
Journal of Machine Learning Research 1 (2006) 1-48 Submitted 4/00; Published 10/00

Manifold Regularization: A Geometric Framework for Learning from
Labeled and Unlabeled Examples

Mikhail Belkin MBELKIN @CSE.OHIO-STATE.EDU

Department of Computer Science and Engineering
The Ohio State University
2015 Neil Avenue, Dreese Labs 597
Columbus, OH 43210, USA

Partha Niyogi NIYOGI@CS.UCHICAGO.EDU

Departments of Computer Science and Statistics
University of Chicago
1100 E. 58th Street
Chicago, IL 60637, USA

Vikas Sindhwani VIKASS@CS.UCHICAGO.EDU

Department of Computer Science
University of Chicago
1100 E. 58th Street
Chicago, IL 60637, USA

Editor: Peter Bartlett

Abstract
We propose a family of learning algorithms based on a new formof regularization that allows us

to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework
that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph
learning algorithms and standard methods including Support Vector Machines and Regularized
Least Squares can be obtained as special cases. We utilize properties of Reproducing Kernel Hilbert
spaces to prove new Representer theorems that provide theoretical basis for the algorithms. As a
result (in contrast to purely graph-based approaches) we obtain a natural out-of-sample extension
to novel examples and so are able to handle both transductiveand truly semi-supervised settings.
We present experimental evidence suggesting that our semi-supervised algorithms are able to use
unlabeled data effectively. Finally we have a brief discussion of unsupervised and fully supervised
learning within our general framework.

1. Introduction

In this paper, we introduce a framework for data-dependent regularization that exploits the geometry
of the probability distribution. While this framework allows us to approach the full range of learning
problems from unsupervised to supervised (discussed in Sections 6.1 and 6.2 respectively), we focus
on the problem of semi-supervised learning.

The problem of learning from labeled and unlabeled data (semi-supervisedand transductive
learning) has attracted considerable attention in recent years. Some recently proposed methods
include Transductive SVM (Vapnik, 1998; Joachims, 1999), Cotraining(Blum and Mitchell, 1998),
and a variety of graph based methods (Blum and Chawla, 2001; Chapelle et al., 2003; Szummer
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and Jaakkola, 2002; Kondor and Lafferty, 2002; Smola and Kondor,2003; Zhou et al., 2004; Zhu
et al., 2003, 2005; Kemp et al., 2004; Joachims, 1999; Belkin and Niyogi, 2003a). We also note
the regularization based techniques of Corduneanu and Jaakkola (2003) and Bousquet et al. (2004).
The latter reference is closest in spirit to the intuitions of our paper. We postpone the discussion of
related algorithms and various connections until Section 4.5.

The idea of regularization has a rich mathematical history going back to Tikhonov (1963), where
it is used for solving ill-posed inverse problems. Regularization is a key ideain the theory of splines
(e.g., Wahba (1990)) and is widely used in machine learning (e.g., Evgeniouet al. (2000)). Many
machine learning algorithms, including Support Vector Machines, can be interpreted as instances of
regularization.

Our framework exploits the geometry of the probability distribution that generates the data and
incorporates it as an additional regularization term. Hence, there are two regularization terms —
one controlling the complexity of the classifier in theambient spaceand the other controlling the
complexity as measured by thegeometryof the distribution. We consider in some detail the special
case where this probability distribution is supported on a submanifold of the ambient space.

The points below highlight several aspects of the current paper:

1. Our general framework brings together three distinct concepts that have received some inde-
pendent recent attention in machine learning:
i. The first of these is the technology ofspectral graph theory(e.g., see Chung (1997)) that has
been applied to a wide range of clustering and classification tasks over the last two decades.
Such methods typically reduce to certain eigenvalue problems.
ii. The second is the geometric point of view embodied in a class of algorithms thatcan be
termed asmanifold learning1. These methods attempt to use the geometry of the probability
distribution by assuming that its support has the geometric structure of a Riemannian mani-
fold.
iii. The third important conceptual framework is the set of ideas surrounding regularization
in Reproducing Kernel Hilbert Spaces (RKHS). This leads to the class ofkernel based algo-
rithmsfor classification and regression (e.g., see Scholkopf and Smola (2002); Wahba (1990);
Evgeniou et al. (2000)).

We show how these ideas can be brought together in a coherent and natural way to incorporate
geometric structure in a kernel based regularization framework. As far as we know, these
ideas have not been unified in a similar fashion before.

2. This general framework allows us to develop algorithms spanning the range from unsuper-
vised to fully supervised learning.

In this paper we primarily focus on the semi-supervised setting and presenttwo families of
algorithms: the Laplacian Regularized Least Squares (hereafter LapRLS) and the Laplacian
Support Vector Machines (hereafter LapSVM). These are natural extensions of RLS and SVM
respectively. In addition, several recently proposed transductive methods (e.g., Zhu et al.
(2003); Belkin and Niyogi (2003a)) are also seen to be special casesof this general approach.

In the absence of labeled examples our framework results in new algorithms for unsupervised
learning, which can be used both for data representation and clustering.These algorithms are
related to Spectral Clustering and Laplacian Eigenmaps (Belkin and Niyogi, 2003b).

1. seehttp://www.cse.msu.edu/∼lawhiu/manifold/ for a list of references
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3. We elaborate on the RKHS foundations of our algorithms and show how geometric knowledge
of the probability distribution may be incorporated in such a setting through an additional
regularization penalty. In particular, a new Representer theorem provides a functional form of
the solution when the distribution is known; its empirical version involves an expansion over
labeled and unlabeled points when the distribution is unknown. These Representer theorems
provide the basis for our algorithms.

4. Our framework with an ambiently defined RKHS and the associated Representer theorems
result in a natural out-of-sample extension from the data set (labeled andunlabeled) to novel
examples. This is in contrast to the variety of purely graph based approaches that have been
considered in the last few years. Such graph based approaches work in a transductive setting
and do not naturally extend to the semi-supervised case where novel testexamples need to
be classified (predicted). Also see Bengio et al. (2004); Brand (2003) for some recent related
work on out-of-sample extensions. We also note that a method similar to our regularized spec-
tral clustering algorithm has been independently proposed in the context of graph inference
in Vert and Yamanishi (2005).

The work presented here is based on the University of Chicago Technical Report TR-2004-05, a
short version in the Proceedings of AI & Statistics 2005, Belkin et al. (2005) and Sindhwani (2004).

1.1 The Significance of Semi-Supervised Learning

From an engineering standpoint, it is clear that collecting labeled data is generally more involved
than collecting unlabeled data. As a result, an approach to pattern recognition that is able to make
better use of unlabeled data to improve recognition performance is of potentially great practical
significance.

However, the significance of semi-supervised learning extends beyondpurely utilitarian consid-
erations. Arguably, most natural (human or animal) learning occurs in the semi-supervised regime.
We live in a world where we are constantly exposed to a stream of natural stimuli. These stimuli
comprise the unlabeled data that we have easy access to. For example, in phonological acquisi-
tion contexts, a child is exposed to many acoustic utterances. These utterances do not come with
identifiable phonological markers. Corrective feedback is the main source of directly labeled ex-
amples. In many cases, a small amount of feedback is sufficient to allow the child to master the
acoustic-to-phonetic mapping of any language.

The ability of humans to learn unsupervised concepts (e.g. learning clusters and categories of
objects) suggests that unlabeled data can be usefully processed to learnnatural invariances, to form
categories, and to develop classifiers. In most pattern recognition tasks,humans have access only
to a small number of labeled examples. Therefore the success of human learning in this “small
sample” regime is plausibly due to effective utilization of the large amounts of unlabeled data to
extract information that is useful for generalization.

Consequently, if we are to make progress in understanding how natural learning comes about,
we need to think about the basis of semi-supervised learning. Figure 1 illustrates how unlabeled
examples may force us to restructure our hypotheses during learning. Imagine a situation where one
is given two labeled examples — one positive and one negative — as shown inthe left panel. If one
is to induce a classifier on the basis of this, a natural choice would seem to bethe linear separator as
shown. Indeed, a variety of theoretical formalisms (Bayesian paradigms,Regularization, Minimum
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Figure 1: Unlabeled Data and Prior Beliefs

Description Length or Structural Risk Minimization principles, and the like) have been constructed
to rationalize such a choice. In most of these formalisms, one structures the set of one’s hypothesis
functions by a prior notion of simplicity and one may then justify why the linear separator is the
simplest structure consistent with the data.

Now consider the situation where one is given additional unlabeled examplesas shown in the
right panel. We argue that it is self-evident that in the light of this new unlabeled set, one must
re-evaluate one’s prior notion of simplicity. The particular geometric structure of the marginal
distribution suggests that the most natural classifier is now the circular one indicated in the right
panel. Thus the geometry of the marginal distribution must be incorporated in our regularization
principle to impose structure on the space of functions in nonparametric classification or regression.
This is the intuition we formalize in the rest of the paper. The success of our approach depends on
whether we can extract structure from the marginal distribution, and on theextent to which such
structure may reveal the underlying truth.

