
Binary Search Trees of Almost Optimal HeightArne Andersson�Department of Computer ScienceLund UniversityBox 118S-221 00 LundSwedenChristian Icking Rolf KleinUniversit�at- Gesamthochschule EssenFB 6 / Praktische softwareorientierte InformatikSch�utzenbahn 704300 Essen 1Federal Republic of GermanyThomas OttmannyInstitut f�ur InformatikUniversit�at FreiburgRheinst. 10-12D-7800 FreiburgFederal Republic of Germany

�This work was partially supported by a grant from the National Swedish Board forTechnical Development.yThis work was partially supported by a grant from the Deutsche Forschungsgemein-schaft, grant no. Ot 64/5-2. 1

AbstractFirst we present a generalization of symmetric binary B-trees, SBB(k)-trees. The obtained structure has a height of only �(1 + 1k) log(n+ 1)�1, where k may be chosen to be any positive integer. The maintenancealgorithms require only a constant number of rotations per updatingoperation in the worst case. These properties together with the factthat the structure is relatively simple to implement makes it a usefulalternative to other search trees in practical applications.Then, by using an SBB(k)-tree with a varying k we achieve a struc-ture with a logarithmic amortized cost per update and a height oflogn + o(logn). This result is an improvement of the upper boundon the height of a dynamic binary search tree. By maintaining twotrees simultaneously the amortized cost is transformed into a worst-case cost. Thus, we have improved the worst-case complexity of thedictionary problem.1 IntroductionThe binary search tree is a simple data structure well suited for storing anordered set of elements. The original binary search tree allows insertion orsearch of an element in �(log n) average-case time [2, 7]. However, eachoperation mentioned requires linear time in the worst case. This bad be-haviour is due to the fact that the height of the tree is not controlled by theupdating algorithms and therefore a skew tree may occur.To improve the worst-case behaviour of the binary search tree di�erenttypes of balanced search trees have been presented [1, 3, 11, 13, 15]. Thosetrees have a height of �(log n) and e�cient maintenance algorithms whichallow insertion, deletion and search to be performed in �(log n) worst-casetime.One way to obtain a balanced binary search tree is by using binary rep-resentations of B-trees. The B-tree introduced by Bayer and McCreight [4]is often referred to as an a-b-tree where a and b are two integers, a < b.The data structure is a multiway tree where each node except the root hasa degree between a and b. All leaves in a B-tree have the same depth. Thesymmetric binary B-tree, or SBB-tree, introduced by Bayer [3] is a binaryrepresentation of a 2-4-tree where each node in the B-tree is represented by asmall binary tree. The structure has several properties that makes it a good1log denotes the logarithm to the base 2 and n denotes the number of elements storedin the tree. 2

alternative to other binary search trees. It can be represented with onlyone extra bit per stored element for balance information, it has relativelysimple updating algorithms and it can be maintained with only a constantnumber of restructurings per update. The last property is crucial in someapplications where restructuring is expensive, such as when implementingpriority search trees [12]. However, the maximal height of an SBB-tree is2 log n. Thus, in applications where fast search is essential the symmetric bi-nary B-tree is outperformed by the AVL-tree which has a maximal height of1:44 log n [1], and the k-neighbour tree with a maximal height of (1+�) log n,where � is an arbitrary small constant [11].A question which arises from studying SBB-trees is whether there areany useful binary representations of B-trees that are not 2-4-trees. Bayer [3]de�ned a generalized symmetric binary B-tree but so far this generalizationhas not shown any particular advantage that makes it useful. In this paperwe present a new generalization of the SBB-tree that represents a-b-treeswhere a = 2k and b = 2k+1 for any positive integer k. This generalizedstructure, denoted an SBB(k)-tree (in [9] it is referred to as a red-h-blacktree), inherits the good properties of the SBB-tree with respect to spacee�ciency, need of only a constant number of restructurings and simplicityof the algorithms. Moreover, it has the advantage of being of low height,l(1 + 1k) log(n+ 1)m. These properties make SBB(k)-trees a good alternativeto other search trees for practical applications.The fact that our generalized structure requires few restructurings perupdate also gives us the possibility to present an improved upper bound onthe height of a dynamic binary search tree. This is obtained by using amodi�ed version of an SBB(k)-tree where we use a varying value of k. Weobtain a binary search tree with a logarithmic cost for updates and a heightof log n+o(log n), which is better than for any other dynamic binary searchtree.2 Data StructureA B-tree may be represented as a binary tree where each node in the B-treecorresponds to a number of binary nodes which together form a pseudo-node. Each pseudo-node is in itself a small binary tree. The pseudo-nodecontaining the root of the entire tree is called the pseudo-root. The number ofbinary nodes in a pseudo-node is the size of the pseudo-node. The maximumand minimum height of a pseudo-node is the longest and shortest distance3

