
ON THE RELATION BETWEEN ADDITIVE SMOOTHING AND UNIVERSAL CODING

Nikola Jevtić Alon Orlitsky

ECE Department, UCSD
9500 Gilman Drive

La Jolla, CA 92093, USA

ABSTRACT

We analyze the performance of smoothing methods for language
modeling from the perspective of universal compression. We use
existing asymptotic bounds on the performance of simple additive
rules for compression of finite-alphabet memoryless sources to ex-
plain the empirical predictive abilities of additive smoothing tech-
niques. We further suggest a smoothing method that overcomes
some of the problems observed in previous approaches. The new
method outperforms existing ones on the Wall Street Journal(WSJ)
database for bigram and trigram models. We then suggest possible
directions for future research.

1. INTRODUCTION

Language modeling is an essential component of many expert sys-
tems such as speech recognition, handwriting recognition, and lan-
guage translation. The performance of these systems depends on
the quality of underlying language models. Yet we do not have
good ways of evaluating how close current modeling techniques
are to the optimal.

Our goal is to reduce the gap between the theoretical foun-
dations of universal compression, capable of producing tight per-
formance bounds for underlying models, and practical techniques
used in language modeling. We also build on a paper by Chen
and Goodman [1] that first compared many of the smoothing tech-
niques, and our experiments use similar methodologies.

A sequential language model is a probability distribution over
sentences, wl

0 = w0 . . . wl. We assume that w0 is a symbol for
the beginning of a sentence consisting of l − 1 words and wl is a
symbol for the end of the sentence. The most popular approach to
language modeling for speech recognition applications uses the n-
gram approximation, which assumes that probability distribution
for the current word depends only on the previous n − 1 words

p(wl
1|w0) =

l
∏

i=1

p(wi|w
i−1
0) ≈

l
∏

i=1

p(wi|w
i−1
i−n+1).

Under these assumptions, the problem of creating a language model
is reduced to that of learning a Markov source of order n− 1. Ob-
serve that the probability for the end of sentence symbol is evalu-
ated at the end of the sentence as if it were another word, while the
beginning of the sentence is treated just as a history information.

Calling different histories contexts, it is common to view a
Markov source as a collection of i.i.d. sources, one for each con-
text. In creating the language model it is therefore desirable to
derive optimal probability estimates for each context. The main
difficulty in deriving these estimates arises from the sparsity of

the training data. Since most words are never or infrequently ob-
served, their estimates are unreliable.

A text is a collection of sentences and its probability is the
product of the individual sentence probabilities. Let WT denote
the number of words in a text T . To measure the quality of a
language model on T , we use the per-word coding length, or cross-
entropy,

Hp(T)
def
= −

1

WT

log p(T).

Note that if a word appearing in a text is assigned zero prob-
ability, the resulting coding length is infinite. Similarly, in a word
recognizer, words that are assigned zero probability can never be
recognized, regardless of how likely they are acoustically. Hence
many smoothing techniques were introduced to ensure that all words,
even those that did not appear in the training data, are assigned
positive probability.

Among the first approaches to this zero frequency problem was
additive smoothing that dates back to Laplace [2]. Given a set of
symbols V , let c(u) denote the number of times symbol u ∈ V

was generated by an i.i.d. source whose distribution we are trying
to learn. These estimators then assign to each symbol w ∈ V the
probability

padd(w)
def
=

c(w) + δ
∑

u∈V (c(u) + δ)
. (1)

When δ = 1, this equation is known as the Laplace’s law of suc-
cession, and presents the posterior probability of symbol w, if we
assume uniform prior probability over all possible sample count
ensembles, see, e.g., [3, 4]. When δ 6= 1, Equation (1) repre-
sents Lidstone’s law, often used to estimate probabilities in sparse
data. These probability estimation methods are also considered in
universal compression, where their performance can be precisely
analyzed which will be the main focus of this paper. We interpret
empirical results of additive techniques used for language mod-
eling with these analytic tools, and provide further insight in the
complex behavior of language.

In Section 2 we define the universal coding problem and state
the relevant results and bounds on the performance of the additive
smoothing. We also emphasize the implications of these results to
the language modeling problem. In Section 3 we describe some of
the standard approaches to language modeling. In Section 4 we in-
troduce a particularly informative language model that avoids the
deficiencies of additive smoothing. In Section 5 we plot perfor-
mance of the language models addressed in this paper in the same
fashion as used in [1]. In Section 6 we summarize the results and
present some open problems.