1.2 Outline of the Paper

The paper is organized as follows: in Sec. 2, we develop the basic framework for semi-supervised
learning where we ultimately formulate an objective function that can utilize both labeled and unla-
beled data. The framework is developed in an RKHS setting and we state two kinds of Representer
theorems describing the functional form of the solutions. In Sec. 3, we elaborate on the theoretical
underpinnings of this framework and prove the Representer theorems ofSec. 2. While the Repre-
senter theorem for the finite sample case can be proved using standard orthogonality arguments, the
Representer theorem for the known marginal distribution requires more subtle considerations. In
Sec. 4, we derive the different algorithms for semi-supervised learningthat arise out of our frame-
work. Connections to related algorithms are stated. In Sec. 5, we describeexperiments that evaluate
the algorithms and demonstrate the usefulness of unlabeled data. In Sec. 6,we consider the cases
of fully supervised and unsupervised learning. In Sec. 7 we concludethis paper.
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2. The Semi-Supervised Learning Framework

2.1 Background

Recall the standard framework of learning from examples. There is a probability distributionP on
X × R according to which examples are generated for function learning. Labeled examples are
(x, y) pairs generated according toP . Unlabeled examples are simplyx ∈ X drawn according to
the marginal distributionPX of P .

One might hope that knowledge of the marginalPX can be exploited for better function learning
(e.g. in classification or regression tasks). Of course, if there is no identifiable relation betweenPX

and the conditionalP(y|x), the knowledge ofPX is unlikely to be of much use.
Therefore, we will make a specific assumption about the connection between the marginal and

the conditional distributions. We will assume that if two pointsx1, x2 ∈ X areclosein the intrinsic
geometry ofPX , then the conditional distributionsP(y|x1) andP(y|x2) are similar. In other words,
the conditional probability distributionP(y|x) varies smoothly along the geodesics in the intrinsic
geometry ofPX .

We utilize these geometric intuitions to extend an established framework for function learning.
A number of popular algorithms such as SVM, Ridge regression, splines, Radial Basis Functions
may be broadly interpreted as regularization algorithms with different empirical cost functions and
complexity measures in an appropriately chosen Reproducing Kernel Hilbert Space (RKHS).

For a Mercer kernelK : X × X → R, there is an associated RKHSHK of functionsX → R

with the corresponding norm‖ ‖K . Given a set of labeled examples(xi, yi), i = 1, . . . , l the
standard framework estimates an unknown function by minimizing

f∗ = argmin
f∈HK

1

l

l
∑

i=1

V (xi, yi, f) + γ‖f‖2
K (1)

whereV is some loss function, such as squared loss(yi − f(xi))
2 for RLS or the hinge loss func-

tion max [0, 1 − yif(xi)] for SVM. Penalizing the RKHS norm imposes smoothness conditions on
possible solutions. The classical Representer Theorem states that the solution to this minimization
problem exists inHK and can be written as

f∗(x) =
l

∑

i=1

αiK(xi, x) (2)

Therefore, the problem is reduced to optimizing over the finite dimensional space of coefficients
αi, which is the algorithmic basis for SVM, Regularized Least Squares and other regression and
classification schemes.

We first consider the case when the marginal distribution is already known.

2.2 Marginal PX is known

Our goal is to extend this framework by incorporating additional information about the geometric
structure of the marginalPX . We would like to ensure that the solution is smooth with respect to
both the ambient space and the marginal distributionPX . To achieve that, we introduce an additional
regularizer:

f∗ = argmin
f∈HK

1

l

l
∑

i=1

V (xi, yi, f) + γA‖f‖2
K + γI‖f‖2

I (3)
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where‖f‖2
I is an appropriate penalty term that should reflect the intrinsic structure ofPX . Intu-

itively, ‖f‖2
I is a smoothness penalty corresponding to the probability distribution. For example, if

the probability distribution is supported on a low-dimensional manifold,‖f‖2
I may penalizef along

that manifold.γA controls the complexity of the function in theambientspace whileγI controls
the complexity of the function in theintrinsic geometry ofPX . It turns out that one can derive an
explicit functional form for the solutionf∗ as shown in the following theorem.

Theorem 1 Assume that the penalty term‖f‖I is sufficiently smooth with respect to the RKHS norm
‖f‖K (see Section 3.2 for the exact statement). Then the solutionf∗ to the optimization problem in
Eqn. 3 above exists and admits the following representation

f∗(x) =
l

∑

i=1

αiK(xi, x) +

∫

M
α(z)K(x, z) dPX(z) (4)

whereM = supp{PX} is the support of the marginalPX .

We postpone the proof and the formulation of smoothness conditions on the norm ‖ ‖I until the next
section.

The Representer Theorem above allows us to express the solutionf∗ directly in terms of the
labeled data, the (ambient) kernelK, and the marginalPX . If PX is unknown, we see that the
solution may be expressed in terms of an empirical estimate ofPX . Depending on the nature
of this estimate, different approximations to the solution may be developed. In the next section,
we consider a particular approximation scheme that leads to a simple algorithmic framework for
learning from labeled and unlabeled data.

2.3 Marginal PX Unknown

In most applications the marginalPX is not known. Therefore we must attempt to get empirical
estimates ofPX and‖ ‖I . Note that in order to get such empirical estimates it is sufficient to have
unlabeledexamples.

A case of particular recent interest (e.g., see Roweis and Saul (2000); Tenenbaum et al. (2000);
Belkin and Niyogi (2003b); Donoho and Grimes (2003); Coifman et al. (2005) for a discussion
on dimensionality reduction) is when the support ofPX is a compact submanifoldM ⊂ R

n. In
that case, one natural choice for‖f‖I is

∫

x∈M ‖∇Mf‖2 dPX(x), where∇M is thegradient(see,
e.g., Do Carmo (1992) for an introduction to differential geometry) off along the manifoldM and
the integral is taken over the marginal distribution.

The optimization problem becomes

f∗ = argmin
f∈HK

1

l

l
∑

i=1

V (xi, yi, f) + γA‖f‖2
K + γI

∫

x∈M
‖∇Mf‖2 dPX(x)

The term
∫

x∈M ‖∇Mf‖2 dPX(x) may be approximated on the basis of labeled and unlabeled data
using the graph Laplacian associated to the data. While an extended discussion of these issues goes
beyond the scope of this paper, it can be shown that under certain conditions choosing exponential
weights for the adjacency graph leads to convergence of the graph Laplacian to the Laplace-Beltrami
operator∆M (or its weighted version) on the manifold. See the Remarks below and (Belkin,2003;
Lafon, 2004; Belkin and Niyogi, 2005; Coifman and Lafon, 2005; Hein et al., 2005) for details.
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Thus, given a set ofl labeled examples{(xi, yi)}l
i=1 and a set ofu unlabeled examples{xj}j=l+u

j=l+1 ,
we consider the following optimization problem :

f∗ = argmin
f∈HK

1

l

l
∑

i=1

V (xi, yi, f) + γA‖f‖2
K +

γI

(u + l)2

l+u
∑

i,j=1

(f(xi) − f(xj))
2Wij

= argmin
f∈HK

1

l

l
∑

i=1

V (xi, yi, f) + γA‖f‖2
K +

γI

(u + l)2
f
T Lf (5)

whereWij are edge weights in the data adjacency graph,f = [f(x1), . . . , f(xl+u)]T , andL is
the graph Laplacian given byL = D − W . Here, the diagonal matrix D is given byDii =
∑l+u

j=1 Wij . The normalizing coefficient 1
(u+l)2

is the natural scale factor for the empirical estimate

of the Laplace operator. We note than on a sparse adjacency graph it maybe replaced by
∑l+u

i,j=1 Wij .
The following version of the Representer Theorem shows that the minimizer has an expansion

in terms of both labeled and unlabeled examples and is a key to our algorithms.

Theorem 2 The minimizer of optimization problem 5 admits an expansion

f∗(x) =

l+u
∑

i=1

αiK(xi, x) (6)

in terms of the labeled and unlabeled examples.

The proof is a variation of the standard orthogonality argument and is presented in Section 3.4.

Remark 1: Several natural choices of‖ ‖I exist. Some examples are:

1. Iterated Laplacians(∆M)k. Differential operators(∆M)k and their linear combinations pro-
vide a natural family of smoothness penalties.

Recall that the Laplace-Beltrami operator∆M can be defined as the divergence of the gradient
vector field∆Mf = div(∇Mf) and is characterized by the equality

∫

x∈M
f(x)∆Mf(x)dµ =

∫

x∈M
‖∇Mf(x)‖2 dµ

whereµ is the standard measure (uniform distribution) on the Riemannian manifold. Ifµ

is taken to be non-uniform, then the corresponding notion is the weighted Laplace-Beltrami
operator (e.g., Grigor’yan (2006)).

2. Heat semigroupe−t∆M is a family of smoothing operators corresponding to the process of
diffusion (Brownian motion) on the manifold. One can take‖f‖2

I =
∫

M f et∆M(f)dPX . We
note that for small values oft the corresponding Green’s function (the heat kernel ofM),
which is close to a Gaussian in the geodesic coordinates, can also be approximated by a sharp
Gaussian in the ambient space.

3. Squared norm of the Hessian (cf. Donoho and Grimes (2003)). Whilethe HessianH(f)
(the matrix of second derivatives off ) generally depends on the coordinate system, it can
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be shown that the Frobenius norm (the sum of squared eigenvalues) ofH is the same in
any geodesic coordinate system and hence is invariantly defined for a Riemannian manifold
M. Using the Frobenius norm ofH as a regularizer presents an intriguing generalization of
thin-plate splines. We also note that∆M(f) = tr(H(f)).

Remark 2: Why not just use the intrinsic regularizer? Using ambient and intrinsic regularizers
jointly is important for the following reasons:

1. We do not usually have access toM or the true underlying marginal distribution, just to data
points sampled from it. Therefore regularization with respect only to the sampled manifold is
ill-posed. By including an ambient term, the problem becomes well-posed.