from its topmost node to a node outside the pseudo-node, respectively. Apseudo-node is optimally balanced if the di�erence between its maximumand minimum heights is at most 1.Using the terminology above, which is di�erent from that used by Bayer2,the symmetric binary B-tree [3], or SBB-tree, may be de�ned as a representa-tion of a 2-4-tree where each pseudo-node is optimally balanced. An exampleof an SBB-tree is given in Figure 1.The generalized SBB-tree presented here is di�erent from the general-ization suggested by Bayer. In his structure, a pseudo-node can take anyshape as long as its maximum height is less than or equal to some constant.In our structure, the SBB(k)-tree, each pseudo-node is required to be anoptimally balanced tree.A formal de�nition of SBB(k)-trees is given below.De�nition 1 For a given integer constant k, k � 1, a generalized sym-metric binary B-tree, or SBB(k)-tree, is a binary tree which satis�es thefollowing balance criteria:� The pseudo-root is optimally balanced and has a maximum height �k + 1;� All other pseudo-nodes have a minimum height � k and a maximumheight � k + 1.� The number of pseudo-nodes on the path from the root to a leaf is thesame for all leaves.From the de�nition follows that all pseudo-nodes except the pseudo-roothave a size between 2k � 1 and 2k+1 � 1. The a-b-tree corresponding to anSBB(k)-tree has a = 2k and b = 2k+1. For k = 1 we get a symmetric binaryB-tree.To keep an SBB(k)-tree balanced we have to be able to identify pseudo-nodes and determine their maximum and minimum heights. One bit storedin each binary node tells whether the node is the topmost node of a pseudo-node or not. From this information the minimum and maximum heightsof a pseudo-node P can be computed by explicit examination of the binarynodes in P . If this examination is considered to be too time-consuming,2Instead of the term pseudo-node Bayer uses two types of edges, edges within a pseudo-node are horizontal and edges between pseudo-nodes are vertical. The de�nitions areequivalent, but the notation of pseudo-nodes will simplify our presentation.4

1 4 7 12 35 40 44 50 52 77

9 19 64

47

47

9

19

64

4

1 7

12 40

35 44

52

50

77

Figure 1: A 2-4-tree and a corresponding SBB-tree.
5

the balance information may be stored in another somewhat more space-requiring way. In this case two integers stored in each binary node in Pgive the minimum and maximum distances from the binary node to a nodeoutside P .A nice property of the SBB(k)-tree is that the constant k may be chosenin a way which brings its height arbitrary close to the optimal height of abinary search tree, which is shown below.Theorem 1 Let T be an SBB(k) tree. Thenheight(T) � ��1 + 1k� log(n+ 1)� : (1)Proof: From the de�nition above we know that the B-tree correspondingto an SBB(k)-tree is an a-b-tree where a = 2k. The height of this B-tree isthe same as the number of pseudo-nodes on a path from the root to a leafin the SBB(k)-tree. From the analysis of B-trees [4, 7] we know the heightof an a-b-tree: height(a-b-tree) � 1 + �loga n+ 12 �= 1 + � log(n+ 1)� 1log 2k � (2)To compute the height of an SBB(k)-tree we use the fact that the shortestdistance from the root to a leaf is at most blog(n+ 1)c. Since each pseudo-node is optimally balanced, the di�erence between the depths of two leavesis at most one per level in the corresponding B-tree. Thus, the height of anSBB(k)-tree T is at most the sum of the minimum depth of a leaf and themaximum height of the corresponding a-b-tree, that isheight(T) � blog(n+ 1)c+ height(a-b-tree)� blog(n+ 1)c+ 1 + � log(n+ 1)� 1log 2k �� ��1 + 1k� log(n+ 1) + 1� 1k�� ��1 + 1k� log(n+ 1)� (3)which completes the proof. 26

