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Abstract
We propose a family of learning algorithms based on a new fafrnegularization that allows us
to exploit the geometry of the marginal distribution. Wedsmn a semi-supervised framework
that incorporates labeled and unlabeled data in a genarpbpe learner. Some transductive graph
learning algorithms and standard methods including Supyector Machines and Regularized
Least Squares can be obtained as special cases. We utijzerpes of Reproducing Kernel Hilbert
spaces to prove new Representer theorems that providestioabibasis for the algorithms. As a
result (in contrast to purely graph-based approaches) waroa natural out-of-sample extension
to novel examples and so are able to handle both transdwatvéruly semi-supervised settings.
We present experimental evidence suggesting that our sgpeirvised algorithms are able to use
unlabeled data effectively. Finally we have a brief diseus®f unsupervised and fully supervised
learning within our general framework.

1. Introduction

In this paper, we introduce a framework for data-dependent regatiaizthat exploits the geometry
of the probability distribution. While this framework allows us to approach thednge of learning
problems from unsupervised to supervised (discussed in SectiongiB2anespectively), we focus
on the problem of semi-supervised learning.

The problem of learning from labeled and unlabeled da&nf-supervisednd transductive
learning) has attracted considerable attention in recent years. Sonmtlyqgueposed methods
include Transductive SVM (Vapnik, 1998; Joachims, 1999), Cotrai(ihgm and Mitchell, 1998),
and a variety of graph based methods (Blum and Chawla, 2001; Chapelle 2003; Szummer
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and Jaakkola, 2002; Kondor and Lafferty, 2002; Smola and Kor&fif¥3; Zhou et al., 2004; Zhu
et al., 2003, 2005; Kemp et al., 2004; Joachims, 1999; Belkin and Niyo@B&0 We also note
the regularization based techniques of Corduneanu and Jaakko8 é@DBousquet et al. (2004).
The latter reference is closest in spirit to the intuitions of our paper. Wippos the discussion of
related algorithms and various connections until Section 4.5.

The idea of regularization has a rich mathematical history going back to Tokhd®63), where
it is used for solving ill-posed inverse problems. Regularization is a keyidi@ theory of splines
(e.g., Wahba (1990)) and is widely used in machine learning (e.g., Evgehadu(2000)). Many
machine learning algorithms, including Support Vector Machines, can bpiated as instances of
regularization.

Our framework exploits the geometry of the probability distribution that geesthe data and
incorporates it as an additional regularization term. Hence, there aresgmtarization terms —
one controlling the complexity of the classifier in tambient spacand the other controlling the
complexity as measured by tigeometryof the distribution. We consider in some detail the special
case where this probability distribution is supported on a submanifold of theeah#pace.

The points below highlight several aspects of the current paper:

1. Our general framework brings together three distinct concepts dlatreceived some inde-
pendent recent attention in machine learning:
i. The first of these is the technologysifectral graph theorye.g., see Chung (1997)) that has
been applied to a wide range of clustering and classification tasks ovesthetadecades.
Such methods typically reduce to certain eigenvalue problems.
ii. The second is the geometric point of view embodied in a class of algorithmsahédte
termed asnanifold learning. These methods attempt to use the geometry of the probability
distribution by assuming that its support has the geometric structure of a Ri@nanani-
fold.
iii. The third important conceptual framework is the set of ideas surrogndigularization
in Reproducing Kernel Hilbert Spaces (RKHS). This leads to the clakeratl based algo-
rithmsfor classification and regression (e.g., see Scholkopf and Smola (208&pa (1990);
Evgeniou et al. (2000)).

We show how these ideas can be brought together in a coherent aral matyito incorporate
geometric structure in a kernel based regularization framework. Assfareaknow, these
ideas have not been unified in a similar fashion before.

2. This general framework allows us to develop algorithms spanning tlye faom unsuper-
vised to fully supervised learning.

In this paper we primarily focus on the semi-supervised setting and pregefamilies of

algorithms: the Laplacian Regularized Least Squares (hereafter I3piid the Laplacian
Support Vector Machines (hereafter LapSVM). These are natxehsions of RLS and SVM
respectively. In addition, several recently proposed transductitbaue (e.g., Zhu et al.
(2003); Belkin and Niyogi (2003a)) are also seen to be special chsieis general approach.

In the absence of labeled examples our framework results in new algorithmssupervised
learning, which can be used both for data representation and clustéhiege algorithms are
related to Spectral Clustering and Laplacian Eigenmaps (Belkin and Niy@@3/d.
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3. We elaborate on the RKHS foundations of our algorithms and show hanvegeic knowledge
of the probability distribution may be incorporated in such a setting throughdditi@nal
regularization penalty. In particular, a new Representer theorem gogitlinctional form of
the solution when the distribution is known; its empirical version involves aam®sipn over
labeled and unlabeled points when the distribution is unknown. These Jeepee theorems
provide the basis for our algorithms.

4. Our framework with an ambiently defined RKHS and the associated Fspeesheorems
result in a natural out-of-sample extension from the data set (labeledrdaiokled) to novel
examples. This is in contrast to the variety of purely graph based ap@e#tat have been
considered in the last few years. Such graph based approachesvearansductive setting
and do not naturally extend to the semi-supervised case where novek#&esples need to
be classified (predicted). Also see Bengio et al. (2004); Brand {#003ome recent related
work on out-of-sample extensions. We also note that a method similar to alariegd spec-
tral clustering algorithm has been independently proposed in the coritgsdmh inference
in Vert and Yamanishi (2005).

The work presented here is based on the University of Chicago Tediteport TR-2004-05, a
short version in the Proceedings of Al & Statistics 2005, Belkin et al.§266d Sindhwani (2004).

1.1 The Significance of Semi-Supervised Learning

From an engineering standpoint, it is clear that collecting labeled data isadjgrnaore involved
than collecting unlabeled data. As a result, an approach to pattern recoghiids able to make
better use of unlabeled data to improve recognition performance is of pdifegtieat practical
significance.

However, the significance of semi-supervised learning extends bgyoely utilitarian consid-
erations. Arguably, most natural (human or animal) learning occurs irethesupervised regime.
We live in a world where we are constantly exposed to a stream of natumallis These stimuli
comprise the unlabeled data that we have easy access to. For examplenaiogital acquisi-
tion contexts, a child is exposed to many acoustic utterances. These wtedimoot come with
identifiable phonological markers. Corrective feedback is the main safrdirectly labeled ex-
amples. In many cases, a small amount of feedback is sufficient to allovhildet@ master the
acoustic-to-phonetic mapping of any language.

The ability of humans to learn unsupervised concepts (e.g. learning slastércategories of
objects) suggests that unlabeled data can be usefully processed todaaal invariances, to form
categories, and to develop classifiers. In most pattern recognition tagksns have access only
to a small number of labeled examples. Therefore the success of humaimdeir this “small
sample” regime is plausibly due to effective utilization of the large amounts obaldd data to
extract information that is useful for generalization.

Consequently, if we are to make progress in understanding how natamaing comes about,
we need to think about the basis of semi-supervised learning. Figure latkstnow unlabeled
examples may force us to restructure our hypotheses during learninginereasituation where one
is given two labeled examples — one positive and one negative — as sholaft panel. If one
is to induce a classifier on the basis of this, a natural choice would seenthe lieear separator as
shown. Indeed, a variety of theoretical formalisms (Bayesian paradigeggilarization, Minimum
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Figure 1: Unlabeled Data and Prior Beliefs
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Description Length or Structural Risk Minimization principles, and the likeeHasen constructed
to rationalize such a choice. In most of these formalisms, one structuresttbieome’s hypothesis
functions by a prior notion of simplicity and one may then justify why the lineaasspr is the
simplest structure consistent with the data.

Now consider the situation where one is given additional unlabeled examplsown in the
right panel. We argue that it is self-evident that in the light of this new wiabset, one must
re-evaluate one’s prior notion of simplicity. The particular geometric stractifirthe marginal
distribution suggests that the most natural classifier is now the circular diwted in the right
panel. Thus the geometry of the marginal distribution must be incorporatedt iregularization
principle to impose structure on the space of functions in nonparametridiciaissn or regression.
This is the intuition we formalize in the rest of the paper. The success ofppuoach depends on
whether we can extract structure from the marginal distribution, and oaxtieait to which such
structure may reveal the underlying truth.