2. There may be situations when regularization with respect to the ambient space yields a better
solution, e.g., when the manifold assumption does not hold (or holds to a lesserdegree).
Being able to trade off these two regularizers may be important in practice.

Remark 3: While we use the graph Laplacian for simplicity, thenormalized Laplacian

L̃ = D−1/2LD−1/2

can be used interchangeably in all our formulas. UsingL̃ instead ofL provides certain theoretical
guarantees (see von Luxburg et al. (2004)) and seems to perform aswell or better in many practical
tasks. In fact, we usẽL in all our empirical studies in Section 5. The relation ofL̃ to the weighted
Laplace-Beltrami operator was discussed in Lafon (2004).

Remark 4: Note that a global kernelK restricted toM (denoted byKM) is also a kernel defined
onM with an associated RKHSHM of functionsM → R. While this might suggest

‖f‖I = ‖fM‖KM

(fM is f restricted toM) as a reasonable choice for‖f‖I , it turns out, that for the minimizerf∗

of the corresponding optimization problem we get‖f∗‖I = ‖f∗‖K , yielding the same solution as
standard regularization, although with a different parameterγ. This observation follows from the
restriction properties of RKHS discussed in the next section and is formally stated as Proposition 6.
Therefore it is impossible to have an out-of-sample extension without twodifferentmeasures of
smoothness. On the other hand, a different ambient kernel restricted toM can potentially serve
as the intrinsic regularization term. For example, a sharp Gaussian kernel can be used as an ap-
proximation to the heat kernel onM. Thus one (sharper) kernel may be used in conjunction with
unlabeled data to estimate the heat kernel onM and a wider kernel for inference.

3. Theoretical Underpinnings and Results

In this section we briefly review the theory of Reproducing Kernel Hilbert Spaces and their con-
nection to integral operators. We proceed to establish the Representer theorems from the previous
section.

3.1 General Theory of RKHS

We start by recalling some basic properties of Reproducing Kernel Hilbert Spaces (see the original
work Aronszajn (1950) and also Cucker and Smale (2002) for a nice discussion in the context
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of learning theory) and their connections to integral operators. We say that a Hilbert spaceH of
functionsX → R has thereproducing property, if ∀x ∈ X the evaluation functionalf → f(x) is
continuous. For the purposes of this discussion we will assume thatX is compact. By the Riesz
representation theorem it follows that for a givenx ∈ X, there is a functionhx ∈ H, s.t.

∀f ∈ H 〈hx, f〉H = f(x)

We can therefore define the correspondingkernel function

K(x, y) = 〈hx, hy〉H

It follows that hx(y) = 〈hx, hy〉H = K(x, y) and thus〈K(x, ·), f〉 = f(x). It is clear that
K(x, ·) ∈ H.

It is easy to see thatK(x, y) is a positive semi-definite kernel as defined below:
Definition: We say thatK(x, y), satisfyingK(x, y) = K(y, x), is a positive semi-definite kernel
if given an arbitrary finite set of pointsx1, . . . , xn, the correspondingn × n matrix K with Kij =
K(xi, xj) is positive semi-definite.

Importantly, the converse is also true. Any positive semi-definite kernelK(x, y) gives rise
to an RKHSHK , which can be constructed by considering the space of finite linear combina-
tions of kernels

∑

αiK(xi, ·) and taking completion with respect to the inner product given by
〈K(x, ·), K(y, ·)〉HK

= K(x, y). See Aronszajn (1950) for details.
We therefore see that Reproducing Kernel Hilbert Spaces of functions on a spaceX are in

one-to-one correspondencewith positive semidefinite kernels onX.
It can be shown that if the spaceHK is sufficiently rich, that is if for any distinct pointx1, . . . , xn

there is a functionf , s.t. f(x1) = 1, f(xi) = 0, i > 1, then the corresponding matrixKij =
K(xi, xj) is strictly positive definite. For simplicity we will sometimes assume that our RKHS are
rich (the corresponding kernels are sometimes calleduniversal).
Notation: In what follows, we will use kernelK to denote inner products and norms in the corre-
sponding Hilbert spaceHK , that is, we will write〈 , 〉K , ‖ ‖K , instead of the more cumbersome
〈 , 〉HK

, ‖ ‖HK
.

We proceed to endowX with a measureµ (supported on all ofX). The correspondingL2
µ

Hilbert space inner product is given by

〈f, g〉µ =

∫

X
f(x)g(x)dµ

We can now consider the integral operatorLK corresponding to the kernelK:

(LKf)(x) =

∫

X
f(y)K(x, y) dµ (7)

It is well-known that ifX is a compact space,LK is a compact operator and is self-adjoint with
respect toL2

µ. By the Spectral Theorem, its eigenfunctionse1(x), e2(x), . . ., (scaled to norm1)
form an orthonormal basis ofL2

µ. The spectrum of the operator is discrete and the corresponding
eigenvaluesλ1, λ2, . . . are of finite multiplicity,limi→∞ λi = 0.

We see that
〈K(x, · ), ei(·)〉µ = λiei(x) (8)

9
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and thereforeK(x, y) =
∑

i λiei(x)ei(y). Writing a functionf in that basis, we havef =
∑

aiei(x) and〈K(x, · ), f(·)〉µ =
∑

i λiaiei(x).
It is not hard to show that the eigenfunctionsei are inHK (e.g., see the argument below). Thus

we see that
ej(x) = 〈K(x, ·), ej(·)〉K =

∑

i

λiei(x)〈ei, ej〉K (9)

Therefore〈ei, ej〉K = 0, if i 6= j, and〈ei, ei〉K = 1
λi

. On the other hand〈ei, ej〉µ = 0, if i 6= j,
and〈ei, ei〉µ = 1.

This observation establishes a simple relationship between the Hilbert norms inHK andL2
µ.

We also see thatf =
∑

aiei(x) ∈ HK if and only if
∑ a2

i

λi
< ∞.

Consider now the operatorL1/2
K . It can be defined as the only positive definite self-adjoint

operator, s.t.LK = L
1/2
K ◦L

1/2
K . Assuming that the series̃K(x, y) =

∑

i

√
λiei(x)ei(y) converges,

we can write

(L
1/2
K f)(x) =

∫

X
f(y)K̃(x, y) dµ (10)

It is easy to check thatL1/2
K is an isomorphism betweenH andL2

µ, that is

∀f, g ∈ HK 〈f, g〉µ = 〈L1/2
K f, L

1/2
K g〉K (11)

ThereforeHK is the image ofL1/2
K acting onL2

µ.

Lemma 3 A functionf(x) =
∑

i aiei(x) can be represented asf = LKg for someg if and only if

∞
∑

i=1

a2
i

λ2
i

< ∞ (12)

Proof Supposef = LKg. Write g(x) =
∑

i biei(x). We know thatg ∈ L2
µ if and only if

∑

i b
2
i <

∞. SinceLK(
∑

i biei) =
∑

i biλiei =
∑

i aiei, we obtainai = biλi. Therefore
∑∞

i=1
a2

i

λ2
i

< ∞.

Conversely, if the condition in the inequality 12 is satisfied,f = Lkg, whereg =
∑ ai

λi
ei.

3.2 Proof of Theorems

Now let us recall the Eqn. 3:

f∗ = argmin
f∈HK

1

l

l
∑

i=1

V (xi, yi, f) + γA‖f‖2
K + γI‖f‖2

I (13)

We have an RKHSHK and the probability distributionµ which is supported onM ⊂ X. We
denote byS the linear space, which is the closure with respect to the RKHS norm ofHK , of the
linear span of kernels centered at points ofM:

S = span{K(x, ·) |x ∈ M} (14)

10
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Notation. By the subscriptM we will denote the restriction toM. For example, bySM we denote
functions inS restricted to the manifoldM. It can be shown (Aronszajn (1950), p. 350) that the
space(HK)M of functions fromHK restricted toM is an RKHS with the kernelKM, in other
words(HK)M = HKM

.

Lemma 4 The following properties ofS hold:

1. S with the inner product induced byHK is a Hilbert space.

2. SM = (HK)M.

3. The orthogonal complementS⊥ to S in HK consists of all functions vanishing onM.

Proof
1. From the definition ofS it is clear by thatS is a complete subspace ofHK .
2. We give a convergence argument similar to the one found in Aronszajn (1950). Since

(HK)M = HKM
any functionfM in it can be written asfM = limn→∞ fM,n, wherefM,n =

∑

i αinKM(xin, ·) is a sum of kernel functions.
Consider the corresponding sumfn =

∑

i αinK(xin, ·). From the definition of the norm we see
that‖fn−fk‖K = ‖fM,n−fM,k‖KM

and thereforefn is a Cauchy sequence. Thusf = limn→∞ fn

exists and its restriction toM must equalfM. This shows that(HK)M ⊂ SM. The other direction
follows by a similar argument.

3. Let g ∈ S⊥. By the reproducing property for anyx ∈ M, g(x) = 〈K(x, ·), g(·)〉K = 0
and therefore any function inS⊥ vanishes onM. On the other hand, ifg vanishes onM it is
perpendicular to eachK(x, ·), x ∈ M and is therefore perpendicular to the closure of their spanS.

Lemma 5 Assume that the intrinsic norm is such that for anyf, g ∈ HK , (f − g)|M ≡ 0 implies
that‖f‖I = ‖g‖I . Then assuming that the solutionf∗ of the optimization problem in Eqn. 13 exists,
f∗ ∈ S.

