pn | this trivially implies P0and we are done.If, more spe
i�
ally, we want to prove that a fun
tion has a 
ertain property whenrestri
ted to a parti
ular set, where both the fun
tions and the set are de�ned as�xed points, then the new relations to prove are of two kinds | those relating allthe parameters and those restri
ting only the set. An example (
overed in detailin Chapter 6) is proving that a rewriting fun
tion always produ
es a term innormal form when restri
ted to the set of normalizing terms. As we are interestedin proving a number of properties for the same set but with di�erent fun
tion



2.11. FIXED POINTS 21de�nitions, the set-only properties 
an be proven separately and reused for allthe proofs. This 
an be viewed as spe
ializing the �xed point indu
tion prin
ipleto an equality over a spe
i�
 set, or rather spe
ializing the indu
tive step to aknown set improvement fun
tion i .A very useful set-only property isInLim :: ((a ! Bool)! (a ! Bool))! (a ! Bool)! (a ! Truth)InLim i p = bp
 ) b�x i 
This restri
ts the sets we need to 
onsider to subsets of the �xed point (for ex-ample �nite terms, or normalizing terms). Without this restri
tion the indu
tivestep has to be proven for an arbitrary p and that is often hard. Fortunately,InLim itself is easy to prove indu
tively:Lemma 2.17 InLim:If i :: (a ! Bool)! (a ! Bool) is an improvement fun
tion for predi
ates thatis monotone in the following sense:8 p; q : (bp
 ) bq 
) ) (bi p
 ) bi q 
)then InLimi 
an be used as a �xed point indu
tion side 
ondition:InLim i ? ^ (8 p: InLim i p ) InLimi (i p))Base 
ase: InLimi ? = b?
 ) b�x i 
 = true.Indu
tive 
ase: By 
al
ulation:InLimi p� fDe�nition of InLim gbp
 ) b�x i 
) fMonotoni
ity of i gbi p
 ) bi (�x i)
� fDe�nition of �x : �x i = i (�x i) gbi p
 ) b�x i 
� fDe�nition of InLim gInLimi (i p)
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Chapter 3Basi
 polytypi
 programming
The essen
e of funtional polytypi
 programming is that fun
tions 
an be de�nedby indu
tion on the stru
ture of datatypes. The stru
ture of a datatype is de-s
ribed by means of a pattern fun
tor that 
aptures the top level stru
ture ofelements of the datatype. Just as in imperative languages where it is preferableto use stru
tured iteration 
onstru
ts su
h aswhile-loops and for-loops instead ofunstru
tured gotos, it is often advantageous to use stru
tured re
ursion operatorsinstead of unrestri
ted re
ursion when using a fun
tional language. Stru
turedprograms are easier to reason about and more amenable to (possibly automati
)optimizations than their unstru
tured 
ounterparts. Two very useful stru
turedre
ursion operators are the 
atamorphism operator 
ata and the polytypi
 map-ping fun
tion pmap. This 
hapter de�nes not only 
ata and pmap, but also a
onstru
t with whi
h it is possible to de�ne new re
ursion operators, tailored forspe
i�
 needs. (Examples of su
h operators are the monadi
 traversal fun
tionsin Chapter 5 and the arrow maps and data 
onversion programs in Chapter 7.)This 
hapter is organized as follows: Se
tions 3.1{3.3 explain the stru
ture of twoexample datatypes (lists and binary trees) in terms of pattern fun
tors. Thesese
tions also introdu
e 
atamorphisms, maps and fusion laws for the exampledatatypes, and use fusion to prove a few laws in a 
al
ulational style. Se
tion 3.4de�nes regular datatypes and shows how pattern fun
tors are used to 
apture thestru
ture of regular datatypes. Se
tion 3.5 de�nes the isomorphisms inn and outthat 
onvert values between a regular datatype and the top level stru
ture of thatdatatype. Se
tion 3.6 introdu
es the polytypi
 
onstru
t to express polytypi
fun
tions by indu
tion over pattern fun
tors. The de�nition of the polytypi
sum fun
tion psum from the introdu
tion is used as an example. Se
tion 3.7de�nes polytypi
 
atamorphisms and maps and Se
tion 3.8 explains how usea 
atamorphism as an evaluator for a small expression language. Se
tion 3.9presents a self-
ontained polytypi
 program, together with the 
ode that thePolyP generates for that program. Finally, Se
tion 3.10 states and proves somepolytypi
 fun
tion laws. 23



24 CHAPTER 3. BASIC POLYTYPIC PROGRAMMING3.1 The stru
ture of listsConsider the datatype List a that is de�ned bydata List a = Nil j Cons a (List a) :This datatype 
an be viewed as the �xed point with respe
t to the se
ond argu-ment of the datatype FList a r de�ned bydata FList a r = FNil j FCons a r :The datatype FList a r des
ribes the stru
ture of the datatype List a. Notethat FList has one argument more than List . The extra argument is used torepresent the re
ursive o

urren
e of the datatype List a in the right-hand sideof its de�nition. Be
ause we are only interested in the stru
ture of List a, thenames of the 
onstru
tors of FList are not important. As an element of FList iseither a nullary 
onstru
tor or a binary 
onstru
tor with its two arguments, we
an instead represent the type FList by:type FList a r = Either () (a; r)We 
all FList a pattern fun
tor as it 
aptures the re
ursion pattern of a datatype.We now abstra
t from the arguments a and r to obtain a variable free des
riptionof FList . We represent the �rst argument by the pattern fun
tor Par and these
ond argument by Re
.type Par a r = atype Re
 a r = rThe type 
onstru
tors in FList are lifted to work on pattern fun
tors: Either islifted to +, the pair type 
onstru
tor ( ; ) is lifted to � and the unit type () islifted to Empty .type (f + g) a r = Either (f a r) (g a r)type (f � g) a r = (f a r ; g a r)type Empty a r = ()As usual, � binds stronger than +. Using these pattern fun
tor 
onstru
tors we
an express FList in a variable free form.FList = Empty + Par � Re




3.1. THE STRUCTURE OF LISTS 25The initial obje
t in the 
ategory of FList a-algebras (that is, the �xed pointof FList with respe
t to its se
ond 
omponent) models the datatype List a.The initial obje
t 
onsists of two parts: the datatype List a, and a single stri
t
onstru
tor fun
tion innList , that 
ombines the 
onstru
tors Nil and Cons.innList :: FList a (List a)! List ainnList = 
onst Nil r un
urry ConsAs an example, the list 
ontaining only the integer 3, Cons 3 Nil , is representedby innList (Right (3; innList (Left ()))). Fun
tion outList is the inverse of fun
tioninnList .outList :: List a ! FList a (List a)outList Nil = Left ()outList (Cons a b) = Right (a; b)In the polytypi
 programming system PolyP these fun
tions are automati
allysupplied by the system for ea
h user-de�ned datatype.The pattern fun
tor FList takes two types and returns a type. FList is a bi-fun
tor, whi
h is witnessed by the existen
e of a 
orresponding a
tion, 
alledfmap2FList , on fun
tions. Fun
tion fmap2FList takes two fun
tions and returns afun
tion.fmap2FList :: (a ! 
)! (b ! d)! (FList a b ! FList 
 d)fmap2FList p r = id �+� p ��� rThat fmap2FList is indeed a bifun
tor follows immediately from the 
orrespondinglaws for ( �+� ) and ( ��� ).fmap2FList id id === idfmap2FList f g Æ fmap2FList h i === fmap2FList (f Æ h) (g Æ i)As an example of a program written using the 
ombinators de�ned so far we showmapList f xs that applies fun
tion f to all elements of the list xs:mapList :: (a ! b)! (List a ! List b)mapList f = innList Æ fmap2FList f (mapList f ) Æ outListFun
tion mapList is really the same fun
tion as map in Haskell but we de�ne itdi�erently here to allow for a simple generalization to the polytypi
 
ase.Just as FList and fmap2FList form a fun
tor, so do List and the fun
tion mapList :mapList id === idmapList f ÆmapList g === mapList (f Æ g)



26 CHAPTER 3. BASIC POLYTYPIC PROGRAMMING3.2 Catamorphisms and fusion for listsFun
tion sizeList returns the number of elements in a List a (
orresponding tothe fun
tion length in Haskell). The result of applying sizeList to an argument list
an be 
omputed by repla
ing uses of the 
onstru
tor Nil by 0, and uses of the
onstru
tor Cons by 1+.Cons 17 (Cons 3 (Cons 8 Nil ))1+ (1+ (1+ 0 ))Thus the size of this list is 3. We use a higher-order fun
tion to des
ribe fun
tionsthat repla
e 
onstru
tors by fun
tions: the 
atamorphism. The 
atamorphism isa basi
 stru
tured re
ursion operator and on lists it is equivalent to fun
tion foldrin Haskell:foldr f e = 
ataList �where � :: FList a b ! b� = 
onst e r un
urry fThe 
atamorphism 
ataList � repla
es Nil by e, and Cons by f .Cons 17 (Cons 3 (Cons 8 Nil ))f 17 (f 3 (f 8 e ))Fun
tion 
ataList is de�ned using fun
tion outList to avoid a de�nition by patternmat
hing. Fun
tion fmap2FList id (
ataList f ) applies 
ataList f re
ursively to therest of the list.
ataList :: (FList a b ! b)! List a ! b
ataList f = f Æ fmap2FList id (
ataList f ) Æ outListThe theoreti
al justi�
ation for this de�nition is that in the 
ategory of FList a-algebras the FList a-algebra (List a; innList) is an initial obje
t. This means thatthere is a unique arrow from (List a; innList) to every FList a-algebra (b; f ). Thisunique arrow is the fun
tion 
ataList f . The initiality of this algebra also meansthat 
ataList innList is the identity fun
tion on List a.As examples we use fun
tion 
ataList to de�ne the fun
tion sizeList (
orrespondingto length :: [a ℄! Int in Haskell) and list 
on
atenation (++).sizeList :: List a ! IntsizeList = 
ataList (
onst 0 r in
)where in
 ( ; n) = 1 + n(++) :: List a ! List a ! List axs ++ ys = 
ataList (
onst ys r un
urry Cons) xs



3.2. CATAMORPHISMS AND FUSION FOR LISTS 27Fun
tion 
ataList satis�es the so-
alled fusion law. The fusion law gives 
onditionsunder whi
h intermediate values produ
ed by a 
atamorphism 
an be eliminated.Law 3.1 List-fusion: for stri
t h,h Æ 
ataList f = 
ataList g ( h Æ f = g Æ fmap2FList id h :Using List -fusion we 
an prove a lemma relating sizeList and (++).Lemma 3.2 The sizeList-(++)-lemma:sizeList (xs ++ ys) = sizeList xs + sizeList ys :Proof: In the 
al
ulations we abbreviate sizeList with #.# (xs ++ ys) = # xs +# ys( fAbstra
t from xs g# Æ (++ys) = (+(# ys)) Æ#( fAssume both sides 
an be written as a 
atamorphism g# Æ (++ys) = 
ataList (n r 
) = (+(# ys)) Æ#( fTwo sub
al
ulations using List -fusion gTrueIn the �rst sub
al
ulation we fuse # with (++ys).# Æ (++ys) = 
ataList (n r 
)� fDe�nition of (++ys) g# Æ 
ataList (
onst ys r un
urry Cons) = 
ataList (n r 
)( fFusion g# Æ (
onst ys r un
urry Cons) = (n r 
) Æ fmap2FList id #� fDe�nition of fmap2FList g# Æ (
onst ys r un
urry Cons) = (n r 
) Æ (id �+� (id ��� #))



28 CHAPTER 3. BASIC POLYTYPIC PROGRAMMING� f Laws for ( r ) g(# Æ 
onst ys) r (# Æ un
urry Cons) = n r (
 Æ (id ��� #))� f Split the ( r )s and simplify g# Æ 
onst ys = n ^ # Æ un
urry Cons = 
 Æ (id ��� #)� f Introdu
e arguments: () and (x ; n) g# ys = n () ^ #(Cons x xs) = 
 (x ; # xs)� f Let n = 
onst (# ys) gTrue ^ 1 + # xs = 
 (x ; # xs)� f Let 
 = in
 gTrueIn the se
ond sub
al
ulation we let m = # ys and we fuse (+m) with # .(+m) Æ # = 
ataList (n r in
)� fDe�nition of # g(+m) Æ 
ataList (
onst 0 r in
) = 
ataList (n r in
)� fFusion g(+m) Æ (
onst 0 r in
) = (n r in
) Æ fmap2FList id (+m)� fDe�nition of fmap2FList g(+m) Æ (
onst 0 r in
) = (n r in
) Æ (id �+� (id ��� (+m)))� f Laws for ( r ) g((+m) Æ 
onst 0) r ((+m) Æ in
) = n r (in
 Æ (id ��� (+m)))� f Split the ( r )s and simplify g(+m) Æ 
onst 0 = n ^ (+m) Æ in
 = in
 Æ (id ��� (+m))� f Introdu
e arguments: () and (x ; n) gm = n () ^ (in
 (x ; n)) +m = in
 (x ; n +m)� fDe�nitions of n and in
 gm = m ^ 1 + n +m = 1 + n +m� fTrivially gTrue2



3.3. THE STRUCTURE OF TREES 293.3 The stru
ture of treesThe datatype Tree a is de�ned bydata Tree a = Leaf a j Bin (Tree a) (Tree a)Applying the same pro
edure as for the datatype List a, we obtain the followingfun
tor that des
ribes the stru
ture of the datatype Tree a.FTree = Par + Re
 � Re
Fun
tions innTree and outTree are de�ned in the same way as fun
tions innList andoutList .innTree :: FTree a (Tree a)! Tree ainnTree = Leaf r un
urry BinoutTree :: Tree a ! FTree a (Tree a)outTree (Leaf a) = Left aoutTree (Bin a b) = Right (a; b)The fun
tionsmapTree and 
ataTree are de�ned in terms of fun
tions innTree , outTreeand fmap2FTree :fmap2FTree :: (a ! 
)! (b ! d)! (FTree a b ! FTree 
 d)fmap2FTree p r = p �+� r ��� rmapTree :: (a ! b)! (Tree a ! Tree b)mapTree f = innTree Æ fmap2FTree f (mapTree f ) Æ outTree
ataTree :: (FTree a b ! b)! (Tree a ! b)
ataTree f = f Æ fmap2FTree id (
ataTree f ) Æ outTreeNote that the de�nitions of mapTree and 
ataTree are almost identi
al to the def-initions mapList and 
ataList , only the indi
es are di�erent. Fun
tion sizeTree isde�ned bysizeTree :: Tree a ! IntsizeTree = 
ataTree (
onst 1 r un
urry (+))The fun
tion 
attenTree , whi
h returns a list 
ontaining the elements of the argu-ment tree, 
an also be de�ned using fun
tion 
ataTree :
attenTree :: Tree a ! [a ℄
attenTree = 
ataTree (singleton r un
urry (++))



30 CHAPTER 3. BASIC POLYTYPIC PROGRAMMINGThe fusion law for trees looks the same as the fusion law for lists:Law 3.3 Tree-fusion: for stri
t h,h Æ 
ataTree f = 
ataTree g ( h Æ f = g Æ fmap2FTree id h :We 
an use this law to prove that sizeList Æ 
attenTree = sizeTree .# Æ 
attenTree = sizeTree� fBy de�nition, introdu
ing the abbreviations � and � g# Æ 
ataTree � = 
ataTree �( fFusion g# Æ � = � Æ (fmap2FTree id #)� fBy de�nition of fmap2FTree g# Æ � = � Æ (id �+� (# ��� #))� fNew abbreviations: � = �1 r �2 and � = �1 r �2 g# Æ (�1 r �2) = (�1 r �2) Æ (id �+� (# ��� #))� f Laws for ( r ) g(# Æ �1) r (# Æ �2) = (�1 Æ id) r (�2 Æ (# ��� #))� f Split the ( r )s and simplify g# Æ �1 = �1 ^ # Æ �2 = �2 Æ (# ��� #)� f Introdu
e arguments, impli
itly 8-quanti�ed g#(�1 x ) = �1 x ^ #(�2 (l ; l 0)) = �2 (# l ; # l 0)� fDe�nition of �i and �i g# [x ℄ = 1 ^ #(l ++ l 0) = # l + # l 0� f Lemma 3.2 gTrue ^ True



3.4. PATTERN FUNCTORS 313.4 Pattern fun
torsA pattern fun
tor 
aptures the (top level) stru
ture of a datatype. We repre-sent a pattern fun
tor in a variable free form by means of a number of fun
tor
onstru
tors. We have already introdu
ed Par for the datatype parameter, Re
for the re
ursive parameter, Empty for the empty produ
t and (+) and (�) forlifted versions of Either and (; ) and we have used them to de�ne the patternfun
tors for lists and trees. In general, PolyP's pattern fun
tors are generated bythe following grammar:f ; g ; h ::= g + h j g � h j Empty j Par j Re
 j d�g j Const twhere d generates regular datatype 
onstru
tors, and t generates monomorphi
types. We note the following about the fun
tor 
onstru
tors:� The pattern fun
tor for a datatype with more than two 
onstru
tors isrepresented by a nested binary sum asso
iating to the right. Therefore, inthe 
on
rete syntax, the 
onstru
tor + is right-asso
iative, so that f +g+hmeans f +(g+h). Constru
tor + may only o

ur at top level, so f � (g+h)is an illegal fun
tor. This restri
tion 
orresponds to the synta
ti
 restri
tionin Haskell whi
h says that the verti
al bar j that separates 
onstru
tors mayonly o

ur at the top level of datatype de�nitions.� Constru
tor � is right-asso
iative and binds stronger than +.� The 
onstru
tor Empty is the empty or nullary produ
t.� Composition of fun
tors d and g is denoted by d�g and is only de�nedfor a unary fun
tor d and a binary fun
tor g . Fun
tor 
omposition is usedto des
ribe the stru
ture of types that are de�ned in terms of other user-de�ned datatypes, su
h as the datatype of rose-trees:data Rose a = Fork a (List (Rose a))-- FRose = Par � (List�Re
)� The pattern fun
tor Const t denotes a 
onstant pattern fun
tor with value t .The t stands for a monotype su
h as Bool , Char or (Int ; [Float ℄). Thisis used when a datatype de�nition mentions a type other than the typeparameter and datatype itself. An example is the stru
ture of the followingsimple datatype of types:data Type a = Con String j Var a j Fun (Type a) (Type a)-- FType = Const String + Par + Re
 � Re




32 CHAPTER 3. BASIC POLYTYPIC PROGRAMMING�List = FList = Empty + Par � Re
�Tree = FTree = Par + Re
 � Re
�Rose = FRose = Par � (List�Re
)�Type = FType = Const String + Par + Re
 � Re
Figure 3.1: Examples of pattern fun
tors.The type 
ontext Bifun
tor f ) is used to indi
ate that f is a pattern fun
tor.Every regular re
ursive datatype d a in Haskell is impli
itly de�ned as a �xedpoint of a pattern fun
tor �d a, that is d a �= �(�d a). PolyP provides a type
onstru
tor Fun
torOf d (we use �d as a shorthand) for this pattern fun
tor.Pattern fun
tors for the types de�ned in this 
hapter are summarized in Fig-ure 3.1. A datatype d a is regular (satis�es Regular d) if it 
ontains no fun
tionspa
es, and if the argument of the type 
onstru
tor d is the same on the left-and right-hand side of its de�nition. For ea
h regular datatype d a, PolyP auto-mati
ally generates �d using roughly the same steps as those used manually forFList and FTree in previous se
tions. Pattern fun
tors are only 
onstru
ted fordatatypes de�ned by means of the data 
onstru
t. If, somewhere in a program,a polytypi
 fun
tion is applied to a value of type Maybe (List a), then PolyP willgenerate an instan
e of the polytypi
 fun
tion on the datatype Maybe b (withb = List a), not on the type (Maybe�List) a.A regular datatype is de�ned as the �xed point of a pattern fun
tor. The patternfun
tor �d may, in turn, refer to other (previously de�ned) regular datatypes inthe d�g 
ase. Thus the des
riptions of regular datatypes and pattern fun
torsare mutually re
ursive. In pra
ti
e, this means that most polytypi
 de�nitionsare given as two mutually re
ursive bindings | one for the datatype level andone for the pattern fun
tor level. Similarly, laws for polytypi
 fun
tions are oftenproved by mutual indu
tion over the grammars for regular datatypes and patternfun
tors. This indu
tion is well-founded as we don't allow mutually re
ursivedatatypes and thus a datatype 
an only refer to a datatype that is de�ned earlier.In the rest of the paper we always assume that d a is a regular datatype andthat f is a pattern fun
tor, and we often omit the 
ontexts (Regular d )or Bifun
tor f ) ) from the types for brevity. This is purely a notational
onvention in the dissertation, expli
it types in a
tual PolyP programs must
ontain the proper 
ontext.3.5 In and out of a regular datatypeIn the de�nition of a fun
tion that works for an arbitrary (as yet unknown)datatype we 
annot use the 
onstru
tors to build values, nor pattern mat
h



3.6. THE POLYTYPIC CONSTRUCT 33against values. Instead, we use two built-in fun
tions, inn and out, to 
onstru
tand destru
t a value of an arbitrary datatype from and to its top level 
om-ponents. Fun
tions inn and out are the fold and unfold isomorphisms showingd a �= �d a (d a).inn :: Regular d ) �d a (d a)! d aout :: Regular d ) d a ! �d a (d a)Theorem 3.4 Fun
tions inn and out are inverses.For every Regular datatype d a:inn Æ out === id :: d a ! d aout Æ inn === id :: �d a b ! �d a bNote that fun
tions inn and out are only de�ned for Regular datatypes d a.PolyP automati
ally generates instan
es of inn and out for all regular datatypes.Example instan
es were given in Se
tions 3.1 and 3.3.3.6 The polytypi
 
onstru
tPolyP introdu
es a new 
onstru
t polytypi
 for de�ning polytypi
 fun
tions byindu
tion over pattern fun
tors:polytypi
 p :: [Bifun
tor f ) ℄ t = [�x1 ::: xn !℄ 
ase f of ffi ! eigHere p is the name of the value being de�ned, t is its type, f is a fun
tor vari-able, fi are fun
tor patterns and ei are PolyP expressions. The optional fun
tionabstra
tion �x1 ::: xn ! is synta
ti
 sugar for a polytypi
 de�nition with thisabstra
tion in ea
h of the bran
hes ei. The expli
it type in the polytypi
 
on-stru
t is needed be
ause we 
annot in general infer the type from the 
ases. Asthe 
ase analysis is over pattern fun
tors, f must be restri
ted by the 
ontextBifun
tor f ) , but it is optional in the syntax.The informal meaning is that we de�ne a fun
tion that takes (a representationof) a pattern fun
tor as its �rst argument. This fun
tion sele
ts the expressionin the �rst bran
h of the 
ase mat
hing the fun
tor, and the expression may inturn use the polytypi
 fun
tion (on subfun
tors). Thus the polytypi
 
onstru
t isa (re
ursive) template for 
onstru
ting instan
es of polytypi
 fun
tions given thepattern fun
tor of a datatype. The fun
tor argument of the polytypi
 fun
tionneed not (and 
annot) be supplied expli
itly but is inserted by the 
ompiler duringtype inferen
e.



34 CHAPTER 3. BASIC POLYTYPIC PROGRAMMINGpsum :: Regular d ) d Int ! Intpsum = 
ata fsumpolytypi
 fsum :: f Int Int ! Int= 
ase f ofg + h ! fsum r fsumg � h ! �(x ; y)! fsum x + fsum yEmpty ! �x ! 0Par ! idRe
 ! idd�g ! psum Æ pmap fsumConst t ! �x ! 0Figure 3.2: The de�nition of psumAs an example we take the polytypi
 sum fun
tion dis
ussed already in the intro-du
tion. Fun
tion psum (de�ned in Figure 3.2) sums the integers in a stru
turewith integers. The de�nitions of 
ata and pmap are given later in Se
tion 3.7.When psum is used on an element of type Tree Int , the 
ompiler produ
es the
ode in Figure 3.3 for psumTree and fsumFTree . Together with the 
ode generatedpsumTree :: Tree Int ! IntpsumTree = 
ataTree fsumFTreefsumFTree :: Either Int (Int ; Int)! IntfsumFTree = fsumPar r fsumRe
�Re
fsumPar :: Int ! IntfsumPar = idfsumRe
�Re
 :: (Int ; Int)! IntfsumRe
�Re
 = �(x ; y)! fsumRe
 x + fsumRe
 yfsumRe
 :: Int ! IntfsumRe
 = idFigure 3.3: Generated Haskell 
ode for psumTree and fsumFTreefor 
ataTree (presented later in Figure 3.5), this is a 
omplete de�nition of theinstan
e psumTree . Fun
tion fsumRe
�Re
 
an be rewritten as un
urry (+) and,if we inline all the instan
es of fsum, then we obtain the following fun
tion for



3.7. CATAMORPHISMS AND MAPS 35summing a tree:psumTree :: Tree Int ! IntpsumTree = 
ataTree (id r un
urry (+))As expe
ted, psumTree is a Tree-
atamorphism that repla
es the 
onstru
tor Leafwith id and the 
onstru
tor Bin with (+).3.7 Catamorphisms and mapsThis se
tion de�nes the fun
tions 
ata and pmap that were used in the de�nitionof fun
tion psum in Figure 3.2.The 
atamorphism, or generalized fold, on a datatype takes as many fun
tionsas the datatype has 
onstru
tors (
ombined into a single argument by means offun
tion ( r )), and re
ursively repla
es 
onstru
tor fun
tions with 
orrespondingargument fun
tions. It is a generalization to arbitrary regular datatypes of thefun
tion foldr that is de�ned on lists. In spite of its generality, fun
tion 
ata 
anbe de�ned in just one line in terms of the fun
tor map, fmap2 (de�ned later inFigure 3.4):
ata :: Regular d ) (�d a b ! b)! (d a ! b)
ata f = f Æ fmap2 id (
ata f ) Æ outFun
tion out makes the top level stru
ture of the input expli
it, fmap2 applies(
ata f ) re
ursively to the immediate substru
tures, and f 
ombines the resultsof the re
ursive 
alls into the �nal result. Ex
ept for the indi
es, the de�nition ofthe polytypi
 
ata is the same as the instan
es on List a and Tree a. Similarly,we 
an de�ne a polytypi
 version of map:pmap :: Regular d ) (a ! b)! (d a ! d b)pmap p = inn Æ fmap2 p (pmap p) Æ outFun
tion pmap p applies fun
tion p to all elements of type a in a value of typed a. Fun
tion out takes the argument apart, fmap2 applies f to parameters and(pmap f ) re
ursively to substru
tures and inn puts the parts ba
k together again.We 
all it pmap to avoid a name 
lash with the normal Haskell fun
tion map.The types of 
ata and pmap are best explained by 
ommuting diagrams:d a out - �d a (d a)
b
ata f ?� f �d a bfmap2 id (
ata f )? d a out - �d a (d a)

d bpmap f?� inn �d b (d b)fmap2 f (pmap f )?



36 CHAPTER 3. BASIC POLYTYPIC PROGRAMMINGAs explained in the prelude, a fun
tor is a mapping between 
ategories thatpreserves the algebrai
 stru
ture of the 
ategory. As a 
ategory 
onsists of obje
ts(types) and arrows (fun
tions), a fun
tor 
onsists of two parts: a de�nition ontypes, and a de�nition on fun
tions. A pattern fun
tor in PolyP is a fun
tionthat takes two types and returns a type. The part of the fun
tor that takes twofun
tions and returns a fun
tion is 
alled fmap2, see Figure 3.4.polytypi
 fmap2 :: (a ! 
)! (b ! d)! (f a b ! f 
 d)= �p r ! 
ase f ofg + h ! fmap2 p r �+� fmap2 p rg � h ! fmap2 p r ��� fmap2 p rEmpty ! idPar ! pRe
 ! rd�g ! pmap (fmap2 p r)Const t ! idFigure 3.4: The de�nition of fmap2.Fun
tion fmap2g is the fun
tion a
tion of the pattern fun
tor g , and we 
an showthat pmapd is the fun
tion a
tion of the type 
onstru
tor d , viewed as a fun
tor.As an example of an instan
e, Figure 3.5 presents the 
ode generated by PolyPfor 
ataTree . Fun
tion outTree was de�ned in Se
tion 3.3.
ataTree :: (Either a (b; b)! b)! Tree a ! b
ataTree i = i Æ fmap2FTree id (
ataTree i) Æ outTreefmap2FTree :: (a ! b)! (
 ! d)! Either a (
; 
)! Either b (d ; d)fmap2FTree = �p r ! fmap2Par p r �+� fmap2Re
�Re
 p rfmap2Par :: (a ! b)! (
 ! d)! a ! bfmap2Par = �p r ! pfmap2Re
�Re
 :: (a ! b)! (
 ! d)! (
; 
)! (d ; d)fmap2Re
�Re
 = �p r ! fmap2Re
 p r ��� fmap2Re
 p rfmap2Re
 :: (a ! b)! (
 ! d)! 
 ! dfmap2Re
 = �p r ! rFigure 3.5: Generated 
ode for 
ataTree and fmap2FTreeFun
tion fmap2 and fun
tion pmap are mutually re
ursive through the d�g 
ase.This re
ursive dependen
e is only in the 
ode generation phase. Take the instan
e



3.8. CATAMORPHISMS ON SPECIFIC DATATYPES 37pmapRose as an example: The generated instan
es of pmap and fmap2 are shownin Figures 3.6 and 3.7 respe
tively (ex
ept for fun
tions fmap2Par , fmap2Re
,innList and outList whi
h have been de�ned already). Fun
tion pmapRose usesfmap2FRose and fmap2FRose uses pmapList . We see that the instan
es are notmutually re
ursive as pmap is instantiated on di�erent types.pmapRose :: (a ! b)! Rose a ! Rose bpmapRose f = innRose Æ fmap2FRose f (pmapRose f ) Æ outRosefmap2FRose :: (a ! b)! (
 ! d)! (a;List 
)! (b;List d)fmap2FRose = �p r ! fmap2Par p r ��� fmap2List�Re
 p rfmap2List�Re
 :: (a ! b)! (
 ! d)! List 
 ! List dfmap2List�Re
 = �p r ! pmapList (fmap2Re
 p r)innRose :: (a;List (Rose a))! Rose ainnRose = un
urry ForkoutRose :: Rose a ! (a;List (Rose a))outRose (Fork a b) = (a; b)Figure 3.6: Generated 
ode for pmapRosepmapList :: (a ! b)! List a ! List bpmapList f = innList Æ fmap2FList f (pmapList f ) Æ outListfmap2FList :: (a ! b)! (
 ! d)! Either () (a; 
)! Either () (b; d)fmap2FList = �p r ! fmap2Empty p r �+� fmap2Par�Re
 p rfmap2Empty :: (a ! b)! (
 ! d)! ()! ()fmap2Empty = �p r ! idfmap2Par�Re
 :: (a ! b)! (
 ! d)! (a; 
)! (b; d)fmap2Par�Re
 = �p r ! fmap2Par p r ��� fmap2Re
 p rFigure 3.7: Generated 
ode for pmapList3.8 Catamorphisms on spe
i�
 datatypesThe �rst argument of fun
tion 
ata is a fun
tion of type �d a b ! b. Polytypi
fun
tions of this form, that is fun
tions polymorphi
 in d , 
an only be 
onstru
ted



38 CHAPTER 3. BASIC POLYTYPIC PROGRAMMINGby means of fun
tions inn, out , and fun
tions de�ned by means of the polytypi

onstru
t (like fsum). In all these 
ases the resulting fun
tion is also polytypi
. Ifwe only want to use 
ata to de�ne a fun
tion from one spe
i�
 datatype D a, thenwe do not need a polytypi
 argument, but 
an 
onstru
t an ordinary fun
tion oftype �D a b ! b where �D is the 
on
rete type 
onstru
tor representing thepattern fun
tor of the datatype D a.As an example we de�ne the fun
tion eval on the datatype BoolExp a by meansof a 
ata:data BoolExp a = Con aj Not (BoolExp a)j And (BoolExp a) (BoolExp a)j Or (BoolExp a) (BoolExp a)-- �BoolExp = Par + Re
 + Re
 � Re
 + Re
 � Re
eval :: BoolExp Bool ! Booleval = 
ata fevalfeval :: �BoolExp Bool Bool ! Boolfeval = idr (:)r un
urry (^ )r un
urry (_ )-- eval = 
ata fCon 7! id ;Not 7! (:);And 7! (^ );Or 7! (_ )gThis evaluation fun
tion is an example of a fun
tion that 
annot be made poly-typi
: The pattern fun
tor for BoolExp 
ontains two o

urren
es of the fun
torRe
 �Re
 (for And and Or), and ea
h polytypi
 fun
tion will behave in the sameway on these fun
tors. That eval 
annot be made polytypi
 should not be all toosurprising, it simply means that the there is no general algorithm that given theabstra
t syntax for an expression language produ
es the intended semanti
s forthat language!3.9 Separate: a simple PolyP programThis se
tion presents a simple PolyP program for separating a datatype valueinto its shape and its 
ontent, together with the 
ode PolyP generates for thisprogram. To make the program self-
ontained, we repeat those de�nitions frompre
eding se
tions that are used in the algorithm. In fa
t, the remainder of thisse
tion is a literal s
ript 
ontaining the 
omplete PolyP program Separate andFigure 3.8 
ontains the 
ode generated from this program by the PolyP 
ompiler.