1.2 Outline of the Paper

The paper is organized as follows: in Sec. 2, we develop the basic framkéov semi-supervised

learning where we ultimately formulate an objective function that can utilize bb#idd and unla-

beled data. The framework is developed in an RKHS setting and we state tiodiRepresenter
theorems describing the functional form of the solutions. In Sec. 3, vibete on the theoretical
underpinnings of this framework and prove the Representer theoreS8ecoR. While the Repre-
senter theorem for the finite sample case can be proved using stanigboality arguments, the
Representer theorem for the known marginal distribution requires motke stonsiderations. In

Sec. 4, we derive the different algorithms for semi-supervised leathatgarise out of our frame-
work. Connections to related algorithms are stated. In Sec. 5, we desgpbements that evaluate
the algorithms and demonstrate the usefulness of unlabeled data. In 8eccénsider the cases
of fully supervised and unsupervised learning. In Sec. 7 we condhisi@aper.
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2. The Semi-Supervised Learning Framework

2.1 Background

Recall the standard framework of learning from examples. There istapildy distributionP on
X x R according to which examples are generated for function learning. LdeslEmples are
(z,y) pairs generated according & Unlabeled examples are simptye X drawn according to
the marginal distributiofPx of P.

One might hope that knowledge of the margiRal can be exploited for better function learning
(e.g. in classification or regression tasks). Of course, if there is ndifiddite relation betwee®x
and the conditionaP(y|z), the knowledge oPx is unlikely to be of much use.

Therefore, we will make a specific assumption about the connection betiveenarginal and
the conditional distributions. We will assume that if two point{szs € X areclosein theintrinsic
geometry ofPx, then the conditional distributiorf®(y|z; ) andP(y|x2) are similar. In other words,
the conditional probability distributio® (y|x) varies smoothly along the geodesics in the intrinsic
geometry ofPx.

We utilize these geometric intuitions to extend an established framework fdidarearning.

A number of popular algorithms such as SVM, Ridge regression, splireiaRBasis Functions
may be broadly interpreted as regularization algorithms with different emlptosa functions and
complexity measures in an appropriately chosen Reproducing Kernel Hilpace (RKHS).

For a Mercer kernek : X x X — R, there is an associated RKH$%k of functionsX — R
with the corresponding norr || x. Given a set of labeled examplés;,y;), i« = 1,...,[ the
standard framework estimates an unknown function by minimizing

—_

l
/¥ = argmin ,Z (@i, yi ) + I F 1% (1)

feEHK !

i=1
whereV is some loss function, such as squared l@ss- f(x;))? for RLS or the hinge loss func-
tion max [0, 1 — y; f(z;)] for SVM. Penalizing the RKHS norm imposes smoothness conditions on
possible solutions. The classical Representer Theorem states thalutitengo this minimization
problem exists i, and can be written as

Z oK (31, @

Therefore, the problem is reduced to optlmlzmg over the finite dimensiomakspf coefficients
«;, Which is the algorithmic basis for SVM, Regularized Least Squares aredt m#gression and
classification schemes.

We first consider the case when the marginal distribution is already known.

2.2 Marginal Px is known

Our goal is to extend this framework by incorporating additional informatlorutithe geometric
structure of the margingPx. We would like to ensure that the solution is smooth with respect to
both the ambient space and the marginal distributign To achieve that, we introduce an additional
regularizer:

f* = argmin 72 (i, i, )+ vallFlE +llF 117 3)
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where||f||% is an appropriate penalty term that should reflect the intrinsic structuRofintu-
itively, || || is a smoothness penalty corresponding to the probability distribution. Forgeaif
the probability distribution is supported on a low-dimensional manifofd? may penalizef along
that manifold. v4 controls the complexity of the function in tlembientspace whiley; controls
the complexity of the function in thimtrinsic geometry ofPx. It turns out that one can derive an
explicit functional form for the solutiorf* as shown in the following theorem.

Theorem 1 Assume that the penalty tetjifi|| ; is sufficiently smooth with respect to the RKHS norm
Il |l (see Section 3.2 for the exact statement). Then the solfititmthe optimization problem in
Eqgn. 3 above exists and admits the following representation

l
f(x) = ; a; K(x;, ) + /M a(2)K(x,2) dPx(2) 4)

where M = supp{Px } is the support of the margingx .

We postpone the proof and the formulation of smoothness conditions onrtie| g until the next
section.

The Representer Theorem above allows us to express the sofiitidinectly in terms of the
labeled data, the (ambient) kernkl, and the marginaPx. If Px is unknown, we see that the
solution may be expressed in terms of an empirical estimatBxaf Depending on the nature
of this estimate, different approximations to the solution may be developed.e Inetkt section,
we consider a particular approximation scheme that leads to a simple algorittamiework for
learning from labeled and unlabeled data.

2.3 Marginal Px Unknown

In most applications the margin@ly is not known. Therefore we must attempt to get empirical
estimates of°x and|| ||;. Note that in order to get such empirical estimates it is sufficient to have
unlabeledexamples.

A case of particular recent interest (e.g., see Roweis and Saul (Z@®nbaum et al. (2000);
Belkin and Niyogi (2003b); Donoho and Grimes (2003); Coifman et @08 for a discussion
on dimensionality reduction) is when the supportff is a compact submanifoldt C R™. In
that case, one natural choice fpf||; is [ _\, [V fl|* dPx(z), whereV o is thegradient(see,
e.g., Do Carmo (1992) for an introduction to differential geometry) afong the manifold\1 and
the integral is taken over the marginal distribution.

The optimization problem becomes

z
" 1
f* = argmin - > Vi@ yi £) +vallfll + 71/ IV f? dPx ()

fEHK i=1 TEM

Theterm/ ., IV flI> dPx(x) may be approximated on the basis of labeled and unlabeled data
using the graph Laplacian associated to the data. While an extended iis@fdhese issues goes
beyond the scope of this paper, it can be shown that under certaiitionadthoosing exponential
weights for the adjacency graph leads to convergence of the grajdrciaapto the Laplace-Beltrami
operatorA 4 (or its weighted version) on the manifold. See the Remarks below and (B200:3,
Lafon, 2004; Belkin and Niyogi, 2005; Coifman and Lafon, 2005; Heialg 2005) for details.
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Thus, given a set dflabeled example§(z;, y;) }._, and a set of, unlabeled example: ; }jjff
we consider the following optimization problem :

l l4+u

7 = argmin SV (i i f) + vl Sl + o 0 ) = £ W

ferk "o

~| =

ij=1

!
= argmin -

fEHK

l
. 2 1 T
;V(afuyz,f)erHfHK+ T (5)

whereW;; are edge weights in the data adjacency grdpbks [f(z1),..., f(21+4)]?, and L is
the graph Laplacian given by = D — W. Here, the diagonal matrix D is given by;; =
Z?j{ W;;. The normalizing coefficientt#l)2 is the natural scale factor for the empirical estimate

of the Laplace operator. We note than on a sparse adjacency graphiemeplaced bEigil Wi;.
The following version of the Representer Theorem shows that the minimégeain expansion

in terms of both labeled and unlabeled examples and is a key to our algorithms.
Theorem 2 The minimizer of optimization problem 5 admits an expansion

I4u

fr(@) =) K (wi,x) (6)
=1

in terms of the labeled and unlabeled examples.

The proof is a variation of the standard orthogonality argument and isqiexsin Section 3.4.

Remark 1: Several natural choices ¢f||; exist. Some examples are:

1. lterated Laplacian&\ 1, )*. Differential operator$A ,,)* and their linear combinations pro-
vide a natural family of smoothness penalties.

Recall that the Laplace-Beltrami operatby, can be defined as the divergence of the gradient
vector fieldA r f = div(V A f) and is characterized by the equality

| s@smf@dn= [ Vaif @) du

TEM zeEM

wherey is the standard measure (uniform distribution) on the Riemannian manifold. If
is taken to be non-uniform, then the corresponding notion is the weightdddeapeltrami
operator (e.g., Grigor'yan (2006)).

2. Heat semigroup~*** is a family of smoothing operators corresponding to the process of
diffusion (Brownian motion) on the manifold. One can tajfd|? = Iy fetAMm(f)dPx. We
note that for small values dfthe corresponding Green’s function (the heat kernelMoy,
which is close to a Gaussian in the geodesic coordinates, can also briaggteal by a sharp
Gaussian in the ambient space.

3. Squared norm of the Hessian (cf. Donoho and Grimes (2003)). WhelddessiarH(f)
(the matrix of second derivatives ¢f generally depends on the coordinate system, it can
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be shown that the Frobenius norm (the sum of squared eigenvalu@$)iothe same in
any geodesic coordinate system and hence is invariantly defined fonaRman manifold
M. Using the Frobenius norm & as a regularizer presents an intriguing generalization of
thin-plate splines. We also note thaj((f) = tr(H(f)).