Proof Any f ∈ HK can be written asf = fS + f⊥
S , wherefS is the projection off to S andf⊥

S is
its orthogonal complement.

For anyx ∈ M we haveK(x, ·) ∈ S. By the previous Lemmaf⊥
S vanishes onM. We have

f(xi) = fS(xi) ∀i and by assumption‖fS‖I = ‖f‖I .
On the other hand,‖f‖2

K = ‖fS‖2
K + ‖f⊥

S ‖2
K and therefore‖f‖K ≥ ‖fS‖K . It follows that the

minimizerf∗ is in S.

As a direct corollary of these consideration, we obtain the following

Proposition 6 If ‖f‖I = ‖f‖KM
then the minimizer of Eqn. 13 is identical to that of the usual

regularization problem (Eqn. 1) although with a different regularization parameter (λA + λI ).

We can now restrict our attention to the study ofS. While it is clear that the right-hand side of
Eqn. 4 lies inS, not every element inS can be written in that form. For example,K(x, ·), wherex

11
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is not one of the data pointsxi cannot generally be written as

l
∑

i=1

αiK(xi, x) +

∫

M
α(y)K(x, y) dµ (15)

We will now assume that forf ∈ S

‖f‖2
I = 〈f, Df〉L2

µ

We usually assume thatD is an appropriate smoothness penalty, such as an inverse integral operator
or a differential operator, e.g.,Df = ∆Mf . The Representer theorem, however, holds under quite
mild conditions onD:

Theorem 7 LetD be a bounded operatorD : S → L2
PX

. Then the solutionf∗ of the optimization
problem in Eqn. 3 exists and can be written

f∗(x) =
l

∑

i=1

αiK(xi, x) +

∫

M
α(y)K(x, y) dPX(y) (16)

Proof
For simplicity we will assume that the loss functionV is differentiable. This condition can

ultimately be eliminated by approximating a non-differentiable function appropriately and passing
to the limit.

Put

H(f) =
1

l

l
∑

i=1

V (xi, yi, f(xi)) + γA‖f‖2
K + γI‖f‖2

I (17)

We first show that the solution to Eqn. 3f∗ exists and by Lemma 5 belongs toS. It follows
easily from Cor. 10 and standard results about compact embeddings of Sobolev spaces (e.g., Adams
(1975)) that a ballBr ⊂ HK , Br = {f ∈ S, s.t. ‖f‖K ≤ r} is compact inL∞

X . Therefore for
any such ball the minimizer in that ballf∗

r must exist and belong toBr. On the other hand, by
substituting the zero function

H(f∗
r ) ≤ H(0) =

1

l

l
∑

i=1

V (xi, yi, 0) (18)

If the loss is actually zero, then zero function is a solution, otherwise

γA‖f∗
r ‖2

K <

l
∑

i=1

V (xi, yi, 0) (19)

and hencef∗
r ∈ Br, where

r =

√

∑l
i=1 V (xi, yi, 0)

γA

Therefore we cannot decreaseH(f∗) by increasingr beyond a certain point, which shows that
f∗ = f∗

r with r as above, which completes the proof of existence. IfV is convex, such solution will
also be unique.

12
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We proceed to derive the Eqn. 16. As before, lete1, e2, . . . be the basis associated to the integral
operator(LKf)(x) =

∫

M f(y)K(x, y) dPX(y). Write f∗ =
∑

i aiei(x). By substitutingf∗ into
H(f) we obtain:

H(f∗) =
1

l

l
∑

j=1

V (xj , yj ,
∑

i

aiei(xi)) + γA‖f∗‖2
K + γI‖f∗‖2

I (20)

Assume thatV is differentiable with respect to eachak. We have‖∑

i aiei(x)‖2
K =

∑

i
a2

i

λi
. Dif-

ferentiating with respect to the coefficientsai yields the following set of equations:

0 =
∂H(f∗)

∂ak
=

1

l

l
∑

j=1

ek(xj)∂3V (xj , yj ,
∑

i

aiei) + 2γA
ak

λk
+ γI〈Df, ek〉 + γI〈f, Dek〉 (21)

where∂3V denotes the derivative with respect to the third argument ofV .
〈Df, ek〉 + 〈f, Dek〉 = 〈(D + D∗)f, ek〉 and hence

ak = − λk

2γAl

l
∑

j=1

ek(xj)∂3V (xj , yj , f
∗) − γI

2γA
λk〈Df∗ + D∗f∗, ek〉 (22)

Sincef∗(x) =
∑

k akek(x) and recalling thatK(x, y) =
∑

i λiei(x)ei(y)

f∗(x) = − 1

2γAl

∑

k

l
∑

j=1

λkek(x)ek(xj)∂3V (xj , yj , f
∗) − γI

2γA

∑

k

λk〈Df∗ + D∗f∗, ek〉ek

= − 1

2γAl

l
∑

j=1

K(x, xj)∂3V (xj , yj , f
∗) − γI

2γA

∑

k

λk〈Df∗ + D∗f∗, ek〉ek (23)

We see that the first summand is a sum of the kernel functions centered at data points. It re-
mains to show that the second summand has an integral representation, i.e. can be written as
∫

M α(y)K(x, y) dPX(y), which is equivalent to being in the image ofLK . To verify this we apply
Lemma 3. We need that

∑

k

λ2
k〈Df∗ + D∗f∗, ek〉2

λ2
k

=
∑

k

〈Df∗ + D∗f∗, ek〉2 < ∞ (24)

SinceD, its adjoint operatorD∗ and hence their sum are bounded the inequality above is satisfied
for any function inS.

3.3 Manifold Setting2

We now show that for the case whenM is a manifold andD is a differential operator, such as
the Laplace-Beltrami operator∆M, the boundedness condition of Theorem 7 is satisfied. While we

2. We thank Peter Constantin and Todd Dupont for help with this section.
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consider the case when the manifold has no boundary, the same argument goes through for manifold
with boundary, with, for example, Dirichlet’s boundary conditions (vanishing at the boundary).
Thus the setting of Theorem 7 is very general, applying, among other things, to arbitrary differential
operators on compact domains in Euclidean space.

LetM be aC∞ manifold without boundary with an infinitely differentiable embedding in some
ambient spaceX, D a differential operator withC∞ coefficients and letµ, be the measure corre-
sponding to someC∞ nowhere vanishing volume form onM. We assume that the kernelK(x, y)
is also infinitely differentiable.3 As before for an operatorA, A∗ denotes the adjoint operator.

Theorem 8 Under the conditions aboveD is a bounded operatorS → L2
µ.

Proof First note that it is enough to show thatD is bounded onHKM
, sinceD only depends on

the restrictionfM. As before, letLKM
(f)(x) =

∫

M f(y)KM(x, y) dµ is the integral operator
associated toKM . Note thatD∗ is also a differential operator of the same degree asD. The integral
operatorLKM

is bounded (compact) fromL2
µ to any Sobolev spaceHsob. Therefore the operator

LKM
D is also bounded. We therefore see thatDLKM

D∗ is boundedL2
µ → L2

µ. Therefore there is
a constantC, s.t.〈DLKM

D∗f, f〉L2
µ
≤ C‖f‖L2

µ
.

The square rootT = L
1/2
KM

of the self-adjoint positive definite operatorLKM
is a self-adjoint

positive definite operator as well. Thus(DT )∗ = TD∗. By definition of the operator norm, for any
ǫ > 0 there existsf ∈ L2

µ, ‖f‖L2
µ
≤ 1 + ǫ, such that

‖DT‖2
L2

µ
= ‖TD∗‖2

L2
µ
≤ 〈TD∗f, TD∗f〉L2

µ
= (25)

= 〈DLD∗f, f〉L2
µ
≤ ‖DLD∗‖L2

µ
‖f‖2

L2
µ
≤ C(1 + ǫ)2

Therefore the operatorDT : L2
µ → L2

µ is bounded (and also‖DT‖L2
µ
≤ C, sinceǫ is arbitrary).

Now recall thatT provides an isometry betweenL2
µ and HKM

. That means that for any
g ∈ HKM

there isf ∈ L2
µ, such thatTf = g and‖f‖L2

µ
= ‖g‖KM

. Thus‖Dg‖L2
µ

= ‖DTf‖L2
µ
≤

C‖g‖KM
, which shows thatT : HKM

→ L2
µ is bounded and concludes the proof.

SinceS is a subspace ofHK the main result follows immediately:

Corollary 9 D is a bounded operatorS → L2
µ and the conditions of Theorem 7 hold.

Before finishing the theoretical discussion we obtain a useful

Corollary 10 The operatorT = L
1/2
K on L2

µ is a bounded (and in fact compact) operatorL2
µ →

Hsob, whereHsob is an arbitrary Sobolev space.

Proof Follows from the fact thatDT is bounded operatorL2
µ → L2

µ for an arbitrary differential op-
eratorD and standard results on compact embeddings of Sobolev spaces (see e.g., Adams (1975)).