3.9. SEPARATE: A SIMPLE POLYP PROGRAM 39The default starting point for 
ode generation in a PolyP �le is the value main.Everything possibly rea
hable from main is instantiated. In this example we
hoose to test separate on a tree.main = print test >> print answer >> print (test == answer)test ; answer :: (Tree (); [Int ℄)test = separate (Bin (Leaf 17) (Leaf 38))answer = (Bin (Leaf ()) (Leaf ()); [17; 38℄)data Tree a = Leaf a j Bin (Tree a) (Tree a) deriving (Show ;Eq)Fun
tion separate takes an element of a regular datatype (of type d a) andgenerates a pair. The �rst 
omponent of the pair is just the stru
ture of thedatatype without the 
ontents (of type d ()) and the se
ond 
omponent is justthe 
ontents without the stru
ture (of type [a ℄). We return to fun
tion separatein Chapter 6.separate :: Regular d ) d a ! (d (); [a ℄)separate x = (pmap (
onst ()) x ;
atten x )Mappingpmap :: Regular d ) (a ! b)! d a ! d bpmap f = inn Æ fmap2 f (pmap f ) Æ outpolytypi
 fmap2 :: (a ! 
)! (b ! d)! f a b ! f 
 d= �p r ! 
ase f ofg + h ! (fmap2 p r) �+� (fmap2 p r)g � h ! (fmap2 p r) ��� (fmap2 p r)Empty ! idPar ! pRe
 ! rd�g ! pmap (fmap2 p r)Const t ! idNon-polytypi
 help fun
tions( ��� ) :: (a ! 
)! (b ! d)! ((a; b)! (
; d))( �+� ) :: (a ! 
)! (b ! d)! (Either a b ! Either 
 d)f ��� g = �(x ; y)! (f x ; g y)f �+� g = Left Æ f r Right Æ g



40 CHAPTER 3. BASIC POLYTYPIC PROGRAMMINGFlattening
atten :: Regular d ) d a ! [a ℄
atten = �atten Æ fmap2 singleton 
atten Æ outpolytypi
 �atten :: f [a ℄ [a ℄! [a ℄= 
ase f ofg + h ! �atten r �atteng � h ! �(x ; y)! �atten x ++�atten yEmpty ! nilPar ! idRe
 ! idd�g ! 
on
at Æ 
atten Æ pmap �attenConst t ! nilHelp fun
tions for listssingleton :: a ! [a ℄singleton x = [x ℄nil :: a ! [b ℄nil x = [ ℄3.10 Polytypi
 lawsFun
tion 
ata satis�es a generalization of the fusion law. The fusion law gives
onditions under whi
h intermediate values produ
ed by the 
atamorphism 
anbe eliminated. The fusion law is polytypi
, that is, it holds for every regulardatatype. h Æ 
ata f = 
ata g( fFusion gh Æ f = g Æ fmap2 id h where 8>>>>>><>>>>>>: f :: �d a b ! bg :: �d a 
 ! 
h :: b ! 

ata f :: d a ! b
ata g :: d a ! 
The formulation of the fusion is an instan
e of the free theorem [101℄ of fun
-tion 
ata. If we allow partial or in�nite obje
ts, then we must add the extrarequirement that h be stri
t.



3.10. POLYTYPIC LAWS 41data Tree a = Leaf (a) j Bin (Tree a) (Tree a) deriving (Show ;Eq)main :: IO ()main = ((print test)>>(print answer))>>(print (test == answer))test :: (Tree (); [Int ℄)test = separateTree (Bin (Leaf 17) (Leaf 38))answer :: (Tree (); [Int ℄)answer = (Bin (Leaf ()) (Leaf ()); 17 : (38 : ([ ℄)))separateTree :: Tree a ! (Tree (); [a ℄)separateTree x = (pmapTree (
onst ()) x ;
attenTree x )pmapTree :: (a ! b)! Tree a ! Tree bpmapTree f = innTree Æ ((fmap2FTree f (pmapTree f )) Æ outTree)
attenTree :: Tree a ! [a ℄
attenTree = �attenFTree Æ ((fmap2FTree singleton 
attenTree) Æ outTree)innTree :: Either a (Tree a;Tree a)! Tree ainnTree = Leaf r un
urry Binfmap2FTree :: (a ! b)! (
 ! d)! Either a (
; 
)! Either b (d ; d)fmap2FTree = �p r ! (fmap2Par p r) �+� (fmap2Re
�Re
 p r)outTree :: Tree a ! Either a (Tree a;Tree a)outTree x = 
ase x of(Leaf a)! Left a(Bin a b)! Right (a; b)�attenFTree :: Either [a ℄ ([a ℄; [a ℄)! [a ℄�attenFTree = �attenPar r �attenRe
�Re
singleton :: a ! [a ℄singleton x = x : ([ ℄)( �+� ) :: (a ! b)! (
 ! d)! Either a 
 ! Either b df �+� g = Left Æ f r Right Æ gfmap2Par :: (a ! b)! (
 ! d)! a ! bfmap2Par = �p r ! pfmap2Re
�Re
 :: (a ! b)! (
 ! d)! (
; 
)! (d ; d)fmap2Re
�Re
 = �p r ! (fmap2Re
 p r) ��� (fmap2Re
 p r)�attenPar :: [a ℄! [a ℄�attenPar = id�attenRe
�Re
 :: ([a ℄; [a ℄)! [a ℄�attenRe
�Re
 = �(x ; y)! (�attenRe
 x ) ++ (�attenRe
 y)( ��� ) :: (a ! b)! (
 ! d)! (a; 
)! (b; d)f ��� g = �(x ; y)! (f x ; g y)fmap2Re
 :: (a ! b)! (
 ! d)! 
 ! dfmap2Re
 = �p r ! r�attenRe
 :: [a ℄! [a ℄�attenRe
 = idFigure 3.8: The Haskell 
ode generated from Separate.



42 CHAPTER 3. BASIC POLYTYPIC PROGRAMMINGProof: Assume h Æ f = g Æ fmap2 id h is true. Use �xed point indu
tion(Theorem 2.15) with n = 2 and improvement fun
tions and in
lusive relationgiven byi1 x = f Æ fmap2 id x Æ outi2 y = g Æ fmap2 id y Æ outP (x ; y) = h Æ x === y :Base 
ase: P (?;?) = h Æ ? === ? = true if h is stri
t.Indu
tive 
ase: We 
al
ulate as follows.h Æ i1 x === i2 y� fDe�nitions of i1 and i2 gh Æ f Æ fmap2 id x Æ out === g Æ fmap2 id y Æ out( fCan
el (Æout) gh Æ f Æ fmap2 id x === g Æ fmap2 id y� fUse the assumption on the left gg Æ fmap2 id h Æ fmap2 id x === g Æ fmap2 id y� f Fun
tion fmap2 is a fun
tor (preserves 
omposition) gg Æ fmap2 id (h Æ x ) === g Æ fmap2 id y� f Indu
tion hypothesis: P (x ; y) = h Æ x === y gTrue2As an example of the use of the fusion law we 
an prove that the fun
tion pmap falso 
an be de�ned as a 
atamorphism:pmap 0 :: Regular d ) (a ! b)! d a ! d bpmap 0 f = 
ata (inn Æ fmap2 f id)



3.10. POLYTYPIC LAWS 43Proof: The proof is by 
al
ulation:pmap f === pmap 0 f� f identity gpmap f Æ id === pmap 0 f� f identity is a 
atamorphism, de�nition of pmap 0 gpmap f Æ 
ata inn === 
ata (inn Æ fmap2 f id)( f fusion (pmap f is stri
t) gpmap f Æ inn === (inn Æ fmap2 f id) Æ fmap2 id (pmap f )� f de�nition of pmap, fmap2 is a bifun
tor ginn Æ fmap2 f (pmap f ) Æ out Æ inn === inn Æ fmap2 f (pmap f )� f out is the inverse of inn, identity ginn Æ fmap2 f (pmap f ) === inn Æ fmap2 f (pmap f )� fTrivially gTrue2As examples of laws for polytypi
 fun
tions we present the laws expressing thatpmap and fmap2 are fun
tors:pmap id === idpmap f Æ pmap g === pmap (f Æ g)fmap2 id id === idfmap2 f g Æ fmap2 h i === fmap2 (f Æ h) (g Æ i)The fun
tor laws for fmap2 are easily proved from 
orresponding laws for (�+�)and (���) by indu
tion over the stru
ture of regular datatypes. The fun
tor lawsfor pmap are proved by �xed point indu
tion using the laws for fmap2. Theselaws, and many others, are presented in PolyLib (Chapter 5).
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Chapter 4PolyP | a polytypi
programming language extension1
This 
hapter brie
y presents the underlying theory of the fun
tional programminglanguage extension PolyP. In PolyP, de�nitions of polytypi
 fun
tions are type
he
ked, and for all other expressions the types are inferred, using an extension ofJones' theories of quali�ed types and higher-order polymorphism. The semanti
sof PolyP programs is obtained by �rst adding fun
tor arguments to polytypi
fun
tions in a di
tionary passing style and then eliminating these argumentsusing partial evaluation to obtain a Haskell program. The notation and manyde�nitions in this 
hapter are based on the work of Jones [63{66℄. We are in thepro
ess of moving from the PolyP system and the theory presented in this paper,to a system 
alled Generi
 Haskell [33℄ and Hinze's [35℄ theory of type indexedvalues.The 
hapter is organized as follows. Se
tion 4.1 dis
usses the type inferen
e and
he
king algorithms used in PolyP. Se
tion 4.2 gives the semanti
s of PolyP, andSe
tion 4.3 shows how to generate Haskell 
ode from PolyP programs. Se
tion 4.4presents a short overview of the implementation of PolyP. Se
tion 4.5 
on
ludesthe 
hapter.4.1 Type inferen
ePolytypi
 value de�nitions 
an be type 
he
ked, and for all other expressions thetype 
an be inferred. This se
tion dis
usses the type 
he
king and type inferen
ealgorithms.1This 
hapter is a revised version of an arti
le with the same title, presented at the ACMSymposium on Prin
iples of Programming Languages in 1997 [46℄.45



46 CHAPTER 4. POLYPE ::= x variablej E E appli
ationj �x:E abstra
tionj let Q in E let-expressionQ ::= x = E variable bindingC� ::= �� 
onstantsj �� variablesj C�0!�C�0 appli
ations� ::= C� types� ::= P ) � quali�ed types� ::= 8t�i :� type s
hemesFigure 4.1: The 
ore language QMLSe
tion 4.1.1 introdu
es the 
ore language without the polytypi
 
onstru
t, butwith quali�ed and higher-order polymorphi
 types. Se
tion 4.1.2 extends the
ore language with the polytypi
 
onstru
t and some built-in fun
tions, typesand 
lasses. Se
tion 4.1.3 dis
usses uni�
ation in the extended language, and theSe
tion 4.1.4 shows how to type 
he
k a polytypi
 value de�nition.4.1.1 The 
ore languageOur 
ore language is an extension of 
ore-ML with quali�ed types and higher-order polymorphism [66℄, see Figure 4.1. The non-terminal for types in thisgrammar is really a kind-indexed family of non-terminals where the supers
riptdenotes its kind. For example, a basi
 type is in C� (has kind �), and a parametri
datatype 
onstru
tor su
h as List is in C�!� (has kind � ! �). We 
all theresulting language QML. The set of 
onstru
tor 
onstants 
ontains:(!); (; );Either :: � ! � ! �A program 
onsists of a list of datatype de
larations and a binding for main.The typing rules and the type inferen
e algorithm are based on the extensionsof the standard rules and algorithm [17℄ that handle quali�ed and higher-orderpolymorphi
 types, see Jones [64,66℄. Compared to the traditional Hindley-Milnersystem the type judgments are extended with a set of predi
ates P . The rulesinvolving essential 
hanges in the predi
ate set are shown in Figure 4.2. Theother rules and the algorithm are omitted. The entailment relation k� relates setsof predi
ates and is used to reason about quali�ed types, see Jones [64℄.



4.1. TYPE INFERENCE 47()E) P j � ` e : � ) � P k��P j � ` e : �()I) P; � j � ` e : �P j � ` e : � ) �Figure 4.2: Some of the typing rules for QML4.1.2 The polytypi
 language extensionThe polytypi
 extension of QML 
onsists of two parts | an extension of the typesystem and an extension of the expression language. We 
all the extended QMLlanguage polyQML.Extending the type systemThe type system is extended by generalizing the uni�
ation algorithm and byadding new types, kinds and 
lasses to the initial type environment. The initialtype environment of the language polyQML 
onsists of four 
omponents: a familyof fun
tor 
onstru
tors �d , the types of the fun
tions inn and out , the type 
lassesRegular and Bifun
tor , and the 
olle
tion of fun
tor 
onstru
tors (+, �, Empty ,Par , Re
, � and Const t).� For every regular datatype D a the type 
onstru
tor �D (written Fun
torOfD in the a
tual 
ode) represents its pattern fun
tor. The 
onstru
tor �has kind 1 ! 2 where 1 abbreviates the kind of regular type 
onstru
tors(� ! �) and 2 abbreviates the kind of pattern fun
tors (� ! � ! �).� The 
lass Regular 
ontains all regular datatypes and the 
lass Bifun
tor
ontains the fun
tors of all regular datatypes. To re
e
t this, the entailmentrelation is extended as follows for polyQML:k� Regular D , for all regular datatypes D aRegular d k� Bifun
tor �d� The fun
tor 
onstru
tors obtained from Se
tion 3.4 are added to the 
on-stru
tor 
onstants, and have the following kinds:�;+ :: 2! 2! 2Empty ;Par ;Re
 :: 2� :: 1! 2! 2Const :: � ! 2The 
orresponding rules in the entailment relation are the following:



48 CHAPTER 4. POLYPBifun
tor f ;Bifun
tor g k� Bifun
tor (f + g);Bifun
tor (f � g)k� Bifun
tor Empty ;Bifun
tor Par ;Bifun
tor Re
Regular d ;Bifun
tor g k� Bifun
tor (d�g)k� Bifun
tor (Const t)� Fun
tions inn and out were introdu
ed in Se
tion 3.5.out :: Regular d ) d a ! �d a (d a)inn :: Regular d ) �d a (d a)! d aNote that these fun
tions have quali�ed higher-order polymorphi
 types.The resulting type system is quite powerful; it 
an be used to type 
he
k manypolytypi
 programs in a 
ontext assigning types to a number of basi
 polytypi
fun
tions. But although we 
an use and 
ombine polytypi
 fun
tions, we 
annotde�ne new polytypi
 fun
tions by indu
tion on the stru
ture of datatypes.At this point we 
ould 
hoose to add some basi
 polytypi
 fun
tions that reallyneed an indu
tive de�nition to the type environment. This would give us roughlythe same expressive power as the language given by Jay [55℄ extended with quali-�ed types. As a minimal example we 
ould add fmap2 to the initial environment:fmap2 :: Bifun
tor f ) (a ! b)! (
 ! d)! f a 
 ! f b dThis would allow us to de�ne and type 
he
k polytypi
 fun
tions like pmap and
ata. The type 
he
king algorithm would for example derivepmap (+1) (Leaf 4) :: Regular Tree ) Tree Intbut it would, at best, be hard to write a polytypi
 version of a fun
tion likezip. Adding the polytypi
 
onstru
t to our language makes writing polytypi
programs mu
h simpler.Adding the polytypi
 
onstru
tTo add the polytypi
 
onstru
t, the produ
tion for variable bindings in thelet-expression, Q, is extended withpolytypi
 x :: � = 
ase f �!�!� of ffi ! eigwhere f is a fun
tor variable2, fi are fun
tor patterns (the grammar for fun
torswas de�ned in Se
tion 3.4). The fun
tor patterns 
an be nested and overlapping,2Case analysis over more than one fun
tor 
an be simulated by handling all but the �rstfun
tor in the ei by other polytypi
 
onstru
ts. In the future we might extend the syntax tosimplify this.



4.1. TYPE INFERENCE 49�0 = (�; 
); 
 = (x : �); Pi j �0 ` ei : ff 7! fig�P1; : : : ; Pn j � ` polytypi
 x :: � = 
ase f of ffi ! eig : 
Figure 4.3: The typing rule for polytypi
type (g + h) p r = Either (g p r) (h p r)type (g � h) p r = (g p r ; h p r)type Empty p r = ()type Par p r = ptype Re
 p r = rtype (d�g) p r = d (g p r)type Const t p r = tFigure 4.4: Interpreting fun
tors as type synonymsbut they must be linear. The resulting language is polyQML. To be able to do the
ase analysis over a fun
tor, the fun
tor must be 
onstru
ted from the operators+, �, � and the type 
onstants Empty , Par , Re
 and Const t . This is equivalentto being in the 
lass Bifun
tor and thus the 
ontext Bifun
tor f must alwaysbe in
luded in the type � of a fun
tion de�ned by the polytypi
 
onstru
t. AsBifun
tor f must always be in the type, PolyP inserts it automati
ally if it is notgiven expli
itly.The typing rules for polyQML are the rules from QML together with the rulefor typing the polytypi
 
onstru
t given in Figure 4.3. For the notation used,see Jones [64℄. Note that the polytypi
 
onstru
t is not an expression but abinding, and hen
e the typing rule returns a binding. The rule is not as simple asit looks | the substitution ff 7! fig repla
es a fun
tor variable with a fun
torinterpreted as a partially applied type synonym, see Figure 4.4. For example,interpreting the fun
tors in the pattern fun
tor for List as type synonyms, wehave: �List p r� f �List = Empty + Par � Re
 g(Empty + Par � Re
) p r� f Type synonym for + gEither (Empty p r) ((Par � Re
) p r)� f Type synonyms for Empty and � gEither () (Par p r ;Re
 p r)



50 CHAPTER 4. POLYP� f Type synonyms for Par and Re
 gEither () (p; r)4.1.3 Uni�
ationThe (standard but omitted) typing rule for appli
ation uses a uni�
ation algo-rithm to unify the argument type of a fun
tion with the type of its argument.The uni�
ation algorithm we use is the kind-preserving uni�
ation algorithm ofJones [66℄, whi
h is an extension of Robinson's well-known uni�
ation algorithm.We write C �� C 0 if C and C 0 are uni�ed by substitution �.Theorem 4.1 If there is a uni�er for two given types C, C 0, then C �� C 0 usingJones [66℄ algorithm for kind-preserving uni�
ation, and � is a most general uni-�er for C and C 0. Conversely, if no uni�er exists, then the uni�
ation algorithmfails.4.1.4 Type 
he
king the polytypi
 
onstru
tInstan
es of polytypi
 fun
tions generated by means of a fun
tion de�ned withthe polytypi
 
onstru
t should be type 
orre
t. For that purpose we type 
he
kpolytypi
 fun
tions.Type 
he
king a polytypi
 value de�nition amounts to 
he
king that the inferredtypes for the 
ase bran
hes are more general than the 
orresponding instan
es ofthe expli
itly given type. So for ea
h polytypi
 value de�nitionpolytypi
 x :: � = 
ase f of ffi ! eigwe have to do the following for ea
h bran
h of the 
ase:� Infer the type of ei : �i.� Cal
ulate the type the bran
hes should have a

ording to the expli
it type:�i = ff 7! fig�.� Che
k that �i is an instan
e of �i.When 
al
ulating the types of the alternatives the fun
tor 
onstru
tors are treatedas type synonyms de�ned in Figure 4.4. The 
omplete type inferen
e/
he
kingalgorithm W is obtained by extending Jones' type inferen
e algorithm [66℄ withthe alternative for the polytypi
 
onstru
t. Some of the rules of the algorithm



4.1. TYPE INFERENCE 51(var) (x : 8ti:P ) �) 2 �; si new; S = fti 7! sigSP j � ẁ x : S�(let) S(�) ẁ q : 
; Q j T (S�; 
) ẁ e : �Q j TS(�) ẁ let q in e : �(bind) P j S(�) ẁ e : �; 
 = (x : 8S�(P ) �))S(�) ẁ x = e : 

(poly) �0 = (�; 
); 
 = (x : 8fg(�))Pi j Si(Ti�1�0) ẁ ei : �i8Tn�0(Sn � � �Si+1(Pi ) �i)) � ff 7! fig�T0 = fg; Ti = SiTi�1� ẁ polytypi
 x :: � = 
ase f of ffi ! eig : 
Figure 4.5: Some parts of Ware given in Figure 4.5. As an example we will sket
h how the g � h and Re
bran
hes in the de�nition of fsum in Figure 1.1 are type 
he
ked:polytypi
 fsum :: f Int Int ! Int= 
ase f of:::g � h ! �(x ; y)! fsum x + fsum yRe
 ! id:::In the g � h bran
h of the polytypi
 
ase, we �rst infer the type of the ex-pression e� = �(x ; y) ! fsum x ++ fsum y . Using fresh instan
es of the ex-pli
it type � = f Int Int ! Int for the two o

urren
es of fsum we get �� =(x Int Int ; y Int Int)! Int . We then 
al
ulate the type ��:�� = ff 7! g � hg� = (g � h) Int Int ! Int = (g Int Int ; h Int Int)! IntBe
ause �� = fx 7! g ; y 7! hg�� we see that �� is an instan
e of ��.In the Re
 bran
h of the polytypi
 
ase, we �rst infer the type of the expressioneRe
 = id . The type of this expression is �Re
 = a ! a. We then 
al
ulatethe type �Re
 = ff 7! Re
g� = Re
 Int Int ! Int = Int ! Int . Be
ause�Re
 = fa 7! Intg�Re
 we see that �Re
 is an instan
e of �Re
. The other bran
hesare handled similarly.
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 binding 
an be type 
he
ked using the typing rules, then algorithmW also manages to type 
he
k the binding. Conversely, if algorithmW 
an type
he
k a polytypi
 binding, then the binding 
an be type 
he
ked with the typingrules too. Together with the results from Jones [64℄ we obtain the followingtheorem.Theorem 4.2 The type inferen
e/
he
king algorithm is sound and 
omplete.Proof sket
h. Both the proof of soundness and of 
ompleteness are by indu
tionon the stru
ture of the expression. The only part of the inferen
e algorithmthat is new is the handling of the polytypi
 
onstru
t. Be
ause the polytypi

onstru
t is expli
itly typed, all that soundness and 
ompleteness states is thatthe algorithm su

eeds if and only if a type 
an be inferred for the 
ase bran
hes.Using Jones' lemmas about substitutions and type ordering (�) together withthe indu
tion hypothesis we 
an show that the algorithm su

eeds if and only ifthere is a derivation using the type rules.4.2 Semanti
sThe meaning of a QML expression is obtained by translating the expression intoa version of the polymorphi
 �-
al
ulus 
alled QP that in
ludes 
onstru
ts foreviden
e appli
ation and eviden
e abstra
tion. Eviden
e is needed in the 
odegeneration pro
ess to 
onstru
t 
ode for fun
tions with 
ontexts. As an example,the eviden
e for Regular D is a di
tionary 
ontaining inn and out for D a, anda symboli
 representation of the 
orresponding fun
tor �D . Again, the resultsfrom this se
tion are based on Jones' work on quali�ed types [64℄.The language QP has the same expressions as QML plus three new 
onstru
ts:E ::= � � � same as for QML expressionsj Ee eviden
e appli
ationj �v:E eviden
e abstra
tionj 
ase v of fei ! Eig dependent 
ase over eviden
e� ::= C� typesj P ) � quali�ed typesj 8t�i :� polymorphi
 typesThe spe
ial 
ase-statement is used in the translation of the polytypi
 
onstru
t.The typing rules for QP are standard ex
ept for the dependent 
ase over bifun
-tors.



4.2. SEMANTICS 53(var) x : 8ti:P ) � 2 �; si and v new; S = fti 7! sigv : SP j � ẁ x; xv : S�(let) S(�) ẁ q ; q0 : 
Q j T (S�; 
) ẁ e; e0 : �Q j TS(�) ẁ (let q in e); (let q 0 in e 0) : �(bind) v : P j S(�) ẁ e; e0 : �; 
 = (x : 8S�(P ) �))S(�) ẁ (x = e); (x = �v:e0) : 

(poly) �0 = (�; 
); 
 = (x : 8fg(�))vi : Pi j Si(Ti�1�0) ẁ ei ; e0i : �i8Tn�0(Sn � � �Si+1(Pi ) �i)) �Ci 8fg(ff 7! fig�)T0 = fg; Ti = SiTi�1� ẁ polytypi
 x :: � = 
ase f of ffi ! eig ;x = �v:
ase v of ffi ! Ci(�vi:e0i)vg : 
Figure 4.6: Some translation rulesThe translation rules for variables, let expressions, variable bindings and for thepolytypi
 
onstru
t are given in Figure 4.6. The remaining rules are simple andomitted. A translation rule of the form P j S(�) ẁ e; e0 : � 
an be read as anattribute grammar. The inherited attributes (the input data) 
onsist of a type
ontext � and an expression e and the synthesized attributes (the output data)are the eviden
e 
ontext P , the substitution S, the translated QP expression e0and the inferred type � .fsum = �v:
ase v ofg + h ! fsumg r fsumhg � h ! �(x ; y)! fsumg x + fsumh yEmpty ! �x ! 0Par ! idRe
 ! idd � g ! psumd Æ pmapd fsumgConst t ! �x ! 0Figure 4.7: The translation of fun
tion fsum into QPFor example, if we translate fun
tion fsum :: Bifun
tor f ) f Int Int ! Int , then,after simpli�
ation, we obtain the 
ode in Figure 4.7. Note that the bran
hes ofthe 
ase expression in the translated 
ode have di�erent (but related) types. This
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ase expression is a restri
ted version of a dependent 
ase.In this translation we use a 
onversion fun
tion C, whi
h transforms eviden
eabstra
tions applied to eviden
e parameters into an appli
ation of the right type.Fun
tion C is obtained from the expression � �C �0, whi
h expresses that � ismore general than �0 and that a witness for this statement is the 
onversion fun
-tion C : � ! �0. Fun
tion C is a non-re
ursive fun
tion distributing (parts of)the eviden
e parameters to their positions on the right hand side. In a polytypi
value de�nition, su
h as fsum, where the stru
ture of the patterns on the left handsides 
orresponds dire
tly to the stru
ture of the expressions on the right handsides, the 
onversion fun
tion will behave exa
tly as the mat
hing operation inthe 
ase statement. In this 
ase, the 
onversion fun
tion is essentially the identity(just a variable renaming). The 
onversion fun
tion might be more 
omplex inthe 
ase where the re
ursive stru
ture of the polytypi
 value de�nition does not
orrespond dire
tly to the re
ursive stru
ture of the fun
tor.The inputs to fun
tion � are the two type s
hemes � and �0, and the output (ifit su

eeds) is the 
onversion fun
tion C. It su

eeds if the uni�
ation algorithmsu

eeds on the types and the substitution is from the left type to the righttype only, and if the eviden
e for the 
ontexts in � 
an be 
onstru
ted from theeviden
e for the 
ontexts in �0. The fun
tion C is 
onstru
ted from the entailmentrelation extended with eviden
e values.As eviden
e for the fa
t that a fun
tor f is a bifun
tor we use the symboli
representation of f as an element of the datatype des
ribed by the grammar forpattern fun
tors from Se
tion 3.4:f ; g ; h ::= g + h j g � h j Empty j Par j Re
 j d�g j Const t :The eviden
e for regularity of a datatype D a is a di
tionary with three 
om-ponents: the de�nitions of inn and out on the datatype and eviden
e that the
orresponding fun
tor is indeed a bifun
tor.Theorem 4.3 The translation from polyQML to QP preserves well-typednessand su

eeds for programs with unambiguous type s
hemes.Proof sket
h. The proofs are by indu
tion on the stru
ture of the expression.The use of a spe
ial syntax for the dependent 
ase expression and the fa
t thatthis expression only is introdu
ed by the translation of the polytypi
 
onstru
tallows us to reuse most of the proofs from Jones' dissertation for the other syn-ta
ti
 
onstru
ts.



4.3. CODE GENERATION 554.3 Code generationTo generate 
ode for a polyQML program, we generate a QML expression froma polyQML expression in two steps:� A polyQML expression is translated to a QP expression with expli
it evi-den
e parameters (di
tionaries).� The QP expression is partially evaluated with respe
t to the eviden
e pa-rameters giving a program in QML.When the program has been translated to QP all o

urren
es of the polytypi

onstru
t and all referen
es to the 
lasses Regular and Bifun
tor have been re-moved and the program 
ontains eviden
e parameters instead. We remove alleviden
e parameters introdu
ed by polytypism by partial evaluation (in the styleof Jones [63℄). The partial evaluation is started at the main expression (whi
hmust have an unambiguous type) and is propagated through the program bygenerating requests from the main expression and its subexpressions. A problemwith this s
heme is that does not support separate 
ompilation: it requires thewhole program to be available for translation at on
e.The eviden
e for regularity of a datatype D a (the entailment k� Regular D)is a di
tionary 
ontaining the fun
tions inn, out and the bifun
tor �D . PolyP
onstru
ts these di
tionaries using a few straightforward indu
tive fun
tions overthe abstra
t syntax of regular datatypes. Fun
tions inn and out are obtained bysele
ting the 
orre
t 
omponent of the di
tionary.In pra
ti
e, a PolyP program (a program written in a subset of Haskell extendedwith the polytypi
 
onstru
t) is 
ompiled to Haskell. Se
tion 3.9 
ontains anexample of a simple PolyP program and the 
ode that is generated by PolyP forthis program (in Figure 3.8) .If the size of the original program is n, and the total number of subexpressions ofthe bifun
tors of the regular datatypes o

urring in the program is m, then thesize of the generated 
ode is at most n � m. Ea
h request for an instan
e of afun
tion de�ned by means of the polytypi
 
onstru
t on a datatype D a resultsin as many fun
tions as there are subexpressions in the bifun
tor f for datatypeD a (in
luding the bifun
tors of the datatypes used in f ). The eÆ
ien
y of thegenerated 
ode is only a 
onstant fa
tor worse than hand-written instan
es ofpolytypi
 fun
tions. Most of the overhead is 
aused by the inn and out transfor-mations whi
h, as they are isomorphisms, 
ould probably be removed by a more
lever implementation.



56 CHAPTER 4. POLYP4.4 ImplementationThis se
tion presents a brief overview of the implementation of the PolyP 
om-piler.The implementation of PolyP is written in Haskell and it is divided into about30 Haskell modules with a total of about 7000 lines of literate Haskell 
ode. Thea

umulated time spent on the implementation of PolyP is 
lose to one man-year, but most of that time was spent on non-polytypi
 parts of the system. Asthe knowledge base in the �eld of polytypi
 programming has grown, and morestandard tools for Haskell 
ompiler 
onstru
tion have be
ome available, a newimplementation with enhan
ed fun
tionality 
ould probably be 
ompleted in lesstime. A re-implementation of the type inferen
e algorithm, for example, 
ouldbe based on \Typing Haskell in Haskell" by Jones [67℄.The information 
ow inside PolyP is as follows:� The parser takes an input �le to a list of equations expressed in the abstra
tsyntax.� Dependen
y analysis splits these equations into datatype de
larations andmutually re
ursive groups of fun
tion de�nitions.� For ea
h regular datatype the 
orresponding fun
tor is 
al
ulated.� The equation groups are labeled with type information and eviden
e valuesusing the type inferen
e algorithm from Se
tion 4.1.� The labeled equations are traversed to 
olle
t requests for instan
es of poly-typi
 fun
tions.� For every request, 
ode for an instan
e of a polytypi
 fun
tion is generatedand appended to the equation list.� The �nal equation list is pretty printed.More details about the implementation of PolyP are presented in Jansson's li
en-tiate thesis [50℄.4.5 Con
lusions and future workWe have shown how to extend a fun
tional language with the polytypi
 
on-stru
t. The polytypi
 
onstru
t 
onsiderably simpli�es writing programs thathave the same fun
tionality on a large 
lass of datatypes (polytypi
 programs).