Remark 2: Why not just use the intrinsic regularizer? Using ambient and intrinsic regeia
jointly is important for the following reasons:

1. We do not usually have accesshd or the true underlying marginal distribution, just to data
points sampled from it. Therefore regularization with respect only to the lseampanifold is
ill-posed. By including an ambient term, the problem becomes well-posed.

2. There may be situations when regularization with respect to the ambieet @eéds a better
solution, e.g., when the manifold assumption does not hold (or holds to a Esgere).
Being able to trade off these two regularizers may be important in practice.

Remark 3: While we use the graph Laplacian for simplicity, thermalized Laplacian
I~/ — D—1/2LD—1/2

can be used interchangeably in all our formulas. Udirigstead ofL provides certain theoretical
guarantees (see von Luxburg et al. (2004)) and seems to perfamellas better in many practical
tasks. In fact, we usé in all our empirical studies in Section 5. The relationlofo the weighted

Laplace-Beltrami operator was discussed in Lafon (2004).

Remark 4: Note that a global kerngk restricted taM (denoted byK 14) is also a kernel defined
on M with an associated RKHH  of functionsM — R. While this might suggest

111z = 11tz

(fam Is f restricted toM) as a reasonable choice fibof||;, it turns out, that for the minimizef*

of the corresponding optimization problem we §¢t||; = || f*||x, yielding the same solution as
standard regularization, although with a different parametefhis observation follows from the
restriction properties of RKHS discussed in the next section and is forntatiydsas Proposition 6.
Therefore it is impossible to have an out-of-sample extension withoutdifferentmeasures of
smoothness. On the other hand, a different ambient kernel restrictéd ¢an potentially serve
as the intrinsic regularization term. For example, a sharp Gaussian kamélecused as an ap-
proximation to the heat kernel oM. Thus one (sharper) kernel may be used in conjunction with
unlabeled data to estimate the heat kernehdrand a wider kernel for inference.

3. Theoretical Underpinnings and Results

In this section we briefly review the theory of Reproducing Kernel Hilbg@ac®s and their con-
nection to integral operators. We proceed to establish the Represemteamtisefrom the previous
section.

3.1 General Theory of RKHS

We start by recalling some basic properties of Reproducing Kernel Hiigarces (see the original
work Aronszajn (1950) and also Cucker and Smale (2002) for a nicaigison in the context
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of learning theory) and their connections to integral operators. We saatHlilbert spacé{ of
functionsX — R has thereproducing propertyif Vo € X the evaluation functionaf — f(x) is
continuous. For the purposes of this discussion we will assumeXitiatcompact. By the Riesz
representation theorem it follows that for a giver X, there is a functiort,, € H, s.t.

VieHR (hafly=[f(2)

We can therefore define the correspondirgnel function

K(,y) = (ha, hy)y

It follows that h,(y) = (hs,hy)yy = K(x,y) and thus(K(z,-), f) = f(z). Itis clear that
K(z,-) € H.

It is easy to see that'(x, y) is a positive semi-definite kernel as defined below:
Definition: We say that (x, y), satisfyingK (z,y) = K(y, z), is a positive semi-definite kernel
if given an arbitrary finite set of pointsy, ..., z,, the corresponding x n matrix K with K;; =
K (z;,x;) is positive semi-definite.

Importantly, the converse is also true. Any positive semi-definite kekflel, y) gives rise
to an RKHSH g, which can be constructed by considering the space of finite linear combina
tions of kernels)~ «; K (z;,-) and taking completion with respect to the inner product given by
(K(z,-), K(y,"))3, = K(x,y). See Aronszajn (1950) for details.

We therefore see that Reproducing Kernel Hilbert Spaces of furscbona spaceX are in
one-to-one correspondeneéth positive semidefinite kernels oX.

It can be shown that if the spaggy is sufficiently rich, that is if for any distinct point;, . . . , z,,
there is a functiorf, s.t. f(z1) = 1, f(x;) = 0,7 > 1, then the corresponding matriX;; =
K (z;,2;) is strictly positive definite. For simplicity we will sometimes assume that our RKHS are
rich (the corresponding kernels are sometimes caltedersa).
Notation: In what follows, we will use kernek’ to denote inner products and norms in the corre-
sponding Hilbert space(x, that is, we will write( , )., || ||k, instead of the more cumbersome
< ) >HK' HHK'

We proceed to endowX with a measure: (supported on all ofX). The correspondin@i
Hilbert space inner product is given by

(frg), = /X F(@)g(e)du

We can now consider the integral operaig¢ corresponding to the kernéf:

(Licf)(x) = /X @)K () dy @)

It is well-known that if X is a compact spacd, i is a compact operator and is self-adjoint with
respect toﬁi. By the Spectral Theorem, its eigenfunctiongz), es(x), ..., (scaled to normi)
form an orthonormal basis (ﬂi. The spectrum of the operator is discrete and the corresponding
eigenvalues\i, \o, ... are of finite multiplicity,lim; ., A; = 0.

We see that

(K(x,-),ei(-), = Aiei(z) (8)

9
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and therefore/(z,y) = >, ies(z)e;(y). Writing a function f in that basis, we havg =
> aiei(x) and(K(x, - ), f()>“ = . Niaiej(x).

It is not hard to show that the eigenfunctionsare inHx (e.g., see the argument below). Thus
we see that

ej(x) = (K(z, Vi = Z)\ ei(x)(ei, ej) i 9)

Therefore(e;, ej) - = 0, if ¢ # j, and(e;, ;) r = AT' On the other hande;, e;), = 0, if i # j,

and(e;, e;), = 1.

This observation establishes a simple relationship between the Hilbert norig snd LZ.
We also see thagt = > ae;(x) € Hi ifand only if ) ‘;—2 < 00.

Consider now the operatdrm. It can be defined as the only positive definite self-adjoint

operator, S.tL g :L}K/2 1/2 . Assuming that the serids (z,y) = 3, v Aiei(x)ei(y) converges,

we can write
(L2 ) (a / e (10)

12 is an isomorphism betweéti andc2 that is

Itis easy to check that
VigeMx (f.9), = (LA L0, (11)
ThereforeH i is the image oiLllK/2 acting onﬁi.

Lemma 3 A functionf(z) = >, a;e;(x) can be represented g5= L g for somey if and only if
YU < (12)

Proof Supposef = Lxg. Write g(x) = >_; bie;(z). We know thaly € L? if and only if Y, b7 <
o0. SinceLg (3", bie;) = >, bidie; = Y, a;e;, we obtaina; = b;\;. Therefored 2, Z—z < 0.
Conversely, if the condition in the inequality 12 is satisfiéds Lig, whereg = > i—el [ ]

3.2 Proof of Theorems

Now let us recall the Eqgn. 3:

f* = argmin 5 ZVx@,yz,f)+7A||f||?<+71||f||? (13)
ferk i=1

We have an RKHSH and the probability distributiom which is supported oo\t ¢ X. We
denote byS the linear space, which is the closure with respect to the RKHS noriafof the
linear span of kernels centered at points\at

S = span{K (z,-) |z € M} (14)

10
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Notation. By the subscripit we will denote the restriction td1. For example, bys,( we denote
functions inS restricted to the manifoldM. It can be shown (Aronszajn (1950), p. 350) that the
space(H ) p Of functions fromH - restricted toM is an RKHS with the kerneK »4, in other
words(Hr ) m = Hi -

Lemma 4 The following properties of hold:
1. S with the inner product induced i i is a Hilbert space.
2. Sm = (HK)m-
3. The orthogonal complemeSt- to S in Hx consists of all functions vanishing ovt.

Proof

1. From the definition of it is clear by thatS is a complete subspace Afx .

2. We give a convergence argument similar to the one found in Aronsz8p0). Since
(Hx)m = Hi,, any functionf in it can be written ag'aq = limp oo fA1,n, Where fag, =
> @inK (i, -) is @ sum of kernel functions.

Consider the corresponding suin= >, ain K (2, -). From the definition of the norm we see
that|| fr,— frllk = || fimn—Frmkl k. @nd thereford, is a Cauchy sequence. This= lim,, . f5
exists and its restriction td1 must equalf (. This shows thatH i) C Syq. The other direction
follows by a similar argument.

3. Letg € S*t. By the reproducing property for any € M, g(z) = (K(z,-),g(-))x = 0
and therefore any function i§+ vanishes onM. On the other hand, i§ vanishes onM it is
perpendicular to eacR (z, -),x € M and is therefore perpendicular to the closure of their span

|

Lemma 5 Assume that the intrinsic norm is such that for gty € Hxg, (f — g)|m = 0 implies
that| f|lr = |lg|lz- Then assuming that the solutigh of the optimization problem in Egn. 13 exists,
fres.