3. While we have assumed that all objects are infinitely differentiable, it is not hard to specify the precise differentiability
conditions. Roughly speaking, a degreek differential operatorD is bounded as an operatorHK → L2

µ, if the kernel
K(x, y) has2k derivatives.
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3.4 The Representer Theorem for the Empirical Case

In the case whenM is unknown and sampled via labeled and unlabeled examples, the Laplace-
Beltrami operator onMmay be approximated by the Laplacian of the data adjacency graph (see Belkin
(2003); Bousquet et al. (2004) for some discussion). A regularizerbased on the graph Laplacian
leads to the optimization problem posed in Eqn. 5. We now provide a proof of Theorem 2 which
states that the solution to this problem admits a representation in terms of an expansion over labeled
and unlabeled points. The proof is based on a simple orthogonality argument(e.g., Scholkopf and
Smola (2002)).
Proof (Theorem 2)Any functionf ∈ HK can be uniquely decomposed into a componentf|| in the

linear subspace spanned by the kernel functions{K(xi, ·)}l+u
i=1 , and a componentf⊥ orthogonal to

it. Thus,

f = f|| + f⊥ =
l+u
∑

i=1

αiK(xi, ·) + f⊥ (26)

By the reproducing property, as the following arguments show, the evaluation of f on any data
pointxj , 1 ≤ j ≤ l + u is independent of the orthogonal componentf⊥ :

f(xj) = 〈f, K(xj , ·)〉 = 〈
l+u
∑

i=1

αiK(xi, ·), K(xj , ·)〉 + 〈f⊥, K(xj , ·)〉 (27)

Since the second term vanishes, and〈K(xi, ·), K(xj , ·)〉 = K(xi, xj), it follows that f(xj) =
∑l+u

i=1 αiK(xi, xj). Thus, the empirical terms involving the loss function and the intrinsic norm in
the optimization problem in Eqn. 5 depend only on the value of the coefficients{αi}l+u

i=1 and the
gram matrix of the kernel function.

Indeed, since the orthogonal component only increases the norm off in HK :

‖f‖2
K = ‖

l+u
∑

i=1

αiK(xi, ·)‖2
K + ‖f⊥‖2

K ≥ ‖
l+u
∑

i=1

αiK(xi, ·)‖2
K

It follows that the minimizer of problem 5 must havef⊥ = 0, and therefore admits a representation
f∗(·) =

∑l+u
i=1 αiK(xi, ·).

The simple form of the minimizer, given by this theorem, allows us to translate our extrinsic and
intrinsic regularization framework into optimization problems over the finite dimensional space of
coefficients{αi}l+u

i=1 , and invoke the machinery of kernel based algorithms. In the next section, we
derive these algorithms, and explore their connections to other related work.

4. Algorithms

We now discuss standard regularization algorithms (RLS and SVM) and present their extensions
(LapRLS and LapSVM respectively). These are obtained by solving theoptimization problems
posed in Eqn. (5) for different choices of cost functionV and regularization parametersγA, γI .
To fix notation, we assume we havel labeled examples{(xi, yi)}l

i=1 andu unlabeled examples
{xj}j=l+u

j=l+1 . We useK interchangeably to denote the kernel function or the Gram matrix.
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4.1 Regularized Least Squares

The Regularized Least Squares algorithm is a fully supervised method where we solve :

min
f∈HK

1

l

l
∑

i=1

(yi − f(xi))
2 + γ‖f‖2

K (28)

The classical Representer Theorem can be used to show that the solutionis of the following
form:

f⋆(x) =
l

∑

i=1

α⋆
i K(x, xi) (29)

Substituting this form in the problem above, we arrive at following convex differentiable objec-
tive function of thel-dimensional variableα = [α1 . . . αl]

T :

α∗ = argmin
1

l
(Y − Kα)T (Y − Kα) + γαT Kα (30)

where K is thel × l gram matrixKij = K(xi, xj) and Y is the label vectorY = [y1 . . . yl]
T .

The derivative of the objective function vanishes at the minimizer :

1

l
(Y − Kα∗)T (−K) + γKα∗ = 0

which leads to the following solution.

α∗ = (K + γlI)−1Y (31)

4.2 Laplacian Regularized Least Squares (LapRLS)

The Laplacian Regularized Least Squares algorithm solves the optimization problem in Eqn. (5)
with the squared loss function:

min
f∈HK

1

l

l
∑

i=1

(yi − f(xi))
2 + γA‖f‖2

K +
γI

(u + l)2
f
T Lf

As before, the Representer Theorem can be used to show that the solution is an expansion of
kernel functions over both the labeled and the unlabeled data :

f⋆(x) =
l+u
∑

i=1

α⋆
i K(x, xi) (32)

Substituting this form in the equation above, as before, we arrive at a convex differentiable
objective function of thel + u-dimensional variableα = [α1 . . . αl+u]T :

α∗ = argmin
α∈Rl+u

1

l
(Y − JKα)T (Y − JKα) + γAαT Kα +

γI

(u + l)2
αT KLKα (33)

where K is the(l + u) × (l + u) Gram matrix over labeled and unlabeled points; Y is an(l + u)
dimensional label vector given by :Y = [y1, . . . , yl, 0, . . . , 0] andJ is an(l +u)× (l +u) diagonal
matrix given byJ = diag(1, . . . , 1, 0, . . . , 0) with the firstl diagonal entries as 1 and the rest 0.
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The derivative of the objective function vanishes at the minimizer :

1

l
(Y − JKα)T (−JK) + (γAK +

γI l

(u + l)2
KLK)α = 0 (34)

which leads to the following solution.

α∗ = (JK + γAlI +
γI l

(u + l)2
LK)−1Y (35)

Note that whenγI = 0, Eqn. (35) gives zero coefficients over unlabeled data, and the coefficients
over the labeled data are exactly those for standard RLS.

4.3 Support Vector Machine Classification

Here we outline the SVM approach to binary classification problems. For SVMs, the following
problem is solved :

min
f∈HK

1

l

l
∑

i=1

(1 − yif(xi))+ + γ‖f‖2
K

where the hinge loss is defined as:(1−yf(x))+ = max(0, 1−yf(x)) and the labelsyi ∈ {−1, +1}.
Again, the solution is given by:

f⋆(x) =
l

∑

i=1

α⋆
i K(x, xi) (36)

Following SVM expositions, the above problem can be equivalently written as:

min
f∈HK ,ξi∈R

1

l

l
∑

i=1

ξi + γ‖f‖2
K (37)

subject to :yif(xi) ≥ 1 − ξi i = 1, . . . , l

ξi ≥ 0 i = 1, . . . , l

Using the Lagrange multipliers technique, and benefiting from strong duality,the above problem
has a simpler quadratic dual program in the Lagrange multipliersβ = [β1, . . . , βl]

T ∈ R
l:

β⋆ = max
β∈Rl

l
∑

i=1

βi −
1

2
βT Qβ (38)

subject to :
l

∑

i=1

yiβi = 0

0 ≤ βi ≤
1

l
i = 1, . . . , l

17
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where the equality constraint arises due to an unregularized bias term thatis often added to the sum
in Eqn. (36), and the following notation is used :

Y = diag(y1, y2, ..., yl)

Q = Y

(

K

2γ

)

Y

α⋆ =
Y β⋆

2γ
(39)

Here again, K is the gram matrix over labeled points. SVM practitioners may be familiar with
a slightly different parameterization involving theC parameter :C = 1

2γl is the weight on the
hinge loss term (instead of using a weightγ on the norm term in the optimization problem). TheC

parameter appears as the upper bound (instead of1
l ) on the values ofβ in the quadratic program.

For additional details on the derivation and alternative formulations of SVMs, see Scholkopf and
Smola (2002), Rifkin (2002).

4.4 Laplacian Support Vector Machines

By including the intrinsic smoothness penalty term, we can extend SVMs by solving the following
problem:

min
f∈HK

1

l

l
∑

i=1

(1 − yif(xi))+ + γA‖f‖2
K +

γI

(u + l)2
f
T Lf (40)

By the representer theorem,as before, the solution to the problem above is given by:

f⋆(x) =
l+u
∑

i=1

α⋆
i K(x, xi) (41)

Often in SVM formulations, an unregularized bias termb is added to the above form. Again,
the primal problem can be easily seen to be the following:

min
α∈Rl+u,ξ∈Rl

1

l

l
∑

i=1

ξi + γAαT Kα +
γI

(u + l)2
αT KLKα (42)

subject to :yi(
l+u
∑

j=1

αjK(xi, xj) + b) ≥ 1 − ξi, i = 1, . . . , l

ξi ≥ 0 i = 1, . . . , l

Introducing the Lagrangian, withβi, ζi as Lagrange multipliers:

L(α, ξ, b, β, ζ) =
1

l

l
∑

i=1

ξi +
1

2
αT (2γAK + 2

γA

(l + u)2
KLK)α (43)

−
l

∑

i=1

βi(yi(
l+u
∑

j=1

αjK(xi, xj) + b) − 1 + ξi) −
l

∑

i=1

ζiξi
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Passing to the dual requires the following steps:

∂L

∂b
= 0 =⇒

l
∑

i=1

βiyi = 0 (44)

∂L

∂ξi
= 0 =⇒ 1

l
− βi − ζi = 0

=⇒ 0 ≤ βi ≤
1

l
(ξi, ζi are non-negative)

Using above identities, we formulate a reduced Lagrangian:

LR(α, β) =
1

2
αT (2γAK + 2

γI

(u + l)2
KLK)α −

l
∑

i=1

βi(yi

l+u
∑

j=1

αjK(xi, xj) − 1)

=
1

2
αT (2γAK + 2

γI

(u + l)2
KLK)α − αT KJT Y β +

l
∑

i=1

βi (45)

whereJ = [I 0] is anl × (l + u) matrix with I as thel × l identity matrix (assuming the first l
points are labeled) andY = diag(y1, y2, ..., yl).