4.5. CONCLUSIONS AND FUTURE WORK 57The extension is a small but powerful extension of a language with quali�ed typesand higher-order polymorphism. We have developed a 
ompiler that 
ompilesHaskell with the polytypi
 
onstru
t to plain Haskell.A lot of work remains to be done. The 
ompiler has to be extended to handlemutual re
ursive datatypes with an arbitrary number of type arguments and inwhi
h fun
tion spa
es may o

ur. These extensions are planned for the su

essorof PolyP: Generi
 Haskell [33℄.
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Chapter 5PolyLib | a polytypi
 fun
tionlibrary1
During the last few years we have used PolyP to 
onstru
t a number of polytypi
programs, for example for pattern mat
hing, uni�
ation, rewriting (Chapter 6),parsing (Chapter 7), et
. These polytypi
 programs use several basi
 polytypi
fun
tions, su
h as the relatively well-known 
ata and pmap, but also less well-known fun
tions su
h as propagate and thread . We have 
olle
ted these basi
polytypi
 fun
tions in the library of PolyP: PolyLib. This 
hapter des
ribes thepolytypi
 fun
tions in PolyLib, motivates their presen
e in the library, and givesa rationale for their design.Of 
ourse, a library is an important part of a programming language. Languageslike Java, Delphi, Perl are popular partly be
ause of their useful and extensivelibraries. For a polytypi
 programming language it is even more important tohave a 
lear and well-designed library: writing polytypi
 programs is diÆ
ult,and we do not expe
t many programmers to write polytypi
 programs. On theother hand, many programmers use polytypi
 programs su
h as parser generators,equality fun
tions, et
.We expe
t that both the form and 
ontent of this des
ription will 
hange overtime, in fa
t this is already the se
ond attempt at des
ribing the library of PolyP;the �rst was presented at the Workshop on Generi
 Programming, 1998 [47℄. Oneof the goals of that paper was to obtain feedba
k on the library design from otherresear
hers working within the �eld. This feedba
k has led to a few minor 
or-re
tions and additions, and two bigger 
hanges: we have added laws relating thepolytypi
 fun
tions (mainly free theorems [101℄) and in
luded the 
omplete im-plementation in Appendix A. At the moment the library only 
ontains the basi
polytypi
 fun
tions, but we are a
tively developing spe
ial purpose sub-libraries1This 
hapter is a revised version of an arti
le with the same title, presented at the Workshopon Generi
 Programming, 1998 [47℄. 59



60 CHAPTER 5. POLYLIBfor polytypi
 fun
tions with more advan
ed fun
tionality. Examples are the ap-pli
ations in the later 
hapters: mat
hing, uni�
ation, rewriting (Chapter 6),pretty printing, parsing, pa
king and unpa
king (Chapter 7).5.1 Des
ribing polytypi
 fun
tionsThis se
tion introdu
es the format that we use for des
ribing polytypi
 libraryfun
tions, and gives an overview of the 
ontents of the library.The des
ription of a polytypi
 fun
tion 
onsists of (some of) the following 
om-ponents: its name and type; an informal des
ription of the fun
tion; propertiesand laws the fun
tion satis�es; other names the fun
tion is known by; known usesof the fun
tion; and its ba
kground and relationship to other polytypi
 fun
tions.A few related fun
tions at a time are presented as a manual page en
losed inbra
kets like those surrounding this senten
e.A problem with des
ribing a library of polytypi
 fun
tions is that it is not 
om-pletely 
lear how to spe
ify polytypi
 fun
tions. The most basi
 
ombinators haveimmediate 
ategory theoreti
 interpretations that 
an be used as a spe
i�
ation,but for more 
ompli
ated 
ombinators the matter is not all that obvious. Thus,we will normally not provide formal spe
i�
ations of the library fun
tions, thoughwe try to give referen
es to more in-depth treatments. We also in
lude examplesof laws that relate the di�erent fun
tions.5.1.1 Notation and namingFor the polytypi
 fun
tions that have Haskell 
ounterparts we prepend the let-ter p (for polytypi
) to the Haskell name to avoid a name 
lash. The bifun
torvariants instead begin with an f . A polytypi
 fun
tion 
an be thought of as tak-ing (a representation of) a fun
tor as its �rst argument. This impli
it argumentis normally omitted but sometimes written as a subs
ript for 
larity: pmapd .Polytypi
 fun
tions are only de�ned for regular datatypes d a. In the type thisis indi
ated by adding a 
ontext Regular d) . . . , but we will omit this here forbrevity. (The implementation of PolyLib in Appendix A 
ontains the full typede
larations.)5.1.2 Library overviewWe have divided the library into six parts, as shown in Figure 5.1. The �rst
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pmap, fmap2, 
ataana, hylo, para
rush, f
rush(a) Re
ursion operators pzip, fzippunzip, funzippzipWith, pzipWith 0pequal , fequalp
ompare, f
ompare(b) Zips et
.pmapM , fmap2M , 
ataManaM , hyloM , paraMthread , fthreadpropagate, 
ross(
) Monad operators 
atten, �atten
 par , 
 re
, substru
tures(d) Flatten fun
tionspsum, prod , 
omp, 
on
, pand , porsize, 
atten, 
atten 0, pall , pany, pelem(e) Mis
ellaneousFigure 5.1: Overview of PolyLibpart of the library 
ontains powerful re
ursion 
ombinators su
h as pmap, 
ataand ana. This part is the 
ore of the library in the sense that it is used inthe de�nitions of all the fun
tions in the other parts. The se
ond part dealswith zips and some derivatives, su
h as the equality fun
tion. The third part
onsists of fun
tions that manipulate monads. The fourth and �fth parts 
onsistof simpler (but still very useful) fun
tions, like 
attening and summing. Thefollowing se
tions des
ribe ea
h of these parts in more detail.5.2 Re
ursion operatorspmap :: (a ! b)! d a ! d bfmap2 :: (a ! 
)! (b ! d)! f a b ! f 
 dFun
tion pmap takes a fun
tion f and a value x of datatype d a, and applies fre
ursively to all o

urren
es of elements of type a in x .Properties: With d as a fun
tor a
ting on types, pmapd is the 
orrespondingfun
tor a
tion on fun
tions. Fun
tion fmap2f is the 
orresponding fun
tor a
tion



62 CHAPTER 5. POLYLIBfor a pattern fun
tor f .pmap id === idpmap g Æ pmap h === pmap (g Æ h)fmap2 id id === idfmap2 g h Æ fmap2 i j === fmap2 (g Æ i) (h Æ j )Also known as: Fun
tion pmap is often 
alled map. In Jay et al. [58℄, pmap is
alled map1 , fmap2 is 
alled map2 and, in general, an n-argument map is 
alledmapn . In 
harity [16℄, pmapd f x is written dff g(x ).Known uses: Everywhere! Fun
tion fmap2 is used in the de�nition of pmap,
ata, ana, hylo, para and in many other PolyLib fun
tions.Ba
kground: The map fun
tion was one of the �rst 
ombinators distinguishedin the work of Bird and Meertens [10, 74℄. The traditional map :: (a ! b) ![a ℄! [b ℄ in fun
tional languages maps a fun
tion over a list of elements. Haskell98 also 
ontains an overloaded version of map:fmap :: Fun
tor f ) (a ! b)! f a ! f bFun
tion fmap 
an be used as the polytypi
 pmap if instan
e de
larations for allregular type 
onstru
tors are given. Fun
tion pmap 
an be used to give defaultinstan
es for the Haskell fmap.

ata :: (�d a b ! b)! (d a ! b)ana :: (b ! �d a b)! (b ! d a)hylo :: (f a b ! b)! (
 ! f a 
)! (
 ! b)para :: (d a ! �d a b ! b)! (d a ! b)Four powerful re
ursion operators on the type d a: The 
atamorphism, 
ata 
,\evaluates" a value of a regular datatype by re
ursively repla
ing the 
onstru
-tors with fun
tions. The anamorphism, ana a, works in the opposite dire
tionand re
ursively builds a value of a regular datatype from some other data. Thehylomorphism, hylo 
 a, is the generalization of these two fun
tions that simul-taneously builds and evaluates a stru
ture. Finally, the paramorphism, para p,is a generalized form of 
ata that gives its parameter fun
tion a

ess not only tothe results of evaluating the substru
tures, but also the stru
ture itself.
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atamorphism 
ata f satis�es the fusion law (proved in Se
-tion 3.10) for every stri
t h:h Æ 
ata f = 
ata g( f fusion gh Æ f = g Æ fmap2 id h :A dual law holds for the anamorphism, and 
orresponding laws hold for hylo andpara, see Hoogendijk [37℄. The hylomorphism 
an be spe
i�ed as:hylo i o = 
ata i Æ ana oAlso known as:PolyLib Fun
torial ML [58℄ Squiggol 
harity [16℄
ata i fold1 i (jij) fj i jgana o - [(o)℄ (j o j)Fun
tions 
ata and para are 
losely related to the Visitor pattern [27℄.Known uses: Many polytypi
 fun
tions 
an be de�ned using 
ata: pmap,
rush, thread , 
atten, propagate, and many of our appli
ations use it.Ba
kground: The 
atamorphism, 
ata, is the generalization of the Haskellfun
tion foldr and the anamorphism, ana, is its (
ategory theoreti
) dual. Cata-morphisms were introdu
ed by Mal
olm [71, 72℄. A hylomorphism is the fused
omposition of a 
atamorphism and an anamorphism. The paramorphism [75℄,para, is the elimination 
onstru
t for the type d a from Martin-L�of type the-ory [83℄. It 
aptures the re
ursion pattern of primitive re
ursive fun
tions on thedatatype d a.

rush :: (a ! a ! a)! a ! d a ! af
rush :: (a ! a ! a)! a ! f a a ! aThe fun
tion 
rush (� ) e takes a stru
ture x and inserts the operator (� ) fromleft to right between every pair of values of type a at every level in x . (The valuee is used in empty leaves.)



64 CHAPTER 5. POLYLIBProperties: We 
an push a fun
tion f through a 
rushf Æ 
rush (� ) e === 
rush (
 ) (f e) Æ pmap fprovided f is stri
t and the following distributive law holds:8 x ; y : f (x � y) = f x 
 f yThis 
an be used to prove that, for an asso
iative operator (� ) with unit e:
rush (� ) e === foldr (� ) e Æ 
attenKnown uses: A number of appli
ations of 
ru
h within the library are pre-sented in Se
tion 5.6. Many of the fun
tions in that se
tion are, in turn, used inthe di�erent appli
ations.Ba
kground: The 
rush operator was �rst proposed in \Cal
ulate polytypi-
ally" by Meertens [76℄. As 
rush has the same arguments as fold on lists it 
anbe seen as an alternative to 
ata as the generalization of fold to regular datatypes.5.3 Zipspzip :: (d a; d b)! Maybe (d (a; b))punzip :: d (a; b)! (d a; d b)fzip :: (f a b; f 
 d)! Maybe (f (a; 
) (b; d))funzip :: f (a; 
) (b; d)! (f a b; f 
 d)Fun
tion punzip takes a stru
ture 
ontaining pairs and splits it up into a pair ofstru
tures 
ontaining the �rst and the se
ond 
omponents respe
tively. Fun
tionpzip is a partial inverse of punzip: it takes a pair of stru
tures and zips themtogether to Just a stru
ture of pairs if the two stru
tures have the same shape,and to Nothing otherwise.Properties: Fun
tion punzip always produ
es a pair of stru
tures of the sameshape, and for su
h pairs pzip always su

eeds. Conversely, if pzip su

eeds, thenpunzip re
overs the original pair.pzip (x ; y) == Just z � (x ; y) == punzip zfzip (x ; y) == Just z � (x ; y) == funzip zNaturality laws:mapM (pmap (f ��� g)) Æ pzip === pzip Æ (pmap f ��� pmap g)mapM (fmap2 (f ��� g) (h ��� i)) Æ fzip === fzip Æ (fmap2 f h ��� fmap2 g i)



5.3. ZIPS 65Also known as: The zip fun
tions are 
alled zipm in Jay et al. [58℄ (withm = 1 for pzip and m = 2 for fzip), and pzip is 
alled zip.�.d in Hoogendijkand Ba
khouse [38℄.Known uses: Fun
tion fzip is used in the de�nition of pzipWith.Ba
kground: The traditional fun
tion zipzip :: [a ℄! [b ℄! [(a; b)℄
ombines two lists and does not need the Maybe type in the result as the longerlist 
an always be trun
ated. (In general su
h trun
ation is possible for all typesthat have a nullary 
onstru
tor, but not for all regular types.) A more general(\doubly polytypi
") variant of pzip: transpose (
alled zip.d.e in by Hoogendijkand Ba
khouse [38℄)transpose :: d (e a)! e (d a)was �rst des
ribed by Ruehr [94℄. For a formal and relational de�nition, seeHoogendijk and Ba
khouse [38℄.
pzipWith :: ((a; b)! Maybe 
)! (d a; d b)! Maybe (d 
)pzipWith 0 :: (�d 
 e ! e)! ((d a; d b)! e)!((a; b)! 
)! (d a; d b)! eFun
tion pzipWith (
 ) works like pzip but uses the operator (
 ) to 
ombine thevalues from the two stru
tures instead of just pairing them. As the zip might fail,we also give the operator a 
han
e to signal failure by giving it a Maybe-type asa result. The type 
onstru
tor Maybe 
an be repla
ed by any monad with a zero,but we didn't want to 
lutter up the already 
ompli
ated type with 
ontexts.Fun
tion pzipWith 0 is a generalization of pzipWith that 
an handle two stru
turesof di�erent shape. In the 
all pzipWith 0 ins fail ( 
 ), the operator ( 
 ) isused to 
ombine values of the stru
tures as long as the stru
tures have the sameshape, fail is used to handle the 
ase when the two stru
tures mismat
h, and ins
ombines the results from the substru
tures. (The type of ins is the same as thetype of the �rst argument to 
ata.)Properties: Fun
tion pzip is just pzipWith Just and pzipWith is a spe
ial 
aseof pzipWith 0:pzip === pzipWith JustpzipWith === pzipWith 0 (mapM inn Æ fthread) (
onst mzero)



66 CHAPTER 5. POLYLIBAlso known as: Fun
tion pzipWith is 
alled zipopm in Jay et al. [58℄.Known uses: Fun
tion pzipWith 0 is used in the de�nition of polytypi
 equalityand 
an be used for mat
hing and even uni�
ation.Ba
kground: Fun
tion pzipWith is the polytypi
 variant of the Haskell fun
tionzipWith zipWith :: (a ! b ! 
)! [a ℄! [b ℄! [(a; b)℄but pzipWith 0 is new.
pequal :: (a ! b ! Bool)! d a ! d b ! Boolfequal :: (a ! b ! Bool)! (
 ! d ! Bool)! f a 
 ! f b d ! BoolThe expression pequal eq x y 
he
ks whether or not the stru
tures x and y areequivalent using the equivalen
e operator eq to 
ompare the elements pairwise.Fun
tion fequal is the 
orresponding equivalen
e 
he
k for the pattern fun
torlevel. Fun
tion fequal eqp eqr performs a top level equivalen
e 
he
k and pequal eqa deep equivalen
e 
he
k.Properties: A partial equivalen
e relation (a per) is a relation that is symmet-ri
 and transitive, but not ne
essarily re
exive. (In CPO no interesting relationsare re
exive. In fa
t, if eq ? ? = True, then, by monotoni
ity, eq x y = Truefor all x and y !) If eq is a per , then fun
tion pequal eq is also a per .Known uses: Fun
tion fequal is used in mat
hing, uni�
ation and rewriting todetermine when two terms are top level equal. Fun
tion pequal is used almosteverywhere (indire
tly through (==)).Ba
kground: An early version of a polytypi
 equality fun
tion was presentedby Sheard in 1991 [98℄. Fun
tion pequal 
an be instantiated to give a default forthe Haskell Eq-
lass for regular datatypes:(==) :: (Regular d ;Eq a) ) d a ! d a ! Bool(==) = pequal (==)In Haskell the equality fun
tion 
an be automati
ally derived by the 
ompiler,and our polytypi
 equality is an attempt at moving that derivation out of the
ompiler into the prelude.
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ompare :: (a ! a ! Ordering)! d a ! d a ! Orderingf
ompare :: (a ! a ! Ordering)! (b ! b ! Ordering)!f a b ! f a b ! OrderingThe 
omparison operators ((<), (6), et
.) in Haskell are de�ned in terms of themethod 
ompare of the Ord 
lass.data Ordering = LT j EQ j GT
ompare :: Ord a ) a ! a ! OrderingFun
tion p
ompare is the polytypi
 version of 
ompare. The expression p
ompare
omp x y 
ompares the stru
tures x and y with lexi
ographi
al ordering, usingthe fun
tion 
omp to 
ompare the elements pairwise.Also known as: Fun
tion p
ompare is 
alled 
mp by Hinze [35℄.Ba
kground: Fun
tion p
ompare 
an be instantiated to give a default for theHaskell Ord -
lass for regular datatypes:
ompare :: Ord a ) d a ! d a ! Bool
ompare = p
ompare 
ompare
5.4 Monad operationspmapM :: Monad m ) (a ! m b)! d a ! m (d b)pmapMl :: Monad m ) (a ! m b)! d a ! m (d b)pmapMr :: Monad m ) (a ! m b)! d a ! m (d b)fmap2M :: Monad m ) (a ! m 
)! (b ! m d)! f a b ! m (f 
 d)
ataM :: Monad m ) (�d a b ! m b)! (d a ! m b)anaM :: Monad m ) (b ! m �d a b)! (b ! m (d a))hyloM :: Monad m ) (f a b ! m b)! (
 ! m (f a 
))! 
 ! m bparaM :: Monad m ) (d a ! �d a b ! m b)! d a ! m bFun
tion pmapM is a variant of pmap that threads a monad m from left to rightthrough a stru
ture after applying its fun
tion argument to all elements in thestru
ture. Fun
tion pmapMr is the same but for threading a monad m fromright to left through a stru
ture. For symmetry's sake, the library also 
ontainsa fun
tion pmapMl , whi
h is equal to pmapM . Furthermore, the library also
ontains the left and right variants of fun
tions like 
ataM et
. A monadi
 map
an, for example, use a state monad to re
ord information about the elements inthe stru
ture during the traversal. The other re
ursion operators are generalizedin the same way to form even more general 
ombinators.
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 map is 
losely related to thread (presented later):pmapM f === thread Æ pmap fthread === pmapM idThere are many more laws as well, but we only give these examples here.Also known as: Fun
tion pmapM (thread) is 
alled a
tive (passive) traversalin Jay et al. [58℄.Known uses: Monadi
 traversals are very useful for data 
onversion (Chap-ter 7).Ba
kground: Monadi
 maps and 
atamorphisms are des
ribed in Fokkinga [25℄and monadi
 anamorphisms and hylomorphisms are de�ned in Pardo [87℄. A
ategory theoreti
al des
ription of pmapM and thread 
an be found in Moggi etal. [81℄.
thread :: Monad m ) d (m a)! m (d a)fthread :: Monad m ) f (m a) (m b)! m (f a b)Fun
tion thread is used to tie together the monad 
omputations in the elementsfrom left to right.Properties: Fun
tion thread 
an be used to de�ne the monadi
 map, and vi
eversa:pmapM f === thread Æ pmap fthread === pmapM idAlso known as: Other names for thread are distd (used by Fokkinga [25℄) andtraverse (used by Moggi et al. [81℄).Known uses: Fun
tion thread 
an be instantiated (with d = [ ℄) to the Haskellprelude fun
tionsequen
e :: Monad m ) [m a ℄! m [a ℄ :It 
an also be instantiated (with m = Maybe) to propagate and (with m = [ ℄) to
ross de�ned later.



5.5. FLATTEN FUNCTIONS 69propagate :: d (Maybe a)! Maybe (d a)
ross :: d [a ℄! [d a ℄Fun
tion propagate propagates Nothing to the top level. Fun
tion 
ross is the
ross (or tensor) produ
t that given a stru
ture x 
ontaining lists, generates a listof stru
tures of the same shape. This list has one element for every 
ombinationof values drawn from the lists in x . These two fun
tions 
an be generalized tothread any monad through a value.Known uses: propagate is used in the de�nition of pzip.Ba
kground: Fun
tion propagate is an instan
e of transpose [94℄, and bothpropagate and 
ross are instan
es of thread .
5.5 Flatten fun
tions
atten :: d a ! [a ℄�atten :: f [a ℄ [a ℄! [a ℄
 par :: f a b ! [a ℄
 re
 :: f a b ! [b ℄substru
tures :: d a ! [d a ℄Fun
tion 
atten x traverses the stru
ture x and 
olle
ts all elements from leftto right in a list. Fun
tions �atten, 
 par and 
 re
 are variants of this for apattern fun
tor f . The list substru
tures x 
ontains all substru
tures of x .Properties: The free theorem for 
atten:
atten Æ pmap f === map f Æ 
attenFlatten 
an be de�ned in terms of 
on
 = 
rush (++) [ ℄ and pmap:
atten = 
on
 Æ pmap (:[ ℄)With normal Haskell lists and 
on
atenation this has quadrati
 asymptoti
 
om-plexity, but we 
an apply the standard a

umulating parameter tri
k to obtain alinear implementation: (
omp = 
rush (Æ) id)
atten 0 = 
omp Æ pmap (:)
atten l = 
atten 0 l [ ℄
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tions 
on
, 
omp and 
atten 0 are also de�ned in Se
tion 5.6.Fun
tion substru
tures 
an be de�ned in terms of 
 re
 and para:substru
tures :: Regular d ) d a ! [d a ℄substru
tures = para (�x y ! x : 
on
at (
 re
 y))Also known as: The integer-indexed family extra
tm;i de�ned in Jay et al. [58℄,
ontains 
atten when (m; i) = (1; 0), 
 par when (m; i) = (2; 0) and 
 re
 when(m; i) = (2; 1). Another name for 
atten is listify (used in Hoogendijk andBa
khouse [38℄).Known uses: Fun
tion 
 re
 is used in the uni�
ation algorithm to �nd thelist of immediate subterms of a term.Ba
kground: In the relational theory of polytypism [38℄ there is a membershiprelation mem.d for every relator (type 
onstru
tor) d. Fun
tion 
atten 
an beseen as a fun
tional implementation of this relation:a mem:d x � a 2 
attend x
5.6 Mis
ellaneousA number of simple polytypi
 fun
tions 
an be de�ned in terms of 
rush andpmap. For brevity we present this part of PolyLib by providing only the name,the type and the de�nition of ea
h fun
tion.psum :: d Int ! Intprod :: d Int ! Int
omp :: d (a ! a)! (a ! a)
on
 :: d [a ℄! [a ℄pand :: d Bool ! Boolpor :: d Bool ! Boolpsum = 
rush (+) 0prod = 
rush (�) 1
omp = 
rush (Æ) id
on
 = 
rush (++) [ ℄pand = 
rush (^ ) Truepor = 
rush (_ ) False



5.7. CONCLUSIONS 71All these are de�ned using 
rush only, and by 
ombining 
rush and pmap weimmediately get a few more useful fun
tions.size :: d a ! Int
atten :: d a ! [a ℄
atten 0 :: d a ! [a ℄! [a ℄pall :: (a ! Bool)! d a ! Boolpany :: (a ! Bool)! d a ! Boolpelem :: Eq a ) a ! d a ! Boolsize = psum Æ pmap (� ! 1)
atten = 
on
 Æ pmap (�x ! [x ℄)
atten 0 = 
omp Æ pmap (:)pall p = pand Æ pmap ppany p = por Æ pmap ppelem x = pany (�y ! x == y)
5.7 Con
lusionsWe have given a des
ription of PolyLib: the library of PolyP. This library hasgrown out of our experien
e with implementing polytypi
 fun
tions. PolyLibis very likely in
omplete, but we think we have in
luded most basi
 polytypi

ombinators. We have used PolyLib in the 
onstru
tion of spe
ial purpose sub-libraries for mat
hing, uni�
ation and rewriting (Chapter 6) and data 
onversion(Chapter 7), and some of these appli
ations will be in
luded in future versions ofPolyLib. Both PolyP and PolyLib are available from the author's homepage.
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Chapter 6Rewriting1
Abstra
tGiven any value of a datatype (an algebra of terms), and rules torewrite values of that datatype, we want a fun
tion that rewrites thevalue to normal form if the value is normalizable. This 
hapter de-velops a polytypi
 rewriting fun
tion that uses the parallel innermostrewriting strategy. It improves upon our earlier work on polytypi
rewriting in two fundamental ways. Firstly, the rewriting fun
tionuses a term interfa
e that hides the polytypi
 part from the rest ofthe program. The term interfa
e is a framework for polytypi
 pro-gramming on terms. This implies that the rewriting fun
tion is in-dependent of the parti
ular implementation of polytypism. We giveseveral fun
tions and laws on terms, whi
h simplify 
al
ulating withprograms. Se
ondly, the rewriting fun
tion is developed togetherwith a 
orre
tness proof.6.1 Introdu
tionA term rewriting system is an algebra (a datatype of terms) together with aset of rewrite rules. The rewrite rules des
ribe how to rewrite the terms of thealgebra. A rewrite rule is a pair (lhs; rhs) of terms 
ontaining variables withthe interpretation that any term that mat
hes the left hand side (lhs) may berewritten to the right hand side (rhs) with the variables repla
ed by the mat
hesfrom the left hand side.1This 
hapter is a revised and extended version of the arti
le \A framework for polytypi
programming on terms, with an appli
ation to rewriting", Workshop on Generi
 Programming,2000 [52℄.



74 CHAPTER 6. REWRITING6.1.1 An example rewriting systemAn example of a term datatype is the type Expr :data Expr = EVar Int j Z j S Expr j Expr :+: Expr j Expr :�: Exprtype Rule t = (t ; t)plusZero :: Rule ExprplusZero = (x :+: Z ; x )where x = EVar 0For example, with the rule plusZero the left hand side x :+: Z mat
hes theexpression S Z :+: Z with the substitution fx 7! S Z g. Thus the rewritten termis the right hand side x after the substitution is applied: S Z . To introdu
e thenotation we 
an express this in Haskell syntax: the following expression evaluatesto True.let (lhs; rhs) = plusZeroJust s = mat
h lhs (S Z :+: Z )in appSubst s rhs == S ZThe fun
tions involved are the following:appSubst :: Term t ) Sub t ! t ! tmat
h :: Term t ) t ! t ! Maybe (Sub t)( == ) :: Term t ) t ! t ! BoolFun
tion appSubst takes a substitution and a term, and applies the substitutionto the term. The type Expr is an instan
e of a type 
lass for Terms de�ned in Se
-tion 6.2.1. The de�nitions of appSubst and the type 
onstru
tor for Substitutionsare given in Se
tion 6.3.1. Fun
tion mat
h (de�ned in Se
tion 6.3.2) takes a term
ontaining variables, and a term without variables, and returns Just a substitu-tion s if the terms 
an be mat
hed by means of s, and Nothing otherwise. Theoperator (==) is the Haskell equality operator, de�ned for terms in Se
tion 6.2.3.A rule set is a 
olle
tion of rules, and a rule set mat
hes a term if at least one ofthe rules mat
hes that term. To keep the system deterministi
, even when morethan one rule mat
hes, we order the rules and always use the �rst mat
h. Inpra
ti
e this means that our rule set is a rule list.type Rules t = [Rule t ℄exprrules :: Rules Exprexprrules = [plusZero; plusSu

; timesZero; timesSu

 ℄where plusZero = (x :+: Z ; x )plusSu

 = (x :+: S y ; S (x :+: y))timesZero = (x :�: Z ;Z )timesSu

 = (x :�: S y ; (x :�: y) :+: x )(x ; y) = (EVar 0;EVar 1)
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tion rewrite (de�ned in Se
tion 6.4.2) rewrites a term to normal form byrepeatedly applying rules from a rule list:rewrite :: Term t ) Rules t ! t ! tBe
ause the rule list exprrules is normalizing, fun
tion rewrite will rewrite anyexpression of type Expr to normal form. In general, rewrite rs t terminates ifand only if the term t is normalizing with respe
t to the rule list rs .6.1.2 Polytypi
 rewritingFor other kinds of terms, rewriting behaves exa
tly as on expressions. We wouldlike to have a polytypi
 rewriting fun
tion: a rewriting fun
tion that 
an beapplied to any kind of terms.This 
hapter develops a polytypi
 rewriting fun
tion that uses the parallel inner-most rewriting strategy. We have 
hosen the parallel innermost rewriting strategybe
ause this lets us transform the rewriting fun
tion into an asymptoti
ally op-timal solution. The results in this 
hapter improve upon our earlier work onpolytypi
 rewriting [62℄ in two fundamental ways.Firstly, the program uses an interfa
e that hides the polytypi
 part from the restof the program. The term interfa
e is a framework for polytypi
 programmingon terms. We assume that we have a type of terms, on whi
h several fun
tions,su
h as a fun
tion that determines whether or not a term is a variable and afun
tion that returns the 
hildren of a term, are de�ned. The rewriting fun
tion(in
luding fun
tions for mat
hing and for applying a substitution) uses just thesefun
tions on terms. This idea was also present in our previous work [2, 51℄,but it was only applied to uni�
ation. It turns out that the same interfa
e forterms 
an be used for mat
hing and term rewriting. We also introdu
e some
ombinators on terms su
h as mapTerm, whi
h maps a fun
tion over all variablesin a term, and bup whi
h applies a term transformer bottom up to all levels ofa term. Furthermore, to fa
ilitate 
al
ulating with programs, we give a numberof laws for these fun
tions. Programming against an interfa
e for terms impliesthat our rewriting fun
tions are independent of the parti
ular implementationof polytypism, so that we 
an use our rewriting fun
tions in future polytypi
programming languages su
h as Generi
 Haskell [33℄ too.Se
ondly, the program is developed together with a 
orre
tness proof, whi
h saysthat our rewriting fun
tion rewrites any normalizable term to normal form. Aspe
i�
ation of rewriting is transformed in a few steps into an eÆ
ient rewritingfun
tion. We prove that the transformation steps are semanti
s preserving.This 
hapter is organized as follows. Se
tion 6.2 introdu
es terms, 
ombinatorson terms, and laws for these 
ombinators. Se
tion 6.3 gives three appli
ations



76 CHAPTER 6. REWRITINGof terms: substitutions, mat
hing and uni�
ation. Se
tion 6.4 spe
i�es and im-plements polytypi
 fun
tions for rewriting and states the theorems they satisfy.Se
tion 6.5 
ontains detailed proofs of some of the theorems. Se
tion 6.6 
on-
ludes.6.2 A term interfa
eThis se
tion introdu
es an interfa
e for terms and shows that every regular data-type supports this interfa
e. Furthermore, it de�nes a few 
ombinators that workon terms, and states some laws that relate these 
ombinators. The proofs of theselaws are presented in Se
tion 6.5.6.2.1 TermsThis subse
tion de�nes a Haskell 
lass for types that 
an be used as terms format
hing, uni�
ation and in a term rewriting system. A 
areful analysis of theproperties we need from terms reveals that� a term has (updatable) 
hildren,� two terms 
an be tested for top level equality,� and a term 
an be a variable.Ea
h of these requirements is 
aptured in a 
lass and the 
lass of terms is theinterse
tion of these requirements.
lass (Children t ;TopEq t ;VarChe
k t) ) Term tIn the following subse
tions we will de�ne the three 
lasses Children, TopEqand VarChe
k together with the laws we require from the instan
es to make therewriting proofs go through later.ChildrenThe 
hildren (immediate subterms) of a term 
an be extra
ted or mapped over.
lass Children t where 
hildren :: t ! [t ℄mapC :: (t ! t)! t ! t
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tions 
hildren and mapC should be related by the following law:
hildren ÆmapC f === map f Æ 
hildrenFun
tion mapC should preserve identities and 
omposition:mapC id = idmapC (f Æ g) = mapC f ÆmapC gTop level equalityFun
tion topEq is a shallow equality test. A typi
al topEq 
he
ks if two termshave the same outermost 
onstru
tor.
lass TopEq t where topEq :: t ! t ! BoolWe require topEq to be almost an equivalen
e relation:: (x = ?) ) btopEq x x 
btopEq x y 
 ) btopEq y x 
btopEq x y 
 ) (btopEq y z 
 ) btopEq x z 
)It should not depend on the 
hildren:btopEq x y 
 � btopEq x (mapC f y)
And the number of 
hildren should be part of the top level:btopEq x y 
 ) blength (
hildren x ) == length (
hildren y)
Che
king for variablesWe model variables with the type Var (any type with equality would do), and itshould be possible to 
he
k whether or not a term is a variable, and if it is, whi
hvariable.newtype Var = MkVar Int deriving Eq
lass VarChe
k t where varChe
k :: t ! Maybe VarIf a term is a variable, then it 
annot have 
hildren.bvarChe
k t == Just v 
 ) b
hildren t == [ ℄