Proof Any f € Hx can be written ag = fs + f§, wherefs is the projection off to S andf§ is
its orthogonal complement.

For anyz € M we haveK (z,-) € S. By the previous Lemmg{é vanishes onM. We have
f(zi) = fs(z;) Vi and by assumptioftfs||r = || f|r.

On the other hand|f||% = || fs||% + || f5 |% and thereford! f|| x > || fs| k. It follows that the
minimizer f*isin S. |

As a direct corollary of these consideration, we obtain the following

Proposition 6 If || f||7 = || f||x., then the minimizer of Eqn. 13 is identical to that of the usual
regularization problem (Eqgn. 1) although with a different regularizationgpaeter @ 4 + Aj).

We can now restrict our attention to the studySofWhile it is clear that the right-hand side of
Eqgn. 4 lies inS, not every element it¥ can be written in that form. For exampl&|(z, -), wherex

11
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is not one of the data points cannot generally be written as

Z a; K (x;, /M a(y)K(z,y) du (15)

We will now assume that fof € S

IFI3 = (£.DF) s

We usually assume th#l is an appropriate smoothness penalty, such as an inverse integrabopera
or a differential operator, e.gl) f = A f. The Representer theorem, however, holds under quite
mild conditions onD:

Theorem 7 Let D be a bounded operatdD : S — L7 _. Then the solutiorf* of the optimization
problem in Egn. 3 exists and can be written

Z o K(z, /M a(y)K(z,y) dPx (y) (16)

Proof

For simplicity we will assume that the loss functidhis differentiable. This condition can
ultimately be eliminated by approximating a non-differentiable function apprefyiand passing
to the limit.

Put

!
H(F) = 73V e 1) +val A+l A1 a7)
=1
We first show that the solution to Egn.f3 exists and by Lemma 5 belongs & It follows
easily from Cor. 10 and standard results about compact embeddingbae8 spaces (e.g., Adams
(1975)) that a balB, C Hg, B, = {f € S,s.t. ||fllx < r}is compact infS. Therefore for
any such ball the minimizer in that bafl: must exist and belong t8,. On the other hand, by
substituting the zero function

1 l

H(f7) < H(O) = 7 3 V(@i i,0) (18)

=1

If the loss is actually zero, then zero function is a solution, otherwise

l
i=1

and hencgf; € B,, where

T—\/EZ 1V 74, Y;,0)

Therefore we cannot decreasq f*) by increasingr beyond a certain point, which shows that
f* = fr with r as above, which completes the proof of existencé’ i$ convex, such solution will
also be unique.

12



MANIFOLD REGULARIZATION

We proceed to derive the Eqn 16. As beforegleks, . . . be the basis associated to the integral
operator(Lg f)(x) = [, f(y)K(z,y) dPx(y). Write f* = 3, a;e;(x). By substitutingf* into
H(f)we obtaln

!
1 * *
=7 Z (25,95, D aiei(wi)) + vall £ 1% +vill 17 (20)
o : : a2
Assume thal/ is differentiable with respect to each). We have|| Y, aei ()% = >, 5. Dif-

ferentiating with respect to the coefficientsyields the following set of equations:

OH(f*)

0=
day,

I
1 a
=7 > en()0sV (x5, y5, > aie) + QVA)\*Z +y1(Df,ex) +vi(f, Dex) (21)
=1 i

whereds;V denotes the derivative with respect to the third argumenmt.of
(Df,er) + (f, Dex) = ((D + D*)f, ex) and hence

l

= gt 2 HEDY o1 £) ~ 5 DS+ D ) (22)

Sincef*(x) = >, arer(x) and recalling thaf< (z,y) = >, Aie;(z)ei(y)

(@) = L DO wer(@)er(w;) 05V (w5, y5, ) — ;TIA > MDD+ D f* ex)en
P

_ * VI * % px
= 2%[ ZK x,25)03V (5,y5, f7) — m;/\MDf + D f*, ex)ey, (23)
We see that the flrst summand is a sum of the kernel functions centeredaapaints. It re-
mains to show that the second summand has an integral representation,r.be waitten as
fM K (z,y) dPx(y), which is equivalent to being in the image bf;. To verify this we apply
Lemma 3. We need that

2 * * Lk 2

SinceD, its adjoint operatoD* and hence their sum are bounded the inequality above is satisfied
for any function inS. |

3.3 Manifold Setting?

We now show that for the case whe¥l is a manifold andD is a differential operator, such as
the Laplace-Beltrami operatdx », the boundedness condition of Theorem 7 is satisfied. While we

2. We thank Peter Constantin and Todd Dupont for help with this section.
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consider the case when the manifold has no boundary, the same arguegititirgugh for manifold
with boundary, with, for example, Dirichlet's boundary conditions (vaimighat the boundary).
Thus the setting of Theorem 7 is very general, applying, among other thingbitrary differential
operators on compact domains in Euclidean space.

Let M be aC> manifold without boundary with an infinitely differentiable embedding in some
ambient space, D a differential operator witlf> coefficients and let, be the measure corre-
sponding to somé> nowhere vanishing volume form o. We assume that the kerngl(z, y)
is also infinitely differentiablé. As before for an operatot, A* denotes the adjoint operator.

Theorem 8 Under the conditions abovP is a bounded operataf — Ei.

Proof First note that it is enough to show thatis bounded or{x,,, sinceD only depends on
the restrictionfre. As before, letLr,,(f)(z) = [\ f(y)Km(z,y) du is the integral operator
associated té&(,;. Note thatD* is also a differential operator of the same degre®as$he integral
operatorLg ,, is bounded (compact) frorﬁﬁ to any Sobolev spacH*?. Therefore the operator
L, D is also bounded. We therefore see that,, D* is bounded.?, — L. Therefore there is
aconstant’, s.t. (DLg,, D* f, f>Lg < CHfHLﬁ-

The square rodl” = L}K/i of the self-adjoint positive definite operatbi,, is a self-adjoint

positive definite operator as well. ThUBT')* = T'D*. By definition of the operator norm, for any
e > 0 there exists € L, || fl|z < 1+ ¢, such that

W

IDT7; = ITD*|[}5 < {TD*f,TD"f) s = (25)

= (DLD*f, f);5 < |DLD"||13[If 117, < C(1 +¢)

Therefore the operatdpT : LZ — Li is bounded (and alquTHLﬁ < C, sincee is arbitrary).

Now recall thatT provides an isometry betweehi and Hg,,. That means that for any
g € Mi,, thereisf € L2, suchthatl'f = gand| ||z = llgllx.,. Thus|Dgllzz = [IDTf|zz <
Cligllx .. which shows thal” : Hg,, — L? is bounded and concludes the proof. [ |

SinceS is a subspace df - the main result follows immediately:
Corollary 9 D is a bounded operataof — Li and the conditions of Theorem 7 hold.
Before finishing the theoretical discussion we obtain a useful
Corollary 10 The operatorl’ = L}K/Q on Li is a bounded (and in fact compact) operalbz —

H*°® whereH* is an arbitrary Sobolev space.

Proof Follows from the fact thaDT is bounded operatdrl% — L;% for an arbitrary differential op-
eratorD and standard results on compact embeddings of Sobolev spaces (s&dants (1975))H

3. While we have assumed that all objects are infinitely differentiable, itisaral to specify the precise differentiability
conditions. Roughly speaking, a degdedifferential operatoD is bounded as an operatifx — Li, if the kernel
K (z,y) has2k derivatives.

14
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3.4 The Representer Theorem for the Empirical Case

In the case wheoM is unknown and sampled via labeled and unlabeled examples, the Laplace-
Beltrami operator otM may be approximated by the Laplacian of the data adjacency graph (sée Belk
(2003); Bousquet et al. (2004) for some discussion). A regulabiased on the graph Laplacian
leads to the optimization problem posed in Eqn. 5. We now provide a proofi@dfEm 2 which
states that the solution to this problem admits a representation in terms of asiexparer labeled

and unlabeled points. The proof is based on a simple orthogonality arg@eentScholkopf and
Smola (2002)).

Proof (Theorem 2Any function f € Hy can be uniquely decomposed into a comporfgnn the

linear subspace spanned by the kernel functidki$z;, -)}é;”f, and a component, orthogonal to

it. Thus,
I+u

f= f||+fL—Zaz (z5,-) + fL (26)

By the reproducing property, as the following arguments show, the di@uaf f on any data
pointz;, 1 < j <1+ wis independent of the orthogonal compongnt

I+u

fla) = (f, K(x},-) Zkzxu,zm»+ULMw»> (27)

Since the second term vanishes, did(z;,-), K(x;,-)) = K(z;,z;), it follows that f(z;) =
Z”’f a; K (z;, ;). Thus, the empirical terms involving the loss function and the intrinsic norm in
the optimization problem in Egn. 5 depend only on the value of the coefficlenis " and the
gram matrix of the kernel function.