2. UNIVERSAL CODING

A coder assigns a codeword to each sequence. When the under-
lying source distribution p is known, an optimal coder assigns to
each sequence of n symbols wn a codeword of length − log p(wn).

Universal coding refers to compression where the only avail-
able information about the source is that it belongs to a known set
of distributions P over some alphabet A. Still we would like to
assign to each sequence a codeword whose length is close to that
assigned by an optimal coder, that knows the underlying distribu-
tion.

2.1. Redundancy

The redundancy of a coder is the largest number of extra number
of bits it assigns to any sequence over any encoder in P , including
the one corresponding to the underlying distribution.

Formally, the maximum-likelihood probability of a sequence
wn is

p̂(wn)
def
= max{p(wn) : p ∈ P},

the highest probability assigned to wn by any distribution in P .
The worst case redundancy (loss) of P is therefore

R̂n
def
= min

qn

max
wn

log
p̂(wn)

qn(wn)
,

and the average case redundancy of P is

R̄n
def
= min

qn

max
p∈P

Ep log
p(wn)

qn(wn)

= min
qn

max
p∈P

∑

wn

p(wn) log
p(wn)

qn(wn)
.

We say that arbitrary coder qn is universal in the worst (average)
case sense, with respect to the set of sources P , if its per symbol
redundancy diminishes with the block size.

We limit P to be the set of all i.i.d. distributions over an al-
phabet of finite cardinality V . In this setting, the worst case redun-
dancy is analyzed in [5],

R̂n =
V − 1

2
log

n

2π
+ CV + o(1),

and the average case redundancy, in [6] where it was shown that

R̄n =
V − 1

2
log

n

2πe
+ CV + o(1),

where

CV = log
Γ(1

2
)V

Γ(V
2
)

.

Note that the two redundancies differ only by a constant, and the
results obtained for the two measures are often very similar. In
this paper we concentrate on the worst case redundancy as it is
somewhat easier to analyze.

2.2. Sequential coding

Achieving the redundancy of i.i.d. sources requires computation-
ally infeasible coders that encode the whole block of symbols at
once. Often it is desirable to encode the symbols one at a time.
Such is the case in language modeling where we cannot wait to

gather large enough blocks for each context before assigning prob-
abilities.

To encode (assign probability to) each symbol as it arrives,
suboptimal sequential schemes are evaluated and used. Some of
them are shown to be asymptotically optimal as block sizes in-
crease, but there are no bounds on any particular symbol. How-
ever, if a method predicts a block well, it must predict well most
of the symbols inside.

A special case of sequential codes are additive-rule codes de-
fined by Equation (1). It can be shown that all additive-rule codes
correspond to setting a Dirichlet(δ) prior over all i.i.d. distribu-
tions, so that after observing the whole block, the aggregate prob-
ability mδ(w

n) is equal to the average source probability with re-
spect to the given Dirichlet(δ) prior. Unlike Laplace’s approach,
we are not left to wonder if such a prior is reasonable, but instead
concentrate on redundancy bounds to determine if the method is
better or worse than another. In the following we present several
approaches used for language model estimation and discuss their
block performance bounds.

2.3. Add-one rule

The add-one rule uses the Laplace’s law of succession for estimat-
ing the probability of the next word. It was one of the first methods
employed in language modeling, but Church and Gale [7] showed
experimentally that it had poor performance. It is easy to show
that the worst-case redundancy of the add-one rule satisfies

R̂n(m1) = max
wn

log
p̂(wn)

m1(wn)
≥ (V − 1) log n + O(1),

hence, for the worst source, the leading term in the redundancy
bound is at least twice that of the best universal predictor.

2.4. Add-half rule

The add-half rule, also known as the Krichevsky-Trofimov esti-
mator [8], is often suggested in the compression literature as the
best universal sequential compression method for finite-alphabets.
The average redundancy of the add-half rule asymptotically con-
verges to the optimal value if all the symbol probabilities of the un-
known source are bounded away from zero. In terms of the worst
case problem formulation, the redundancy converges to the opti-
mal if all the symbol counts grow approximately linearly with the
sequence length. If that is not the case, worst case redundancy in-
creases, and at the vertex point in probability space, it achieves [5]:

Rn(m 1
2
, 1n) = log

p̂(1n)

m 1
2
(1n)

=
V − 1

2
log

n

π
+ CV + o(1).

This redundancy overhead may appear to be small, as the incurred
loss is only V −1

2
bits higher than that of the best universal code.