78 CHAPTER 6. REWRITING6.2.2 Polytypi
 Term instan
esIn this subse
tion we show that all Regular datatypes are, in fa
t, Terms. We dothis by de�ning polytypi
 instan
es for 
hildren, mapC , topEq and varChe
k .Fun
tions 
hildren and mapCFun
tion 
hildren :: Children t ) t ! [t ℄ returns the immediate subterms of aterm. We �nd these subterms by unfolding the term one level, using out , mappingthe parameters to empty lists and the subterms to singletons using fmap2 and
attening the result to a list using �atten:instan
e Regular d ) Children (d a) where
hildren = �atten Æ fmap2 (
onst [ ℄) (:[ ℄) Æ outmapC f = inn Æ fmap2 id f Æ outFun
tion �atten :: f [a ℄ [a ℄! [a ℄ takes a value v of type f [a ℄ [a ℄, and returnsthe 
on
atenation of all the lists (of type [a ℄) o

urring in v . The polytypi
de�nition of �atten was given in Se
tion 3.9.Fun
tion topEqFun
tion topEq :: TopEq t ) t ! t ! Bool 
ompares the top level of two termsfor equality. It is de�ned in terms of the polytypi
 equality fun
tion fequal de-s
ribed in PolyLib. The �rst argument to fequal 
ompares parameters for equality,the se
ond argument (whi
h 
ompares the subterms) is 
onstantly true (to gettop level equality) and the third and fourth arguments are the two (unfolded)terms to be 
ompared:instan
e (Regular d ;Eq a) ) TopEq (d a) wheretopEq t t 0 = fequal (==) (� ! True) (out t) (out t 0)Fun
tion varChe
kFun
tion varChe
k :: VarChe
k t ) t ! Maybe Var 
he
ks whether or not a termis a variable. A polytypi
 varChe
k must re
ognize the datatype 
onstru
tor thatrepresents variables, using only information about the stru
ture of the datatype.We have for simpli
ity 
hosen to represent variables by the �rst 
onstru
tor inthe datatype, whi
h should have one parameter of type Var .instan
e Regular d ) VarChe
k (d a) wherevarChe
k = fvarChe
k Æ out
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polytypi
 fvarChe
k :: f a b ! Maybe Var= 
ase f ofg + h ! fvarChe
k r 
onst NothingConst Var ! Justg ! 
onst NothingSummaryWe have made all regular datatypes instan
es of the 
lass Term. Thus all ap-pli
ations written using only Term operations are automati
ally polytypi
 in thesense that they 
an be used with PolyP. Of 
ourse any su
h appli
ation 
ouldhave used PolyP dire
tly, but restri
ting the use of polytypi
 fun
tions to a min-imal interfa
e (the 
lass Term), makes the 
ode more reusable and opens it upfor experimentation with alternative implementations of polytypism.6.2.3 Combinators on termsIn this se
tion we de�ne a few general purpose fun
tions on terms. A �rst exampleis the fun
tion size that 
al
ulates the number of nodes in a term.size :: Children t ) t ! Intsize t = 1 + sum (map size (
hildren t))Using 
hildren we 
an easily extend the top level equality to deep equality:( == ) :: (TopEq t ;Children t) ) t ! t ! Boolx == y = topEq x y ^ and (zipWith ( == ) (
hildren x ) (
hildren y))If topEq is almost an equivalen
e relation (as de�ned in se
tion 6.2.1), then ( == )is an equivalen
e relation for all �nite terms.A simple appli
ation of the equality 
he
k is to de�ne a predi
ate �xedBy f thatis true for the set of �xed points of f :�xedBy :: (TopEq t ;Children t) ) (t ! t)! t ! Bool�xedBy f x = x == f xFun
tion bup f applies a term transformer at all levels of a term bottom up. Itis as 
lose we 
an get to a generi
 
atamorphism for types in the Children 
lass.Fun
tion bup is more restri
ted than a normal 
atamorphism as the output is



80 CHAPTER 6. REWRITINGalways of the same type as the input, but it is suÆ
ient to spe
ify and implementrewriting.bup :: Children t ) (t ! t)! t ! tbup f = f ÆmapC (bup f )Fun
tion mapTerm is one possible generi
 map fun
tion for Terms with variables.The appli
ationmapTerm s maps s over all variables in a term, leaving the rest ofthe stru
ture un
hanged. It is implemented in terms of the more general fun
tionfoldTerm p s that also applies the fun
tion p to post-pro
ess the results fromthe 
hildren. Fun
tion foldTerm 
an be seen as the 
ombination of a bup (a
atamorphism) and a map.mapTerm :: Term t ) (Var ! Maybe t)! t ! tmapTerm s = foldTerm id sfoldTerm :: Term t ) (t ! t)! (Var ! Maybe t)! t ! tfoldTerm p s t = maybe (p (mapC (foldTerm p s) t))(maybe (p t) id Æ s)(varChe
k t)Fun
tion foldTerm traverses all nodes in a term 
ontaining variables bottom up.If a node is a variable, then it is repla
ed by the term to whi
h that variable isbound in the �nite map s, or transformed by p if it is not bound by s. If a nodeis not a variable, then foldTerm is applied re
ursively to the 
hildren (if any) andthe result is transformed by p.6.2.4 Laws for term 
ombinatorsUsing the properties required for the fun
tions from the Term 
lass we 
an derivea number of laws for the term 
ombinators. The proofs of these laws are given inSe
tion 6.5. The theorems for bup are restri
ted to �nite terms as 
aptured bythe predi
ate �n:De�nition 6.1 Finite terms:�n :: Children t ) t ! Bool�n = �x deeperdeeper :: Children t ) (t ! Bool)! (t ! Bool)deeper p = all p Æ 
hildren
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ate �n is de�ned as the �xed point of deeper or equivalently as thelimit of a 
hain of approximations deepern ?. The predi
ate deepern ? is truefor all terms of depth less than n. Proofs by �xed point indu
tion using �n anddeeper are 
losely related to proofs using the generi
 approximation lemma byHutton and Gibbons [44℄.Using �xed point indu
tion we 
an prove a 
hara
terization of bup:Theorem 6.2 bup-
hara
terization:(f �n=== g ÆmapC f ) � (f �n=== bup g)If we let f === g === id in the bup-
hara
terization theorem, then the premiseid �n=== id ÆmapC id follows trivially from the requirement mapC id === id ofthe 
lass Children. Thus we get the following 
orollary to bup-
hara
terization:Corollary 6.3 bup-identity:id �n=== bup idA law similar to the �x -equality law but for proving equality of fun
tions de�nedusing bup is an easy 
onsequen
e of bup-
hara
terization:Theorem 6.4 bup-equality:(g ÆmapC f �n=== h ÆmapC f ) � (bup g �n=== bup h)where f = bup gFun
tion bup is 
losely related to foldTerm; both traverse the term bottom up,but bup does not distinguish variables from other (sub)terms. The behavior ofbup 
an be simulated by foldTerm if the substitution argument does Nothing forall variables:Theorem 6.5 bup is a foldTerm:foldTerm f (
onst Nothing) �n=== bup fThe �nal theorem of this se
tion says that we 
an fuse the 
omposition of abottom-up traversal with a mapTerm s, where s is a fun
tion that maps variablesto Maybe some value, into a foldTerm, provided that the bottom-up traversal isthe identity on the result of s.Theorem 6.6 bup-mapTerm-fusion:bmapM (bup f ) Æ s === s 
 ) (foldTerm f s �n=== bup f ÆmapTerm s)



82 CHAPTER 6. REWRITING6.3 Substitutions, mat
hing and uni�
ationThis se
tion presents three appli
ations expressed in terms of the methods of theTerm 
lass: substitutions, mat
hing and uni�
ation. Substitutions and mat
hingare used in the following se
tion on rewriting.6.3.1 SubstitutionsA substitution is a mapping from variables to terms that 
hanges only a �nitenumber of variables. As the 
on
rete representation of substitutions is irrelevantfor the de�nition of rewriting, we use an abstra
t datatype Sub t for �nite mapsfrom variables to terms.idSubst :: Sub tmodBind :: (Var ; t)! Sub t ! Sub tlookupIn :: Sub t ! Var ! Maybe tThis 
ould be implemented as a 
onstru
tor 
lass in Haskell, but we avoid thatbe
ause we don't want to 
lutter up the types with an extra type 
ontext. Thevalue idSubst represents the identity substitution, the 
all modBind (v ; t) s mod-i�es the substitution s to bind v to t (leaving the bindings for other variablesun
hanged) and lookupIn s v looks up the variable v in the substitution s, givingNothing if the variable is not bound in s.Using lookupIn a substitution 
an be viewed as a fun
tion from variables to terms.To use substitutions as fun
tions from terms to terms we de�ne appSubst :appSubst :: Term t ) Sub t ! t ! tappSubst s = mapTerm (lookupIn s)We 
an also de�ne a variant of appSubst that does the equivalent of a bottom-up traversal with f after the substitution has been applied. A straightforwardimplementation would be the following:fromVarsUpAfterSubst :: Term t ) (t ! t)! (Sub t ; t)! tfromVarsUpAfterSubst f (s; t) = bup f (appSubst s t)Instead, we use a simple 
orollary of bup-mapTerm-fusion (Theorem 6.6) to obtaina more eÆ
ient de�nition (for some 
ombinations of f and s).fromVarsUpAfterSubst :: Term t ) (t ! t)! (Sub t ; t)! tfromVarsUpAfterSubst f (s; t) = foldTerm f (lookupIn s) t



6.3. SUBSTITUTIONS, MATCHING AND UNIFICATION 83Corollary 6.7 bup-appSubst-fusion:bmapM (bup f ) Æ lookupIn s === lookupIn s 
)bfromVarsUpAfterSubst f (s; t) == bup f (appSubst s t)
For example, if bup f is an implementation of rewriting to normal form and thesubstitution binds all variables to terms in normal form, then the 
ondition issatis�ed.6.3.2 Mat
hingMat
hing a pattern p with a term t yields Just a substitution s su
h thatappSubst s p == t or, if no su
h substitution exists, then the mat
hing failswith Nothing . Both the pattern and the term may 
ontain variables, but themat
hing only allows variables in the pattern to be instantiated | any variablein the term is treated as a term 
onstant. Fun
tion mat
h is de�ned in termsof mat
h 0 that 
arries around a 
urrent substitution, starting with the identitysubstitution.mat
h :: Term t ) t ! t ! Maybe (Sub t)mat
h 0 :: Term t ) t ! t ! Sub t ! Maybe (Sub t)mat
h p t = mat
h 0 p t idSubstmat
h 0 p t s = maybe no yes (varChe
k p)where no = if topEq p t thenthreadList (zipWith mat
h 0 (
hildren p) (
hildren t)) selseNothingyes v = Just (modBind (v ; t) s)We assume that the patterns are linear - that is, no variable o

urs twi
e inthe same pattern. It is easy to extend this de�nition to work in the presen
e ofnonlinear patterns; we do not, however, in
lude the details here.The utility fun
tions threadList and (��) 
ompose monadi
 fun
tions in se-quen
e.threadList :: Monad m ) [a ! m a ℄! (a ! m a)threadList = foldr (��) return(��) :: Monad m ) (a ! m b)! (
 ! m a)! (
 ! m b)f �� g = �x ! g x >>= f
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ationThe uni�
ation algorithm des
ribed in this se
tion is in
luded for 
ompletenessonly and it is not used in the rewriting algorithm. The reader may skip thisse
tion without loss of 
ontinuity.If we 
hange the pattern mat
hing fun
tion from Se
tion 6.3.2 to allow also vari-ables in the se
ond term to mat
h expressions in the �rst term, thus making themat
hing symmetri
, then we obtain uni�
ation. A uni�
ation algorithm triesto �nd a most general uni�er (mgu) of two terms. A most general uni�er oftwo terms is a smallest substitution of terms for variables su
h that the substi-tuted terms be
ome equal. (If two �rst order terms are uni�able, then their mguis unique up to renaming [93℄.) Use of uni�
ation is widespread; it is used intype inferen
e algorithms, rewriting systems, 
ompilers, et
. (see the survey byKnight [68℄).Des
riptions of uni�
ation algorithms normally deal with a general datatype ofterms, 
ontaining variables and appli
ations of 
onstru
tors to terms, but ea
hreal implementation uses one spe
i�
 instan
e of terms and a spe
ialized versionof the algorithm for this term type. This se
tion des
ribes a fun
tional uni�
ationprogram that works for all regular term types. However, we do not prove that itis a 
orre
t implementation of uni�
ation.Substitutions and uni�ersA uni�er of two terms is a substitution that makes the terms equal. We startwith an example. Consider the uni�
ation of the two terms F (x ; F (A;B)) andF (G(y ;A); y), where x and y are variables and F , G, A and B are term 
onstru
-tors. Be
ause both terms have an F on the outermost level, these expressions
an be uni�ed if x 
an be uni�ed with G(y ;A), and F (A;B) 
an be uni�ed withy . As these two pairs of terms are uni�ed by the uni�er � = fx 7! G(y ;A); y 7!F (A;B)g, the original pair of terms is also uni�ed by applying the uni�er �,yielding the uni�ed term F (G(F (A;B);A); F (A;B)).As the example shows we use a slightly di�erent variant of appSubst for uni�
ationthan the one used for mat
hing:appSubst :: Term t ) Sub t ! t ! tappSubst s = mapTerm (mapM (appSubst s) Æ lookupIn s)When 
alling appSubst s t , the substitution s is applied to all variables in theterm t as in the version for mat
hing, but here s is also applied re
ursively toall variables in the substituted terms. A substitution � is at least as general asa substitution �0 if and only if �0 
an be fa
tored by �, that is, if there exists asubstitution � su
h that appSubst �0 = appSubst � Æ appSubst �.
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tion that given two terms �nds a most general uni�erthat uni�es the terms or, if the terms are not uni�able, reports this.The uni�
ation algorithmFun
tion unify takes two terms, and returns their most general uni�er. It isimplemented in terms of unify 0, whi
h updates a 
urrent substitution that ispassed around as an extra argument. The uni�
ation algorithm starts with theunify :: Term t ) t ! t ! Maybe (Sub t)unify 0 :: Term t ) t ! t ! Sub t ! Maybe (Sub t)unify tx ty = unify 0 tx ty idSubstunify 0 tx ty s = uni (varChe
k tx ; varChe
k ty) whereuni (Nothing;Nothing) j topEq tx ty = uniTerms tx ty sj otherwise = Nothinguni (Just i ; Just j ) j i == j = Just suni (Just i ; ) = (i 7! ty) suni ( ; Just j ) = (j 7! tx ) suniTerms :: Term t ) t ! t ! Sub t ! Maybe (Sub t)uniTerms x y = threadList (zipWith unify 0 (
hildren x ) (
hildren y))(7!) :: Term t ) Var ! t ! Sub t ! Maybe (Sub t)(i 7! t) s = if o

ursChe
k i s t then Nothingelse 
ase lookupIn s i ofNothing ! Just (modBind (i ; t) s)Just t 0 ! unify 0 t t 0 sFigure 6.1: The 
ore of the uni�
ation algorithmidentity substitution, traverses the terms and tries to update the substitution(as little as possible) while solving the 
onstraints found. If this su

eeds, thenthe resulting substitution is a most general uni�er of the terms. The algorithmdistinguishes three 
ases depending on whether or not the terms are variables.� If none of the terms is a variable, then we have two sub-
ases; either the
onstru
tors of the terms are di�erent (that is, the terms are not top levelequal) and uni�
ation fails, or the 
onstru
tors are equal and we unify allthe 
hildren pairwise.



86 CHAPTER 6. REWRITINGvars :: (Children t ;VarChe
k t) ) t ! [Var ℄vars t = [v j Just v  map varChe
k (subTerms t)℄subTerms :: Children t ) t ! [t ℄subTerms t = t : 
on
at (map subTerms (
hildren t))o

ursChe
k :: Term t ) Var ! Sub t ! t ! Boolo

ursChe
k i s t = i 2 rea
hlist (vars t)whererea
hlist l = l ++ 
on
at (map rea
hable l)rea
hable v = rea
hlist (maybe [ ℄ vars (lookupIn s v))Figure 6.2: Auxiliary fun
tions in the uni�
ation algorithm� If both terms are variables and the variables are equal, then we su

eedwithout 
hanging the substitution. (If the variables are not equal, then thefollowing 
ase mat
hes.)� If one of the terms is a variable, then we try to add the binding of thisvariable to the other term, to the substitution. This su

eeds if the variabledoes not o

ur in the term and if the new binding of the variable 
an beuni�ed with the old binding (in the 
urrent substitution).A straightforward implementation of this des
ription gives the 
ode in Figure 6.1using the auxiliary fun
tions in Figure 6.2. Part of a 
orre
tness proof of thisimplementation 
an be found in the introdu
tion to generi
 programming fromthe summer s
hool on Advan
ed Fun
tional Programming 1998 [2℄.6.4 RewritingThis se
tion spe
i�es polytypi
 rewriting by means of a 
learly 
orre
t, but inef-�
ient fun
tion. The spe
i�
ation 
an be transformed, using the proof tools for�xed points and terms presented in the previous se
tions, in a number of stepsinto an eÆ
ient rewriting fun
tion.We start in Se
tion 6.4.1 with de�ning a fun
tion rewrite step , whi
h performs asingle rewrite step on a term. Fun
tion rewrite step is then used in a spe
i�
ation(a 
learly 
orre
t, but very ineÆ
ient version) of fun
tion rewrite in Se
tion 6.4.2.Using laws about least �xed points and the de�nitions of 
on
rete �xed points inSe
tion 6.4.3, fun
tion rewrite is transformed into an eÆ
ient rewriting fun
tionin a sequen
e of four steps in Se
tion 6.4.4.
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tions de�ned in sequel are parametrized on the rule list (rep-resenting the rewriting system). As the rule list argument is �xed during therewriting 
al
ulations, we write this argument as a subs
ript to improve readabil-ity. For example, we write rewriters t for the appli
ation of fun
tion rewrite tothe rule list rs and the term t .6.4.1 One step rewritingGiven a rule list rs and a term t to mat
h we 
an sele
t the �rst mat
hing rulewith �rstmat
hrs t :�rstmat
h :: Term t ) Rules t ! t ! Maybe (Sub t ; t)�rstmat
hrs t = �rstJust (map (try t) rs)where try t (lhs; rhs) = mapM (�s ! (s; rhs)) (mat
h lhs t)�rstJust :: [Maybe a ℄! Maybe a�rstJust = foldr mplus Nothingmplus :: Maybe a ! Maybe a ! Maybe amplus (Just x ) m = Just xmplus Nothing m = mIf a rule mat
hes, then �rstmat
hrs t returns Just a pair (s; rhs) of the substi-tution and the right hand side of the mat
hing rule. A note on notation: weuse subs
ripts for the rule list parameter to various rewriting fun
tions, as in�rstmat
hrs . The subs
ript is used as a 
onvenient syntax for normal fun
tionappli
ation.Using �rstmat
h and appSubst we 
an transform a rule list to a top level redu
tionfun
tion redu
eM that gives Just the rewritten term or Nothing. An immediatevariant is redu
e that returns the term un
hanged if no rule mat
hes.redu
eM :: Term t ) Rules t ! t ! Maybe tredu
eMrs = mapM (un
urry appSubst) Æ �rstmat
hrsredu
e :: Term t ) Rules t ! t ! tredu
ers t = maybe t id (redu
eMrs t)The redu
e fun
tions only apply the rewrite rules on the top level of the term,but we want to apply the rules at any level. In a relational treatment of rewritingthis 
orresponds to extending the top level redu
tion relation to a 
ongruen
e. Toretain the deterministi
 fun
tional view we have to 
hoose a rewriting strategy.We have 
hosen the parallel innermost rewriting strategy as this lets us transform
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tion into an asymptoti
ally optimal solution. Innermost meansthat we order the subterms by their depth and apply the redu
tion fun
tion bot-tom up until the �rst mat
h, and parallel means that all subterms at the samedepth are redu
ed at the same time. Fun
tion parallelInnermost takes any toplevel term transformer to a global one step transformer, using the parallel inner-most rewriting strategy. (The 
orresponding fun
tion for the parallel outermostrewriting strategy, parallelOutermost , is in
luded here for 
omparison, but is notused in the sequel.)parallelInnermost :: (Children t ;TopEq t) ) (t ! t)! t ! tparallelInnermost f = 
ontIfFixedBy f (mapC (parallelInnermost f ))parallelOutermost :: (Children t ;TopEq t) ) (t ! t)! t ! tparallelOutermost f = 
ontIfFixedBy (mapC (parallelOutermost f )) f
ontIfFixedBy :: (Children t ;TopEq t) ) (t ! t)! (t ! t)! t ! t
ontIfFixedBy r f = i� �xedBy f then r else fCombining parallelInnermost with redu
e we arrive at one-step rewriting:rewrite step :: Term t ) Rules t ! t ! trewrite steprs = parallelInnermost redu
ers6.4.2 Rewriting to normal formThe �nal step needed to obtain rewriting to normal form is, in relational termi-nology, the transitive 
losure. As a fun
tional 
ounterpart we use a �xed pointoperator fp that takes a one step redu
tion fun
tion r to a normalizer by applyingr until the input term doesn't 
hange:fp :: Term t ) (t ! t)! t ! tfp f = i� �xedBy f then id else fp f Æ fThe result res == fp f x , when fp terminates, is a �xed point in the sense thatres == f res, that is, �xedBy f res holds. Now we are ready to de�ne rewritingto normal form:rewrite :: Term t ) Rules t ! t ! trewriters = fp rewrite steprsFun
tion rewriters rewrites a term until no rule applies anymore, that is, itrewrites a term to normal form. A term is in normal form for a rule list rsif it is un
hanged by rewrite steprs :normal :: Term t ) Rules t ! t ! Boolnormal rs = �xedBy rewrite steprs
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orresponding to strongly normalizing rewrite systems, rewriterswill take any term to its normal form, but rewriters also works for the subset ofnormalizing terms of any other rewriting system. If a term has multiple normalforms, then rewriters 
al
ulates only the one (if any) rea
hable by the parallelinnermost rewriting strategy. If this strategy does not terminate for a 
ertainterm, then neither does rewriters . More formally, we de�ne normalizing termsand the �rst theorem for rewrite :De�nition 6.8 Normalizing terms:normalizing :: Term t ) Rules t ! t ! Boolnormalizingrs = �x moreNormal rsmoreNormal :: Term t ) Rules t ! (t ! Bool)! (t ! Bool)moreNormal rs p = normal rs _ p Æ rewrite steprsTheorem 6.9 Rewriting gives a normal form:bnormalizingrs 
 ) bnormal rs Æ rewriters 
The proof of this theorem by �xed point indu
tion is in the next se
tion.Fun
tion rewriters 
an be seen as an exe
utable spe
i�
ation of rewriting to nor-mal form for a given rule list and a given term. It 
an be useful for experimentingwith di�erent rule lists but for larger terms it is una

eptably ineÆ
ient. We de-�ne the norm of a term (with respe
t to a spe
i�
 rule list) to be the number of(parallel innermost) redu
tion steps that it takes to rea
h normal form:norm :: Term t ) Rules t ! t ! Intnormrs t = if normal rs t then 0 else 1 + normrs (rewrite steprs t)The time it takes to exe
ute rewriters is linear in the norm, n, of the inputterm but quadrati
 in the (average) size, s, of the term being rewritten. Clearlyit should be possible to do better than that - optimally we hope to obtain arunning time of O(n + s). Using the laws for �xed points and terms given inthe previous se
tions, we 
an transform the spe
i�
ation of rewriting, rewriters ,into an optimal fun
tion. The result of this transformation, whi
h is linear in thenorm of the input term, is presented in Se
tion 6.4.4.
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rete �xed pointsUsing �x we 
an give the following equivalent de�nition of fun
tion fp presentedin Se
tion 6.4.2:fp :: Term t ) (t ! t)! t ! tfp f = �x (�p f )�p :: Term t ) (t ! t)! (t ! t)! (t ! t)�p f r = i� �xedBy f then id else r Æ fThe two parameters of �p f r are both fun
tions. The �rst parameter is usedto test if we have rea
hed a 
on
rete �xed point. It does not 
hange duringthe 
al
ulation of �x (�p f ). The se
ond parameter, on the other hand, is anapproximation of fp f . It starts out as ? and improves in ea
h iteration of �x .Thus �p f is an example of an improvement fun
tion.Cal
ulating �xed points using �p is often very ineÆ
ient be
ause of the expensiveequality test in �xedBy. For some fun
tions f , the eÆ
ien
y 
an be improved ifthe equality test is fused with f , so that f t is Nothing if the term is left un
hangedand Just the 
hanged term otherwise. The 
orresponding 
hange to �p results in�pM :�pM :: (a ! Maybe b)! (b ! a)! a ! a�pM fM r = �x ! maybe x r (fM x )A typi
al example of a fun
tion f with the desired property is, as we will seelater, redu
ers .A fusion lemma for �pM is an easy 
onsequen
e of the maybe - mapM - fusionlaw from the prelude (Chapter 2):Lemma 6.10 �pM - mapM - fusion:�pM (mapM f Æ g) r == �pM g (r Æ f )6.4.4 Improving rewritingIn this se
tion we transform the de�nition of rewrite step by step until we rea
ha linear algorithm. Ea
h transformation step is reasonably small and the 
orre
t-ness of the whole sequen
e is proved by a 
hain of equalities of the intermediateversions. As ea
h fun
tion is a version of rewrite we will use names su
h asrewriteB, rewriteC et
. Proofs of some of the theorems of this se
tion are givenin Se
tion 6.5.



6.4. REWRITING 91Children �rstAs a �rst step, we transform the spe
i�
ation into a de�nition that a
tually hasa slightly worse running time than the original, but whi
h simpli�es the 
omingtransitions. We are aiming at using the bottom up nature of the parallel innermostrewriting strategy to obtain an eÆ
ient rewriting algorithm that is a bottom uptraversal on the outermost level. With rewriting de�ned using bup we 
an makeoptimizations based on the invariant that all 
hildren already are in normal formwhen a 
ertain level is to be rewritten. For the �rst \improved" variant we thus
hoose:rewriteBrs = bup rewritersThe 
orre
tness of this �rst step follows from the fa
t that we 
an always rewritethe 
hildren to normal form �rst and only then start working on the top level.Theorem 6.11 Children �rst:rewriters �n=== rewriters ÆmapC rewritersIntuitively this theorem follows immediately from the use of an innermost rewrit-ing strategy, but the proof by �xed point indu
tion is rather long and omittedfrom this presentation.Corollary 6.12 Version B equals the spe
i�
ation:rewriters �n=== rewriteBrsThe 
orollary follows from theorem 6.11 by bup-
hara
terization.Using the normal 
hildren invariantFor the next transformation we need to look more 
losely at the de�nition ofrewriteB. The �rst thing to note is that the outermost bup means that we knowthat all 
hildren are in normal form when the argument to bup is applied. Thenit is 
learly overkill to use the full 
edged rewrite fun
tion at that stage, whena simpler variant would suÆ
e, but it is important that the simpler variant isguaranteed to produ
e only normal forms so that the \normal 
hildren" invariantis preserved. To get an idea of where to go next, we expand the de�nitions ofrewrite and fp to arrive at this equivalent de�nition of rewriteB:rewriteBrs = bup (�x (�p rewrite steprs))



92 CHAPTER 6. REWRITINGIf we unfold �x one level, then we see that the argument to bup is of the formr = �p rewrite steprs r 0. The \normal 
hildren" invariant means that thefun
tion r will re
eive a term whose 
hildren are in normal form. If we expandthe de�nition of �p, then we getr = i� �xedBy rewrite steprs then id else r 0 Æ rewrite steprsAs the 
hildren of the input term are in normal form, the bottom up rewrit-ing strategy implemented by rewrite steprs will not �nd a redu
ible term untilpossibly at the top level. More formally, this is 
aptured by the following lemma.Lemma 6.13 Rewrite with normal 
hildren is redu
e:rewrite steprs deeper normal rs=== redu
ersProof: Expand the de�nition of rewrite step one level and use Lemma 6.18. 2Thus we 
an repla
e rewrite step by redu
e in r to obtain r == �p redu
ers r 0.Unfortunately we 
annot immediately make the same transformation also for r 0as the term argument of r 0 is redu
ers t whose 
hildren need not be in normalform. But if we repla
e r 0 with bup r , then the fun
tion r will only be applied tonormal terms. (That this is really the 
ase is not easy to see, but it is 
on�rmedby a proof using �xed point indu
tion.)To summarize, we 
an repla
e �x (�p rewrite steprs) by �x (�p redu
ers Æ bup)to arrive at the de�nition:rewriteCrs = bup (�x (�p redu
ers Æ bup))This mind boggling 
reature 
an be simpli�ed somewhat by the rolling rule:f (�x (g Æ f )) = �x (f Æ g)rewriteCrs = �x (bup Æ �p redu
ers)Theorem 6.14 Version B equals version C:rewriteBrs normalizingrs=== rewriteCrsThe asymptoti
 
omplexity is not 
hanged by this transformation.
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he
ksFun
tion redu
e 
an be expressed in terms of �pM and redu
eM.redu
ers = �pM redu
eMrs idIf we expand this de�nition in version C, then we get:rewriteCrs = �x (bup Æ �p (�pM redu
eMrs id))We 
an simplify the expression �p (�pM redu
eMrs id) to �pM redu
eMrs andthus remove all equality 
he
ks, if we make an assumption about the rule list:bredu
eMrs t == Just x 
 ) b: (t == x )
By examining the implementation of redu
eMrs , we 
an express the requirementas follows: in the rule list rs, a rule should only mat
h a term, if applying thatrule 
hanges the term. This is a reasonable requirement. Otherwise, if a rule
an mat
h but leave the term un
hanged, then rewriteDrs will loop even thoughrewriteCrs would have terminated (with the un
hanged term).The new version of the rewriting fun
tion is the following:rewriteDrs = �x (bup Æ �pM redu
eMrs)Theorem 6.15 Version C equals version D:rewriteCrs normalizingrs=== rewriteDrsThe simple proof is presented in Se
tion 6.5.This transformation redu
es the asymptoti
 
omplexity of rewriting: version A-Care quadrati
 in the size (as 
al
ulated by fun
tion size in Se
tion 6.2.3) but ver-sion D is linear in the size. They are all linear in the norm (that is, the numberof rewrite steps as 
al
ulated by fun
tion norm is Se
tion 6.2.3). Moreover, re-moving the equality tests is essential to obtain a version with a better 
omplexitythan linear in the size.