Indeed, since the orthogonal component only increases the nofrmdf i :

I4u I+u

I£1I% = HZO@ i Wi+ 1Ll > 1) aikk (@i, ) 1%

=1

It follows that the minimizer of problem 5 must haye = 0, and therefore admits a representation
£1() = S i K (i, ). u

The simple form of the minimizer, given by this theorem, allows us to translatextimsc and
intrinsic regularization framework into optimization problems over the finite dimeasispace of
coefﬂments{al}l,l, and invoke the machinery of kernel based algorithms. In the next seat@n
derive these algorithms, and explore their connections to other relatéd wor

4. Algorithms

We now discuss standard regularization algorithms (RLS and SVM) arseréheir extensions
(LapRLS and LapSVM respectively). These are obtained by solvingfiienization problems
posed in Eqgn. (5) for different choices of cost functibhand regularization parametets, ;.

To fix notation, we assume we haveéabeled example$(x;,y;)}._, andu unlabeled examples

{z; }zzﬁff We useK interchangeably to denote the kernel function or the Gram matrix.

15
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4.1 Regularized Least Squares

The Regularized Least Squares algorithm is a fully supervised methae wiessolve :

min T 3w~ £ + 1% (28)
=1

The classical Representer Theorem can be used to show that the s@utiotihe following
form:

!
fFAx) = o] K(x,2;) (29)
=1

Substituting this form in the problem above, we arrive at following convégréntiable objec-
tive function of thel-dimensional variable: = [ ... a;]7:
1
o = argmin 7(Y —~ Ka)T(Y — Ka) +ya'Ka (30)

where K is the x [ gram matrixK;; = K (z;,z;) and Y is the label vectoy = [y; ...y .
The derivative of the objective function vanishes at the minimizer :

%(Y —~Ka")'(-K) +yKa* =0
which leads to the following solution.

of = (K +~41I)7'Y (31)
4.2 Laplacian Regularized Least Squares (LapRLS)

The Laplacian Regularized Least Squares algorithm solves the optimizatibleqm in Eqn. (5)
with the squared loss function:

l
1 9 2 1 T
- ; — )+ + - Lf
f161171_2( I ;1 (yi — f(zi)) vall fll% (u+1)2

As before, the Representer Theorem can be used to show that thersadudio expansion of
kernel functions over both the labeled and the unlabeled data :

+u

fra) =) aiK(w,a;) (32)
=1

Substituting this form in the equation above, as before, we arrive at\exadtifferentiable
objective function of thé + u-dimensional variable: = [ ... a; )7

1
o = argmin — (Y — JKa)T(Y — JKa) + yaa' Ka + N __WTKLKa (33)

aeRtu (u+ l)2
where K is the(l + u) x (I + w) Gram matrix over labeled and unlabeled points; Y ifa# )
dimensional label vector given by: = [y1,...,4;,0,...,0] andJ is an(l+u) x (I 4+ u) diagonal

matrix given byJ = diag(1,...,1,0,...,0) with the first/ diagonal entries as 1 and the rest 0.
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The derivative of the objective function vanishes at the minimizer :

1 l
TO/—JdeY—JK%+WAK+X?YDQKLKﬁw:O (34)

which leads to the following solution.

1l

= (JK v
of = (JE A+l + o

LK)y (35)

Note that wheny; = 0, Egn. (35) gives zero coefficients over unlabeled data, and thiaieefs
over the labeled data are exactly those for standard RLS.
4.3 Support Vector Machine Classification

Here we outline the SVM approach to binary classification problems. For S\ following
problem is solved :

—~

min + 3701~ yif @)+l

ferr i

where the hinge loss is defined &by f (z))+ = max(0,1—yf(z)) and the labelg; € {—1,+1}.
Again, the solution is given by:

l
@)= af K (z, ;) (36)
=1
Following SVM expositions, the above problem can be equivalently written as
fEHK &

subjecttowy; f(z;)) >1-¢& i=1,...,1
&>0i=1,...,1

l
. 1
min > & +9lfl% (37)
=1

Using the Lagrange multipliers technique, and benefiting from strong duhktgbove problem

has a simpler quadratic dual program in the Lagrange multipiiets[3y, ..., 3] € R:
: 1
*x . = aAaT
G %;@ 5878 (38)
l
subject to Z v =0
=1
1 .
og@gjz:LHJ
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where the equality constraint arises due to an unregularized bias teris dffi@n added to the sum
in Egn. (36), and the following notation is used :

Y = diag(y17y27"'ayl)
K
0 - y<>y
2y
*
W Y8 (39)
2y

Here again, K is the gram matrix over labeled points. SVM practitioners magrbiidir with
a slightly different parameterization involving ttie parameter :C = z%z is the weight on the
hinge loss term (instead of using a weighon the norm term in the optimization problem). T@e
parameter appears as the upper bound (insteé;()l of the values ofs in the quadratic program.
For additional details on the derivation and alternative formulations of S\8s Scholkopf and
Smola (2002), Rifkin (2002).

4.4 Laplacian Support Vector Machines

By including the intrinsic smoothness penalty term, we can extend SVMs by gahenfollowing
problem:

l

min + (- yif () +all 7l + (7L (40)
=1

(+D
By the representer theorem,as before, the solution to the problem abdveridy:
I+u

= alK(z, ;) (41)

Often in SVM formulations, an unregularized bias tens added to the above form. Again,
the primal problem can be easily seen to be the following:

l
; 1 T I T
— ] K ——a KLK 42
aeRgllltI,lgeRl [ ; Si+qaa” Ka+ (u+ l)za @ (42)
I+u
subject to yl(ZOéjK(IEZ,x])+b) >1-&, i=1,...,1
j=1

>0 i=1,...,1

Introducing the Lagrangian, with;, ¢; as Lagrange multipliers:

L(e,&,b,6,0) = lZéﬁ —aT (24K + 22 _KLK)a (43)

(+ U)
I+u

*Zﬁz Yi Za] xl,x] er *1+§z ZC@&
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Passing to the dual requires the following steps:

I
oL
o, =0 = ;ﬁiyi—o (44)
oL 1
67&-—0 = j_ﬁi_gi—o

1
— Ogﬁigj

Using above identities, we formulate a reduced Lagrangian:

(&, ¢; are non-negative)

l I4+u

1 g
LRa,p) = EaT(Q’yAK+2(u _}'Il)2KLK)Oz—Zﬁi(yizaj[{(xiaxj)_1)
i=1 j=1
l
_ 17 v Ty 7T ,
= o (27AK+2(U+Z)2KLK)04 o' KJ Yﬁ+;ﬁz (45)

whereJ = [I 0] is anl x (I + u) matrix with I as thel x [ identity matrix (assuming the first |
points are labeled) and = diag(y1, y2, ..., y1)-
Taking derivative of the reduced Lagrangian with respeet:to

OL% VI T
— =29 K+2—-KLK)a—-KJ'Y
O (2yaK + (u+1)2 o YD
This implies:
VI —1 7T~/ g*
= (2val + 2 LK Y 46
o= (2al + 2L L)Y S (46)

Note that the relationship betweenand S is no longer as simple as the SVM algorithm. In
particular, thgl 4+ u) expansion coefficients are obtained by solving a linear system involving the
dual variables that will appear in the SVM dual problem.

Substituting back in the reduced Lagrangian we get:

l

* . 1 T
g = 2%;@—26 QB (47)
!
subject to : Z Biyi = 0
1=1
1.
OSIBZ'S*Z: ,...,l (48)

where

V1 _
Q=YJK((2val + 27)2LK) Lty

(l4+u
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Laplacian SVMs can be implemented by using a standard SVM solver with thiaticaform
induced by the above matrix, and using the solution to obtain the expansifficieoés by solving
the linear system in Eqn. (46).

Note that wheny; = 0, the SVM QP and Eqgns. (47,46), give zero expansion coefficients ove
the unlabeled data. The expansion coefficients over the labeled dataea@drtfatrix are as in
standard SVM, in this case.

The Manifold Regularization algorithms are summarized in the Table 1.