From Theorem 1 we conclude that a large value of k keeps the height of thetree close to optimal. However, the amount of restructuring work requiredper update increases as k increases.3 Maintenance AlgorithmsThe algorithms for insertion and deletion in an SBB(k)-tree are closely re-lated to those for the same operations in a B-tree. In order to describe thealgorithms we de�ne some basic operations below.3.1 Basic OperationsLet P and S denote two pseudo-nodes. The updating algorithms for anSBB(k)-tree use the following operations:� Balance P : P is rebuilt to become optimally balanced.� Split P : P is split into two pseudo-nodes and its topmost node isinserted into the parent pseudo-node.� Join P and S: P and S are joined, the common parent of their re-spective topmost nodes is deleted from the parent pseudo-node andbecomes the topmost node of the new pseudo-node.� Co-balance P and S: P and S are joined, the new pseudo-node isbalanced and split into P and S.� Single rotation.The balancing operation is performed when insertion or removal of a binarynode makes a pseudo-node unbalanced, that is, when its maximum andminimum heights di�er by two.The split is used when a pseudo-node becomes too large, that is, wheninsertion of a binary node increases its size to 2k+1. In this case, before thebinary node was added the pseudo-node had its largest possible size witha maximum and minimum height of k + 1. Adding the binary node gavea maximum height of k + 2 and thus, the pseudo-node is still optimallybalanced. Splitting it will result in two pseudo-nodes with minimum heightsof k and maximum heights of k and k + 1, respectively (Figure 2b). Thus,both of the new pseudo-nodes satisfy the de�nition of an SBB(k)-tree and7

no balancing of pseudo-nodes is required. The topmost node of the oldpseudo-node will be inserted into the parent pseudo-node.When the pseudo-root is split a new pseudo-root of size one is created.In this case the number of pseudo-nodes on each path from the root to a leafwill increase by 1, which corresponds to increasing the height of a B-tree.The join and co-balancing operations are performed when a pseudo-nodebecomes too small. This occurs when removal of a binary node decreasesthe size of the pseudo-node to 2k � 2. Before the deletion the pseudo-nodehad its smallest possible size with a minimum and maximum height of k.Thus, after the removal the pseudo-node has a minimum height of k�1 anda maximum height of k and is optimally balanced. Since the pseudo-node istoo small, we have to either join it with another pseudo-node or add nodesto it.When two pseudo-nodes are joined or co-balanced, their topmost nodeshave to be siblings. In some cases a single rotation is needed to obtain thiscon�guration.The join is performed when the pseudo-node's sibling has its smallestpossible size. That is, when both its maximum and its minimum heightsare k. The resulting joined pseudo-node will have a minimum height of kand a maximum height of k+1 (Figure 3d) and it will satisfy the de�nitionof an SBB(k)-tree. If the pseudo-root contains only one binary node it willdisappear when its two children are joined. In this case the joined pseudo-node will become the new pseudo-root and the number of pseudo-nodes oneach path from the root to a leaf will decrease by 1, which corresponds todecreasing the height of a B-tree.Co-balancing is performed when the sibling of the pseudo-node is toolarge to allow joining. The e�ect of this operation is that binary nodes aremoved from the larger of the two pseudo-nodes to the smaller one. After theco-balancing both pseudo-nodes will satisfy the de�nition of an SBB(k)-tree.The split and join operations are performed merely by changing thestored balance information in three binary nodes and do not change the treestructure at all. Thus, both these operations are very simple to perform incontrast to the corresponding operations for an ordinary B-tree. The costof balancing or co-balancing is proportional to the size of a pseudo-node,which is depending of k.
8

3.2 Insertion and DeletionThe good properties of the maintenance algorithms for an SBB(k)-tree aredue to the fact that a split or a join operation do not change the tree struc-ture, and therefore do not require any restructuring. The other operations(balancing, co-balancing, and single rotation) leads to immediate termina-tion of the updating algorithms. These two facts give that an SBB(k)-treecan be updated with only a constant amount of restructuring work. Notethat only rotations and rebalancing are regarded as restructuring work, whilechanging stored balance information is not, since the shape of the tree is nota�ected.We present the algorithms below. The analysis is given in section 3.3. Inthe following we let max(P) and min(P) denote the maximum and minimumheights of the pseudo-node P . Ptop denotes P 's topmost node.