However, if it were known that only a known subset B ⊂ A has
non-zero probabilities, |B| = b, the target performance would be
R̂n(m 1

2
) = b−1

2
log n

2π
+ Cb + o(1), yielding the overhead of

the add-half rule of V −b
2

log n + O(1) over a method that could
determine the active alphabet. The add-half rule effectively spends
too many bits on the nonexisting symbols and the impossible se-
quences. In speech, most of the contexts can be followed by only
a small subset of the vocabulary (b � V) and thus it is not reason-
able to expect good performance of this method.

2.5. Add-small-delta rule

The method that performed better than the add-one rule on the lan-
guage modeling task is the add-small-delta rule. Using asymptotic
analysis similar to [5], we can show that the block redundancy of
the add-δ rule is upper-bounded by

R̂n(mδ) ≤
V −1

2
log n

2π
+ CV,δ + V δ2 log e

2

−(1
2
− δ)V log V + o(1),

where

CV,δ = log
Γ(δ)V

Γ(V δ)
.

Note that the leading term in the redundancy does not increase
compared to the best universal code, although the constant is some-
what changed. Hence the method is never much worse than the
add-half rule.

The important property of add-delta rule was shown in [5]; if
a particular symbol appears rarely, the method is able to outper-
form the best universal code. More rigorously, let T1(w

n) be the
number of times symbol 1 appeared in wn. If exists p ∈ (0, 1)
s.t. ∀n T1(w

n) < np, then the redundancy while encoding se-
quence wn with the add-δ rule can be bounded by:

log
p̂(wn)

mδ(wn)
≤

(

V −1
2

−
(

1
2
− δ

)

(1 − p)
)

log n

+CV,δ + V (V +1)
4

log e + o(1).

This means that the add-small-delta rule would be able to remove
log n terms corresponding to all nonexisting words if δ were close
enough to zero. However the limit of CV,δ when δ approaches
zero, limδ→0 CV,δ = +∞, and that prohibits us from completely
removing the redundancy caused by those words.

The approach taken in language modeling was to try and find
the best δ that would maximize the probability scores on some
held-out part of the data. The method effectively balanced the re-
moval of redundancy incurred by nonexisting words and a high
penalty for a newly observed word. However, due to its low flex-
ibility it had much worse performance compared to the standard
approaches in language modeling.

3. POPULAR LANGUAGE MODELS

In general, add-small-delta rule and add-half rule have strong com-
pression ability when all the words in the vocabulary have non-
zero probabilities. However they perform poorly (add-small-delta
less so) when there are words with diminishing probabilities. To
deal with the sparse observations and low probability words, most
popular language models use the concept of backing-off, using the
observation that it might be wise not to treat all the unobserved
words equally in the context. Instead, to redistribute the proba-
bility, the distribution from the broader context is used, which has
more training data and which is referred to as the backoff context.
In terms of n-gram language models, from context with memory of
n − 1 most recent words, they back off to a context with memory
of n − 2 most recent words. The recursion could end at uniform
distribution, so that in the end all the words get assigned some
probability, even if they were completely unobserved in the train-
ing data.

Chen and Goodman [1] distinguish two implementations of
backoff, the strict and the interpolated and conclude that interpo-
lated back-offs outperform the strict ones. In this paper we only
consider the interpolated variant:

p(wi|w
i−1
i−n+1) = λ · p0(wi|w

i−1
i−n+1) + λ · p(wi|w

i−1
i−n+2),

where λ is an interpolation parameter and c(wi
i−n+1) represents

how many times a string wi
i−n+1 has been observed in the train-

ing. There are several methods for balancing the full context dis-
tribution and its back-off, most described in [1], and we present a
few of the most popular ones. This is not the full overview, as e.g.
a whole class of Good-Turing based methods are not covered, but
it includes the state-of-the-art models. It is interesting to mention
that the Good-Turing method is a universal compression method
for unknown vocabularies[9], in a problem setting different than
the one considered here.

3.1. Jelinek-Mercer model

Jelinek and Mercer [10] have described a general class of n-gram
models that interpolate different memory Markov sources.

p(wi|w
i−1
i−n+1) =

n−1
∑

j=0

λj · pML(wi|w
i−1
i−j),

where
∑n−1

j=0 λj = 1, pML(wi|w
i−1
i−n+1) =

c(wi

i−n+1)

c(wi−1

i−n+1
)
. Train-

ing data is split into two nonoverlapping subsets, the retained and
the held-out set. Maximum likelihood on the data from the re-
tained set is used as an estimate for probabilities assigned at each
level (pML), and the interpolation parameters (λ) are optimized to
maximize probability on the held-out set. The performance of the
Jelinek-Mercer smoothing was poor if the interpolation parameters
were uniform over all contexts. However, separate estimation for
every context was not possible due to a lack of data. A particularly
useful variant defined interpolation as hierarchical [11].

pinterp(wi|w
i−1
i−n+1) = λ

w
i−1

i−n+1

pML(wi|w
i−1
i−n+1) +

(1 − λ
w

i−1

i−n+1

)pinterp(wi|w
i−1
i−n+2).