Table 1: A Summary of the algorithms
] | Manifold Regularization algorithms \
Input: | {labeled example§(z;, v;)}_;, u unlabeled examplege; ?;7“
Output: | Estimated functioryf : R — R

Step 1 | » Construct data adjacency graph with+ «) nodes using, e.g,
k nearest neighbors or a graph kernel. Choose edge wdights
e.g. binary weights or heat kernel weighits; = ¢~ llzi—ill*/4t,
Step 2 | » Choose a kernel functioK (z,y). Compute the Gram matrix
Kij = K(l‘l, xj).

Step 3 | » Compute graph Laplacian matrix: = D — W whereD is a
diagonal matrix given by;; = 3/ W,

Step 4 | » Choosey, and~;.

Step 5 | » Computea™ using Eqgn. (35) for squared loss (Laplacian RLS)
or using Eqgns. (47,46) together with the SVM QP solver for soft
margin loss (Laplacian SVM).

Step 6 | » Output functionf*(z) = "% o K (24, ).

Efficiency Issues:ltis worth noting that our algorithms compute the inverse of a dense Gram matrix
which leads taD((I + u)3) complexity. This may be impractical for large datasets. In the case of
linear kernels, instead of using Eqn. 6, we can directly wfiter) = w” x and solve for the weight
vectorw using a primal optimization method. This is much more efficient when the data is low-
dimensional. For highly sparse datasets, e.g. in text categorization prold&#etdive conjugate
gradient schemes can be utilized in a large scale implementation, as outlined lnv&mdkt al.
(2006). For the non-linear case, one may obtain approximate solutionsi$ég greedy, matching
pursuit techniques) where the optimization problem is solved over the $@asnoall set of basis
functions instead of using the full representation in Eqn. 6. We note tliesgidns for future work.

In section 5, we evaluate the empirical performance of our algorithms wiitt eganputations as
outlined in Table 1 with non-linear kernels. For other recent work addrgsscalability issues in
semi-supervised learning, see, e.g., Tsang and Kwok. (2005); Benhaio(2004).

4.5 Related Work and Connections to Other Algorithms

In this section we survey various approaches to semi-supervised asdurtive learning and high-
light connections of Manifold Regularization to other algorithms.
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Transductive SVM (TSVM) (Vapnik, 1998; Joachims, 1999): TSVMs are based on theviello
ing optimization principle :

l I+u
f*= argmin C) (1—yif (i) +C7 3 (L= wif @)+ + 11k (49)
EHk i=1 i=l+1

Yi+15---Yi+u

which proposes a joint optimization of the SVM objective function over binaiyed labels on
the unlabeled data and functions in the RKHS. Héfg'* are parameters that control the relative
hinge-loss over labeled and unlabeled sets. The joint optimization is implemendeddchims
(1999) by first using an inductive SVM to label the unlabeled data anditdetively solving SVM
gquadratic programs, at each step switching labels to improve the objeativioin. However this
procedure is susceptible to local minima and requires an unknown, poksiigynumber of label
switches before converging. Note that even though TSVM were inspyréhnsductive inference,
they do provide an out-of-sample extension.

Semi-Supervised SVMgS*VM) (Bennett and Demiriz, 1999; Fung and Mangasarian, 2001):
S*VM incorporate unlabeled data by including the minimum hinge-loss for the tveices of
labels for each unlabeled example. This is formulated as a mixed-integeaprdor linear SVMs
in Bennett and Demiriz (1999) and is found to be intractable for large amodintsiabeled data.
Fung and Mangasarian (2001) reformulate this approach as a cangawgization problem which
is solved by a successive linear approximation algorithm. The presentédtibase algorithms is
restricted to the linear case.

Measure-Based Regularization(Bousquet et al., 2004): The conceptual framework of this
work is closest to our approach. The authors consider a gradiead begularizer that penalizes
variations of the function more in high density regions and less in low dengjtyrre leading to the
following optimization principle:

l

£* = argmin S V(£ (1), 1) + 7 / (VF(x), VF(@))p(x)de (50)
JeF 1 X

1=
wherep is the density of the marginal distributidPy. The authors observe that it is not straight-
forward to find a kernel for arbitrary densitipswhose associated RKHS norm is

/ (Vf(2), Vf(2))p(x)da

Thus, in the absence of a representer theorem, the authors proposdaienpminimization of
the regularized loss on a fixed set of basis functions chosen apriofk; ke{>"7 ; «;¢;}. For the
hinge loss, this paper derives an SVM quadratic program in the coeffidie; } ., whose matrix
is calculated by computing’ integrals over gradients of the basis functions. However the algorithm
does not demonstrate performance improvements in real world experittésitlso worth noting
that while Bousquet et al. (2004) use the gradi€if{z) in the ambient space, we use the gradient
over a submanifold’ »( f for penalizing the function. In a situation where the data truly lies on
or near a submanifold\, the difference between these two penalizers can be significant since
smoothness in the normal direction to the data manifold is irrelevant to classificatiegression.
Graph Based ApproachesSee, e.g., Blum and Chawla (2001); Chapelle et al. (2003); Szum-
mer and Jaakkola (2002); Zhou et al. (2004); Zhu et al. (2003,)26@5np et al. (2004); Joachims
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(2003); Belkin and Niyogi (2003a): A variety of graph based methade theen proposed for trans-
ductive inference. However, these methods do not provide an adrofle extension. In Zhu et al.
(2003), nearest neighbor labeling for test examples is proposeciotaigeled examples have been
labeled by transductive learning. In Chapelle et al. (2003), test pomeggproximately represented
as a linear combination of training and unlabeled points in the feature spamethdy the kernel.
For Graph Regularization and Label Propagation see (Smola and K@i®; Belkin et al., 2004;
Zhu et al., 2003). Smola and Kondor (2003) discusses the construdteicanonical family of
graph regularizers based on the graph Laplacian. Zhu et al. (288&nis a non-parametric con-
struction of graph regularizers.

Manifold regularization provides natural out-of-sample extensions terakgraph based ap-
proaches. These connections are summarized in Table 2.

We also note the recent work Delalleau et al. (2005) on out-of-samplesaies for semi-
supervised learning where an induction formula is derived by assumibghihaddition of a test
point to the graph does not change the transductive solution over tHeeledadata.

Cotraining (Blum and Mitchell, 1998): The Co-training algorithm was developed to iategr
abundance of unlabeled data with availability of multiple sources of informatiaoimains like
web-page classification. Weak learners are trained on labeled examplékear predictions on
subsets of unlabeled examples are used to mutually expand the training getthalothis set-
ting may not be applicable in several cases of practical interest wherda®s not have access to
multiple information sources.

Bayesian TechniquesSee e.g., Nigam et al. (2000); Seeger (2001); Corduneanu arkblmaak
(2003). An early application of semi-supervised learning to Text claatific appeared in Nigam
et al. (2000) where a combination of EM algorithm and Naive-Bayesifilztton is proposed to
incorporate unlabeled data. Seeger (2001) provides a detailed avarfvBayesian frameworks
for semi-supervised learning. The recent work in Corduneanu aaidckdia (2003) formulates a
new information-theoretic principle to develop a regularizer for condititowglikelihood.

Table 2: Connections of Manifold Regularization to other algorithms
] Parameters \ Corresponding algorithms (square loss or hinge Iq)ss)
v4 >0 7 >0 | Manifold Regularization
v4 >0 vy =0 | Standard Regularization (RLS or SVM)
va4 — 0 ~7 > 0 | Out-of-sample extension for Graph Regularization

(RLS or SVM)
v4 — 0 v — 0 | Out-of-sample extension for Label Propagation
Y > YA (RLS or SVM)

v4 — 0 v =0 | Hard margin SVM or Interpolated RLS

5. Experiments

We performed experiments on a synthetic dataset and three real wosdlificédsn problems arising
in visual and speech recognition, and text categorization. Comparisenmaade with inductive
methods (SVM, RLS). We also compare Laplacian SVM with Transductivid .SAI software and
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datasets used for these experiments will be made available at:
http://www.cs.uchicago.edutikass/manifoldregularization.html

For further experimental benchmark studies and comparisons with nusnetteer methods, we
refer the reader to Chapelle et al. (2006); Sindhwani et al. (20@@%)20

5.1 Synthetic Data : Two Moons Dataset

The two moons dataset is shown in Figure 2. The dataset coltdirexamples with onlyt labeled
example for each class. Also shown are the decision surfaces of lapl8¥M for increasing
values of the intrinsic regularization parameter When~; = 0, Laplacian SVM disregards unla-
beled data and returns the SVM decision boundary which is fixed by thitdoa# the two labeled
points. Asy; is increased, the intrinsic regularizer incorporates unlabeled data asésctine deci-
sion surface to appropriately adjust according to the geometry of the taseda

In Figure 3, the best decision surfaces across a wide range of parasatings are also shown
for SVM, Transductive SVM and Laplacian SVM. Figure 3 demonstrates TiSVM fails to find
the optimal solution, probably since it gets stuck in a local minimum. The Lapladidhdcision
boundary seems to be intuitively most satisfying.