9

Insertion:When a new key is to be inserted into an SBB(k)-tree we follow a searchpath down the tree until a leaf is reached. A new node is created at thebottom of the tree and the key is placed there. This may violate one of thecriteria given in the de�nition of the SBB(k)-tree by making a pseudo-nodeP either unbalanced or too large. We have the following cases:Case 1: max(P) �min(P) = 2. P is not optimally balanced. We balanceP and terminate.Case 2: max(P) = k + 2. P is too large. We split P . One binary node isadded to the parent pseudo-node. Therefore we proceed to the parentpseudo-node to look for possible violations of the balance criteria.

10

(a)

(b)

Figure 2: Insertion into an SBB(3)-tree. (a) Case 1: Thepseudo-node is balanced. (b) Case 2: the pseudo-node issplit. In this example the splitting results in an imbalance inthe parent pseudo-node.
11

Deletion:When a key is to be deleted from an SBB(k)-tree we follow a search pathdown the tree until the binary node containing the key is found. If the nodeis at the bottom of the tree it is removed and replaced by a leaf, otherwiseit is replaced by its predecessor (or successor), which is found at the bottomof the tree. The e�ect will be that one node is deleted from a pseudo-nodeP at the lowest level of the tree, which may make P either unbalanced ortoo small. As for insertion, the two cases cannot occur at the same time.Case 1: max(P) �min(P) = 2. P is not optimally balanced. We balanceP and terminate.Case 2: max(P) = k�1. P is too small and has to be joined or co-balancedwith another pseudo-node. (Note that this case will not occur at thepseudo-root since its minimum height is not restricted.) In order tojoin or co-balance P with another pseudo-node S, Ptop and Stop haveto be siblings. If there is no such pseudo-node S we obtain this by asingle rotation. After this step two subcases occur:Case 2a: max(S) = k+1. S is large enough to give away a node. Weco-balance P and S and terminate.Case 2b: max(S) = k. S has its smallest possible size. We join P andS and proceed to the parent pseudo-node to check for possibleviolations of the balance criteria.The correctness of the algorithms for insertion and deletion follows from thefact that1. when an element is inserted into or deleted from an SBB(k)-tree, noother violation of the balance criteria than the cases treated by thealgorithms above may occur;2. both algorithms will terminate when the topmost pseudo-node is reached;3. all terminating states of the algorithms represent an SBB(k)-tree.
12

(a)

P S P S

(b)

P S P S

(c)

P S

(d)

Figure 3: Deletion in an SBB(3)-tree. (a) Case 1: Thepseudo-node is balanced. (b) A rotation is performed in Case2 to make P 's and S's topmost nodes become siblings. (c)Case 2a: P and S are co-balanced. (d) Case 2b: P and Sare joined. 13

3.3 AnalysisThe maintenance algorithms given above use few restructurings, as shownbelow.Theorem 2 An SBB(k)-tree can be updated in �(logn) time and with aconstant amount of restructuring work in the worst case.Proof: In order to prove the constant amount of restructuring work wetake a closer look at the maintenance algorithms presented above. Both al-gorithms work bottom-up, starting at the lowest pseudo-node on the visitedpath.Insertion: The two cases which may occur are described in the algorithmabove. Rebalancing is required only in Case 1. Having balanced thepseudo-node, it satis�es the de�nition of an SBB(k)-tree and the al-gorithm terminates. Thus, at most one balancing may be performedper insertion, which proves a constant amount of restructuring work.Deletion: As for insertion, the balance criteria are satis�ed as soon asa balancing or a co-balancing has been performed. The only casea restructuring operation does not lead to immediate termination iswhen the single rotation in Case 2 is followed by a join. After thejoin we continue to the parent pseudo-node to look for a violation ofthe balance criteria. However, a rotation is required only when theparent pseudo-node of P and S has its bottom nodes at two di�erentlevels (Figure 3b). In this case, removal of one node from that pseudo-node cannot cause any violation of the balance criteria. Thus, thealgorithm will terminate also when a rotation in Case 2 is followed bya join. From this follows that the amount of restructuring required bya deletion is at most one single rotation plus one co-balancing.From the description above follows that both algorithms work along a pathdown the tree, spending constant time at each level, which proves the overalllogarithmic cost per update.Thus, we have shown that the restructuring work is constant, and thatthe cost per update is logarithmic, which completes the proof. 2Even if the amount of restructuring work is constant it might be of someinterest to determine how much is actually required. The exact amountdepends on the algorithm used to balance pseudo-nodes. There are several14