94 CHAPTER 6. REWRITINGAvoiding unne
essary traversals of normal 
hildrenAn analysis of rewriteD shows that quite some time is spent on trying to rewriteterms that are already normal. After ea
h su

essful rewrite step with a rule(lhs; rhs), the resulting term is traversed bottom up in sear
h of rede
es. Butas the in
oming term has normal 
hildren, the resulting term is rhs with normalterms substituted for its variables. Clearly any rede
es in this result must bein the topmost part 
oming from rhs. The following transformation 
hangesrewriteD to limit the sear
h for rede
es to this topmost part.We start by using the rolling rule on version D.rewriteDrs� fDe�nition g�x (bup Æ �pM redu
eMrs)� fRolling rule (Lemma 2.12) gbup (�x (�pM redu
eMrs Æ bup))� f Introdu
e redu
eErs = �pM redu
eMrs Æ bup gbup (�x redu
eErs)Now we transform redu
eE.redu
eErs r� fDe�nition of redu
eErs g�pM redu
eMrs (bup r)� fDef.: redu
eMrs = mapM (un
urry appSubst) Æ �rstmat
hrs g�pM (mapM (un
urry appSubst) Æ �rstmat
hrs) (bup r)� f �pM -mapM -fusion (Lemma 6.10) g�pM �rstmat
hrs (bup r Æ un
urry appSubst)� f bup-appSubst-fusion (Corollary 6.7) g�pM �rstmat
hrs (fromVarsUpAfterSubst r)



6.4. REWRITING 95The real improvement 
omes in the last step. In the next to last expression,remember that �rstmat
hrs t gives Just a pair (s; rhs) of a substitution andthe right hand side of the mat
hing rewrite rule, or Nothing if no rule applies.Fun
tion appSubst applies s to rhs, and bup r applies r at all levels in theresulting term. We know that all 
hildren of the in
oming term are normal, andthis means that all variables in the substitution s will be bound to normal terms.But when appSubst is applied the information about whi
h terms are normal islost, and the bottom up traversal is used to restore the invariant.The improved version is obtained by fusing bup r with appSubst to a fun
tionfromVarsUpAfterSubst r . The improved version only applies r from the variablesin the right hand side of the mat
hing rule and upwards upwards, and leaves thenormal 
hildren alone. The improved version is thus:rewriteErs = bup (�x (�pM �rstmat
hrs Æ fromVarsUpAfterSubst))Theorem 6.16 Version D equals version E:rewriteDrs normalizingrs=== rewriteErsThis version of rewrite is linear in the number of steps needed to rewrite a term,and independent of the size of the intermediate terms. This big improvementis obtained by avoiding repeated traversals of already normal 
hildren. The im-proved version instead only traverses the right hand sides from the mat
hingrules.6.4.5 EÆ
ien
y 
omparisonA very simple measure of the running time for the di�erent rewriting fun
tions isthe number of Hugs-redu
tion steps (not to be 
onfused with rewriting steps in therewriting system) required to run the fun
tions on some examples. The followingtable shows some measurements of the number of Hugs redu
tions required bythe di�erent versions to rewrite the expression 2n for n = 6; 7; 8. The number 2abbreviates S (S Z ) :: Expr and the exponentiation notation (2n), is a shorthandfor repeated multipli
ations (uses of ( :�: )). The expression is normalized usingthe rewrite rules exprrules de�ned in Se
tion 6.1.Hugs-redu
tions for versionexpression rewrite steps A B C D E26 107 7:4M 7:4M 2:7M 478k 72k27 179 47M 47M 20M 1:6M 122k28 323 344M 344M 156M 5:7M 218ke n O(e2n) O(e2n) O(e2n) O(en) O(n)



96 CHAPTER 6. REWRITINGThe last line in the table gives the asymptoti
 
omplexity for the di�erent versionsin terms of the size of the answer e and the number of parallel innermost rewritesteps n. The number of rewrite steps n in
reases more slowly than the size ofthe answer e as the parallel rewriting strategy performs more and more innerredu
tions in parallel as the terms grow. Hen
e, n is not quite proportional toe, and we 
an analyze the 
omplexity in terms of both variables. As we 
an seefrom the table all versions are linear in n but the dependen
e on e di�ers. Asn is the number of rewrite steps, we 
an think of the dependen
e on e as the
omplexity per rewrite step.For versions A-C the 
omplexity 
an be explained by the test for equality at everynode in the term. As the equality 
he
k and the number of nodes are both linearin e, we get a quadrati
 dependen
y in total. An equality test that reports Falseis often qui
k, but determining that two terms are 
ompletely equal is of 
ourselinear. As the equality 
he
ks are performed to see if a term is in normal form, we
an 
on�rm the suspi
ion that these versions do a lot of work on already normal(sub)terms.Version D redu
es the e 
omplexity to linear, by removing the equality 
he
ks,but in every rewrite step it still traverses the normal subterms and applies mat
hin sear
h for redu
ible terms. Version E 
ompletely removes the unne
essarytraversals of normal subterms, and thus redu
es the 
ost of ea
h rewrite step toa 
onstant (determined by the rule list).6.5 ProofsIn this se
tion we prove the term 
ombinator laws from Se
tion 6.2.4 and asele
tion of the rewriting fun
tion laws from Se
tion 6.4. We start with a fewlemmata used in the proofs.As variables have no 
hildren, they 
annot be 
hanged by mapC :Lemma 6.17 mapC does not 
hange variables:bisJust Æ varChe
k 
 ) bmapC f === id 
Lemma 6.18 Fixed by mapC :�xedBy (mapC f ) === deeper (�xedBy f )The following lemma (used in the proof of bup-
hara
terization) is an easy 
on-sequen
e of the laws required for Term instan
es and the de�nition of ( == ).



6.5. PROOFS 97Lemma 6.19 Deep equality and mapC:mapC f === mapC g = deeper (f === g)The improvement fun
tion deeper used in the de�nition of �n = �x deeper ismonotone in the following sense:Lemma 6.20 deeper is monotone:For all p and q:(bp
 ) bq 
) ) (bdeeper p
 ) bdeeper q 
)6.5.1 Proofs of term 
ombinator lawsIn this subse
tion we restate and prove the laws from Se
tion 6.2.4.Theorem 6.2 (with proof) bup-
hara
terization:(f �n=== g ÆmapC f ) � (f �n=== bup g)Proof: The ( impli
ation follows immediately from the de�nition of bup. Forthe other impli
ation we �rst assume the left hand side is true and expand thede�nition of the right hand side to expose the �xed points:f �x deeper=== �x ((gÆ) ÆmapC )We use �xed point indu
tion with n = 2, improvement fun
tions i1 = (gÆ) ÆmapC and i2 = deeper and relation P :P (h; p) = f p=== h ^ InLimi2 pThe side 
ondition InLimi2 p = bp
 ) b�n 
 follows from Lemma 6.20 (mono-toni
ity of deeper) and Lemma 2.17 (InLim), thus we only need to prove theequality here.Base 
ase: P (?;?) is trivially true as b?
 = false and (false ) q) = true.Indu
tive 
ase: We prove P (g ÆmapC h; deeper p) ( P (h; p) by 
al
ulation:



98 CHAPTER 6. REWRITINGP (g ÆmapC h; deeper p)� fDe�nitions gf deeper p=== g ÆmapC h( fTransitivity: a q=== 
 ( (a q=== b) ^ (b q=== 
) g(f deeper p=== g ÆmapC f ) ^ (g ÆmapC f deeper p=== g ÆmapC h)( fUse the assumption f �n=== g ÆmapC f on the left gg ÆmapC f deeper p=== g ÆmapC h( fCan
el g , de�nition of ( q=== ) gbdeeper p
 ) bmapC f === mapC h 
� f Lemma 6.19 gbdeeper p
 ) bdeeper (f === h)
( f Lemma 6.20: deeper is monotone gbp
 ) bf === h 
� fDe�nition of ( q=== ) and P (h; p) gP (h; p)2Theorem 6.4 (with proof) bup-equality:(g ÆmapC f �n=== h ÆmapC f ) � (bup g �n=== bup h)where f = bup gProof: We 
al
ulate as follows:g ÆmapC f �n=== h ÆmapC f� fBy de�nition: f = bup g gg ÆmapC (bup g) �n=== h ÆmapC (bup g)� fBy de�nition: g ÆmapC (bup g) === bup g gbup g �n=== h ÆmapC (bup g)� f bup-
hara
terization gbup g �n=== bup h2



6.5. PROOFS 99Theorem 6.5 (with proof) bup is a foldTerm:foldTerm f (
onst Nothing) �n=== bup fProof: By bup-
hara
terization the theorem follows from:foldTerm f (
onst Nothing) �n=== f ÆmapC (foldTerm f (
onst Nothing))We let s = 
onst Nothing and 
al
ulate:foldTerm f s= fDe�nition of foldTerm g�t ! maybe (f (mapC (foldTerm f s) t))(maybe (f t) id Æ 
onst Nothing)(varChe
k t)= f Simplify maybe: maybe n j Æ 
onst Nothing === 
onst n g�t ! maybe (f (mapC (foldTerm f s) t))(
onst (f t))(varChe
k t)= f Lemma 6.17: mapC does not 
hange variables g�t ! maybe (f (mapC (foldTerm f s) t))(
onst (f (mapC (foldTerm f s) t)))(varChe
k t)= f Simpli�
ation: maybe n (
onst n) m == n if m is not ? g�t ! f (mapC (foldTerm f s) t)= fDe�nition of (Æ) gf ÆmapC (foldTerm f s)The value m in the se
ond last step is not ? be
ause the input term is �nite andvarChe
k terminates for �nite terms. 2Theorem 6.6 (with proof) bup-mapTerm-fusion:bmapM (bup f ) Æ s === s 
 � foldTerm f s �n=== bup f ÆmapTerm s



100 CHAPTER 6. REWRITINGProof: We give a 
al
ulational proof by indu
tion over the depth of the in
om-ing term. Thus the indu
tion hypothesis is that the equality holds for terms oflower depth.bup f ÆmapTerm s= f de�nition of mapTerm, foldTerm gbup f Æ �t ! maybe (mapC (mapTerm s) t)(maybe t id Æ s)(varChe
k t)= fmaybe-fusion: g Æmaybe n j = maybe (g n) (g Æ j ) g�t ! maybe (bup f (mapC (mapTerm s) t))(maybe (bup f t) (bup f ) Æ s)(varChe
k t)= f Sub
al
ulations below of the �rst two arguments of maybe g�t ! maybe (f (mapC (foldTerm f s) t))(maybe (f t) id Æ s)(varChe
k t)= f de�nition of foldTerm gfoldTerm f sThe se
ond but last step, where we simplify the �rst two arguments to maybe, ismotivated by the following 
al
ulations. For the �rst argument we havebup f ÆmapC (mapTerm s)= fDe�nition bup gf ÆmapC (bup f ) ÆmapC (mapTerm s)= fmapC preserves 
omposition gf ÆmapC (bup f ÆmapTerm s)= f Indu
tion hypothesis: bbup f ÆmapTerm s === foldTerm f s 
 gf ÆmapC (foldTerm f s)



6.5. PROOFS 101In the simpli�
ation of the se
ond argument of maybe, we know that the in
omingterm is a variable. Thus we 
an 
al
ulate as follows:maybe (bup f t) (bup f ) Æ s= fUnfold the �rst bup one level gmaybe (f (mapC (bup f ) t)) (bup f ) Æ s= f Lemma 6.17: mapC does not 
hange variables gmaybe (f t) (bup f ) Æ s= fmaybe-law: maybe n (j Æ g) === (maybe n j ) ÆmapM g gmaybe (f t) id ÆmapM (bup f ) Æ s= fAssumption mapM (bup f ) Æ s === s gmaybe (f t) id Æ s26.5.2 Proofs of rewriting transformationsIn this subse
tion we restate and prove a sele
tion of the rewriting fun
tion lawsfrom Se
tion 6.4.Lemma 6.21 moreNormal is monotone:For all p and q:(bp
 ) bq 
) ) (bmoreNormalp 
 ) bmoreNormal q 
)Theorem 6.9 (with proof) Rewriting gives a normal form:bnormalizingrs 
 ) bnormal rs Æ rewriters 




102 CHAPTER 6. REWRITINGProof: Expand the de�nitions of normalizing and rewrite to expose the �xedpoints:b�x moreNormal rs 
 ) bnormal rs Æ �x (�p rewrite steprs)
Use �xed point indu
tion with n = 2, predi
ateP (f ; p) = bp
 ) bnormal rs Æ f 
and the improvement fun
tions i1 = �p rewrite steprs and i2 = moreNormal rs .The base 
ase P (?;?) is trivial as the left hand side of the impli
ation is false.For the indu
tive step start by transforming normal rs Æ �p rewrite steprs f .bnormal rs Æ �p rewrite steprs f 
� fDe�nition of �p gbnormal rs Æ i� normal rs then id else f Æ rewrite steprs 
� f Lemma 2.8: i� then else -fusion gi� normal rs then bnormal rs 
 else bnormal rs Æ f Æ rewrite steprs 
� f Lemma 2.9 gi� normal rs then true else bnormal rs Æ f Æ rewrite steprs 
� f Lemma 2.10: _ expressed with i� then else . gbnormal rs _ (normal rs Æ f Æ rewrite steprs)
� fDe�nition of moreNormal gbmoreNormal rs (normal rs Æ f )
Thus prepared the 
al
ulation is simple:P (f ; p)� fDe�nition of P gbp
 ) bnormal rs Æ f 
) fMonotoni
ity of moreNormal gbmoreNormal rs p
 ) bmoreNormal rs (normal rs Æ f )
� fPre
eding 
al
ulation gbmoreNormal rs p
 ) bnormal rs Æ �p rewrite steprs f 
� fDe�nition of P gP (�p rewrite steprs ;moreNormal rs f )2



6.5. PROOFS 103Theorem 6.15 (with proof) Version C equals version D:rewriteCrs normalizingrs=== rewriteDrsProof: The de�nitions of rewriteCrs and rewriteDrs are very similar:rewriteCrs = �x (bup Æ �p redu
ers)rewriteDrs = �x (bup Æ �pM redu
eMrs)Thus it is enough to show that �p redu
ers === �pM redu
eMrs . Rememberthat redu
ers t = maybe t id (redu
eMrs t) and 
al
ulate as follows:�p redu
ers r t == �pM redu
eMrs r t� fDe�nition of �p and �pM gif t == redu
ers t then t else r (redu
ers t)== maybe t r (redu
eMrs t)� fCase analysis on redu
eMrs t g
ase redu
eMrs t ofNothing ! (if t == t then t else r t) == tJust x ! (if t == x then t else r x ) == r x� f Simplify g
ase redu
eMrs t ofNothing ! t == tJust x ! if t == x then t == r x else r x == r x� fRe
exivity and assume : (t == x ) is true gTrueThus �p redu
ers === �pM redu
eMrs follows from the assumptionbredu
eMrs t == Just x 
 ) b: (t == x )
 :2



104 CHAPTER 6. REWRITING6.6 Con
lusionsWe have presented a framework for polytypi
 programming on terms, with whi
hpolytypi
 programs for mat
hing, uni�
ation, rewriting, et
. 
an be 
onstru
ted.The framework is an interfa
e 
onsisting of four fun
tions. Using these four basi
fun
tions we have de�ned a set of 
ombinators on terms, and we have provedseveral laws for these 
ombinators. The framework has been used to 
al
ulate aneÆ
ient rewriting program from an ineÆ
ient, 
learly 
orre
t spe
i�
ation.Be
ause the only polytypi
 
omponents of the fun
tions for rewriting, mat
hingand uni�
ation are the fun
tions in the term interfa
e, our fun
tions are inde-pendent of the parti
ular implementation of polytypism. This is an importantadvantage. Other, less domain spe
i�
, frameworks for polytypi
 programmingare the monadi
 traversal library of Moggi, Bell�e and Jay [81℄ and the basi
 
om-binator library PolyLib (Chapter 5). Very likely there are other domain spe
i�
polytypi
 libraries, but they 
an only be determined by developing many examplepolytypi
 programs.



Chapter 7Polytypi
 Data ConversionPrograms1
Abstra
tSeveral generi
 programs for 
onverting values from regular datatypesto some other format, together with their 
orresponding inverses,are 
onstru
ted. The formats 
onsidered are shape plus 
ontents,
ompa
t bit streams and pretty printed strings. The di�erent data
onversion programs are 
onstru
ted using John Hughes' arrow 
om-binators along with a proof that printing (from a regular datatypeto another format) followed by parsing (from that format ba
k tothe regular datatype) is the identity. The printers and parsers aredes
ribed in PolyP, a polytypi
 extension of the fun
tional languageHaskell.7.1 Introdu
tionMany programs 
onvert data from one format to another, for example, parsers,pretty printers, data 
ompressors, en
ryptors and fun
tions that 
ommuni
atewith a database. Some of these programs, su
h as parsers and pretty printers,
riti
ally depend on the stru
ture of the input data. Other programs, su
h as mostdata 
ompressors and en
ryptors, more or less ignore the stru
ture of the data.Using the stru
ture of the input data in a program for a data 
onversion problemalmost always gives a more eÆ
ient program with better results. For example,1An arti
le version of this 
hapter has been submitted to S
ien
e of Computer Programmingin 2000 [53℄. A shorter version, \Polytypi
 
ompa
t printing and parsing", appeared in thepro
eedings of the European Symposium on Programming in 1999 [48℄.



106 CHAPTER 7. DATA CONVERSIONa data 
ompressor that uses the stru
ture of the input data runs faster and
ompresses better than a 
onventional data 
ompressor. This 
hapter 
onstru
tsseveral polytypi
 data 
onversion programs that make use of the stru
ture of theinput data. We 
onstru
t programs for determining the shape of data, pa
kingand pretty printing data.7.1.1 Data 
onversion programsShape.A value of a 
ontainer type d a 
an be uniquely represented by its shape (of typed ()) and a list of its 
ontents (of type [a ℄). As an example, 
onsider the datatypeof binary trees with leaves 
ontaining values of type a.data Tree a = Leaf a j Bin (Tree a) (Tree a)The following example binary treetree :: Tree Inttree = Bin (Bin (Leaf 1) (Bin (Leaf 7) (Leaf 3))) (Leaf 8)
an be represented by a pair of its shapetreeShape :: Tree ()treeShape = Bin (Bin (Leaf ()) (Bin (Leaf ()) (Leaf ()))) (Leaf ())and its 
ontents [1; 7; 3; 8℄.Our �rst data 
onversion program is a program for separating a value into itsshape and its 
ontents, together with its inverse: a program that 
ombines ashape and some 
ontents into a datatype value. The 
onstru
tion proves thatthe two fun
tions are ea
h others' inverses. Note that shapes are at the heart ofJay's [56℄ theory of polytypism, but here we only use separate and 
ombine asexamples of simple data 
onversion programs.We start with this almost trivial data 
onversion problem be
ause these 
on-version fun
tions serve as ni
e examples of simple polytypi
 programs, but alsobe
ause mu
h of the essential stru
ture of the pa
king and pretty printing pro-grams is present already at this stage.
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king.Many �les that are distributed around the world, either over the Internet or onCD-rom, possess stru
ture | examples are databases, HTML �les, and Java-S
ript programs | and it pays to 
ompress these stru
tured �les to obtain fastertransmission or fewer CDs. Stru
ture-spe
i�
 
ompression methods give mu
hbetter 
ompression results than 
onventional 
ompression methods su
h as theUnix 
ompress utility [6, 15℄. Stru
tured 
ompression is also used in heap 
om-pression and binary I/O [104℄.The idea of designing stru
ture-spe
i�
 
ompression programs has been aroundsin
e the beginning of the 1980s, but, as far as we are aware, there is no generi
des
ription of the program, only example instantiations appear in the literature.This 
hapter des
ribes the 
ompression program generi
ally by 
ombining a poly-typi
 parser with a polytypi
 pa
king program. The un
ompression program issimilarly 
omposed of a polytypi
 unpa
ker and a polytypi
 pretty printer.Our pa
king algorithm 
ompresses data by 
ompa
tly representing the stru
tureof the data using only stati
 information | the type of the data. Traditional(bit stream) 
ompressors that use dynami
 (statisti
al) properties of the dataare largely orthogonal to our approa
h and thus the best 
ompression results areobtained by 
omposing the pa
ker with a bit stream 
ompressor.Pretty printing.Modern programming languages allow the user to de�ne new kinds of data. Whentesting or debugging a program, the user often wants to see values of these newdatatypes. Many languages support the automati
 derivation of printing fun
-tions for user-de�ned datatypes. For example, by writing deriving Show after aHaskell datatype de�nition, the fun
tion show for this datatype is obtained forfree. Thus in Haskell one 
an use a built-in polytypi
 fun
tion show , but show
an not be expressed in the language, and one 
an not de�ne alternative polytypi
pretty printing fun
tions.This 
hapter shows how one 
an de�ne polytypi
 versions of the fun
tions showand its inverse read that work for values of arbitrary regular datatypes. Again,the fun
tions show and read are ea
h others inverses by 
onstru
tion. Thuswe externalize the de�nitions of these fun
tions (in Haskell they are part of the
ompiler and 
annot be inspe
ted), and we show that our de�nitions are 
orre
t.7.1.2 Constru
ting data 
onversion programsThe fundamental property of the three printing fun
tions print just des
ribed isthat ea
h of them has a right inverse with respe
t to forward 
omposition: the



108 CHAPTER 7. DATA CONVERSIONparsing fun
tion parse. That is, print ; parse = id , but parse ; print need not beid .2 In the rest of the 
hapter we will write just inverse, when we really mean rightinverse. This is a very 
ommon spe
i�
ation pattern: all data 
onversion problemsare spe
i�ed as pairs of inverse fun
tions with some additional properties. In this
hapter, the driving for
e behind the de�nitions of the fun
tions print and parse isinverse fun
tion 
onstru
tion. Thus 
orre
tness of print and parse is guaranteedby 
onstru
tion. Interestingly, when we for
ed ourselves to only 
onstru
t pairs ofinverse fun
tions, we managed to redu
e the size and 
omplexity of the resultingprograms 
onsiderably 
ompared with our previous attempts.The 
onversion programs are expressed using arrows | John Hughes' suggestionfor generalizing monads [42℄. The arrow 
ombinators 
an be seen as de�ning asmall (impure) fun
tional language embedded in Haskell. We use 
onstru
tor
lasses to allow for varying interpretations of this embedded language. Thus the
onversion programs are impli
itly parametrized with respe
t to the 
hoi
e ofimplementation and semanti
s for this embedded language, and the laws neededto prove the 
orre
tness of the 
onversion programs are expressed as restri
tionson the possible implementations.This 
hapter has the following goals:� 
onstru
t a number of polytypi
 programs for data 
onversion problems,together with their inverses;� show how to 
onstru
t and 
al
ulate with polytypi
 fun
tions.The implementation of the data 
onversion programs as PolyP 
ode 
an be ob-tained from the polytypi
 programming WWW page [49℄.The rest of this 
hapter is organized as follows. Se
tion 7.2 
onstru
ts poly-typi
 programs for separating a datatype value into its shape and its 
ontents,and for 
ombining shape and 
ontents ba
k to the original value. Se
tion 7.3introdu
es an abstra
t fun
tion 
on
ept 
alled arrows, whi
h is used a lot in thefollowing se
tions. Se
tion 7.4 de�nes two kinds of arrow maps and proves thatthey are inverses. Se
tion 7.5 sket
hes the 
onstru
tion and 
orre
tness proof ofthe pa
king program. Se
tion 7.6 
onstru
ts polytypi
 programs for showing andreading values of datatypes. Se
tion 7.7 de�nes instan
es of the various arrow
lasses. Se
tion 7.8 
on
ludes with an overview of the results, a dis
ussion andsome suggestions for future work.2The 
omposition parse ; print is automati
ally almost id : if s = print x then(parse ; print) s = (print ; parse ; print) x = (id ; print) x = print x = s. Thus it is id onthe image of the print fun
tion (a subset of the set of values that 
an be parsed) | but thebehavior for other values is not spe
i�ed.



7.2. SHAPE 1097.2 ShapeThe shape of a value is its stru
ture without its 
ontents. This se
tion de�nesfun
tions for separating a datatype value into its shape and its 
ontents, and for
ombining shape and 
ontents to a datatype value. Furthermore, it proves thatthe 
omposition of these fun
tions is the identity.7.2.1 Fun
tion separateA �rst de�nition of fun
tion separate, using the fun
tions 
atten and pmap, waspresented already in Se
tion 3.9.separate :: Regular d ) d a ! (d (); [a ℄)separate x = (pmap (
onst ()) x ;
atten x )It is more diÆ
ult to de�ne the fun
tion 
ombine, the inverse of fun
tion separate.A standard implementation of fun
tion 
ombine traverses the shape, 
arryingaround the 
ontent list, and inserts one element from the list at ea
h of theparameter positions in the shape. Be
ause it is not easy to prove that su
h afun
tion is the inverse of fun
tion separate, we rede�ne fun
tion separate to makethe inverse 
onstru
tion straightforward.The pre
eding de�nition of fun
tion separate traverses its input datatype valuetwi
e: on
e with pmap (
onst ()), and on
e with 
atten. We 
an fuse these twotraversals into a single traversal that 
arries around an a

umulating state pa-rameter. This traversal is 
arried out by a fun
tion similar to pmap whi
h we
all an arrow map. The arrow map takes as argument a fun
tion, in this 
asethe fun
tion put , whi
h at ea
h parameter position prepends the element to thea

umulating list, and repla
es the element by the empty tuple. To avoid `pol-lution' of the types with state information, we introdu
e a new type 
onstru
torSA for fun
tions that side-e�e
t on a state.newtype SA s a b = SA ((a; s)! (b; s))We use the notation a ;s b for SA s a b. Using this type and an arrow map
alled pmapAr, we obtain the following de�nition for fun
tion separate.separate :: d a ;[a℄ d ()separate = pmapAr putput :: a;[a℄ ()put = SA (�(a; xs)! ((); a : xs))pmapAr :: (a;s b)! (d a ;s d b)



110 CHAPTER 7. DATA CONVERSIONwhere pmapAr is de�ned in Se
tion 7.4. The r in pmapAr denotes the dire
tionof the traversal: pmapAr is a right to left traversal. This means that given atree node with two subtrees, fun
tion pmapAr �rst traverses the right subtree,and then the left subtree. Dire
tion doesn't matter for normal maps, but formaps that 
arry around and update a state dire
tion is important. For separatewe 
ould have used put 0 = SA (�(a; xs)! ((); xs ++ [a℄)) and the left to righttraversal, pmapAl, but it turns out that the (somewhat 
ounterintuitive) right toleft traversal with put is lazier, more eÆ
ient and easier to prove 
orre
t.7.2.2 Fun
tion 
ombineUsing the left to right traversing variant of the arrow map, pmapAl, we 
an writethe inverse of separate, 
alled 
ombine, as follows.
ombine :: d ();[a℄ d a
ombine = pmapAl getget :: ();[a℄ aget = SA (�((); a : as)! (a; as))pmapAl :: (a;s b)! (d a ;s d b)It remains to de�ne the arrow maps, and to prove that 
ombine is the inverseof separate, that is, separate followed by 
ombine is the identity. Note that, dueto the 
onstru
tor SA, we 
annot use normal fun
tion 
omposition for values oftype a;s b. Instead we de�ne a new 
omposition operator (>>>):(>>>) :: (a;s b)! (b;s 
)! (a;s 
)SA f >>> SA g = SA (f ; g)It is easy to see that get is the inverse of put , but we in
lude the proof as areminder of the notation we use for 
al
ulational equality proofs.put >>> get= De�nitions of get and putSA (�(a; xs)! ((); a : xs)) >>> SA (�((); a : xs)! (a; xs))= De�nition of (>>>)SA ((�(a; xs)! ((); a : xs)) ; (�((); a : xs)! (a; xs)))= Simpli�
ationSA idHere SA id :: a ;[a℄ a is the identity on SA and the operator ( = ) is equalityon SA.
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tion 
ombine is the inverse of separateThe main ingredient of the proof that 
ombine is the inverse of separate is a lawabout inverting arrow maps. More spe
i�
ally, we have that pmapAl is the inverseof pmapAr provided the arguments of the maps are inverses:pmapAr :: (a;s b)! (d a ;s d b)pmapAl :: (b;s a)! (d b ;s d a)f >>> g = SA id ) pmapAr f >>> pmapAl g = SA id (7.1)Using this law (whi
h is proved in Se
tion 7.4) we have:separate >>> 
ombine= De�nitions of separate and 
ombinepmapAr put >>> pmapAl get= Law (7.1); put >>> get = SA idSA idThis proves the 
orre
tness of fun
tions separate and 
ombine.7.3 Arrows and lawsThis se
tion generalizes the type 
onstru
tor SA s to Hughes' abstra
t 
lass forarrows [42℄. The arrow 
lass 
an be seen as a minimal signature of an embeddeddomain spe
i�
 language as des
ribed by Paterson [89℄. For additional motivationand ba
kground for using arrows, see the papers by Hughes and Paterson [42,89℄. We use a hierar
hy of arrow 
lasses as embedded domain spe
i�
 languagesfor expressing data 
onversion programs. We introdu
e the arrow 
ombinatorstogether with example implementations for the SA s arrow. In de�nitions andlaws that hold for arbitrary arrows we write a; b instead of a;s b.7.3.1 Basi
 de�nitions and laws for arrowsTo de�ne the arrow maps and to prove (a generalization of) Law (7.1), we need afew 
ombinators to 
onstru
t and 
ombine arrows (that is, values of type a; b),together with some laws that relate these 
ombinators. The implementations aregiven for the type a ;s b (that is, SA s a b) to exemplify a typi
al arrow typebut as we will see later, the types and the laws for the 
ombinators form the
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lass of arrows. Thus, any program written usingthese 
ombinators will automati
ally be parametrized over the instan
es of this
lass. The arrow 
lass and the arrow 
ombinators 
ome from Hughes' arrowpaper [42℄.Lifting.The fun
tion that lifts normal fun
tions to fun
tions that also take and return astate value is 
alled arr .arr :: (a! b)! (a;s b)arr f = SA (f ��� id)We will often write �!f instead of arr f . Fun
tion arr is a fun
tor from the
ategory of types and fun
tions to the 
ategory of types and arrows: it distributesover 
omposition (and trivially preserves the identity).�!f >>> �!g = ���!f ; gArrow 
omposition.Composition of arrows (de�ned already in Se
tion 7.2) satis�es the usual laws: itis asso
iative, and �!id is its unit.�!id >>> f = f = f >>> �!id(f >>> g) >>> h = f >>> (g >>> h)We denote reverse 
omposition with (<<<), where f <<< g = g >>> f .Arrows between pairs.Fun
tion �rst applies an arrow to the �rst 
omponent of a pair, leaving the se
ond
omponent un
hanged.�rst :: (a;s b)! ((a; 
);s (b; 
))�rst (SA f ) = SA (�((a; 
); s)! let (b; s 0) = f (a; s)in ((b; 
); s 0))Fun
tion �rst is a fun
tor, that is, it preserves (arrow) identities and distributesover (arrow) 
omposition.�rst �!f = ����!f ��� id�rst (f >>> g) = �rst f >>> �rst g
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tion se
ond that applies an arrow to the se
ond 
omponent of apair, 
an be de�ned in terms of �rst :se
ond :: (a; b)! ((
; a); (
; b))se
ond f = ���!swap >>> �rst f >>> ���!swapswap :: (a; b)! (b; a)swap (a; b) = (b; a)Using �rst and se
ond we 
an de�ne two 
andidates for produ
t fun
tors, butwhen the arrows have side-e�e
ts, neither of these are fun
tors be
ause they failto preserve 
omposition.(��>); (<��) :: (a; 
)! (b; d)! ((a; b); (
; d))f ��> g = �rst f >>> se
ond gf <�� g = se
ond g >>> �rst fIf one of the two arguments of �rst and se
ond is side e�e
t free (doesn't 
hangethe state), then �rst 
ommutes with se
ond . The 
anoni
al form of a side e�e
tfree arrow is �!j for some fun
tion j .�rst �!f >>> se
ond g = se
ond g >>> �rst �!fArrows with a 
hoi
e.We 
an view the arrow 
ombinators as a very small embedded language. Withthe 
ombinators de�ned thus far we 
an embed fun
tions as arrows using �!� , we
an plug arrows together using (>>>) and we 
an simulate a value environmentby using �rst , se
ond et
. However, we 
annot write 
onditionals | there is noway to 
hoose between di�erent bran
hes depending on the input.We lift the operator (r) :: (a! 
)! (b! 
)! (Either a b ! 
) to the arrowlevel to model a 
hoi
e between di�erent arrow bran
hes. For state arrows theimplementation is straightforward:(jjj) :: (a;s 
)! (b;s 
)! (Either a b ;s 
)SA f jjj SA g = SA (�(x ; s)! ((�a ! f (a; s)) r (�b ! g (b; s))) x )As a simple exer
ise in arrow plumbing we de�ne if -expressions:ifA :: (a; Bool)! (a; b)! (a; b)! (a; b)ifA p t e = ��!dup >>> �rst p >>> ��������!bool2Either >>> (t jjj e)where dup a = (a; a)bool2Either (b; x ) = if b then Left x else Right x