Taking derivative of the reduced Lagrangian with respect toα:

∂LR

∂α
= (2γAK + 2

γI

(u + l)2
KLK)α − KJT Y β

This implies:

α = (2γAI + 2
γI

(u + l)2
LK)−1JT Y β⋆ (46)

Note that the relationship betweenα andβ is no longer as simple as the SVM algorithm. In
particular, the(l + u) expansion coefficients are obtained by solving a linear system involving thel

dual variables that will appear in the SVM dual problem.
Substituting back in the reduced Lagrangian we get:

β∗ = max
β∈Rl

l
∑

i=1

βi −
1

2
βT Qβ (47)

subject to :
l

∑

i=1

βiyi = 0

0 ≤ βi ≤
1

l
i = 1, . . . , l (48)

where

Q = Y JK(2γAI + 2
γI

(l + u)2
LK)−1JT Y
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Laplacian SVMs can be implemented by using a standard SVM solver with the quadratic form
induced by the above matrix, and using the solution to obtain the expansion coefficients by solving
the linear system in Eqn. (46).

Note that whenγI = 0, the SVM QP and Eqns. (47,46), give zero expansion coefficients over
the unlabeled data. The expansion coefficients over the labeled data and the Q matrix are as in
standard SVM, in this case.

The Manifold Regularization algorithms are summarized in the Table 1.

Table 1: A Summary of the algorithms
Manifold Regularization algorithms

Input: l labeled examples{(xi, yi)}l
i=1, u unlabeled examples{xj}l+u

j=l+1

Output: Estimated functionf : R
n → R

Step 1 � Construct data adjacency graph with(l + u) nodes using, e.g,
k nearest neighbors or a graph kernel. Choose edge weightsWij ,
e.g. binary weights or heat kernel weightsWij = e−‖xi−xj‖

2/4t.
Step 2 � Choose a kernel functionK(x, y). Compute the Gram matrix

Kij = K(xi, xj).
Step 3 � Compute graph Laplacian matrix :L = D − W whereD is a

diagonal matrix given byDii =
∑l+u

j=1 Wij .
Step 4 � ChooseγA andγI .
Step 5 � Computeα∗ using Eqn. (35) for squared loss (Laplacian RLS)

or using Eqns. (47,46) together with the SVM QP solver for soft
margin loss (Laplacian SVM).

Step 6 � Output functionf∗(x) =
∑l+u

i=1 α∗
i K(xi, x).

Efficiency Issues:It is worth noting that our algorithms compute the inverse of a dense Gram matrix
which leads toO((l + u)3) complexity. This may be impractical for large datasets. In the case of
linear kernels, instead of using Eqn. 6, we can directly writef⋆(x) = wT x and solve for the weight
vectorw using a primal optimization method. This is much more efficient when the data is low-
dimensional. For highly sparse datasets, e.g. in text categorization problems, effective conjugate
gradient schemes can be utilized in a large scale implementation, as outlined in Sindhwani et al.
(2006). For the non-linear case, one may obtain approximate solutions (e.g. using greedy, matching
pursuit techniques) where the optimization problem is solved over the span of a small set of basis
functions instead of using the full representation in Eqn. 6. We note these directions for future work.
In section 5, we evaluate the empirical performance of our algorithms with exact computations as
outlined in Table 1 with non-linear kernels. For other recent work addressing scalability issues in
semi-supervised learning, see, e.g., Tsang and Kwok. (2005); Bengioet al. (2004).

4.5 Related Work and Connections to Other Algorithms

In this section we survey various approaches to semi-supervised and transductive learning and high-
light connections of Manifold Regularization to other algorithms.

20



MANIFOLD REGULARIZATION

Transductive SVM (TSVM) (Vapnik, 1998; Joachims, 1999): TSVMs are based on the follow-
ing optimization principle :

f∗ = argmin
f∈HK

yl+1,...yl+u

C

l
∑

i=1

(1 − yif(xi))+ + C∗
l+u
∑

i=l+1

(1 − yif(xi))+ + ‖f‖2
K (49)

which proposes a joint optimization of the SVM objective function over binary-valued labels on
the unlabeled data and functions in the RKHS. Here,C, C∗ are parameters that control the relative
hinge-loss over labeled and unlabeled sets. The joint optimization is implemented inJoachims
(1999) by first using an inductive SVM to label the unlabeled data and theniteratively solving SVM
quadratic programs, at each step switching labels to improve the objective function. However this
procedure is susceptible to local minima and requires an unknown, possiblylarge number of label
switches before converging. Note that even though TSVM were inspiredby transductive inference,
they do provide an out-of-sample extension.

Semi-Supervised SVMs(S3VM) (Bennett and Demiriz, 1999; Fung and Mangasarian, 2001):
S3VM incorporate unlabeled data by including the minimum hinge-loss for the two choices of
labels for each unlabeled example. This is formulated as a mixed-integer program for linear SVMs
in Bennett and Demiriz (1999) and is found to be intractable for large amountsof unlabeled data.
Fung and Mangasarian (2001) reformulate this approach as a concaveminimization problem which
is solved by a successive linear approximation algorithm. The presentation of these algorithms is
restricted to the linear case.

Measure-Based Regularization(Bousquet et al., 2004): The conceptual framework of this
work is closest to our approach. The authors consider a gradient based regularizer that penalizes
variations of the function more in high density regions and less in low density regions leading to the
following optimization principle:

f∗ = argmin
f∈F

l
∑

i=1

V (f(xi), yi) + γ

∫

X
〈∇f(x),∇f(x)〉p(x)dx (50)

wherep is the density of the marginal distributionPX . The authors observe that it is not straight-
forward to find a kernel for arbitrary densitiesp, whose associated RKHS norm is

∫

〈∇f(x),∇f(x)〉p(x)dx

Thus, in the absence of a representer theorem, the authors propose to perform minimization of
the regularized loss on a fixed set of basis functions chosen apriori, i.e,F = {

∑q
i=1 αiφi}. For the

hinge loss, this paper derives an SVM quadratic program in the coefficients{αi}q
i=1 whoseQ matrix

is calculated by computingq2 integrals over gradients of the basis functions. However the algorithm
does not demonstrate performance improvements in real world experiments.It is also worth noting
that while Bousquet et al. (2004) use the gradient∇f(x) in the ambient space, we use the gradient
over a submanifold∇Mf for penalizing the function. In a situation where the data truly lies on
or near a submanifoldM, the difference between these two penalizers can be significant since
smoothness in the normal direction to the data manifold is irrelevant to classification or regression.

Graph Based ApproachesSee, e.g., Blum and Chawla (2001); Chapelle et al. (2003); Szum-
mer and Jaakkola (2002); Zhou et al. (2004); Zhu et al. (2003, 2005); Kemp et al. (2004); Joachims
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(2003); Belkin and Niyogi (2003a): A variety of graph based methods have been proposed for trans-
ductive inference. However, these methods do not provide an out-of-sample extension. In Zhu et al.
(2003), nearest neighbor labeling for test examples is proposed onceunlabeled examples have been
labeled by transductive learning. In Chapelle et al. (2003), test points are approximately represented
as a linear combination of training and unlabeled points in the feature space induced by the kernel.
For Graph Regularization and Label Propagation see (Smola and Kondor, 2003; Belkin et al., 2004;
Zhu et al., 2003). Smola and Kondor (2003) discusses the construction of a canonical family of
graph regularizers based on the graph Laplacian. Zhu et al. (2005) presents a non-parametric con-
struction of graph regularizers.

Manifold regularization provides natural out-of-sample extensions to several graph based ap-
proaches. These connections are summarized in Table 2.

We also note the recent work Delalleau et al. (2005) on out-of-sample extensions for semi-
supervised learning where an induction formula is derived by assuming that the addition of a test
point to the graph does not change the transductive solution over the unlabeled data.

Cotraining (Blum and Mitchell, 1998): The Co-training algorithm was developed to integrate
abundance of unlabeled data with availability of multiple sources of information indomains like
web-page classification. Weak learners are trained on labeled examples and their predictions on
subsets of unlabeled examples are used to mutually expand the training set. Note that this set-
ting may not be applicable in several cases of practical interest where one does not have access to
multiple information sources.

Bayesian TechniquesSee e.g., Nigam et al. (2000); Seeger (2001); Corduneanu and Jaakkola
(2003). An early application of semi-supervised learning to Text classification appeared in Nigam
et al. (2000) where a combination of EM algorithm and Naive-Bayes classification is proposed to
incorporate unlabeled data. Seeger (2001) provides a detailed overview of Bayesian frameworks
for semi-supervised learning. The recent work in Corduneanu and Jaakkola (2003) formulates a
new information-theoretic principle to develop a regularizer for conditionallog-likelihood.

Table 2: Connections of Manifold Regularization to other algorithms
Parameters Corresponding algorithms (square loss or hinge loss)

γA ≥ 0 γI ≥ 0 Manifold Regularization
γA ≥ 0 γI = 0 Standard Regularization (RLS or SVM)
γA → 0 γI > 0 Out-of-sample extension for Graph Regularization

(RLS or SVM)
γA → 0 γI → 0 Out-of-sample extension for Label Propagation
γI ≫ γA (RLS or SVM)
γA → 0 γI = 0 Hard margin SVM or Interpolated RLS

5. Experiments

We performed experiments on a synthetic dataset and three real world classification problems arising
in visual and speech recognition, and text categorization. Comparisons are made with inductive
methods (SVM, RLS). We also compare Laplacian SVM with Transductive SVM. All software and
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datasets used for these experiments will be made available at:
http://www.cs.uchicago.edu/∼vikass/manifoldregularization.html.