algorithms for balancing binary search trees which may be used for thispurpose [5, 6, 10, 19].As an example we can study the algorithm given by Stout and War-ren [19]. This algorithm is not the most e�cient one but it uses rotationswhich makes the balancing cost comparable with the cost required for otherclasses of search trees. The Stout-Warren algorithm works in two steps:1. A right-degenerated tree is produced by repeated right rotations.2. A balanced tree is produced from the degenerated one by repeated leftrotations.Let P be an unbalanced pseudo-node and P 0 the same pseudo-node afterrebalancing. Let ll(P) and rl(P) denote the length of P 's leftmost andrightmost path, respectively. The number of rotations required by the Stout-Warren algorithm is 2jP j � rl(P) � rl(P 0). This number may be slightlyreduced by two modi�cations. In the �rst step of the algorithm we canmake P left- or right-degenerated, depending on which one of ll(P) andrl(P) is largest. In step 2 we can keep as many nodes as possible on thedegenerated path, that is dlog(jP j+ 1)e nodes. With these modi�cationsthe number of rotations required to balance the pseudo-node P is2jP j �Max (ll(P); rl(P)) � dlog(jP j+ 1)e : (4)In Theorem 3 below we give the maximum number of rotations required forupdates in an SBB(k)-tree when this modi�ed balancing algorithm is used.Note that in the proof of Theorem 2 we claimed that only one rotation isrequired. In this case we also use rotations for the rebalancing operations.This is not a contradiction, since rebalancing can be made without rotations.Theorem 3 An SBB(k)-tree can be maintained with 2k+2 � 2k � 4 rota-tions per insertion and 3 � 2k+1 � 2k � 7 rotations per deletion in the worstcase.Proof: An examination of the worst possible cases gives the following:Insertion: The worst case occurs when a pseudo-node of maximum size,2k+1 � 1, is rebalanced. In such a pseudo-node there is one path oflength k and one path of length k + 2, the rest of the paths have alength of k + 1. Thus, at least one of the right- and leftmost paths15

has a length of k + 1 before rebalancing. From Eq. (4) the number ofrotations is at most 2(2k+1 � 1)� (k + 1)� llog 2k+1m= 2k+2 � 2k � 4: (5)Deletion: The worst case occurs in Case 2 when a single rotation is followedby co-balancing of two pseudo-nodes of maximum size. The number ofnodes involved in the co-balancing is at most 3 � 2k � 2. The maximumheight of the left- and rightmost path before the balancing is at leastk+2. From Eq. (4) we get the number of rotations for a co-balancingto be 2(3 � 2k � 2)� (k + 2)� llog(3 � 2k � 1)m= 3 � 2k+1 � 2k � 8: (6)Adding the single rotation, we get a total sum of3 � 2k+1 � 2k � 7: (7)The proof follows from Eqs. (5) and (7). 2Thus, the SBB(k)-tree combines a low height with a low cost of rebalancing.As an example, k = 2 gives a height of 1:5 log(n+1), 8 rotations for insertionand 13 for deletion. Which value of k to choose in a particular case dependson the expected size of the tree, the ratio of searches to updates, and thecost of comparisons compared to the cost of restructuring.Note that the number of rotations required for an SBB(1)-tree is the sameas that required by the algorithms for the SBB-tree by Guibas, Sedgewickand Tarjan [8, 18, 20]. Their algorithms may be regarded as special cases ofour algorithms for an SBB(1)-tree. However, the algorithms are not identi-cal. In some cases our modi�ed Stout-Warren algorithm makes a rotationwhich is not necessary (Case 2a in the deletion algorithm when jSj = 3).Thus the average number of rotations may be improved by optimizing theStout-Warren algorithm further. For k > 1 it may be possible to improvethe worst-case number of rotations using a better rebalancing algorithm.
16