114 CHAPTER 7. DATA CONVERSIONThe lifted variant of operator (�+�) for arrows is de�ned by:(+++) :: (a; 
)! (b; d)! (Either a b ; Either 
 d)f +++ g = (f >>> ��!Left) jjj (g >>> ���!Right)Operator (+++) is a bifun
tor on arrows | it preserves identities and distributesover 
omposition.�!f +++ �!g = ����!f �+� g(f +++ g) >>> (f 0 +++ g0) = (f >>> f 0) +++ (g >>> g0)7.3.2 A 
lass for arrowsThe type SA s a b en
apsulates fun
tions from a to b that manipulate a state oftype s. However, most of the programs and laws we want to express don't refer tothe state. Therefore, we go one step further in the abstra
tion by introdu
ing theHaskell 
onstru
tor 
lass Arrow [42, 89℄. An arrow type 
onstru
tor (;) is anytwo-parameter type 
onstru
tor that supports the operations of the 
lass Arrow .We require a number of laws to hold for the instan
es of the arrow 
lass and fordo
umentation purposes, we in
lude these laws in the 
lass de�nition althoughthey 
an't be dire
tly expressed in Haskell.
lass Arrow (;) wherearr :: (a ! b)! (a; b)(>>>) :: (a; b)! (b; 
)! (a; 
)�rst :: (a; b)! ((a; 
); (b; 
))-- Laws :�!f >>> �!g = ���!f ; g�!id >>> f = f = f >>> �!id(f >>> g) >>> h = f >>> (g >>> h)�rst �!f = ����!f ��� id�rst (f >>> g) = �rst f >>> �rst g�rst �!f >>> se
ond g = se
ond g >>> �rst �!fFor arrows with a 
hoi
e operator, (jjj), we de�ne the sub
lass ArrowChoi
e. Wein
lude both the operator (jjj) and (+++), but it is suÆ
ient to de�ne either of themin every instan
e be
ause of the defaults. The default de
larations are part of theHaskell 
lass de�nition and 
an be seen as laws with immediate implementations.
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lass Arrow (;) ) ArrowChoi
e (;) where(+++) :: (a; 
)! (b; d)! (Either a b ; Either 
 d)(jjj) :: (a; 
)! (b; 
)! (Either a b ; 
)-- Defaults :f +++ g = (f >>> ��!Left) jjj (g >>> ���!Right)f jjj g = (f +++ g) >>> ����!id r id-- Laws :�!f +++ �!g = ����!f �+� g(f +++ g) >>> (f 0 +++ g0) = (f >>> f 0) +++ (g >>> g0)(f jjj g) >>> h = (f >>> h) jjj (g >>> h)The type 
onstru
tor SA s is made an instan
e of Arrow and ArrowChoi
e bytaking the de�nitions of arr , (>>> ), �rst , ( jjj ) and (+++) from Se
tion 7.3.1.Normal fun
tions are trivially Arrows and they support 
hoi
e:instan
e Arrow (!) wherearr f = ff >>> g = f ; g�rst f = f ��� idinstan
e ArrowChoi
e (!) wheref +++ g = f �+� gf jjj g = f r gWith the de�nitions from these instan
es, three of the laws from the Arrow andthe ArrowChoi
e 
lasses 
an be rewritten to a form whi
h more 
learly indi
atesthat �!� lifts 
omposition, �rst and 
hoi
e from normal fun
tions to arrows:�!f >>> �!g = ����!f >>> g�rst �!f = ���!�rst f�!f +++ �!g = ����!f +++ gMany side e�e
ting 
omputations 
an be 
aptured by the Arrow signature, in-
luding all fun
tions returning monadi
 results: we 
an de�ne a Kleisli arrow forevery Haskell Monad [102℄:newtype Kleisli m a b = Kleisli (a ! m b)instan
e Monad m ) Arrow (Kleisli m) wherearr f = Kleisli (�a ! return (f a))Kleisli f >>> Kleisli g = Kleisli (�a ! f a >>= g)�rst (Kleisli f ) = Kleisli (�(a; 
)! f a >>= �b ! return (b; 
))instan
e Monad m ) ArrowChoi
e (Kleisli m) whereKleisli f jjj Kleisli g = Kleisli (f r g)
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tsThe two produ
t operators (��>) and (<��) are inverses in a 
ertain sense:(f ��> g)�1 = f�1 <�� g�1We will prove this equality in a slightly more general form, whi
h will turn out tobe useful in the following se
tions. We generalize the inverse law by weakening theinverse requirement to require only the side-e�e
ts to be inverses. If f >>> f 0 = �!i ,then the arrow f 0 un-does the side-e�e
ts of the arrow f , leaving just a side-e�e
tfree 
omputation �!i . If i is 
hosen to be id , then we regain the usual (left-)inverse 
on
ept. The more general inverse 
on
ept will be used in the rest of the
hapter. The generalized inverse law for the produ
t operators is:(<��) :: (a; 
)! (b; d)! ((a; b); (
; d))(��>) :: (
; a)! (d; b)! ((
; d); (a; b))f >>> f 0 = �!i ) g >>> g0 = �!j ) (f <�� g) >>> (f 0 ��> g0) = ���!i ��� j (7.2)Perhaps a word on notation is appropriate here. We present the types of theprodu
t operators together with the inverse law, to stress that we are not dealingwith just a pair of inverse fun
tions, but rather with a triple 
ontaining twofun
tions and a proof that they are inverses. We take a 
urried view of fun
tionswith two arguments, that is, they have type a ! b ! 
 rather than (a; b) ! 
.Similarly, we prefer to write a proof term with two premises as P ) Q ) R,instead of the more traditional P ^Q ) R. Thus we stress that the 
omponentsof the triple share the same stru
ture: they take two arrows (two proofs) andreturn an arrow (a proof).Proof: We assume f >>> f 0 = �!i and g >>> g0 = �!j and 
al
ulate as follows:(f <�� g) >>> (f 0 ��> g0)= De�nitions of <�� and ��>se
ond g >>> �rst f >>> �rst f 0 >>> se
ond g 0= �rst is a fun
torse
ond g >>> �rst (f >>> f 0) >>> se
ond g 0= Assumption 1se
ond g >>> �rst �!i >>> se
ond g 0= �!i is side-e�e
t free�rst �!i >>> se
ond g >>> se
ond g 0= se
ond is a fun
tor
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ond (g >>> g 0)= Assumption 2�rst �!i >>> se
ond �!j= �rst , se
ond and (>>>) preserve �!��������������!(i ��� id) ; (id ��� j )= (���) is a bifun
tor���!i ��� j27.3.4 Fixed point indu
tion and arrowsSe
tion 7.4 proves an inverse law (7.4) for arrow maps. A similar law for normalmaps 
an be proved with the fusion law for 
atamorphisms. This fusion law isderived from the fa
t that datatypes are de�ned as initial fun
tor-algebras. A
atamorphism on arrows is de�ned in terms of the fun
tion Tr, but be
auseTr is not a fun
tor, we 
annot prove, let alone apply, a fusion law. In theproof of the law for arrow maps we will use instead the �xed point indu
tiontheorem from Se
tion 2.11.1. We 
an instantiate Theorem 2.15 to a form thatis more suitable for our purposes by letting n = 3 and the (in
lusive) relationP (x; y; z) = x >>> y = �!z . The instan
e takes the following form:(p0 >>> u0 = �!i0 ) f p 0 >>> g u 0 = �!h i 0)) �x f >>> �x g = ��!�x h (7.3)where we have left out the proposition ? >>> ? = �!? whi
h is true for the arrows
onsidered in this 
hapter.7.4 Arrow mapsIn Se
tion 7.2, separate and 
ombine were de�ned using the arrow maps pmapArand pmapAl. The arrow maps 
an be seen as simple data 
onversion programs,whi
h 
hange the 
ontents but leave the shape of the data un
hanged. Using thearrow 
ombinators from Se
tion 7.3 we 
an now de�ne the arrow maps, and provea generalization of (7.1): if u is the inverse of p, then a left traversal with u isthe inverse of a right traversal with p.pmapAr :: ArrowChoi
e (;) ) (a ; b)! (d a ; d b)pmapAl :: ArrowChoi
e (;) ) (a ; b)! (d a ; d b)p >>> u = �!i ) pmapArd p >>> pmapAld u = �����!pmapd i (7.4)
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 Trf :: (a ; 
)! (b ; d)! (f a b ; f 
 d)= �p r! 
ase f ofg + h �! Trg p r +++ Trh p rg � h �! Trg p r <�� Trh p rEmpty �! �!idPar �! pRe
 �! rd � g �! pmapArd (Trg p r)Const t �! �!idFigure 7.1: The de�nition of TrThe de�nitions of the arrow maps are obtained by a straightforward generaliza-tion of pmap to arrows.pmapArd p = ��!outd >>> Tr�d p (pmapArd p) >>> ��!inndpmapAld p = ��!outd >>> Tl�d p (pmapAld p) >>> ��!inndFun
tions Tr and Tl are the 
orresponding generalizations of fmap2. All fun
-tions used in the de�nition of fmap2 are lifted to the arrow level. For all 
asesex
ept the produ
t fun
tor 
ase there is only one 
hoi
e for a reasonable lifting,but when we lift the operator (���) we have two possible 
hoi
es: (<��) and (��>).This is the only di�eren
e between two two traversal fun
tions: the right to lefttraversal, Tr, uses (<��) and the left to right traversal, Tl, uses (��>). Fun
tionTr is de�ned in Figure 7.1 and fun
tion Tl is 
ompletely analogous and thereforeomitted. Fun
tions Tr and Tl satisfy the following inverse law:Trf :: (a ; 
)! (b ; d)! (f a b ; f 
 d)Tlf :: (
 ; a)! (d ; b)! (f 
 d ; f a b)p >>> u = �!i ) p0 >>> u0 = �!i0 ) Trf p p 0 >>> Tlf u u 0 = �������!fmap2f i i 0 (7.5)Note the 
lose 
orresponden
e between this law and the inverse law for theprodu
t operators (7.2).7.4.1 The arrow maps are inversesThe proof of Equation (7.4) 
an be interpreted either as fusing pmapAr p withpmapAl u to get a pure arrow �����!pmapd i or, equivalently, as splitting the fun
-tion pmapd i into a 
omposition of two arrow maps. We use indu
tion over thestru
ture of a regular datatype d a. As the grammars for datatypes and pattern
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tors are mutually re
ursive we get two indu
tion hypotheses. The datatypelevel hypothesis is, that Equation (7.4) holds for datatypes de�ned earlier, andthe pattern fun
tor level hypothesis is, that Equation (7.5) holds for the sub-fun
tors. We rewrite the de�nitions of pmapAr, pmapAl and pmap to expose thetop level �xed points:pmapAr p = �x (�p 0 ! �!out >>> Tr p p 0 >>> �!inn)pmapAl u = �x (�u 0 ! �!out >>> Tl u u 0 >>> �!inn)pmap i = �x (�i 0 ! out ; fmap2 i i 0 ; inn)We assume p >>> u = �!i and 
al
ulate as follows:pmapAr p >>> pmapAl u = ����!pmap i( De�nitions of pmapAr, pmapAl, �xed point law (7.3)p0 >>> u0 = �!i0 )�!out >>> Tr p p 0 >>> �!inn >>> �!out >>> Tl u u 0 >>> �!inn =��������������!out ; fmap2 i i 0 ; inn� �!f >>> �!g = �!f ; g , inn ; out = id, f >>> �!id = fp0 >>> u0 = �!i0 )�!out >>> Tr p p 0 >>> Tl u u 0 >>> �!inn = �!out >>> �������!fmap2 i i 0 >>> �!inn( Law (7.5) and the assumption: p >>> u = �!iTrueWe prove Law (7.5) by indu
tion over the stru
ture of the pattern fun
tor f .Be
ause there are seven 
onstru
tors for fun
tors, we have to verify seven 
ases.Although this is laborious, we want to show at least one 
omplete proof of astatement about polytypi
 fun
tions.The sum 
ase, g + h:Trg+h p p 0 >>> Tlg+h u u 0= De�nitions(Trg p p 0 +++ Trh p p 0) >>> (Tlg u u 0 +++ Tlh u u 0)= (+++) is a bifun
tor(Trg p p 0 >>> Tlg u u 0) +++ (Trh p p 0 >>> Tlh u u 0)= Indu
tion hypothesis 7.5 (twi
e)�������!fmap2g i i 0 +++ �������!fmap2h i i 0= �!f +++ �!g = ����!f �+� g, de�nition of fmap2g+h���������!fmap2g+h i i 0
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t 
ase, g � h:Trg�h p p 0 >>> Tlg�h u u 0= De�nitions(Trg p p 0 <�� Trh p p 0) >>> (Tlg u u 0 ��> Tlh u u 0)= Inverse law for produ
ts (7.2), indu
tion hypothesis (7.5) (twi
e)�������������������!fmap2g i i 0 ��� fmap2h i i 0= de�nition of fmap2g�h���������!fmap2g�h i i 0The empty 
ase, Empty:TrEmpty p p 0 >>> TlEmpty u u 0= De�nitions�!id >>> �!id= �!id is the unit of >>>�!id= De�nition of fmap2Empty����������!fmap2Empty i i 0The 
onstant 
ase Const t is proved in exa
tly the same way as the empty 
ase;the 
al
ulation is omitted.The parameter 
ase, Par :TrPar p p 0 >>> TlPar u u 0= De�nitionsp >>> u= Assumption�!i= De�nition of fmap2Par���������!fmap2Par i i 0The re
ursive 
ase, Re
, is proved in exa
tly the same way as the parameter 
ase;the 
al
ulation is omitted.The 
omposition 
ase, d � g:Trd�g p p 0 >>> Tld�g u u 0= De�nitions



7.5. PACKING 121pmapArd (Trg p p 0) >>> pmapAld (Tlg u u 0)= 8>>>>><>>>>>:The top level indu
tion hypothesis (7.4) isf >>> g = �!h ) pmapAr f >>> pmapAl g = ����!pmap hwhere we take f = Trg p p 0, g = Tlg u u 0 and h = fmap2 i i 0and indu
tion hypothesis (7.5) is pre
isely f >>> g = �!h .��������������!pmapd (fmap2g i i 0)= De�nition of fmap2d�g���������!fmap2d�g i i 0This 
on
ludes the proof.In the 
on
lusions we will spend some words on (how to simplify) proving state-ments about polytypi
 fun
tions.7.5 Pa
kingThis se
tion sket
hes the 
onstru
tion and 
orre
tness proof of a polytypi
 pa
kingprogram. The basi
 idea of the pa
king program is simple: given a datatype value(an abstra
t syntax tree), 
onstru
t a 
ompa
t (bit stream) representation of theabstra
t syntax tree. For example, the following rather arti�
ial binary tree,
alled treeShape in the introdu
tory se
tion,treeShape :: Tree ()treeShape = Bin (Bin (Leaf ()) (Bin (Leaf ()) (Leaf ()))) (Leaf ())
an be pretty-printed to a text representation of treeShape requiring 55 bytes.However, be
ause the datatype Tree a has only two 
onstru
tors, ea
h 
onstru
tor
an be represented by a single bit. Furthermore, the datatype () has only one
onstru
tor, so the single element (also written ()) 
an be represented by 0 bits.Thus we get the following representations:Bin1 (Bin1 (Leaf0 ()) (Bin1 (Leaf0 ()) (Leaf0 ()))) (Leaf0 ())The 
ompa
t representation 
onsists of 7 bits, so only 1 byte is needed to store thistree. In fa
t, the pretty-printed text of a value of type Tree () is asymptoti
ally64 times bigger than the 
ompa
t representation.3 Of 
ourse, this is an unusuallysimple datatype, but the average 
ase is still very 
ompa
t.3A value of type Tree () with n leaves has n � 1 internal nodes. A leaf is printed as theseven 
hara
ter string "Leaf ()" and a node as "Bin (", left subtree, ") (", right subtree, ")"| a total of nine 
hara
ters per node. Thus the pretty printed string representation of a tree
ontains exa
tly 7n+9(n�1) = 16n�9 bytes while the 
ompa
t representation with one bit per
onstru
tor 
ontains 2n�1 bits. The ratio is then 8(16n�9)=(2n�1) � 8(16n�8)=(2n�1) = 64.
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 pa
king fun
tion prepends the 
ompa
trepresentation of the value to a state, on whi
h it side e�e
ts. Let Text be thetype of pa
ked values, for example String or [Bit ℄. Then the pa
king fun
tion 
anbe implemented using the state arrow type 
onstru
tor SA Text, but we will keepthe arrow type abstra
t and only require that it supports pa
king of 
onstru
tors.To pa
k a value of type d a we need a fun
tion that 
an pa
k values of type a.We 
ould use separate and 
ombine to redu
e the pa
king problem to pa
king thestru
ture and the 
ontents separately, but instead we parametrize on the elementlevel (un)pa
king fun
tion. With Hinze style polytypism [35℄, this parametriza-tion 
omes for free.Our goal is to 
onstru
t two fun
tions and a proof:� A fun
tion ppa
k (`polytypi
 pa
king') that takes an element level pa
kerto a datatype level pa
ker.ppa
k :: (a ; ())! (d a ; ())For example, the fun
tion that pa
ks the tree treeShape :: Tree () is obtainedby instantiating the polytypi
 fun
tion ppa
k on Tree and applying theinstan
e to a (trivial) pa
king program for the type ().� A fun
tion punpa
k (`polytypi
 unpa
king') that takes an unpa
ker on theelement level a to an unpa
ker on the datatype level d a:punpa
k :: ((); a)! ((); d a)For the Tree example the element level parsing program is a fun
tion thatparses nothing, and returns (), the value of type ().� A proof that if p and u are inverses on the element level a, then ppa
k pand punpa
k u are inverses on the datatype level d a.Representing 
onstru
tors.To 
onstru
t the printer and the parser we need a little more stru
ture thanprovided by the Arrow 
lass { we need a way of handling 
onstru
tors. Be-
ause a 
onstru
tor 
an be 
oded by a single natural number, we 
an use a 
lassArrowPa
k to 
hara
terize arrows that have operations for printing and parsing
onstru
tor numbers:
lass ArrowChoi
e (;) ) ArrowPa
k (;) wherepa
kCon :: Nat ; ()unpa
kCon :: (); Nat-- Laws :pa
kCon >>> unpa
kCon = ��!idNat



7.5. PACKING 123With Text = [Nat ℄, the instan
es for SA Text are just put and get from Se
-tion 7.2, and the printing algorithm 
onstru
ted in the following se
tion will inits simplest form just output a list of numbers given an argument tree of anytype. A better solution is to 
ode these numbers as bits and here we have some
hoi
es on how to pro
eed. We 
ould de
ide on a �xed maximal size for numbersand store them using their binary representation but, as most datatypes havefew 
onstru
tors, this would waste spa
e. We will instead stati
ally determinethe number of 
onstru
tors in the datatype and 
ode every single number in onlyas many bits as needed. For an n-
onstru
tor datatype we use just d log2 ne bitsto 
ode a 
onstru
tor. An interesting e�e
t of this 
oding is that the 
onstru
torof any single 
onstru
tor datatype will be 
oded using 0 bits! We obtain betterresults if we use Hu�man 
oding with equal probabilities for the 
onstru
tors,resulting in a variable number of bits per 
onstru
tor. Even better results areobtained if we analyze the datatype, and give di�erent probabilities to the di�er-ent 
onstru
tors. However, our goal is not to squeeze the last bit out of our data,but rather to show how to 
onstru
t the polytypi
 program. Be
ause the numberof bits used per 
onstru
tor depends on the type of the value that is 
ompressed,pa
kCon and unpa
kCon need in general be polytypi
 fun
tions. Their de�nitionsare omitted, but 
an be found in the 
ode on the web page for this dissertation.In the rest of this se
tion (;) will always stand for an arrow type 
onstru
torin the 
lass ArrowPa
k but, as with Regular , we often omit the type 
ontext forbrevity.7.5.1 The 
onstru
tion of the pa
king fun
tionWe 
onstru
t a printing fun
tion ppa
k, whi
h promotes an element level pa
ker toa datatype level pa
ker, together with a parsing fun
tion punpa
k, whi
h similarlypromotes an unpa
ker to the datatype level. If the element level arguments areinverses, then we want punpa
k to be the inverse of ppa
k:ppa
k :: (a ; ())! (d a ; ())punpa
k :: ((); a)! ((); d a)p >>> u = �!i ) ppa
k p >>> punpa
k u = ����!pmap i (7.6)In the following proofs we will assume that the argument pa
ker p and theunpa
ker u satisfy p >>> u = �!i .Overview of the 
onstru
tion.Again, the 
onstru
tion 
an be interpreted as fusing the `printer' ppa
k withthe `parser' punpa
k to get a pure arrow ����!pmap i . As we are de�ning polytypi




124 CHAPTER 7. DATA CONVERSIONfun
tions the 
onstru
tion follows the stru
ture of regular datatypes: a regulardatatype is a �xed point of a pattern fun
tor, the pattern fun
tor is a sum ofprodu
ts of type terms, and the terms 
an involve type parameters, other types,et
.The arrow ppa
k p prints a 
ompa
t representation of a value of type d a. Itdoes this by re
ursing over the value, printing ea
h 
onstru
tor by 
omputingits 
onstru
tor number, and ea
h element by using the argument printer p. The
onstru
tor number is 
omputed by means of fun
tion Ps (`Pa
k Sum'), whi
halso takes 
are of passing on the re
ursion to the 
hildren. An arrow pa
kConprints the 
onstru
tor number with the 
orre
t number of bits. Finally, fun
tionPp (`Pa
k Produ
t') makes sure the information is 
orre
tly threaded throughthe 
hildren.Top level re
ursion.We want fun
tion ppa
k to be `on-line' or lazy: it should output 
ompa
tly printeddata immediately, and given part of the 
ompa
tly printed data, punpa
k shouldre
onstru
t part of the input value. Thus fun
tions ppa
k and punpa
k 
an alsobe used to pa
k in�nite streams, for example. Fun
tion ppa
k 
annot be de�nedwith a standard re
ursion operator su
h as the 
atamorphism be
ause the sidee�e
ting arrows would be threaded in the wrong order. Instead of a re
ursionoperator we use expli
it re
ursion on the top level, guided by Pt (`Pa
k Top-level') and Ut (`Unpa
k Top-level').As ppa
k de
omposes its input value, and 
ompa
tly prints the 
onstru
tor andthe 
hildren by means of a fun
tion Pt (de�ned later), punpa
k must do theopposite: �rst parse the 
omponents using Ut and then 
onstru
t the top levelvalue: ppa
k p = Pt p (ppa
k p) <<< �!outpunpa
k u = Ut u (punpa
k u) >>> �!innHere (<<< ) is used to reveal the symmetry of the de�nitions. Thus we needtwo new fun
tions, Pt and Ut , and we 
an already guess that we will need a
orresponding fusion law:Pt :: (a ; ())! (b ; ())! (f a b ; ())Ut :: ((); a)! ((); b)! ((); f a b)p >>> u = �!i ) p0 >>> u0 = �!i0 ) Pt p p 0 >>> Ut u u 0 = �������!fmap2 i i 0 (7.7)Given (7.7) we 
an now prove (7.6).



7.5. PACKING 125p >>> u = �!i ) ppa
k p >>> punpa
k u = ����!pmap i( De�nitions of ppa
k, punpa
k, pmap, �xed point law (7.3)p >>> u = �!i ) p0 >>> u0 = �!i0 )�!out >>> Pt p p 0 >>> Ut u u 0 >>> �!inn = ��������������!out ; fmap2 i i 0 ; inn( Equation (7.7), simpli�
ationTruePa
king 
onstru
tors.We want to 
onstru
t fun
tions Pt and Ut su
h that (7.7) holds. Furthermore,these fun
tions should do the a
tual pa
king and unpa
king of the 
onstru
torsusing pa
kCon :: Nat ; () and unpa
kCon :: () ; Nat from the ArrowPa
k
lass: Pt p p 0 = pa
kCon <<< Ps p p 0Ut u u 0 = unpa
kCon >>> Us u u 0The arrow Ps p p 0 pa
ks a value (using the argument pa
kers p and p 0 for theparameters and the re
ursive stru
tures, respe
tively) and returns the number ofthe top level 
onstru
tor, by determining the position of the 
onstru
tor in thepattern fun
tor (a sum of produ
ts). The arrow pa
kCon prepends the 
onstru
-tor number to the output. As pa
kCon >>> unpa
kCon = �!id by assumption,the requirement that fun
tion Pt 
an be fused with Ut is now passed on to Psand Us (`Unpa
k Sum'):Ps :: (a ; ())! (b ; ())! (f a b ; Nat)Us :: ((); a)! ((); b)! (Nat ; f a b)p >>> u = �!i ) p0 >>> u0 = �!i0 ) Ps p p 0 >>> Us u u 0 = �������!fmap2 i i 0 (7.8)The arrow unpa
kCon reads the 
onstru
tor number and passes it on to the arrowUs u u 0, whi
h sele
ts the desired 
onstru
tor and uses its argument parsers uand u 0 to �ll in the parameter and re
ursive 
omponent slots in the fun
tor value.Cal
ulating 
onstru
tor numbers.The pattern fun
tor of a Haskell datatype with n 
onstru
tors is an n-ary sum(of produ
ts) on the outermost level. In PolyP this sum is represented by anested binary sum, whi
h asso
iates to the right. Consequently, we de�ne Ps byindu
tion over the nested sum part of the pattern fun
tor and defer the handlingof the produ
t part to Pp (`Pa
k Produ
t'). (The de�nitions of innNat and outNatare in Figure 7.2.)



126 CHAPTER 7. DATA CONVERSIONdata Nat = Z j S NatinnNat :: Either () Nat ! NatinnNat = (
onst Z ) r SoutNat :: Nat ! Either () NatoutNat (Z) = Left ()outNat (S n) = Right nFigure 7.2: The de�nitions of innNat and outNat as Haskell 
ode.polytypi
 Psf :: (a; ())! (b; ())! (f a b ; Nat)= �p p 0 ! 
ase f ofg + h �! ���!innNat <<< (Pp p p 0 +++ Ps p p 0)g �! �����!�()! 0 <<< Pp p p 0polytypi
 Usf :: ((); a)! ((); b)! (Nat ; f a b)= �u u 0 ! 
ase f ofg + h �! ���!outNat >>> (Up u u 0 +++ Us u u 0)g �! �����!�0! () >>> Up u u 0The types for Pp and Up (`Unpa
k Produ
t') and the 
orresponding fusion laware unsurprising:Pp :: (a ; ())! (b ; ())! (f a b ; ())Up :: ((); a)! ((); b)! ((); f a b)p >>> u = �!i ) p0 >>> u0 = �!i0 ) Pp p p 0 >>> Up u u 0 = �������!fmap2 i i 0 (7.9)We prove Equation (7.8) by indu
tion over the nested sum stru
ture of thefun
tor. The indu
tion hypothesis is that (7.8) holds for Psh .The sum 
ase, g + h:Psg+h p p 0 >>> Usg+h u u 0= De�nitions(Ppg p p 0 +++ Psh p p 0) >>> ���!innNat >>>���!outNat >>> (Upg u u 0 +++ Ush u u 0)= innNat ; outNat = id(Ppg p p 0 +++ Psh p p 0) >>> (Upg u u 0 +++ Ush u u 0)= (+++) is a bifun
tor
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 Ppf :: (a; ())! (b; ())! (f a b ; ())= �p p 0 ! 
ase f ofg � h �! ���������!�((); ())! () <<< (Ppg p p 0 <�� Pph p p 0)Empty �! �!idPar �! pRe
 �! p 0d � g �! ppa
kd (Ppg p p 0)polytypi
 Upf :: ((); a)! ((); b)! ((); f a b)= �u u 0 ! 
ase f ofg � h �! ���������!�()! ((); ()) >>> (Upg u u 0 ��> Uph u u 0)Empty �! �!idPar �! uRe
 �! u 0d � g �! punpa
kd (Upg u u 0)Figure 7.3: The de�nition of Pp (`Pa
k Produ
t') and Up (`Unpa
k Produ
t').(Ppg p p 0 >>> Upg u u 0) +++ (Psh p p 0 >>> Ush u u 0)= Equation (7.9) and the indu
tion hypothesis�������!fmap2g i i 0 +++ �������!fmap2h i i 0= �!� preserves (+++), de�nition of fmap2g+h���������!fmap2g+h i i 0The base 
ase, g:Ppg p p 0 >>> �����!�()! 0 >>> �����!�0! () >>> Upg u u 0= (�()! 0) ; (�0! ()) = id()Ppg p p 0 >>> Upg u u 0= Equation (7.9)�������!fmap2g i i 0Sequen
ing the parameters.The last part of the 
onstru
tion of the program 
onsists of the two fun
tions Ppand Up de�ned in Figure 7.3. The earlier fun
tions have 
al
ulated and printedthe 
onstru
tors, so what is left is \arrow plumbing". The arrowPp p p 0 traverses
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ture of the data and inserts the 
orre
t 
ompa
t printers: p atargument positions and p 0 at substru
ture positions. The only di�eren
e betweenUp and Pp is, as with pmapAr and pmapAl earlier, the traversal dire
tion in theprodu
t 
ase; visible in the use of (<��) and (��>) respe
tively. The inverse proofis very similar to that for Tr and Tl, and is omitted.7.6 Pretty printingModern programming languages allow the user to de�ne new kinds of data.When testing or debugging a program, the user often wants to see values ofthese new datatypes. Many languages support the automati
 derivation of print-ing fun
tions for user-de�ned datatypes. For example, in Haskell one 
an writederiving (Show ;Read) after a datatype de�nition, and obtain the fun
tion show(whi
h prints values of the datatype) and read (whi
h reads them ba
k) for free.Thus a Haskell programmer 
an use (instan
es of) a few prede�ned polytypi
fun
tions, but she has no in
uen
e over their de�nitions nor any means of de�n-ing her own polytypi
 fun
tions.This se
tion shows how one 
an de�ne polytypi
 versions of the fun
tions showand read . The polytypi
 fun
tions pshow and pread are ea
h others inverses by
onstru
tion.7.6.1 More arrow 
lassesThis subse
tion introdu
es a 
lass ArrowReadShow that provides the arrow opera-tions that are used in pretty printing and parsing. The new operations are dividedinto four 
lasses: ArrowZero, ArrowPlus, ArrowSymbol and ArrowPre
. The two�rst 
lasses are used for error handling and are present already in Hughes' arrowpaper [42℄, but the last two 
lasses are new. The operations of ArrowSymbol areused to print and parse symbol, and the operations of ArrowPre
 handle operatorpre
eden
es.Arrows that 
an failUp to now the data 
onversion programs did not have to handle failure. Theunpa
king algorithm would of 
ourse bene�t from error handling to allow forbad input data, but no error handling or ba
ktra
king is essential for expressingthe algorithm. But to parse a text representation of data values we really needto 
hoose between di�erent parsers (for di�erent 
onstru
tors) and hen
e some