Figure 2: Laplacian SVM with RBF Kernels for various valuesygf Labeled points are shown in
color, other points are unlabeled.
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5.2 Handwritten Digit Recognition

In this set of experiments we applied Laplacian SVM and Laplacian RLSitigws to45 binary
classification problems that arise in pairwise classification of handwritten digiis first400 im-
ages for each digit in the USPS training set (preprocessed using PIOA tiimensions) were taken
to form the training set. The remaining images formed the test set. 2 imagesfocleas were
randomly labeled (12) and the rest were left unlabeled @$8). Following Scholkopf et al. (1995),
we chose to train classifiers with polynomial kernels of degree 3, andesetdight on the regular-
ization term for inductive methods g% = 0.05(C' = 10). For manifold regularization, we chose
to split the same weight in the ratio: 9 so thatyal = 0.005, —2%, = 0.045. The observations

e : . . (ut)? —
reported in this section hold consistently across a wide choice of parameters
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Figure 3: Two Moons Dataset: Best decision surfaces using RBF IkeioreSVM, TSVM and
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Laplacian SVM. Labeled points are shown in color, other points are uelbe
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In Figure 4, we compare the error rates of manifold regularization algorjthndactive clas-
sifiers and TSVM, at the break-even points in the precision-recallesuior the 45 binary classi-
fication problems. These results are averaged over 10 random clobildseled examples. The
following comments can be made: (a) Manifold regularization results in signifiogprovements
over inductive classification, for both RLS and SVM, and either compaedisor significantly out-
performs TSVM across the 45 classification problems. Note that TSVM sofnagtiple quadratic
programs in the size of the labeled and unlabeled sets whereas LapS\éd aalwgle QP (Eqgn. 47)
in the size of the labeled set, followed by a linear system (Eqgn. 46). Thitedsn substantially
faster training times for LapSVM in this experiment. (b) Scatter plots of perdoice on test and
unlabeled data sets, in the bottom row of Figure 4, confirm that the owtrople extension is good
for both LapRLS and LapSVM. (c) As shown, in the rightmost scatter plahébottom row of
Figure 4, are standard deviation of error rates obtained by Laplaciadh & TSVM. We found
Laplacian algorithms to be significantly more stable than the inductive methodESwid, with
respect to choice of the labeled data

In Figure 5, we demonstrate the benefit of unlabeled data as a functiom mdithber of labeled
examples.

Table 3: USPS: one-versus-rest multiclass error rates

Method
Error

SVM
23.6

TSVM
26.5

LapSVM
12.7

RLS
23.6

LapRLS
12.7

We also performed one-vs-rest multiclass experiments on the USPS testisét= 50 and
u = 1957 with 10 random splits as provided by Chapelle and Zien (2005). The mean atesr r
in predicting labels of unlabeled data are reported in Table 3. In this expatif8VM actually
performs worse than the SVM baseline probably since local minima problecosnigesevere in a
one-vs-rest setting. For several other experimental observatiahscamparisons on this dataset,
see Sindhwani et al. (2005).
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Figure 4: USPS Experiment - (Top row) Error Rates at Precision{RBmak-even points for 45
binary classification problems. (Bottom row) Scatter plots of error ratéssirand unla-
beled data for Laplacian RLS, Laplacian SVM; and standard deviationstieers of
Laplacian SVM and TSVM.
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Figure 5: USPS Experiment - Mean Error Rate at Precision-RecalkBreen points as a function
of number of labeled points (T: Test Set, U: Unlabeled Set)
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5.3 Spoken Letter Recognition

This experiment was performed on the Isolet database of letters of tHislicatphabet spoken in
isolation (available from the UCI machine learning repository). The datacsgains utterances of
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150 subjects who spoke the name of each letter of the English alphabet twicesp&hkers are
grouped intds sets 0f30 speakers each, referred to as isoletl through isolet5. For the panpiose
this experiment, we chose to train on the f88tspeakers (isoletl) forming a training set1a60
examples, and test on isolet5 containiig9 examples (1 utterance is missing in the database due
to poor recording). We considered the task of classifying thefiy$etters of the English alphabet
from the lastl3. We considered0 binary classification problems correspondingtosplits of the
training data where all2 utterances of one speaker were labeled and all the rest were lefeledab
The test set is composed of entirely new speakers, forming the separageigplets.

RLS vs LapRLS SVM vs TSVM vs LapSVM
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Figure 6: Isolet Experiment - Error Rates at precision-recall bexa points of 30 binary classi-
fication problems

We chose to train with RBF kernels of width = 10 (this was the best value among several
settings with respect t6-fold cross-validation error rates for the fully supervised problemgisin
standard SVM). For SVM and RLS we set = 0.05 (C' = 10) (this was the best value among
several settings with respect to mean error rates ovethplits). For Laplacian RLS and Laplacian
SVM we setyyl = W%)Q = 0.005.

In Figure 6, we compare these algorithms. The following comments can be fadepSVM
and LapRLS make significant performance improvements over inductiveodetnd TSVM, for
predictions on unlabeled speakers that come from the same group aseleel Ispeaker, over all
choices of the labeled speaker. (b) On Isolet5 which comprises of aasemaoup of speakers,
performance improvements are smaller but consistent over the choicelabtted speaker. This
can be expected since there appears to be a systematic bias that affatgerétims, in favor
of same-group speakers. To test this hypothesis, we performed aeafferiment in which the
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Figure 7: Isolet Experiment - Error Rates at precision-recall besag points on Test set Versus
Unlabeled Set. In Experiment 1, the training data comes from Isolet 1 artdghdata
comes from Isolet5; in Experiment 2, both training and test sets come fadatls

training and test utterances are both drawn from Isoletl. Here, thadetierance of each letter
for each of the 30 speakers in Isoletl was taken away to form the te=irgaining 780 examples.
The training set consisted of the first utterances for each letter. Asdhefe considered 30 binary
classification problems arising when all utterances of one speaker @ledadnd other training

speakers are left unlabeled. The scatter plots in Figure 7 confirm gathgsis, and show high
correlation between in-sample and out-of-sample performance of ouithtge in this experiment.

It is encouraging to note performance improvements with unlabeled data eribgnt 1 where the

test data comes from a slightly different distribution. This robustness is désirable in real-world

applications.

Table 4: Isolet: one-versus-rest multiclass error rates

Method SVM | TSVM | LapSVM || RLS | LapRLS
Error (unlabeled) 28.6 | 46.6 24.5 28.3| 24.1
Error (test) 36.9 | 433 33.7 36.3| 333

In Table 4 we report mean error rates over the 30 splits from onestR6eclass experiments
on this dataset. The parameters were held fixed as in the 2-class settingailliree ¢f TSVM
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in producing reasonable results on this dataset has also been obsedeadhims (2003). With
LapSVM and LapRLS we obtain arouBdo 4% improvement over their supervised counterparts.

5.4 Text Categorization

We performed Text Categorization experiments on the WebKB dataset whmndists of 1051 web
pages collected from Computer Science department web-sites of varimessities. The task is
to classify these web pages into two categoriesurseor non-course We considered learning
classifiers using only textual content of the web pages, ignoring linkrmdtion. A bag-of-word
vector space representation for documents is built using the the top 3006 {skipping HTML
headers) having highest mutual information with the class variable, follwy&dFIDF mapping.
Feature vectors are normalized to unit length. 9 documents were foundht@mircmone of these
words and were removed from the dataset.
For the first experiment, we ran LapRLS and LapSVM in a transductiismgewith 12 ran-
domly labeled examples (3 course and 9 non-course) and the restledlalreTable 4, we report
the precision and error rates at the precision-recall break-evehau@raged over 100 realizations
of the data, and include results reported in Joachims (2003) for Sp€ctaph Transduction, and
the Cotraining algorithm (Blum and Mitchell, 1998) for comparison. We useddarest neigh-
bor graphs, weighted by cosine distances and used iterated Laplatidegree 3. For inductive
methods;y4! was set td).01 for RLS and1.00 for SVM. For LapRLS and LapSVMy4 was set
as in inductive methods, witlg)le)2 = 100y4I. These parameters were chosen based on a simple
grid search for best performance over the first 5 realizations of ttae Haear Kernels and cosine
distances were used since these have found wide-spread applicatiextiassification problems,
e.g., in (Dumais et al., 1998).