4 Improved Height of the SBB(k)-treeIn the preceding sections we have shown that the SBB(k)-tree has a height ofd(1 + �) log(n+ 1)e for any positive value of �. By varying the value of k insuch a way that the maintenance cost remains logarithmic, the height maybe reduced to log n+ o(log n), which is optimal in the leading term. Unfor-tunately, continuous variation of k cannot be a�orded since the entire treehas to be reconstructed for each new value. This problem is circumventedby changing k only at preset intervals.We start by presenting an amortized result.Theorem 4 There is a binary search tree T for whichheight(T) � �log(n+ 1) + log(n+ 1)log log(n+ 1)� (8)and the amortized cost per update is �(logn).Proof: We use a modi�ed SBB(k)-tree. Associated with the tree we have acounter which is increased by one each time an element is inserted or deleted.When the value of the counter equals half the number of elements in thetree, k is set to dlog log 2ne and the entire tree is reconstructed in lineartime. Then, �(n) updates have been made since the last total rebalancing,which gives an amortized cost of O(1) per update for changing the value ofk. Let N denote the size of the tree when the latest total restructuring wasmade. From the fact that a total rebalancing is made after every n2 th updatewe know that the size of the tree is bound to be between 23N and 2N . Thisgives dlog log(n+ 1)e � k � dlog log 3ne: (9)From Theorem 1 we know thatheight(T) � ��1 + 1k� log(n+ 1)�� ��1 + 1log log(n+ 1)� log(n+ 1)� : (10)From Theorem 3 we know that the maximal amount of restructuring workrequired per update is O(2k). Since k = O(log log n) we have a restructuringcost of O(2log log n) = O(log n): (11)17

The proof follows from Eqs. (10) and (11). 25 An E�cient Worst-Case Solution to the Dictio-nary ProblemThe amortized result obtained in Theorem 4 may be transformed into aworst-case result by maintaining two trees simultaneously instead of one. Inthis way the cost of changing the value of k (including a global rebuilding)may be distributed in such a way that the worst-case cost per update be-comes logarithmic. Providing that the two trees are not being rebuilt at thesame time, there will always be one tree in which queries can be performed.Our technique is an improvement of the method of global rebuilding in-troduced by Overmars [17]. Using the rank of elements we avoid makingextra element-comparisons when updating two trees.Theorem 5 There is a data structure supporting search and updates at acost of �log(n+ 1) + log(n+ 1)log log(n+ 1)�comparisons and �(logn) time in the worst case.Proof: We use a data structure consisting of two SBB(k)-trees wherek � log logn, as described in the proof of Theorem 4. In each node westore the number of descendants. The data structure is maintained in thefollowing way:1. After n2 updates the value of k is changed and each tree is rebuilt.Rebuildings are scheduled in such a way that the two trees are notbeing rebuilt at the same time.2. Rebuilding work is distributed over the updates in such a way that thetime spent per update is O(log n).3. Updates are performed in the following way:(a) An update is always made in a tree which is not being recon-structed. From the number of descendants, which is stored ineach node, we compute the rank of the inserted/deleted element.18

(b) If the other tree is not being rebuilt the insertion/deletion is madealso in that tree. No comparisons are required for this update,since we use the rank to locate the element.(c) If the other tree is being rebuilt we store the update in a queueto be performed when the rebuilding is completed.Rebuilding of each of the trees includes construction of a new tree andperformance of the queued updates. The �rst step requires O(n) time andthe second one O(n logn) time. Therefore, the entire procedure may bedistributed over a linear number of updates at a worst-case cost of O(log n)per update.Although each update is performed in both trees, element-comparisonsare made only the �rst time. Thus, the number of comparisons equals theheight of the tree. The rest of the proof is similar to the proof of Theorem 4.26 CommentsWe have presented a generalization of the symmetric binary B-tree, theSBB(k)-tree. The new tree is of low height and has e�cient updating algo-rithms requiring only a constant number of restructurings per operation. In-stead of using only primitive operations such as rotations, the algorithms formaintenance of SBB(k)-trees are based on rebalancing of larger structures.In this way we avoid several special cases, which makes the presentationclearer. The technique of representing B-tree nodes as large binary trees isalso used by van Leeuwen and Overmars [21] to obtain log n-maintainablesubclasses of some search trees, for example AVL-trees and �-balanced trees.While their results mainly are of theoretical interest, the SBB(k)-tree is analternative to other search trees well worth to be considered in practicalapplications.Introducing SBB(k)-trees gives an answer to an open problem formulatedby Olivie [14]. He presented a class of balanced trees called half-balancedtrees, which in fact is the same class as the symmetric binary B-trees, andshowed that trees of this class can be updated with a constant number ofrotations per operation. The question was whether there are other classesof balanced trees with this property. Clearly, for any value of k larger than1 the SBB(k)-trees form a new class with this property. A more detailed19