7.6. PRETTY PRINTING 129parser must be able to fail. Therefore we de�ne the 
lass ArrowZero for arrowsthat 
an fail:
lass Arrow (;) ) ArrowZero (;) wherezeroA :: a; b-- Laws :�!f >>> zeroA = zeroA = zeroA >>> �!fThe arrow zeroA is the multipli
ative zero for 
omposition with (at least) purearrows and, as we will see later, the additive zero of a plus operator for arrows.Error handlingThe operator (<+>) in the 
lass ArrowPlus builds a parser that uses a se
ondarrow if the �rst one fails. The operator (<j>) is a kind of dual to the 
hoi
eoperator (jjj) :: (a ; 
) ! (b ; 
) ! (Either a b ; 
) from ArrowChoi
e.The 
hoi
e operator makes a 
hoi
e depending on the input, while the operator(<j>) makes a 
hoi
e depending on some hidden state and delivers the result inthe 
orresponding summand in the output.
lass ArrowZero (;) ) ArrowPlus (;) where(<j>) :: (a; b)! (a; 
)! (a; Either b 
)(<+>) :: (a; b)! (a; b)! (a; b)-- Defaults :f <j> g = (f >>> ��!Left) <+> (g >>> ���!Right)f <+> g = (f <j> g) >>> ����!id r id-- Laws :zeroA <+> f = f = f <+> zeroAf <j> zeroA = f >>> ��!LeftzeroA <j> f = f >>> ���!Rightf >>> (g <j> h) = (f >>> g) <j> (f >>> h)The default de�nitions show that only one of (<j>) or (<+>) need be de�ned |the relation between the ArrowPlus operators is the same as that between theArrowChoi
e operators. The arrow zeroA is the zero of the plus operator (<+>).Reading and writing symbolsAlmost all arrow 
lasses thus far have been very general and useful for a widevariety of appli
ations, but for pretty printing and parsing we need a few more
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i�
 tools. To print and parse symbols (
onstru
tor names, parentheses andspa
es) we use the 
lass ArrowSymbol :
lass Arrow (;) ) ArrowSymbol (;) wherereadSym :: Symbol ! (a; a)showSym :: Symbol ! (a; a)-- Laws :showSym s >>> readSym s = �!idshowSym s >>> readSym s 0 = zeroA ( s 6= s0type Symbol = StringThe two laws 
apture the minimal requirements needed to prove that pshow andpread are inverses: reading a symbol is the inverse of writing the same symbolbut trying to read another symbol ba
k will fail. As examples we give one arrowfor printing and one for parsing parenthesized expressions:parenthesize; deparenthesize :: ArrowSymbol (;)) (a; b)! (a; b)parenthesize f = showSym "(" <<< f <<< showSym ")"deparenthesize f = readSym "(" >>> f >>> readSym ")"Pre
eden
e levelsFinally, we de�ne the 
lass ArrowPre
 to handle pre
eden
e levels and parenthe-ses. Our formulation is inspired by the fun
tions showsPre
 and readsPre
 in theHaskell 
lasses Show and Read .showsPre
 :: Show a ) Int ! a ! String ! StringreadsPre
 :: Show b ) Int ! String ! [(b; String)℄The integer argument passed to showsPre
 and readsPre
 is the pre
eden
e levelof the surrounding expression. It is used to determine whether or not the elementof type a should be surrounded by parentheses. As the PolyP system does nothandle in�x 
onstru
tors, the pre
eden
e levels of Haskell 
an be 
ollapsed totwo levels: one for atomi
 expressions like unary 
onstru
tors (that never needparentheses) and one for 
omplex expressions (that need parentheses when usedas subexpressions).Fun
tion showParen (readParen) is used to en
lose its printer (parser) argumentwith parentheses when used in a subexpression. When p0 = showParen b p,the printer p 0 en
loses p with parentheses if and only if b is True and p 0 isused as a subexpression. The printer (parser) likeParen p tells p to behave as a



7.6. PRETTY PRINTING 131subexpression (for example by 
hanging a pre
eden
e level hidden in the arrowtype).
lass ArrowSymbol (;) ) ArrowPre
 (;) wherelikeParen :: (a; b)! (a; b)readParen :: Bool ! (a; b)! (a; b)showParen :: Bool ! (a; b)! (a; b)-- Laws :x >>> y = �!z ) likeParen x >>> likeParen y = �!zx >>> y = �!z ) showParen b (showSym n <<< x ) >>>readParen b (readSym n >>> y) = �!zn 6= n0 ) showParen b (showSym n <<< x ) >>>readParen b 0 (readSym n 0 >>> y) = zeroARead and showThe fun
tions pshow and pread use operations from ArrowChoi
e and from allof the four 
lasses just de�ned, and to 
apture this su

in
tly in the types, wede�ne the 
lass synonym ArrowReadShow :
lass (ArrowChoi
e (;);ArrowPlus (;);ArrowPre
 (;))) ArrowReadShow (;)For the rest of this se
tion, all o

urren
es of (;) will denote an arrow in the
lass ArrowReadShow .7.6.2 De�nition of pshow and preadThe de�nition is divided into four levels, following the stru
ture of datatypede�nitions: the top level (pshow and pread) is a re
ursive de�nition, the se
ondlevel (Ss and Rs) breaks down the sum stru
ture of the fun
tor, the third level(Sp and Rp) analyzes the produ
t stru
ture and �nally the forth level (Sr andRr) deals with parameters and uses of other datatypes.The top level 
al
ulates the list of 
onstru
tors of the datatype and passes themdown to the next level. The se
ond level shows (reads) the 
onstru
tor name andhandles parentheses (depending on the pre
eden
e of the expression and arityof the 
onstru
tor). The third level inserts spa
es between the arguments ofthe 
onstru
tors and marks the arguments as being subexpressions (potentiallyneeding parentheses). Finally the bottom level just applies the appropriate show(read) fun
tions passed down as parameters or 
alls pshow (pread) for o

urren
esof other datatypes.
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 show fun
tion pshow and a polytypi
 read fun
tionpread and we will prove that pread is the inverse of pshow:pshow :: (a; ())! (d a ; ())pread :: ((); a)! ((); d a)s >>> r = �!i ) pshow s >>> pread r = ����!pmap i (7.10)
Top level re
ursionWe use the built-in polytypi
 de�nition 
onstru
torsd to a

ess the representationsof the 
onstru
tors of the datatype d a.
onstru
torsd :: [Constru
tor ℄A value of the abstra
t type Constru
tor 
an be though of as a pair of the
onstru
tors name and its arity. In the following proofs we use two properties ofthe 
onstru
tor list: the list has at least one element (there are no 0-
onstru
tordatatypes in Haskell) and all the 
onstru
tor names are distin
t.Fun
tion pshow uses out to expose the top level stru
ture of the datatype valueand handles the re
ursion by passing itself as an argument to Ss (`Show Sum',de�ned later). Similarly, pread 
alls Rs (`Read Sum') and 
onverts the result toa datatype value using inn.pshowd s = Ss�d 
onstru
torsd s (pshowd s) <<< ��!outdpreadd r = Rs�d 
onstru
torsd r (preadd r) >>> ��!inndThe two helper fun
tions Ss and Rs have their own inverse law:Ssf :: [Constru
tor ℄! (a; ())! (b; ())! (f a b ; ())Rsf :: [Constru
tor ℄! ((); a)! ((); b)! ((); f a b)s >>> r = �!i ) s0 >>> r0 = �!i0 ) Ssf 
s s s 0 >>> Rsf 
s r r 0 = �������!fmap2f i i 0 (7.11)We assume s >>> r = �!i , let 
s be the list of 
onstru
tors and 
al
ulate as followsfor Equation (7.10):pshow s >>> pread r = ����!pmap i( Fixed point indu
tion (7.3)s0 >>> r0 = �!i0 )�!out >>> Ssf 
s s s 0 >>> Rsf 
s r r 0 >>> �!inn = ���������������!out ; fmap2f i i 0 ; inn( Simpli�
ation



7.6. PRETTY PRINTING 133s0 >>> r0 = �!i0 ) Ssf 
s s s 0 >>> Rsf 
s r r 0 = �������!fmap2f i i 0( Law (7.11)TruePrinting 
onstru
torsOn the top level, every pattern fun
tor is a right asso
iative sum, and this ismirrored in the de�nitions of Ss and Rs as well as in the 
orresponding part ofthe proof. The abstra
t type Constru
tor has sele
tors for the name and thearity of the 
onstru
tor.name :: Constru
tor ! Stringarity :: Constru
tor ! IntWe use arity to 
he
k for nullary 
onstru
tors, whi
h are atomi
 and don't needparentheses.polytypi
 Ssf :: [Constru
tor ℄! (a; ())! (b; ())! (f a b ; ())= �(
 : 
s) s s0 ! 
ase f ofg + h �! Ssg [
℄ s s 0 jjj Ssh 
s s s 0g �! showParen (arity 
 > 0 )(showSym (name 
) <<< Spg s s 0)polytypi
 Rs :: [Constru
tor ℄! ((); a)! ((); b)! ((); f a b)= �(
 : 
s) r r0 ! 
ase f ofg + h �! Rsg [
℄ r r 0 <j> Rsh 
s r r 0g �! readParen (arity 
 > 0 )(readSym (name 
) >>> Rpg r r 0)where fun
tions Sp (for `Show Produ
t') and Rp (for `Read Produ
t') have thefollowing properties:Spf :: (a; ())! (b; ())! (f a b ; ())Rpf :: ((); a)! ((); b)! ((); f a b)s >>> r = �!i ) s0 >>> r0 = �!i0 ) Spf s s 0 >>> Rpf r r 0 = �������!fmap2f i i 0 (7.12)We prove (7.11) by indu
tion over the nested sum part of the pattern fun
tor.We strengthen the indu
tion hypothesis to in
lude also the following law. For allb, x and y, and for all 
0 62 
s0:Rsf 
s 0 r r 0 <<< showParen b (showSym (name 
 0) <<< x ) = zeroA (7.13)Ssf 
s 0 s s 0 >>> readParen b (showSym (name 
 0) >>> y) = zeroA (7.14)We assume s >>> r = �!i and s0 >>> r0 = �!i0 and 
al
ulate as follows for Equa-tion (7.11):
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ase, g + h:We prove the three equations separately, starting with (7.11):Ssg+h (
 : 
s) s s 0 >>> Rsg+h (
 : 
s) r r 0= De�nitions(Ssg [
℄ s s 0 jjj Ssh 
s s s 0) >>> (Rsg [
℄ r r 0 <j> Rsh 
s r r 0)= Distribution laws for (jjj) and (<j>)((Ssg [
℄ s s 0 >>> Rsg [
℄ r r 0) <j> (Ssg [
℄ s s 0 >>> Rsh 
s r r 0)) jjj((Ssh 
s s s 0 >>> Rsg [
℄ r r 0) <j> (Ssh 
s s s 0 >>> Rsh 
s r r 0))The �rst term is identi
al to the term in the default-
ase below. Use indu
tionhypothesis (7.13) and (7.14) for the se
ond and third terms, and indu
tionhypothesis (7.11) for the fourth term.(�������!fmap2g i i 0 <j> zeroA) jjj (zeroA <j> �������!fmap2h i i 0)= Laws for zeroA and (<j>)(�������!fmap2g i i 0 >>> ��!Left) jjj (�������!fmap2h i i 0 >>> ���!Right)= Relation between (jjj) and (+++)�������!fmap2g i i 0 +++ �������!fmap2h i i 0= (+++) preserves �!��������������������!fmap2g i i 0 �+� fmap2h i i 0= De�nition of fmap2g+h���������!fmap2g+h i i 0Now we turn to (7.13):showParen b (showSym (name 
 0) <<< x ) >>> Rsg+h 
s 0 r r 0= De�nition of Rsg+h , let (
 : 
s) = 
s 0showParen b (showSym (name 
 0) <<< x ) >>>(Rsg [
℄ r r 0 <j> Rsh 
s r r 0)= Distribution law for (<j>)(showParen b (showSym (name 
 0) <<< x ) >>> Rsg [
℄ r r 0) <j>(showParen b (showSym (name 
 0) <<< x ) >>> Rsh 
s r r 0)= The se
ond law of showParen and the indu
tion hypothesiszeroA <j> zeroA= Laws for (<j>) and zeroAzeroA



7.6. PRETTY PRINTING 135The proof of (7.14) is very similar and omitted.The default 
ase, g:As the 
onstru
tor list has the same number of elements as the number of sub-fun
tors in the sum stru
ture of the fun
tor, there will be only one elementleft in the 
onstru
tor list in the base 
ase. Thus we 
an mat
h on [
℄ insteadof (
 : 
s).Ssg [
℄ s s 0 >>> Rsg [
℄ r r 0= De�nitionsshowParen (arity 
 > 0 ) (showSym (name 
) <<< Spg s s 0) >>>readParen (arity 
 > 0 ) (readSym (name 
) >>> Rpg r r 0)= 8><>:With b = arity 
 > 0, n = name 
, x = Spg s s 0 andy = Rpg r r 0 we 
an apply the �rst law for showParenas x >>> y = �������!fmap2g i i 0 is exa
tly (7.12).�������!fmap2g i i 0Both (7.13) and (7.14) follow immediately from the se
ond law of showParen.Printing 
onstru
tor argumentsThe fun
tion Sp (Rp) inserts (reads) a spa
e before ea
h argument of a 
onstru
-tor, and marks ea
h argument as a subexpression (potentially needing en
losingparentheses).polytypi
 Spf :: (a; ())! (b; ())! (f a b ; ())= �s s 0 ! 
ase f ofg � h �! ���������!�((); ())! () <<< (Spg s s 0 <�� Sph s s 0)Empty �! �����!�()! ()g �! showSym " " <<< likeParen (Srg s s 0)polytypi
 Rpf :: ((); a)! ((); b)! ((); f a b)= �r r 0 ! 
ase f ofg � h �! ���������!�()! ((); ()) >>> (Rpg r r 0 ��> Rph r r 0)Empty �! �����!�()! ()g �! readSym " " >>> likeParen (Rrg r r 0)where fun
tions Sr (for `Show Rest') and Rr (for `Read Rest') have the followingproperties:Srf :: (a; ())! (b; ())! (f a b ; ())Rrf :: ((); a)! ((); b)! ((); f a b)s >>> r = �!i ) s0 >>> r0 = �!i0 ) Srf s s 0 >>> Rrf r r 0 = �������!fmap2f i i 0 (7.15)
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tion over the produ
t stru
ture of the fun
tor f :The produ
t 
ase, g � h:Spg�h s s 0 >>> Rpg�h r r 0= De�nitions(Spg s s 0 <�� Sph s s 0) >>> ���������!�((); ())! () >>>���������!�()! ((); ()) >>> (Rpg r r 0 ��> Rph r r 0)= (�((); ())! ()) ; (�()! ((); ())) = id(();())(Spg s s 0 <�� Sph s s 0) >>> (Rpg r r 0 ��> Rph r r 0)= Inverse law for (<��), indu
tion hypothesis (twi
e)�������������������!fmap2g i i 0 ��� fmap2h i i 0= De�nition of fmap2g�h���������!fmap2g�h i i 0The empty 
ase, Empty:Trivial.The base 
ase, g:Spg s s 0 >>> Rpg r r 0= De�nitionslikeParen (Srg s s 0) >>> showSym " " >>>readSym " " >>> likeParen (Rrg r r 0)= Law for showSym and readSymlikeParen (Srg s s 0) >>> likeParen (Rrg r r 0)= Law for likeParen and Equation (7.15)�������!fmap2g i i 0Printing the restAt the bottom level all that is left is to apply the 
orre
t printer (parser): Parand Re
 sele
t from the parameters and d�g 
alls the top level pshow (pread)re
ursively.polytypi
 Srf :: (a; ())! (b; ())! (f a b ; ())= �s s 0 ! 
ase f ofPar �! sRe
 �! s 0d � g �! pshowd (Srg s s 0)
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 Rr :: ((); a)! ((); b)! ((); f a b)= �r r 0 ! 
ase f ofPar �! rRe
 �! r 0d � g �! preadd (Rrg r r 0)The only remaining proof obligation is (7.15) and the proof is on
e again byindu
tion on the stru
ture of the fun
tor | the Par and Re
 
ases follow imme-diately from the assumptions, and the d � g 
ase from the top level indu
tionhypothesis (7.10) and the lo
al indu
tion hypothesis (7.15). This 
ompletes theproof that pread is the inverse of pshow.7.7 Generating arrow instan
esMost of the 
ode presented in this 
hapter is generi
 in two ways. We use poly-typism to parametrize our de�nitions by a regular datatype, and we use Haskell's
onstru
tor 
lasses to parametrize by the 
hoi
e of 
on
rete arrow implementa-tion. Using PolyP, we obtain spe
i�
 instan
es of the polytypi
 fun
tions auto-mati
ally, but we do have to write instan
es for the arrow 
lasses. This se
tiondes
ribes a few general arrow 
onstru
tors and shows how to 
ombine them toobtain an example instan
e for ArrowReadShow that satis�es the ne
essary laws.We have already presented three arrow instan
es: the trivial fun
tion arrow a !b, the Kleisli arrows Kleisli m a b for every monad m and the state arrow a;sb for any state type s. The state arrow 
an be generalized to a state arrowtransformer that adds state passing to any other arrow:newtype StateArrT s (;) a b = SAT ((a; s); (b; s))With this de�nition the simple state arrow SA s is equivalent to adding statepassing to the trivial arrow: StateArrT s (!). The state arrow transformerinstan
es for Arrow , ArrowChoi
e, ArrowZero and ArrowPlus are in Figure 7.4.The Kleisli arrows were de�ned in Se
tion 7.3 together with instan
es for Arrowand ArrowChoi
e. If the underlying monad has a zero and a plus operation (isan instan
e of the Haskell 
lass MonadPlus), then we 
an de�ne instan
es forArrowZero and ArrowPlus as well:newtype Kleisli m a b = Kleisli (a ! m b)instan
e MonadPlus m ) ArrowZero (Kleisli m) wherezeroA = Kleisli (
onst mzero)instan
e MonadPlus m ) ArrowPlus (Kleisli m) whereKleisli f <+> Kleisli g = Kleisli (�x ! mplus (f x ) (g x ))
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e Arrow (;)) Arrow (StateArrT s (;)) where�!f = SAT (���!�rst f )SAT f >>> SAT g = SAT (f >>> g)�rst (SAT f ) = SAT (����!swap23 >>> �rst f >>> ����!swap23 )swap23 :: ((a; b); s)! ((a; s); b)swap23 = �((a; b); s)! ((a; s); b)instan
e ArrowChoi
e (;)) ArrowChoi
e (StateArrT s (;)) whereSAT f jjj SAT g = SAT (������!eitherout >>> (f jjj g))eitherout :: (Either a a 0; s)! Either (a; s) (a 0; s)eitherout (x ; s) = (pairs �+� pairs) x where pairs a = (a; s)instan
e ArrowZero (;)) ArrowZero (StateArrT s (;)) wherezeroA = SAT zeroAinstan
e ArrowPlus (;)) ArrowPlus (StateArrT s (;)) whereSAT f <+> SAT g = SAT (f <+> g)Figure 7.4: Instan
e de
larations for the state arrow transformer.All the arrow 
onstru
tors de�ned so far were de�ned also in Hughes' arrowpaper [42℄, but the following 
onstru
tion is new. The monad arrow 
onstru
torMonadArrT wraps a monad around the arrow type:4newtype MonadArrT m (;) a b = MAT (m (a ; b))For every monad we 
an lift an arrow to an arrow, but to support 
hoi
e, failureand error handling we need to restri
t the monad to, essentially, a reader monad.The reader arrow transformer ReaderArrT is a spe
ial 
ase of the monad arrowtransformer:type ReaderArrT r = MonadArrT (r !)The transformer ReaderArrT r adds an environment of type r to any arrow. This
an also be simulated with StateArrT but when no update is needed, ReaderArrTis more eÆ
ient and also simpli�es the proofs. We use the shorthand notationa r; b for ReaderArrT r (;) a b. (Note the di�eren
e between the notationa ;s b for the state arrow and a r; b for the reader arrow.) The instan
es forMonadArrT and ReaderArrT are in Figure 7.7.4The monad arrow 
onstru
tor is a spe
ial 
ase of an even more general stati
 arrow 
on-stru
tor (Paterson [88℄) that wraps any 
artesian fun
tor around the arrow type.
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instan
e (Monad m;Arrow (;))) Arrow (MonadArrT m (;)) where�!f = MAT (liftM0 �!f )MAT f >>> MAT g = MAT (liftM2 (>>>) f g)�rst (MAT f ) = MAT (liftM �rst f )instan
e ArrowChoi
e (;)) ArrowChoi
e (ReaderArrT r (;)) whereMAT f jjj MAT g = MAT (liftM2 (jjj) f g)instan
e ArrowZero (;)) ArrowZero (ReaderArrT r (;)) wherezeroA = MAT (liftM0 zeroA)instan
e ArrowPlus (;)) ArrowPlus (ReaderArrT r (;)) whereMAT f <j> MAT g = MAT (liftM2 (<j>) f g)MAT f <+> MAT g = MAT (liftM2 (<+>) f g)liftM0 :: Monad m ) a! m aliftM0 f = return fliftM :: Monad m ) (a ! b)! (m a ! m b)liftM f m = m >>= �x! return (f x )liftM2 :: Monad m ) (a! b! 
)! (m a ! m b ! m 
)liftM2 f m n = m >>= �x! n >>= �y! return (f x y)Figure 7.5: Instan
e de
larations for MonadArrT and ReaderArrT .



140 CHAPTER 7. DATA CONVERSIONTwo useful operations on ReaderArrT arrows are getEnv and setEnv :getEnv :: Arrow (;)) a r; rgetEnv = MAT (�x ! ����!
onst x )setEnv :: r ! (a r; b)! (a s; b)setEnv x (MAT f ) = MAT (
onst (f x ))The arrow getEnv ignores its input and returns the value of the environment.The arrow setEnv x f transforms f by shielding it from the outside environmentso that all getEnvs from f give x .7.7.1 An instan
e for ArrowReadShowWe 
an 
ombine the three general arrow 
onstru
tors to obtain an arrow RS that
an be made an instan
e of ArrowReadShow :type RS = ReaderArrT Int (StateArrT Tokens (Kleisli ([ ℄)))type Tokens = [String ℄The transformer ReaderArrT Int adds an environment 
ontaining an integer tohandle the pre
eden
e level, the transformer StateArrT Tokens adds a state 
on-taining a token list and the inner arrow Kleisli ([ ℄) handles the list of alternativeparses. By unfolding the de�nitions of the arrow 
onstru
tors we getRS a b �= Int ! (a;Tokens)! [(b;Tokens)℄ :This 
an be 
ompared with the types for showsPre
 and readsPre
 from theHaskell prelude.showsPre
 :: Show a ) Int ! a ! String ! StringreadsPre
 :: Show b ) Int ! String ! [(b; String)℄These types use String where RS uses Tokens, but are otherwise very similar toRS a () and RS () b, respe
tively.The arrow RS is by 
onstru
tion an instan
e of Arrow , ArrowChoi
e, ArrowZeroand ArrowPlus. Hen
e to make RS an instan
e of ArrowReadShow all we needis instan
es for ArrowSymbol and ArrowPre
. Fun
tion readSym is the standarditem parser and showSym is even simpler (both ignore the pre
eden
e). The fun
-tions likeParen, showParen and readParen use the pre
eden
e level environmentto determine when to read or write parentheses (using readSym and showSym).Example instantiations of ArrowSymbol and ArrowPre
 for the arrow RS are inFigure 7.6, where high is the pre
eden
e level of expressions that need parenthe-ses. The proofs that the instan
es satisfy the laws of the 
lasses are long butrelatively simple.
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e ArrowSymbol RS whereshowSym s = MAT (return (SAT (se
ond ��!(s :))))readSym s = MAT (return (SAT (se
ond (Kleisli (readToken s)))))readToken t (s : ss) j s == t = return ssreadToken t = mzeroinstan
e ArrowPre
 RS wherelikeParen = setEnv highshowParen b f = ifHighPre
 b (parenthesize f ) freadParen b f = ifHighPre
 b (deparenthesize f ) fifHighPre
 :: ArrowChoi
e (;)) Bool ! (a Int; b)! (a Int; b)! (a Int; b)ifHighPre
 b = ifA (getEnv >>> ��������������!�p! b ^ p == high)Figure 7.6: Instan
es for ArrowSymbol and ArroParen.7.8 Results and 
on
lusionsOverview of the resultsWe have de�ned the following pairs of data 
onversion programs and related themwith inverse laws:� Shape plus 
ontent: (Se
tion 7.2)separate :: d a ;[a℄ d ()
ombine :: d ();[a℄ d aseparate >>> 
ombine = �!id� Arrow maps: (Se
tion 7.4)pmapAr :: ArrowChoi
e (;) ) (a ; b)! (d a ; d b)pmapAl :: ArrowChoi
e (;) ) (a ; b)! (d a ; d b)f >>> g = �!i ) pmapAr f >>> pmapAl g = ����!pmap i� Pa
king: (Se
tion 7.5)ppa
k :: ArrowPa
k (;) ) (a ; ())! (d a ; ())punpa
k :: ArrowPa
k (;) ) ((); a)! ((); d a)p >>> u = �!i ) ppa
k p >>> punpa
k u = ����!pmap i



142 CHAPTER 7. DATA CONVERSION� Pretty printing: (Se
tion 7.6)pshow :: ArrowReadShow (;) ) (a; ())! (d a ; ())pread :: ArrowReadShow (;) ) ((); a)! ((); d a)s >>> r = �!i ) pshow s >>> pread r = ����!pmap iWe 
an 
ombine the last two appli
ations to obtain 
ompression and de
ompres-sion. The 
omposition of the polytypi
 read fun
tion pread with the pa
kingfun
tion ppa
k gives a stru
tured 
ompression algorithm p
ompress that takes aplain text representation of a datatype value to a bit stream. The 
orrespondingde
ompression algorithm pde
ompress is a 
omposition of the unpa
king fun
tionpunpa
k and the polytypi
 show fun
tion pshow. Fun
tion pde
ompress is theinverse of p
ompress for all strings that represent a value. This fa
t follows fromthe inverse laws for pretty printing and pa
king.Con
lusionsWe have 
onstru
ted polytypi
 programs for several data 
onversion problems.As far as we are aware, these are the �rst implemented generi
 des
riptions ofprograms for data 
onversion problems. Re
ent work by Hinze [33℄ also 
ontainsa polytypi
 show fun
tion and a simple pa
king fun
tion, but his language stillla
ks an implementation.For ea
h of the data 
onversion problems 
onsidered in this 
hapter we 
onstru
ta pair of fun
tions. These pairs of fun
tions are inverse fun
tions by 
onstru
-tion. Sin
e we started applying the inverse fun
tion requirement rigorously inthe 
onstru
tion of the programs, the size and the 
omplexity of the 
ode havebeen redu
ed 
onsiderably. Compare for example Bj�ork's [13℄ and Huisman's [43℄de�nitions, with the polytypi
 read and show fun
tions de�ned in this 
hapter.We �rmly believe that su
h a rigorous approa
h is the only way to obtain elegantsolutions to involved polytypi
 problems. Another 
on
ept that simpli�ed the
onstru
tion and form of the program is arrows. In our �rst attempts to poly-typi
 programs for pa
king and unpa
king we used monads instead of arrows.Although it is possible to 
onstru
t the (un)pa
king fun
tions with monads (seeHalenbeek [31℄), the inverse fun
tion 
onstru
tion, and hen
e the 
orre
tnessproof, is simpler with arrows.We have shown how to 
onstru
t programs for several data 
onversion problems.We expe
t that our programs and proofs will be very useful in the 
onstru
tionof programs for other data 
onversion problems.Although all our data 
onversion programs are linear, both time and spa
e ef-�
ien
y of our programs leave mu
h to be desired. We expe
t that suÆ
iently
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ated forms of partial evaluation will improve the performan
e of our pro-grams 
onsiderably. We want to experiment with partial evaluation of polytypi
fun
tions in the future.We have presented a few 
al
ulations of polytypi
 programs. We think that
al
ulating with polytypi
 fun
tions is still rather 
umbersome, and we hope toobtain more theory, in the style of Meertens [76℄ and Hinze [36℄, to simplify
al
ulations with polytypi
 programs. If we take Hinze's approa
h to polytypi
programming [35℄, then we only have 4 
onstru
tors for pattern fun
tors insteadof 7, and this should redu
e the length of the proofs. In 
ollaboration with Hinze,we are 
urrently working on an implementation of his approa
h as a su

essor toPolyP.



144 CHAPTER 7. DATA CONVERSION



Chapter 8
Related work
In this 
hapter we des
ribe work related to fun
tional polytypi
 programming. Webrie
y des
ribe a number of subje
t areas whi
h have in
uen
ed the developmentof polytypism and give many referen
es to further reading.
8.1 BMF �= SquiggolPolytypism has its roots in the bran
h of 
onstru
tive algorithmi
s that wasnamed the Bird-Meertens Formalism (BMF) [10, 74℄ by Ba
khouse [3℄. BMFis not really a well de�ned formalism, but rather a 
olle
tion of de�nitions,transformations and laws for 
al
ulating with programs. In the \Theory ofLists" [10, 11, 60℄ many laws for 
al
ulating with programs are proved and usedto derive eÆ
ient algorithms from 
learly 
orre
t (but often hopelessly ineÆ-
ient) spe
i�
ations. Polytypi
 fun
tions are widely used in the Squiggol 
ommu-nity [4,7,24,72,75{77,79℄, where the list based 
al
ulus is generalized and extendedto datatypes that 
an be de�ned by means of a regular fun
tor. Polytypi
 versionsof many list fun
tions are de�ned: 
ata, map, zip, sum et
. and together withthe fun
tions, also the theorems and the transformation te
hniques developed inthe theory of lists are generalized. Ba
khouse et al. [4℄ argues 
onvin
ingly thatthe basis of the theory of polytypism is best des
ribed in a relational setting.Bird, de Moor and Hoogendijk [7℄ use this setting to generalize the theory of seg-ments of lists to all datatypes. The 
onne
tion between polytypi
 programmingand dependent types (in the 
ontext of Martin-L�of type theory [83℄) has beeninvestigated by Ba
khouse [5℄, Pfeifer and Rue� [91℄ and Dybjer [18, 19℄.145



146 CHAPTER 8. RELATED WORK8.2 Theories of datatypesA polytypi
 value is a family of values indexed by (the stru
ture of) datatypes.Thus the 
hoi
e of formalism to represent datatypes is of 
entral importan
e forpolytypi
 programming. The Squiggol 
ommunity takes the 
ategori
al view ofmodeling datatypes as initial fun
tor-algebras. This is a relatively old idea, onwhi
h a large amount of literature exists, see, amongst others, Lehmann andSmyth [69℄, Manes and Arbib [73℄, and Hagino [30℄. B�ohm and Berardu

i [14℄have a more algebrai
 approa
h to modeling datatypes. They de�ne a data system(a group of mutually re
ursive datatypes) to be a �nite parametri
 heterogeneousterm algebra. This is one of the few referen
es where mutually re
ursive data-types with multiple parameters are des
ribed in detail. Hoogendijk, de Moor andBa
khouse [37{39℄ argue that a datatype (or, more spe
i�
ally, a 
ontainer type)is a relator with a membership relation.8.3 Beyond regular datatypesPolytypi
 fun
tions are traditionally de�ned for regular datatypes. Regular data-types are initial �xed points of regular fun
tors or, in the relational setting, regularrelators [4℄.Jay [56,57℄ has developed an alternative theory for polytypi
 fun
tions, in whi
hvalues are represented by their stru
ture and their 
ontents. He uses a 
ategorytheoreti
 formulation of polytypism based on the notion of strong fun
tor [80℄.The 
lass of datatypes on whi
h polytypi
 fun
tions 
an be de�ned 
an be ex-tended (with some e�ort) to in
lude datatypes with fun
tion spa
es. Freyd [26℄provides the 
ategory theoreti
 ba
kground for this extension. The problem withthe extension is that if a datatype parameter o

urs in a negative position (tothe left of an odd number of fun
tion arrows) in a datatype de�nition, thenthe re
ursive de�nition of the 
atamorphism uses its own (right) inverse. Mei-jer and Hutton [78℄ apply Freyd's theory to the de�nition of 
atamorphisms fordatatypes with embedded fun
tions. They solve the problem of negative param-eters by simultaneously de�ning both the 
atamorphism and its right inverse (ananamorphism). Fegaras and Sheard [21℄ point out that this solution is too re-stri
tive: there are fun
tions that 
an be de�ned as 
atamorphisms even thoughthey la
k a right inverse. They give an alternative de�nition of the 
atamorphismusing an approximate inverse and give a type system that reje
ts the 
ases whenthis approximation would not be safe.Re
ent results extend polytypi
 programming to work on non-regular, so 
allednested datatypes [8℄. Bird and Paterson [9℄ suggest generalized folds and Hinze [34℄shows how one 
an de�ne most other polytypi
 fun
tions so that they work also



8.4. SPECIFIC POLYTYPIC FUNCTIONS 147on nested datatypes.Fokkinga extends the theory of datatypes to in
lude \Datatype Laws withoutSignatures" [22℄ enabling abstra
t datatypes like sta
ks to be de�ned in a 
ategorytheoreti
 setting. To extend polytypi
 programming in this dire
tion would bean interesting subje
t for future work.8.4 Spe
i�
 polytypi
 fun
tionsGenerating instan
es for spe
i�
 polytypi
 fun
tions, su
h as (==), map, 
ataet
. for a given type, is rather simple and has been demonstrated by severalauthors [14, 45, 46, 55, 75, 82, 96, 98℄. Catamorphisms were generated by B�ohmand Berardu

i [14℄ (in the �-
al
ulus) and Sheard [98℄ (in an ML-like language).Sheard also gave programs to automati
ally generate other kinds of traversalfun
tions like a

umulations and equality fun
tions.The paramorphism, a more general re
ursion operator than the 
atamorphism,was introdu
ed by Meertens [75℄. (The re
ursion pattern 
aptured by the para-morphism in essentially the same as the pattern in the elimination rule for adatatype in 
onstru
tive type theory.) Many other re
ursion operators are de-�ned by de Moor and Fokkinga [24,82℄. A 
atamorphism 
an also be generalizedto a monadi
 
atamorphism [25,79℄ that threads a monad through the stru
ture.The use of anamorphisms is advo
ated in \The Under-Appre
iated Unfold" byGibbons and Jones [29℄ and monadi
 anamorphisms are de�ned by Pardo [87℄.Polytypi
 fun
tions for spe
i�
 programming problems, su
h as the maximumsegment sum problem and the pattern mat
hing problem were �rst given byBird et al. [7℄ and Jeuring [61℄. (The �rst published use of the term polytypi
fun
tion was by Jeuring [61℄.) Many other algorithms have also been expressedpolytypi
ally: uni�
ation [51℄, pattern mat
hing [61℄, data 
ompression [46, 53℄,parsing and pretty printing [53℄, rewriting [52,54,62℄, geneti
 programming [100℄,downwards a

umulations [28℄, et
.All these polytypi
 fun
tions are parametrized on one datatype. There is, how-ever, no theoreti
al problem with de�ning multiply parametrized polytypi
 fun
-tions. One example is the doubly parametri
 fun
tion transpose (also 
alled zip)de�ned by Ruehr [94℄ and Hoogendijk and Ba
khouse [38℄. In PolyP it 
ouldhave the type:transpose :: (Regular d ;Regular e) ) d (e a)! e (d a)It is a generalization of the transpose operation on matri
es.If the inner datatype e in the type for transpose is repla
ed by a monad m, thena polytypi
 (and monadi
) traversal [47, 79, 81℄ fun
tion is obtained. Traversals
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an be used for a wide range of problems | examples are the data 
onversionprograms in Chapter 7. Traversals are also widely used in \imperative polytypi
programming" | the topi
 of the Se
tion 8.8. As an example, the Visitor designpattern [27℄ is a traversal.8.5 Type systemsType systems for languages whi
h allow the use of polytypi
 fun
tions have beendeveloped by several people:� Ruehr [94℄ gives a full higher-order type pattern language. The higher-order aspe
ts of the type system makes the language a bit impra
ti
al buthe also presents a trade-o� design for a more manageable language withtype inferen
e.� Jones' type system [64,66℄ is based on quali�ed types and higher-order poly-morphism. The type system is implemented in the Haskell system Hugs.Haskell has no 
onstru
tion for writing polytypi
 fun
tions by indu
tion onuser de�ned datatypes but 
an be used to simulate and type 
he
k polytypi
fun
tions using 
onstru
tor 
lasses.� Sheard and Nelson [97℄ gives a type system for a restri
ted version of Com-pile time Re
exive ML. CRML is a two-level language and a polytypi
program is obtained by embedding se
ond level type de
larations as valuesin �rst level 
omputations. The restri
tion is that re
ursion in the �rst level(that is exe
uted at 
ompile time) must be expressed using 
atamorphismsonly, to guarantee termination. The type system uses dependent types anda spe
ial type 
onstru
tion for the types of 
atamorphisms.� Harper and Morrisett [32℄ present a type system for a language with \inten-sional polymorphism". A dependently typed type
ase 
onstru
t for expli
itmat
hing on prede�ned types is used to de�ne generi
 fun
tions that workfor di�erent types. The type
ase 
annot, however, be used to mat
h on thestru
ture of user de�ned datatypes.� Our type system (des
ribed in Chapter 4 and in Jansson and Jeuring [46℄)extends Jones' system [64, 66℄ with the possibility to introdu
e and type
he
k polytypi
 fun
tions de�ned by indu
tion on the stru
ture of userde�ned datatypes.� Jay et al. [55,58℄ des
ribe a type system for \Fun
torial ML", an intermedi-ate language with some prede�ned polytypi
 fun
tions in
luding map and
ata (they 
all it fold). The language 
an deal with multiple parameterdatatypes, but not mutual re
ursive datatypes.