Table 5: Precision and Error Rates at the Precision-Recall Breakfwimts of supervised and
transductive algorithms.

| Method | PRBEP | Eror |
k-NN Joachims (2003) 73.2 13.3
SGT Joachims (2003) 86.2 6.2
Naive-Bayes Blum and Mitchell (1998) — 12.9
Cotraining Blum and Mitchell (1998) — 6.20

SVM 76.39 (5.6)[ 10.41 (2.5)

TSVM® 88.15 (1.0)| 5.22(0.5)

LapSVM 87.73 (2.3)| 5.41(1.0)

RLS 73.49 (6.2)| 11.68 (2.7)

LapRLS 86.37 (3.1)| 5.99 (1.4)

Since the exact datasets on which these algorithms were run, somewhairdifreprocess-
ing, preparation and experimental protocol, these results are only mesuggest that Manifold

4. TFIDF stands for Term Frequency Inverse Document Frequétris a common document preprocessing procedure,
which combines the number of occurrences of a given term with the euaflilocuments containing it.
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Figure 8: WebKb Text Classification Experiment : The top panel pregemtermance in terms of
precision-recall break-even points (PRBEP) of RLS,SVM,LaplaciaB BRhd Laplacian
SVM as a function of number of labeled examples, on Test (marked ag @pddJnla-
beled set (marked as U and of size 779-number of labeled exampleshoftben panel
presents performance curves of Laplacian SVM for different nurobenlabeled points.

Regularization algorithms perform similar to state-of-the-art methods fosdrantive inference in
text classification problems. The following comments can be made: (a) Trethsglcategorization
with LapSVM and LapRLS leads to significant improvements over inductivegogtstion with
SVM and RLS. (b) Joachims (2003) repotk4% precision-recall breakeven point, ané% er-
ror rate for TSVM. Results for TSVM reported in the table were obtainednue ran the TSVM
implementation using SVM-Light software on this particular dataset. The g@draining time
for TSVM was found to be more than 10 times slower than for LapSVM (c) Cheraining re-
sults were obtained on unseen test datasets utilizing additional hyperlimknetion, which was
excluded in our experiments. This additional information is known to improviopeance, as
demonstrated in Joachims (2003) and Blum and Mitchell (1998).

In the next experiment, we randomly split the WebKB data into a test set ax288ples and a
training set of 779 examples. We noted the performance of inductivesamigssipervised classifiers
on unlabeled and test sets as a function of the number of labeled examplegraining set. The
performance measure is the precision-recall break-even point (PRRBizeraged over 100 random
data splits. Results are presented in the top panel of Figure 8. The ldnefiabeled data can be
seen by comparing the performance curves of inductive and semivssgrclassifiers.
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We also performed experiments with different sizes of the training setirgeapandomly cho-
sen test set of 263 examples. The bottom panel in Figure 8 presentsalitg giitransduction and
semi-supervised learning with Laplacian SVM (Laplacian RLS performed sigjilas a function
of the number of labeled examples for different amounts of unlabeled @&tdind that transduc-
tion improves with increasing unlabeled data. We expect this to be true fosdgeperformance
as well, but do not observe this consistently possibly since we use a fexedd parameters that
become suboptimal as unlabeled data is increased. The optimal choice ejtitezrization param-
eters depends on the amount of labeled and unlabeled data, and shauldisied by the model
selection protocol accordingly.

6. Unsupervised and Fully Supervised Cases

While the previous discussion concentrated on the semi-superviseduagamework covers both
unsupervised and fully supervised cases as well. We briefly discassreturn.

6.1 Unsupervised Learning: Clustering and Data Representation

In the unsupervised case one is given a collection of unlabeled data peints, x,,. Our basic
algorithmic framework embodied in the optimization problem in Egn. 3 has three:t€infi to
labeled data, (ii) extrinsic regularization and (iii) intrinsic regularization. &inc labeled data is
available, the first term does not arise anymore. Therefore we amitfthe following optimiza-
tion problem:

min yallfl% + 2l FI17 (51)
feHK

Of course, only the ratig = 77? matters. As beforg f||2 can be approximated using the unlabeled

data. Choosindf|7 = [,,(V.af,Vaef) and approximating it by the empirical Laplacian, we
are left with the following optimization problem:

= argmin | fl% + D (f(z:) — flx;)? (52)
> f(l'i)zfoe% i f(z)?=1 i~j
K

Note that to avoid degenerate solutions we need to impose some additiongiocen@f. Belkin
and Niyogi (2003b)). It turns out that a version of Representerdmatill holds showing that the
solution to Eqn. 52 admits a representation of the form

f* = Z O[Z'K(Ii, . )
i=1

By substituting back in Egn. 52, we come up with the following optimization problem:

o= argmin || f|[F + ) (F(i) = f(27))° (53)
1T Ka=0 inj
aTK2a=1
wherel is the vector of all ones andl = (o, .. ., «,) and K is the corresponding Gram matrix.

Letting P be the projection onto the subspaceéRforthogonal toK 1, one obtains the solution
for the constrained quadratic problem, which is given by the generaligedwalue problem

P(vK + KLK)Pv = A\PK’?Pv (54)
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The final solution is given byw = Pv, wherev is the eigenvector corresponding to the smallest
eigenvalue.

Figure 9: Two Moons Dataset: Regularized Clustering
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Figure 10: Two Spirals Dataset: Regularized Clustering
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Remark 1: The framework for clustering sketched above provides a way of dagglarized
spectral clustering, whergcontrols the smoothness of the resulting function in the ambient space.
We also obtain a natural out-of-sample extension for clustering points tio¢ iariginal data set.
Figures 9,10 show results of this method on two two-dimensional clusterirgepns. Unlike
recent work (Bengio et al., 2004; Brand, 2003) on out-of-samplensidas, our method is based
on a Representer theorem for RKHS.

Remark 2: By taking multiple eigenvectors of the system in Eqn. 54 we obtain a naturdhreged
out-of-sample extension of Laplacian Eigenmaps. This leads to hew methakhfensionality
reduction and data representation. Further study of this approach isctiatirof future research.
We note that a similar algorithm has been independently proposed in Velaanadnishi (2005)
in the context of supervised graph inference. A relevant discussiasaspresented in Ham et al.
(2005) on the interpretation of several geometric dimensionality reductidmitpees as kernel
methods.
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6.2 Fully Supervised Learning

The fully supervised case represents the other end of the spectruraroinlg  Since standard
supervised algorithms (SVM and RLS) are special cases of manifoltaregation, our framework
is also able to deal with a labeled dataset containing no unlabeled examptigorally, manifold
regularization can augment supervised learning with intrinsic regularizgiimssibly in a class-
dependent manner, which suggests the following algorithm :

l
F* = argmin T S V@i, )+ 1all f% +

reme Ui
N er VI eT
f-L.f f-L_f 55

Here we introduce two intrinsic regularization parametﬁ’rsfyl‘ and regularize separately for the
two classes fy, f_ are the vectors of evaluations of the functippand ..., L._ are the graph
Laplacians, on positive and negative examples respectively. The sotattbe above problem for

+
RLS and SVM can be obtained by replacing. by the block-diagonal matri{ 1 OL+ 7‘0L )
T L_

in the manifold regularization formulas given in Section 4.
Detailed experimental study of this approach to supervised learning istdtitfire work.

7. Conclusions and Further Directions

We have a provided a novel framework for data-dependent geometyidarization. It is based
on a new Representer theorem that provides a basis for severathatgofor unsupervised, semi-
supervised and fully supervised learning. This framework brings tegédkeas from the theory of
regularization in Reproducing Kernel Hilbert spaces, manifold learniigspectral methods.

There are several directions of future research:
1. Convergence and generalization error: The crucial issue of dependence of generalization
error on the number of labeled and unlabeled examples is still very poadlgrstood. Some very
preliminary steps in that direction have been taken in Belkin et al. (2004).

2. Model selection: Model selection involves choosing appropriate values for the extringlc an
intrinsic regularization parameters. We do not as yet have a good tewldirsy of how to choose
these parameters. More systematic procedures need to be developed.

3. Efficient algorithms: The naive implementations of our algorithms have cubic complexity in
the number of labeled and unlabeled examples, which is restrictive fordaede real-world appli-
cations. Scalability issues need to be addressed.

4. Additional structure: In this paper we have shown how to incorporate the geometric structure
of the marginal distribution into the regularization framework. We believe thafitamework will
extend to other structures that may constrain the learning task and bringedteztive learnability.

One important example of such structure is invariance under certain €lafssatural transforma-
tions, such as invariance under lighting conditions in vision. Some ideasemerned in Sindhwani
(2004).
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