study of tree structures requiring a constant number of rotations per updatecan be found in [16].Apart from the constant amount of restructuring work per update thereare other properties of the SBB(k)-trees which may be derived from the SBB-trees. For instance, there are updating algorithms for SBB-trees which usetop-down balancing [8]. The idea is to perform all split and join operationswhich may be required on the way down the tree during the search. Suchalgorithms are useful in a parallel environment since one operation on thetree may be started before the previous one is completed. Another exampleis the ability to join and split SBB-trees [8].Based on the SBB(k)-tree we have also presented a data structure whichmay be e�ciently maintained in the worst case with a number of comparisonsper dictionary operation which is optimal in the leading term. Thus, we haveimproved the upper bound on the worst-case complexity of the dictionaryproblem.

20

AcknowledgementsWe would like to thank Dr. Svante Carlsson and the referees for valuablecomments on this paper.References[1] G. M. Adelson-Velskii and E. M. Landis. An algorithm for the organiza-tion of information. Dokladi Akademia Nauk SSSR, 146(2):1259{1262,1962.[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures andAlgorithms. Addison-Wesley, Reading Mass, 1983.[3] R. Bayer. Symmetric binary B-trees: Data structure and maintenancealgorithms. Acta Informatica, 1(4):290{306, 1972.[4] R. Bayer and E. McCreight. Organization and maintenance of largeordered indexes. Acta Informatica, 1:173{189, 1972.[5] H. Chang and S. S. Iynegar. E�cient algorithms to globally balance abinary search tree. Communications of the ACM, 27(7):695{702, 1984.[6] A. C. Day. Balancing a binary tree. Computer Journal, 19(4):360{361,1976.[7] G. H. Gonnet. Handbook of Algorithms and Data Structures. Addison-Wesley, 1983. ISBN 0-201-0023-7.[8] L. J. Guibas and R. Sedgewick. A dichromatic framework for balancedtrees. In Proc. 19th Ann. IEEE Symp. on Foundations of ComputerScience, pages 8{21, 1978.[9] C. Icking, R. Klein, and T. Ottmann. Priority search trees in secondarymemory. In Graphtheoretic Concepts in Computer Science (WG '87),Sta�elstein, LNCS 314, pages 84{93, 1987.[10] W. A. Martin and D. N. Ness. Optimizing binary trees grown with asorting algorithm. Communications of the ACM, 15(2):88{93, 1972.[11] H. A. Mauer, T. Ottmann, and H. W. Six. Implementing dictionariesusing binary trees of very small height. Information Processing Letters,5(1):11{14, 1976. 21

[12] E. M. McCreight. Priority search trees. SIAM Journal on Computing,14(2):257{276, 1985.[13] J. Nievergelt and E. M. Reingold. Binary trees of bounded balance.SIAM Journal on Computing, 2(1):33{43, 1973.[14] H. J. Olivie. A Study of Balanced Binary Trees and Balanced One-Two-Trees. Ph. D. Thesis, Dept of Mathematics, University of Antwerp,1980.[15] H. J. Olivie. A new class of balanced search trees: Half-balanced binarysearch trees. R. A. I. R. O. Informatique Theoretique, 16:51{71, 1982.[16] Th. Ottmann and D. Wood. Updating binary trees with constant link-age cost. To appear in Proc. Scandinavian Workshop on AlgorithmTheory, SWAT '90, Bergen, 1990.[17] M. H. Overmars. The Design of Dynamic Data Structures, volume 156of Lecture Notes in Computer Science. Springer Verlag, 1983. ISBN3-540-12330-X.[18] N. Sarmak and R. E. Tarjan. Planar point location using persistentsearch trees. Communications of the ACM, 29(7):669{679, 1986.[19] Q. F. Stout and B. L. Warren. Tree rebalancing in optimal time andspace. Communications of the ACM, 29(9):902{908, 1986.[20] R. E. Tarjan. Updating a balanced search tree in O(1) rotations. In-formation Processing Letters, 16:253{257, 1983.[21] J. van Leeuwen and M. H. Overmars. Strati�ed balanced search trees.Acta Informatica, 18:345{359, 1983.

22