8.6. IMPLEMENTATIONS 149� Hinze [35, 36℄ presents another approa
h to polytypi
 programming witha type system for type indexed values. In this setting polytypi
 fun
tions
an be de�ned not only for regular datatypes, but for a mu
h wider 
lass,in
luding nested datatypes, mutually re
ursive datatypes and higher-orderdatatypes.8.6 ImplementationsIn this dissertation we have argued that a polytypi
 programming system should� type 
he
k polytypi
 
ode,� allow de�nitions of new polytypi
 fun
tions, and� generate instan
es of these polytypi
 fun
tions for regular datatypes.In the language Charity [16℄ polytypi
 fun
tions like the 
atamorphism and mapare automati
ally provided for ea
h user-de�ned datatype. But it is not possibleto de�ne new polytypi
 fun
tions in Charity . The fun
tional language P2 [55℄does not satisfy the se
ond requirement, but a few generations later, Jay's ongoingwork with the language FISh [59℄ supports all three requirements. Hinze [35℄presents a promising approa
h to polytypi
 programming and proposes to add thisas a generi
 programming extension for Haskell [33℄, but it is not yet implemented.Our system PolyP, des
ribed in Chapter 4 satis�es these requirements and weknow of only one other su
h system: that of Sheard [96℄ using a restri
ted 
ompiletime re
e
tive setting. The reason we are not using Sheard's system is that ituses a two level language built on ML (Compile-time Re
exive ML [40℄) extendedwith a type system using some dependent types. We did not want to move thatfar away from the Haskell (type) system. Using the expli
it type parameters ofCayenne [1℄ (a language 
ombining the programming power of Haskell with thespe
i�
ation power of Martin-L�of's type theory [83℄) we 
ould perhaps obtain apolytypi
 extension with less overhead than the 
urrent Haskell based system.We are planning for a su

essor of PolyP: Generi
 Haskell [33℄ in whi
h we 
ombinethe experien
es from the PolyP system with Hinze's new ideas (extensions tohandle multiple type arguments, mutually re
ursive datatypes) .8.7 Polytypi
 transformations and proofsMal
olm [72℄ and Fokkinga [22{24℄ develop 
ategori
al te
hniques for 
al
ulatingand transforming programs. The most well know polytypi
 transformation is the
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ribed by Mal
olm [71, 72℄. (Mal
olm 
alls it the promotiontheorem following Bird's terminology for lists [10℄.) The fusion law (for appli-
ations, see Chapter 3) gives the 
onditions under whi
h the 
omposition of afun
tion with a 
atamorphism 
an be fused to a single 
atamorphism. Takanoand Meijer [99℄ use another polytypi
 law, the a
id-rain theorem, to apply de-forestation [103℄ transformations and Hu [41℄ uses a number of polytypi
 lawsto eliminate multiple traversals of data by 
ombining fun
tions that re
urse overthe same stru
ture. The 
al
ulational fusion system HYLO [85℄ 
an be used to
al
ulated with programs expressed in terms of hylomorphisms (a generalized
ombination of 
atamorphisms, maps and anamorphisms).Both the fusion law and the a
id-rain theorem are examples of free theorems [101℄.A free theorem 
an be derived automati
ally from the polymorphi
 type of afun
tion. For example, the fusion law is the free theorem of fun
tion 
ata. Fegarasand Sheard [21, Appendix A.1℄ (in more detail: [20℄) give a fun
tion that given atype 
onstru
ts its free theorem.More examples of polytypi
 
al
ulation of programs 
an be found in Jeuring [61℄,Meertens [76℄, in the textbook `Algebra of Programming' by Bird and de Moor [12℄and, of 
ourse, in this dissertation.Hutton and Gibbons present the generi
 approximation lemma [44℄ | a beautifulresult that 
an be used to prove generi
 properties of fun
tions that work onpossibly in�nite data. Hinze [36℄ presents a powerful proof rule for his kind ofpolytypi
 fun
tions and uses this rule to prove that the polytypi
 map fun
tionis a fun
tor.8.8 Imperative Polytypi
 ProgrammingIn the imperative world polytypi
 programming appears under the broader 
on-
ept \design patterns" [27℄, and more spe
i�
ally as \adaptive obje
t-orientedprogramming" [70, 86℄. Adaptive OOP addresses some of the same issues aspolytypi
 programming and, although the asso
iated programming style is verydi�erent from fun
tional polytypi
 programming, the resulting programs havevery similar behavior. In adaptive OOP a method (
orresponding to a polytypi
fun
tions) is atta
hed to a group of 
lasses (
orresponding to a datatype) thatusually satis�es 
ertain 
onstraints (su
h as being regular).Lieberherr et al. [70℄ des
ribes a system that allows the programmer to writetemplate programs 
ontaining a number of methods with asso
iated `propagationpatterns'. The template programs are parametrized on (the stru
ture of) a groupof related 
lasses and the system automati
ally instantiates these templates fordi�erent 
lass dependen
y graphs. Ea
h method in the template program has asignature (the type of the method), a pattern (that spe
i�es the set of paths in
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lass dependen
y graph on whi
h the method should be used) and a 
odepart (to be exe
uted for all mat
hing paths).Advan
ed uses of the C++ Standard Template Library (STL) [92℄ 
an also be
onsidered polytypi
 programming, but as C++ la
ks re
ursive types the style isvery di�erent from the style of fun
tional polytypi
 programming in this disser-tation. Mu
h of the work with STL is programming against a \generi
" interfa
e(for example iterators) to obtain reusable 
ode. The 
losest mat
h in this disser-tation is the Term interfa
e used in Chapter 6, but many things that STL addsto C++ (for example, parametri
 polymorphism) are already present in Haskellwithout the polytypi
 extensions.
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Appendix AAn implementation of PolyLib
This appendix presents the implementation of the polytypi
 fun
tion libraryPolyLib (Chapter 5) as PolyP 
ode. All fun
tions from Chapter 5 are imple-mented and also a few variants and extensions. Ea
h se
tion is presented as aHaskell style module, but the 
urrent version of PolyP ignores the information inthe module head. Ea
h module is a literate s
ript 
ontaining the sour
e 
ode andsome typesetting information. The LATEX sour
e used to typeset this appendixwas automati
ally generated by Ralf Hinze's lhs2tex program.A.1 Stru
tured re
ursion operatorsmodule Base (pmap; fmap2; 
ata; ana; hylo; para; ( ��� ); ( �+� )) wherepmap :: Regular d ) (a ! b)! d a ! d bpmap f = inn Æ fmap2 f (pmap f ) Æ outpolytypi
 fmap2 :: (a ! 
)! (b ! d)! f a b ! f 
 d= �p r ! 
ase f ofg + h ! (fmap2 p r) �+� (fmap2 p r)g � h ! (fmap2 p r) ��� (fmap2 p r)Empty ! id :: ()! ()Par ! pRe
 ! rd�g ! pmap (fmap2 p r)Const t ! id
ata :: Regular d ) (�d a b ! b)! (d a ! b)
ata i = i Æ fmap2 id (
ata i) Æ out165
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ana :: Regular d ) (b ! �d a b)! (b ! d a)ana o = inn Æ fmap2 id (ana o) Æ ohylo :: Bifun
tor f ) (f a b ! b)! (
 ! f a 
)! 
 ! bhylo i o = i Æ fmap2 id (hylo i o) Æ opara :: Regular d ) (d a ! �d a b ! b)! d a ! bpara i x = i x (fmap2 id (para i) (out x ))Non-polytypi
 help fun
tions( ��� ) :: (a ! 
)! (b ! d)! ((a; b)! (
; d))( �+� ) :: (a ! 
)! (b ! d)! (Either a b ! Either 
 d)f ��� g = �(x ; y)! (f x ; g y)f �+� g = Left Æ f r Right Æ gA.2 Crushmodule Crush (
rush; f
rush) whereimport Base (
ata; pmap)
rush :: Regular d ) (a ! a ! a)! a ! d a ! a
rush op e = 
ata (f
rush op e)polytypi
 f
rush :: (a ! a ! a)! a ! f a a ! a= �op e ! 
ase f ofg + h ! f
rush op e r f
rush op eg � h ! �(x ; y)! op (f
rush op e x )(f
rush op e y)Empty ! �x ! ePar ! idRe
 ! idd�g ! 
rush op e Æ pmap (f
rush op e)Const t ! �x ! e
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 re
ursion operatorsmodule BaseM (pmapM ; fmap2M; 
ataM ; anaM ; hyloM ; paraM ;innM ; outM ; idM ; (��)) whereimport Base (( ��� ))pmapM :: (Regular d ;Monad m) ) (a ! m b)! d a ! m (d b)pmapM fM = liftM inn Æ fmap2M fM (pmapM fM ) Æ outpolytypi
 fmap2M :: Monad m ) (a ! m 
)! (b ! m d)!f a b ! m (f 
 d)= �p r ! 
ase f ofg + h ! summapM (fmap2M p r) (fmap2M p r)g � h ! prodmapM (fmap2M p r) (fmap2M p r)Empty ! returnPar ! pRe
 ! rd�g ! pmapM (fmap2M p r)Const t ! returnsummapM :: Monad m ) (a ! m 
)! (d ! m e)!Either a d ! m (Either 
 e)summapM f g = (liftM Left Æ f ) r (liftM Right Æ g)prodmapM :: Monad m ) (a ! m 
)! (d ! m e)! (a; d)! m (
; e)prodmapM f g p = f (fst p)>>= �x ! g (snd p)>>= �y ! return (x ; y)prodmapMr f g p = g (snd p)>>= �y ! f (fst p)>>= �x ! return (x ; y)
ataM :: (Regular d ;Monad m) ) (�d a b ! m b)! (d a ! m b)
ataM iM = iM �� fmap2M idM (
ataM iM ) Æ outanaM :: (Regular d ;Monad m) ) (b ! m �d a b)! (b ! m (d a))anaM oM = liftM inn Æ fmap2M idM (anaM oM ) �� oMhyloM :: (Bifun
tor f ;Monad m) ) (f a b ! m b)! (
 ! m (f a 
))!
 ! m bhyloM iM oM = iM �� fmap2M idM (hyloM iM oM ) �� oMparaM :: (Regular d ;Monad m) ) (d a ! �d a b ! m b)! d a ! m bparaM iM x = iM x =<< fmap2M idM (paraM iM ) (out x )



168 APPENDIX A. AN IMPLEMENTATION OF POLYLIBNew names for symmetry:idM :: Monad m ) a ! m aidM = returninnM :: (Regular d ;Monad m) ) �d a (d a)! m (d a)innM = idM Æ innoutM :: (Regular d ;Monad m) ) d a ! m �d a (d a)outM = idM Æ outA synonym.pmapMl :: (Regular d ;Monad m) ) (a ! m b)! d a ! m (d b)pmapMl = pmapMReverse order traversalspmapMr :: (Regular d ;Monad m) ) (a ! m b)! d a ! m (d b)pmapMr fM = liftM inn Æ fmap2Mr fM (pmapMr fM ) Æ outpolytypi
 fmap2Mr :: Monad m)(a ! m 
)! (b ! m d)! f a b ! m (f 
 d)= �p r ! 
ase f ofg + h ! summapM (fmap2Mr p r) (fmap2Mr p r)g � h ! prodmapMr (fmap2Mr p r) (fmap2Mr p r)Empty ! returnPar ! pRe
 ! rd�g ! pmapMr (fmap2Mr p r)Const t ! return
ataMr :: (Regular d ;Monad m) ) (�d a b ! m b)! (d a ! m b)
ataMr iM = iM �� fmap2Mr idM (
ataMr iM ) Æ outanaMr :: (Regular d ;Monad m) ) (b ! m �d a b)! (b ! m (d a))anaMr oM = liftM inn Æ fmap2Mr idM (anaMr oM ) �� oMhyloMr :: (Bifun
tor f ;Monad m) ) (f a b ! m b)! (
 ! m (f a 
))!
 ! m bhyloMr iM oM = iM �� fmap2Mr idM (hyloMr iM oM ) �� oM



A.4. THREAD 169Traversal either way: pmapM 0 (True ! left to right, False ! right to left)pmapM 0 :: (Regular d ;Monad m) ) Bool ! (a ! m b)! d a ! m (d b)pmapM 0 ord fM = liftM inn Æ fmap2M 0 ord fM (pmapM 0 ord fM ) Æ out
polytypi
 fmap2M 0 :: Monad m ) Bool ! (a ! m 
)! (b ! m d)!f a b ! m (f 
 d)= �ord p r ! 
ase f ofg + h ! summapM (fmap2M 0 ord p r) (fmap2M 0 ord p r)g � h ! opM ord Æ (fmap2M 0 ord p r ��� fmap2M 0 ord p r)Empty ! returnPar ! pRe
 ! rd�g ! pmapM 0 ord (fmap2M 0 ord p r)Const t ! return
opM :: Monad m ) Bool ! (m a;m b)! m (a; b)opM b p = 
ase b ofTrue ! fst p >>= �x ! snd p >>= �y ! return (x ; y)False ! snd p >>= �y ! fst p >>= �x ! return (x ; y)Monad operations (that are not in PolyP's prelude)liftM :: Monad m ) (a ! b)! m a ! m bliftM f mx = mx >>= �x ! return (f x )(��) :: Monad m ) (b ! m 
)! (a ! m b)! (a ! m 
)f �� g = �y ! g y >>= fA.4 Threadmodule Thread (thread ; pmapM ; fthread ; fmap2M) whereimport Base (
ata; inn; pmap)import BaseM (pmapM ; fmap2M; (��))



170 APPENDIX A. AN IMPLEMENTATION OF POLYLIBthread :: (Regular d ;Monad m) ) d (m a)! m (d a)thread = 
ata (liftM inn Æ fthread)polytypi
 fthread :: Monad m ) f (m a) (m b)! m (f a b)= 
ase f ofg + h ! sumthread Æ (fthread �+� fthread)g � h ! prodthread Æ (fthread ��� fthread)Empty ! returnPar ! idRe
 ! idd�g ! thread Æ (pmap fthread)Const t ! returnsumthread :: Monad m ) Either (m a) (m b)! m (Either a b)sumthread = liftM Left r liftM Rightprodthread :: Monad m ) (m a;m b)! m (a; b)prodthread (mx ;my) = mx >>= �x ! my >>= �y ! return (x ; y)Monad operations (that are not in PolyP's prelude)liftM :: Monad m ) (a ! b)! m a ! m bliftM f mx = mx >>= �x ! return (f x )Alternative de�nitions of pmapM and fmap2M :pmapM :: (Regular d ;Monad m) ) (a ! m b)! d a ! m (d b)pmapM f = thread Æ pmap ffmap2M :: (Bifun
tor f ;Monad m) ) (a ! m 
)! (b ! m d)!f a b ! m (f 
 d)fmap2M f g = fthread Æ fmap2 f gA.5 ThreadFunsmodule ThreadFuns (propagate; 
ross) whereimport Thread (thread)
ross :: Regular d ) d [a ℄! [d a ℄
ross = threadpropagate :: Regular d ) d (Maybe a)! Maybe (d a)propagate = thread



A.6. PROPAGATE 171A.6 Propagatemodule Propagate (propagate; fprop; sumprop; prodprop;mapM ) whereimport Base (
ata; inn; pmap)propagate :: Regular d ) d (Maybe a)! Maybe (d a)propagate = 
ata (mapM inn Æ fprop)polytypi
 fprop :: f (Maybe a) (Maybe b)! Maybe (f a b)= 
ase f ofg + h ! sumprop Æ (fprop �+� fprop)g � h ! prodprop Æ (fprop ��� fprop)Empty ! JustPar ! idRe
 ! idd�g ! propagate Æ (pmap fprop)Const t ! Justsumprop :: Either (Maybe a) (Maybe b)! Maybe (Either a b)sumprop = mapM Left r mapM Rightprodprop :: (Maybe a;Maybe b) ! Maybe (a; b)prodprop p = 
ase p of(Just x ; Just y) ! Just (x ; y)! NothingMaybe fun
tionsmapM :: (a ! b)! Maybe a ! Maybe bmapM f = maybe Nothing (Just Æ f )A.7 Zipmodule Zip (pzip; fzip; pzipWith; pzipWith 0; fzipWith; fzipWith) whereimport Base (pmap; fmap2; ( �+� ); ( ��� ))import Propagate (fprop; sumprop; prodprop; propagate;mapM )



172 APPENDIX A. AN IMPLEMENTATION OF POLYLIBIn this module Maybe 
ould be repla
ed by any Monad using fail "err" forzeroM .punzip :: Regular d ) d (a; b)! (d a; d b)punzip x = (pmap fst x ; pmap snd x )funzip :: Bifun
tor f ) f (a; 
) (b; d)! (f a b; f 
 d)funzip x = (fmap2 fst fst x ; fmap2 snd snd x )pzip :: Regular d ) (d a; d b)! Maybe (d (a; b))pzip = (innM �� (fprop Æ fmap2 returnM pzip) �� fzip) Æ (out ��� out)pzipWith 0 :: Regular d ) (�d 
 e ! e)!((d a; d b)! e)!((a; b)! 
)! (d a; d b)! epzipWith 0 ins fail op (x ; y) =maybe (fail (x ; y)) (ins Æ fmap2 op (pzipWith 0 ins fail op))(fzip (out x ; out y))A possible variant:pzipWith 0 ins fail op (x ; y) =maybe (fail (x ; y)) ins (fzipWith op (pzipWith 0 ins fail op) (out x ; out y))pzipWith :: Regular d ) ((a; b)! Maybe 
)! (d a; d b)! Maybe (d 
)pzipWith = pzipWith 0 (mapM inn Æ fprop) (
onst zeroM )Note: the parameters to fzipWith do not have the the same types as the argumentsto pzipWith.fzipWith :: ((a; a 0)! 
)! ((b; b 0)! d)! (f a b; f a 0 b 0)! Maybe (f 
 d)fzipWith f g = mapM (fmap2 f g) Æ fzippolytypi
 fzip :: (f a b; f 
 d)! Maybe (f (a; 
) (b; d))= 
ase f ofg + h ! (sumprop Æ (fzip �+� fzip)) �� sumzipg � h ! (prodprop Æ (fzip ��� fzip)) �� prodzipEmpty ! 
onst (returnM ())Par ! returnMRe
 ! returnMd�g ! (propagate Æ (pmap fzip)) �� pzipConst t ! 
onstzip
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sumzip :: (Either a b;Either 
 d) ! Maybe (Either (a; 
) (b; d))sumzip p = 
ase p of(Left s;Left t) ! returnM (Left (s; t))(Right s;Right t) ! returnM (Right (s; t))! zeroMprodzip :: ((a; b); (
; d))! Maybe ((a; 
); (b; d))prodzip ((a; b); (
; d)) = returnM ((a; 
); (b; d))Using this de�nition of 
onstzip in the Const t 
ase, formally requires an Eq t
onstraint, whi
h is inexpressible in PolyP (in this position). However the imple-mentation of PolyP allows this for 
onvenien
e, even though it is not really typesafe.
onstzip :: Eq t ) (t ; t)! Maybe t
onstzip (x ; y) = if x == y then returnM x else zeroMThe intended (and implemented) meaning is fairly 
lear: one bran
h Const T !
onstzip in the polytypi
 
ase for ea
h type T that is an instan
e of Eq .Maybe-monad fun
tionsreturnM :: a ! Maybe areturnM x = Just xbindM :: Maybe a ! (a ! Maybe b)! Maybe bbindM x f = maybe Nothing f x(��) :: (a ! Maybe b)! (
 ! Maybe a)! 
 ! Maybe bg �� f = �a ! f a `bindM ` gzeroM :: Maybe azeroM = NothinginnM :: Regular d ) �d a (d a)! Maybe (d a)innM = returnM Æ inn



174 APPENDIX A. AN IMPLEMENTATION OF POLYLIBA.8 Equalmodule Equal (pequal ; fequal ; peq) wherepeq :: (Regular d ;Eq a) ) d a ! d a ! Boolpeq = pequal (==)pequal :: Regular d ) (a ! b ! Bool)! d a ! d b ! Boolpequal eq x y = fequal eq (pequal eq) (out x ) (out y)polytypi
 fequal :: (a ! b ! Bool)! (
 ! d ! Bool)!f a 
 ! f b d ! Bool= �p r ! 
ase f ofg + h ! sumequal (fequal p r) (fequal p r)g � h ! prodequal (fequal p r) (fequal p r)Empty ! � ! TruePar ! pRe
 ! rd�g ! pequal (fequal p r)Const t ! (==)sumequal :: (a ! b ! Bool)! (
 ! d ! Bool)!Either a 
 ! Either b d ! Boolsumequal f g a b = 
ase (a; b) of(Left x ;Left v) ! f x v(Right y ;Right w) ! g y w! Falseprodequal :: (a ! b ! Bool)! (
 ! d ! Bool)! (a; 
)! (b; d)! Boolprodequal f g p q = f (fst p) (fst q) ^ g (snd p) (snd q)A slightly less lazy variant:prodequal f g (x ; y) (v ;w) = f x v ^ g y w



A.9. COMPARE 175A.9 Comparemodule Compare (p
ompare 0; p
ompare; f
ompare) wherep
ompare 0 :: (Regular d ;Ord a) ) d a ! d a ! Orderingp
ompare 0 = p
ompare 
omparep
ompare :: Regular d ) (a ! a ! Ordering)! d a ! d a ! Orderingp
ompare eq x y = f
ompare eq (p
ompare eq) (out x ) (out y)polytypi
 f
ompare :: (a ! a ! Ordering)! (b ! b ! Ordering)!f a b ! f a b ! Ordering= �p r ! 
ase f ofg + h ! sum
ompare (f
ompare p r) (f
ompare p r)g � h ! prod
ompare (f
ompare p r) (f
ompare p r)Empty ! � ! EQPar ! pRe
 ! rd�g ! p
ompare (f
ompare p r)Const t ! 
omparesum
ompare :: (a ! a ! Ordering)! (b ! b ! Ordering)!Either a b ! Either a b ! Orderingsum
ompare f g a b = 
ase (a; b) of(Left x ;Left v) ! f x v(Right y ;Right w) ! g y w(Left ;Right ) ! LT(Right ;Left ) ! GTprod
ompare :: (a ! a ! Ordering)! (b ! b ! Ordering)!(a; b)! (a; b)! Orderingprod
ompare f g p q = f (fst p) (fst q) `ordop` g (snd p) (snd q)ordop :: Ordering ! Ordering ! Orderingordop x y = 
ase x ofEQ ! y! x



176 APPENDIX A. AN IMPLEMENTATION OF POLYLIBA.10 Flattenmodule Flatten (
atten;�atten;
 par ;
 re
;
 all ; singleton; nil) whereimport Base (pmap; fmap2)
atten :: Regular d ) d a ! [a ℄
atten = �atten Æ fmap2 singleton 
atten Æ outpolytypi
 �atten :: f [a ℄ [a ℄! [a ℄= 
ase f ofg + h ! �atten r �atteng � h ! �(x ; y)! �atten x ++�atten yEmpty ! nilPar ! idRe
 ! idd�g ! 
on
at Æ 
atten Æ pmap �attenConst t ! nil
 par :: Bifun
tor f ) f a b ! [a ℄
 re
 :: Bifun
tor f ) f a b ! [b ℄
 all :: Bifun
tor f ) f a a ! [a ℄
 par = �atten Æ fmap2 singleton nil
 re
 = �atten Æ fmap2 nil singleton
 all = �atten Æ fmap2 singleton singletonA variant: de�ning 
atten using 
ata:
atten = 
ata (�atten Æ fmap2 singleton id)Fun
tion 
atten 
an also be de�ned using 
rush (see the module CrushFuns).substru
tures :: Regular d ) d a ! [d a ℄substru
tures x = x :�atten (fmap2 nil substru
tures (out x ))Help fun
tions for listssingleton :: a ! [a ℄singleton x = [x ℄nil :: a ! [b ℄nil x = [ ℄



A.11. SUM 177A.11 Summodule Sum (psum; fsum; size) whereimport Base (
ata; pmap)psum :: Regular d ) d Int ! Intpsum = 
ata fsumpolytypi
 fsum :: f Int Int ! Int= 
ase f ofg + h ! fsum r fsumg � h ! �(x ; y)! fsum x + fsum yEmpty ! �x ! 0Par ! idRe
 ! idd�g ! psum Æ pmap fsumConst t ! �x ! 0size :: Regular d ) d a ! Intsize = psum Æ pmap (� ! 1)The fun
tions psum and size 
an also be de�ned using 
rush (see the moduleCrushFuns).A.12 CrushFunsmodule CrushFuns (psum; prod ; 
on
; pand ; por ;size;
atten; pall ; pany; pelem) whereimport Crush (
rush)import Base (pmap)psum :: Regular d ) d Int ! Intprod :: Regular d ) d Int ! Int
omp :: Regular d ) d (a ! a)! (a ! a)
on
 :: Regular d ) d [a ℄! [a ℄pand :: Regular d ) d Bool ! Boolpor :: Regular d ) d Bool ! Bool
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psum = 
rush (+) 0prod = 
rush (�) 1
omp = 
rush (Æ) id
on
 = 
rush (++) [ ℄pand = 
rush (^ ) Truepor = 
rush (_ ) Falsesize :: Regular d ) d a ! Int
atten :: Regular d ) d a ! [a ℄pall :: Regular d ) (a ! Bool)! d a ! Boolpany :: Regular d ) (a ! Bool)! d a ! Boolpelem :: (Regular d ;Eq a) ) a ! d a ! Boolsize = psum Æ pmap (� ! 1)
atten = 
on
 Æ pmap (�x ! [x ℄)pall p = pand Æ pmap ppany p = por Æ pmap ppelem x = pany (�y ! x == y)A linear variant of 
atten 
an be de�ned by using an a

umulating parameter:
atten 0 :: Regular d ) d a ! [a ℄! [a ℄
atten 0 = 
omp Æ pmap (:)A.13 Constru
torNamemodule Constru
torName whereFun
tions datatypeName and f
onstru
torName are built in.datatypeName :: Regular d ) d a ! Stringf
onstru
torName :: Bifun
tor f ) f a b ! String
onstru
torName :: Regular d ) d a ! String
onstru
torName = f
onstru
torName Æ out
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onstru
torNames :: Regular d ) d a ! [String ℄
onstru
torNames = f
onstru
torNames Æ outf
onstru
torNames :: Bifun
tor f ) f a b ! [String ℄f
onstru
torNames x =map f
onstru
torName (f
onstru
tors `asTypeOf ` [x ℄)The use of asTypeOf is a way to propagate type information to the 
orre
t des-tination. It is used to work around the la
k of expli
it fun
tor arguments.
onstru
torNamesAndArities :: Regular d ) d a ! [(String ; Int)℄
onstru
torNamesAndArities = f
onstru
torNamesAndArities Æ outf
onstru
torNamesAndArities :: Bifun
tor f ) f a b ! [(String ; Int)℄f
onstru
torNamesAndArities x =map (mapFst f
onstru
torName)(f
onstru
torsAndArities `asTypeOf ` [(x ;?)℄)
onstru
tors :: Regular d ) [d a ℄
onstru
tors = map inn f
onstru
torspolytypi
 f
onstru
tors :: [f a b ℄ =
ase f ofg + h ! map Left f
onstru
tors ++map Right f
onstru
torsg ! [?℄polytypi
 f
onstru
torsAndArities :: [(f a b; Int)℄ =
ase f ofg + h ! map (mapFst Left) f
onstru
torsAndArities++map (mapFst Right) f
onstru
torsAndAritiesg ! (�x ! [(x ; f
onstru
torArity x )℄) ?polytypi
 f
onstru
torArity :: f a b ! Int =
ase f ofg � h ! �p ! f
onstru
torArity (fst p)+f
onstru
torArity (snd p)Empty ! 
onst 0f ! 
onst 1
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onstru
tor2Int :: Regular d ) d a ! Int
onstru
tor2Int = f
onstru
tor2Int Æ outpolytypi
 f
onstru
tor2Int :: f a b ! Int =
ase f ofg + h ! 
onst 0 r ((�n ! 1 + n) Æ f
onstru
tor2Int)g ! 
onst 0int2
onstru
tor :: Regular d ) Int ! d aint2
onstru
tor n = 
onstru
tors !! nint2f
onstru
tor :: Bifun
tor f ) Int ! f a bint2f
onstru
tor n = f
onstru
tors !! nmapFst :: (a ! b)! (a; 
)! (b; 
)mapFst f p = (f (fst p); snd p)