For further experimental benchmark studies and comparisons with numerous other methods, we
refer the reader to Chapelle et al. (2006); Sindhwani et al. (2006, 2005).

5.1 Synthetic Data : Two Moons Dataset

The two moons dataset is shown in Figure 2. The dataset contains200 examples with only1 labeled
example for each class. Also shown are the decision surfaces of Laplacian SVM for increasing
values of the intrinsic regularization parameterγI . WhenγI = 0, Laplacian SVM disregards unla-
beled data and returns the SVM decision boundary which is fixed by the location of the two labeled
points. AsγI is increased, the intrinsic regularizer incorporates unlabeled data and causes the deci-
sion surface to appropriately adjust according to the geometry of the two classes.

In Figure 3, the best decision surfaces across a wide range of parameter settings are also shown
for SVM, Transductive SVM and Laplacian SVM. Figure 3 demonstrates how TSVM fails to find
the optimal solution, probably since it gets stuck in a local minimum. The Laplacian SVM decision
boundary seems to be intuitively most satisfying.

Figure 2: Laplacian SVM with RBF Kernels for various values ofγI . Labeled points are shown in
color, other points are unlabeled.
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5.2 Handwritten Digit Recognition

In this set of experiments we applied Laplacian SVM and Laplacian RLS algorithms to45 binary
classification problems that arise in pairwise classification of handwritten digits. The first400 im-
ages for each digit in the USPS training set (preprocessed using PCA to100 dimensions) were taken
to form the training set. The remaining images formed the test set. 2 images for each class were
randomly labeled (l=2) and the rest were left unlabeled (u=398). Following Scholkopf et al. (1995),
we chose to train classifiers with polynomial kernels of degree 3, and set the weight on the regular-
ization term for inductive methods asγl = 0.05(C = 10). For manifold regularization, we chose
to split the same weight in the ratio1 : 9 so thatγAl = 0.005, γI l

(u+l)2
= 0.045. The observations

reported in this section hold consistently across a wide choice of parameters.
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Figure 3: Two Moons Dataset: Best decision surfaces using RBF kernels for SVM, TSVM and
Laplacian SVM. Labeled points are shown in color, other points are unlabeled.
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In Figure 4, we compare the error rates of manifold regularization algorithms, inductive clas-
sifiers and TSVM, at the break-even points in the precision-recall curves for the 45 binary classi-
fication problems. These results are averaged over 10 random choicesof labeled examples. The
following comments can be made: (a) Manifold regularization results in significant improvements
over inductive classification, for both RLS and SVM, and either compareswell or significantly out-
performs TSVM across the 45 classification problems. Note that TSVM solves multiple quadratic
programs in the size of the labeled and unlabeled sets whereas LapSVM solves a single QP (Eqn. 47)
in the size of the labeled set, followed by a linear system (Eqn. 46). This resulted in substantially
faster training times for LapSVM in this experiment. (b) Scatter plots of performance on test and
unlabeled data sets, in the bottom row of Figure 4, confirm that the out-of-sample extension is good
for both LapRLS and LapSVM. (c) As shown, in the rightmost scatter plot inthe bottom row of
Figure 4, are standard deviation of error rates obtained by Laplacian SVM and TSVM. We found
Laplacian algorithms to be significantly more stable than the inductive methods andTSVM, with
respect to choice of the labeled data

In Figure 5, we demonstrate the benefit of unlabeled data as a function of the number of labeled
examples.

Table 3: USPS: one-versus-rest multiclass error rates

Method SVM TSVM LapSVM RLS LapRLS
Error 23.6 26.5 12.7 23.6 12.7

We also performed one-vs-rest multiclass experiments on the USPS test setwith l = 50 and
u = 1957 with 10 random splits as provided by Chapelle and Zien (2005). The mean error rates
in predicting labels of unlabeled data are reported in Table 3. In this experiment, TSVM actually
performs worse than the SVM baseline probably since local minima problems become severe in a
one-vs-rest setting. For several other experimental observations and comparisons on this dataset,
see Sindhwani et al. (2005).
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Figure 4: USPS Experiment - (Top row) Error Rates at Precision-Recall Break-even points for 45
binary classification problems. (Bottom row) Scatter plots of error rates ontest and unla-
beled data for Laplacian RLS, Laplacian SVM; and standard deviations in test errors of
Laplacian SVM and TSVM.

10 20 30 40
0

5

10

15

20

RLS vs LapRLS

45 Classification Problems

Er
ro

r R
at

es

RLS
LapRLS

10 20 30 40
0

5

10

15

20

SVM vs LapSVM

45 Classification Problems
Er

ro
r R

at
es

SVM
LapSVM

10 20 30 40
0

5

10

15

20
TSVM vs LapSVM

45 Classification Problems

Er
ro

r R
at

es

TSVM
LapSVM

0 5 10 15
0

5

10

15
Out−of−Sample Extension

LapRLS (Unlabeled)

La
pR

LS
 (T

es
t)

0 5 10 15
0

5

10

15
Out−of−Sample Extension

LapSVM (Unlabeled)

La
pS

VM
 (T

es
t)

0 2 4 6
0

5

10

15
Std Deviation of Error Rates

SV
M

 (o
) ,

 T
SV

M
 (x

) S
td

 D
ev

LapSVM Std Dev

Figure 5: USPS Experiment - Mean Error Rate at Precision-Recall Break-even points as a function
of number of labeled points (T: Test Set, U: Unlabeled Set)
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5.3 Spoken Letter Recognition

This experiment was performed on the Isolet database of letters of the English alphabet spoken in
isolation (available from the UCI machine learning repository). The data setcontains utterances of
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150 subjects who spoke the name of each letter of the English alphabet twice. Thespeakers are
grouped into5 sets of30 speakers each, referred to as isolet1 through isolet5. For the purposes of
this experiment, we chose to train on the first30 speakers (isolet1) forming a training set of1560
examples, and test on isolet5 containing1559 examples (1 utterance is missing in the database due
to poor recording). We considered the task of classifying the first13 letters of the English alphabet
from the last13. We considered30 binary classification problems corresponding to30 splits of the
training data where all52 utterances of one speaker were labeled and all the rest were left unlabeled.
The test set is composed of entirely new speakers, forming the separate group isolet5.
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Figure 6: Isolet Experiment - Error Rates at precision-recall break-even points of 30 binary classi-
fication problems

We chose to train with RBF kernels of widthσ = 10 (this was the best value among several
settings with respect to5-fold cross-validation error rates for the fully supervised problem using
standard SVM). For SVM and RLS we setγl = 0.05 (C = 10) (this was the best value among
several settings with respect to mean error rates over the30 splits). For Laplacian RLS and Laplacian
SVM we setγAl = γI l

(u+l)2
= 0.005.

In Figure 6, we compare these algorithms. The following comments can be made:(a) LapSVM
and LapRLS make significant performance improvements over inductive methods and TSVM, for
predictions on unlabeled speakers that come from the same group as the labeled speaker, over all
choices of the labeled speaker. (b) On Isolet5 which comprises of a separate group of speakers,
performance improvements are smaller but consistent over the choice of thelabeled speaker. This
can be expected since there appears to be a systematic bias that affects allalgorithms, in favor
of same-group speakers. To test this hypothesis, we performed another experiment in which the
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Figure 7: Isolet Experiment - Error Rates at precision-recall break-even points on Test set Versus
Unlabeled Set. In Experiment 1, the training data comes from Isolet 1 and thetest data
comes from Isolet5; in Experiment 2, both training and test sets come from Isolet1.

training and test utterances are both drawn from Isolet1. Here, the second utterance of each letter
for each of the 30 speakers in Isolet1 was taken away to form the test setcontaining 780 examples.
The training set consisted of the first utterances for each letter. As before, we considered 30 binary
classification problems arising when all utterances of one speaker are labeled and other training
speakers are left unlabeled. The scatter plots in Figure 7 confirm our hypothesis, and show high
correlation between in-sample and out-of-sample performance of our algorithms in this experiment.
It is encouraging to note performance improvements with unlabeled data in Experiment 1 where the
test data comes from a slightly different distribution. This robustness is often desirable in real-world
applications.

Table 4: Isolet: one-versus-rest multiclass error rates

Method SVM TSVM LapSVM RLS LapRLS
Error (unlabeled) 28.6 46.6 24.5 28.3 24.1

Error (test) 36.9 43.3 33.7 36.3 33.3

In Table 4 we report mean error rates over the 30 splits from one-vs-rest 26-class experiments
on this dataset. The parameters were held fixed as in the 2-class setting. The failure of TSVM
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in producing reasonable results on this dataset has also been observedin Joachims (2003). With
LapSVM and LapRLS we obtain around3 to 4% improvement over their supervised counterparts.

5.4 Text Categorization

We performed Text Categorization experiments on the WebKB dataset whichconsists of 1051 web
pages collected from Computer Science department web-sites of various universities. The task is
to classify these web pages into two categories:courseor non-course. We considered learning
classifiers using only textual content of the web pages, ignoring link information. A bag-of-word
vector space representation for documents is built using the the top 3000 words (skipping HTML
headers) having highest mutual information with the class variable, followedby TFIDF mapping4.
Feature vectors are normalized to unit length. 9 documents were found to contain none of these
words and were removed from the dataset.

For the first experiment, we ran LapRLS and LapSVM in a transductive setting, with 12 ran-
domly labeled examples (3 course and 9 non-course) and the rest unlabeled. In Table 4, we report
the precision and error rates at the precision-recall break-even point averaged over 100 realizations
of the data, and include results reported in Joachims (2003) for SpectralGraph Transduction, and
the Cotraining algorithm (Blum and Mitchell, 1998) for comparison. We used 15 nearest neigh-
bor graphs, weighted by cosine distances and used iterated Laplacians of degree 3. For inductive
methods,γAl was set to0.01 for RLS and1.00 for SVM. For LapRLS and LapSVM,γA was set
as in inductive methods, withγI l

(l+u)2
= 100γAl. These parameters were chosen based on a simple

grid search for best performance over the first 5 realizations of the data. Linear Kernels and cosine
distances were used since these have found wide-spread applications intext classification problems,
e.g., in (Dumais et al., 1998).

Table 5: Precision and Error Rates at the Precision-Recall Break-even Points of supervised and
transductive algorithms.

Method PRBEP Error

k-NN Joachims (2003) 73.2 13.3
SGT Joachims (2003) 86.2 6.2

Naive-Bayes Blum and Mitchell (1998) — 12.9
Cotraining Blum and Mitchell (1998) — 6.20

SVM 76.39 (5.6) 10.41 (2.5)
TSVM5 88.15 (1.0) 5.22 (0.5)
LapSVM 87.73 (2.3) 5.41 (1.0)

RLS 73.49 (6.2) 11.68 (2.7)
LapRLS 86.37 (3.1) 5.99 (1.4)

Since the exact datasets on which these algorithms were run, somewhat differ in preprocess-
ing, preparation and experimental protocol, these results are only meant tosuggest that Manifold

4. TFIDF stands for Term Frequency Inverse Document Frequency. It is a common document preprocessing procedure,
which combines the number of occurrences of a given term with the number of documents containing it.
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Figure 8: WebKb Text Classification Experiment : The top panel presentsperformance in terms of
precision-recall break-even points (PRBEP) of RLS,SVM,Laplacian RLS and Laplacian
SVM as a function of number of labeled examples, on Test (marked as T) set and Unla-
beled set (marked as U and of size 779-number of labeled examples). Thebottom panel
presents performance curves of Laplacian SVM for different numberof unlabeled points.

Regularization algorithms perform similar to state-of-the-art methods for transductive inference in
text classification problems. The following comments can be made: (a) Transductive categorization
with LapSVM and LapRLS leads to significant improvements over inductive categorization with
SVM and RLS. (b) Joachims (2003) reports91.4% precision-recall breakeven point, and4.6% er-
ror rate for TSVM. Results for TSVM reported in the table were obtained when we ran the TSVM
implementation using SVM-Light software on this particular dataset. The average training time
for TSVM was found to be more than 10 times slower than for LapSVM (c) TheCo-training re-
sults were obtained on unseen test datasets utilizing additional hyperlink information, which was
excluded in our experiments. This additional information is known to improve performance, as
demonstrated in Joachims (2003) and Blum and Mitchell (1998).

In the next experiment, we randomly split the WebKB data into a test set of 263examples and a
training set of 779 examples. We noted the performance of inductive and semi-supervised classifiers
on unlabeled and test sets as a function of the number of labeled examples in the training set. The
performance measure is the precision-recall break-even point (PRBEP), averaged over 100 random
data splits. Results are presented in the top panel of Figure 8. The benefitof unlabeled data can be
seen by comparing the performance curves of inductive and semi-supervised classifiers.
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We also performed experiments with different sizes of the training set, keeping a randomly cho-
sen test set of 263 examples. The bottom panel in Figure 8 presents the quality of transduction and
semi-supervised learning with Laplacian SVM (Laplacian RLS performed similarly) as a function
of the number of labeled examples for different amounts of unlabeled data.We find that transduc-
tion improves with increasing unlabeled data. We expect this to be true for testset performance
as well, but do not observe this consistently possibly since we use a fixed set of parameters that
become suboptimal as unlabeled data is increased. The optimal choice of the regularization param-
eters depends on the amount of labeled and unlabeled data, and should beadjusted by the model
selection protocol accordingly.

6. Unsupervised and Fully Supervised Cases

While the previous discussion concentrated on the semi-supervised case,our framework covers both
unsupervised and fully supervised cases as well. We briefly discuss each in turn.

6.1 Unsupervised Learning: Clustering and Data Representation

In the unsupervised case one is given a collection of unlabeled data pointsx1, . . . , xu. Our basic
algorithmic framework embodied in the optimization problem in Eqn. 3 has three terms: (i) fit to
labeled data, (ii) extrinsic regularization and (iii) intrinsic regularization. Since no labeled data is
available, the first term does not arise anymore. Therefore we are leftwith the following optimiza-
tion problem:

min
f∈HK

γA‖f‖2
K + γI‖f‖2

I (51)

Of course, only the ratioγ = γA

γI
matters. As before‖f‖2

I can be approximated using the unlabeled

data. Choosing‖f‖2
I =

∫

M 〈∇Mf,∇Mf〉 and approximating it by the empirical Laplacian, we
are left with the following optimization problem:

f∗ = argmin
P

i f(xi)=0;
P

i f(xi)
2=1

f∈HK

γ‖f‖2
K +

∑

i∼j

(f(xi) − f(xj))
2 (52)

Note that to avoid degenerate solutions we need to impose some additional conditions (cf. Belkin
and Niyogi (2003b)). It turns out that a version of Representer theorem still holds showing that the
solution to Eqn. 52 admits a representation of the form

f∗ =
u

∑

i=1

αiK(xi, · )

By substituting back in Eqn. 52, we come up with the following optimization problem:

α = argmin
1T Kα=0

αT K2α=1

γ‖f‖2
K +

∑

i∼j

(f(xi) − f(xj))
2 (53)

where1 is the vector of all ones andα = (α1, . . . , αu) andK is the corresponding Gram matrix.
LettingP be the projection onto the subspace ofR

u orthogonal toK1, one obtains the solution
for the constrained quadratic problem, which is given by the generalized eigenvalue problem

P (γK + KLK)Pv = λPK2Pv (54)
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The final solution is given byα = Pv, wherev is the eigenvector corresponding to the smallest
eigenvalue.

Figure 9: Two Moons Dataset: Regularized Clustering
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Figure 10: Two Spirals Dataset: Regularized Clustering
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Remark 1: The framework for clustering sketched above provides a way of doing regularized
spectral clustering, whereγ controls the smoothness of the resulting function in the ambient space.
We also obtain a natural out-of-sample extension for clustering points not inthe original data set.
Figures 9,10 show results of this method on two two-dimensional clustering problems. Unlike
recent work (Bengio et al., 2004; Brand, 2003) on out-of-sample extensions, our method is based
on a Representer theorem for RKHS.
Remark 2: By taking multiple eigenvectors of the system in Eqn. 54 we obtain a natural regularized
out-of-sample extension of Laplacian Eigenmaps. This leads to new method for dimensionality
reduction and data representation. Further study of this approach is a direction of future research.
We note that a similar algorithm has been independently proposed in Vert andYamanishi (2005)
in the context of supervised graph inference. A relevant discussion isalso presented in Ham et al.
(2005) on the interpretation of several geometric dimensionality reduction techniques as kernel
methods.
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6.2 Fully Supervised Learning

The fully supervised case represents the other end of the spectrum of learning. Since standard
supervised algorithms (SVM and RLS) are special cases of manifold regularization, our framework
is also able to deal with a labeled dataset containing no unlabeled examples. Additionally, manifold
regularization can augment supervised learning with intrinsic regularization, possibly in a class-
dependent manner, which suggests the following algorithm :

f∗ = argmin
f∈HK

1

l

l
∑

i=1

V (xi, yi, f) + γA‖f‖2
K +

γ+
I

(u + l)2
f
T
+L+f+ +

γ−
I

(u + l)2
f
T
−L−f− (55)

Here we introduce two intrinsic regularization parametersγ+
I , γ−

I and regularize separately for the
two classes :f+, f− are the vectors of evaluations of the functionf , andL+, L− are the graph
Laplacians, on positive and negative examples respectively. The solution to the above problem for

RLS and SVM can be obtained by replacingγIL by the block-diagonal matrix

(

γ+
I L+ 0
0 γ−

I L−

)

in the manifold regularization formulas given in Section 4.

Detailed experimental study of this approach to supervised learning is left for future work.

7. Conclusions and Further Directions

We have a provided a novel framework for data-dependent geometric regularization. It is based
on a new Representer theorem that provides a basis for several algorithms for unsupervised, semi-
supervised and fully supervised learning. This framework brings together ideas from the theory of
regularization in Reproducing Kernel Hilbert spaces, manifold learning and spectral methods.

There are several directions of future research:

1. Convergence and generalization error:The crucial issue of dependence of generalization
error on the number of labeled and unlabeled examples is still very poorly understood. Some very
preliminary steps in that direction have been taken in Belkin et al. (2004).

2. Model selection: Model selection involves choosing appropriate values for the extrinsic and
intrinsic regularization parameters. We do not as yet have a good understanding of how to choose
these parameters. More systematic procedures need to be developed.

3. Efficient algorithms: The naive implementations of our algorithms have cubic complexity in
the number of labeled and unlabeled examples, which is restrictive for largescale real-world appli-
cations. Scalability issues need to be addressed.

4. Additional structure: In this paper we have shown how to incorporate the geometric structure
of the marginal distribution into the regularization framework. We believe that this framework will
extend to other structures that may constrain the learning task and bring about effective learnability.
One important example of such structure is invariance under certain classes of natural transforma-
tions, such as invariance under lighting conditions in vision. Some ideas are presented in Sindhwani
(2004).
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