The hierarchical definition made it possible to cluster λ’s for sev-
eral similar contexts at every level separately, and then jointly es-
timate the optimal values through the Expectation Maximization
(EM) procedure. The original criterion used for clustering in [11]
was the number of times the context was observed (total count).
The assumption was that more frequent contexts would be better
estimated and trusted with higher confidence. The critical param-
eter that had to be chosen is the number of contexts that are clus-
tered together, or the number of free interpolation parameters that
should be estimated, and it has been observed that these values de-
pend on the size of the training data. Chen shows in his thesis [12]
that it is better to use average word count as a criterion for clus-
tering. This criterion is also much less sensitive to the cluster size
change, compared to the total count criterion.

3.2. Linear and Absolute Discounting

Ney, Essen and Kneser [13, 14] argued that all the words in longer
contexts are oversampled and that there could be two general ways

of discounting (or reducing their probabilities) to share the proba-
bility with the unobserved words through back-off: linear and ab-
solute discounting. In the linear discounting the maximum likeli-
hood probabilities in contexts are discounted proportionally to the
probabilities (scaled) and the total discounted probability is given
to the back-off context (which actually corresponds to the Jelinek-
Mercer smoothing with single cluster). In the absolute discounting
all words are discounted by the equal additive constant:

pabs(wi|w
i−1
i−n+1) =

c(wi

i−n+1)−D

c(wi−1

i−n+1
)

, if c(wi
i−n+1) > 0

D·N1+(wi−1

i−n+1
·)

c(wi−1

i−n+1
)

pabs(wi|w
i−1
i−n+2), o.w.

(2)
It is assumed that 0 < D < 1 and N1+(wi−1

i−n+1·) is the num-
ber of different words that have been observed once or more times
following wi−1

i−n+1. They showed that absolute discounting (equa-
tion 2) performs better than linear discounting. However, when
context clustering is used for linear discounting, the performance
is about the same.

3.3. Kneser-Ney model

Kneser and Ney [15] took the absolute discounting model a step
further. They put a constraint on the back-off distribution, forcing
the marginals of a higher order distribution to match the marginals
of the training data,

∑

wi−n+1

pKN (wi
i−n+1) =

c(wi
i−n+2)

N
. (3)

The resulting back-off distribution was proportional, not to the
number of times a word has been observed in a context, but to
the number of different contexts it was observed in.

pKN (wi|w
i−1
i−n+2) =

N1+(·wi
i−n+2)

N1+(·wi−1
i−n+2·)

.

This produced big improvement in the coding lengths of unseen
data, and it is not clear why did this occur. In general, a language
model that has marginals that do not match the correct probabil-
ities of the source will diverge arbitrarily over time [16]. In the
given analysis however, n-gram frequencies are used instead of
the correct marginals which are unknown. We feel that deeper un-
derstanding of the reasons for this effect is needed.

3.4. Variations of the Kneser-Ney model

Ney et al. [17] have suggested a variation of absolute discounting
that used two discounts, D1 for symbols observed once and D2+

for those observed two or more times. They reported mixed results
compared to the single constant case.

Chen and Goodman in [1] show that three constants D1, D2

and D3+ consistently outperform single constant model over vari-
ety of corpora and for a variety of training set sizes. The Kneser-
Ney language model with the three discounting parameters is the
best known model under the the n-gram constraint.

4. THE INTERPOLATED ADDITIVE MODEL

In Section 2 we observed a class of additive models that share
a similar flaw – they waste too many bits on nonexisting words

when the actual alphabet is smaller than expected. We propose
an interpolated additive (IA) model that tries to address that issue
by using the additive rule only to estimate the probability distri-
bution among the observed words in the context. The assumption
is that observed words would account for most of the probability
and asymptotically optimal estimate among them would lead to a
better probability estimation with less data.

For each context wi−1
i−n+1, among words observed in the train-

ing data we use additive constant δ ∈ (−1, +∞) to smooth the
distribution.

p(wi|w
i−1
i−n+1) =

c(wi

i−n+1)+δ

c(wi−1

i−n+1
)+N1+(wi−1

i−n+1
·)δ

, c(wi
i−n+1) > 0

0, c(wi
i−n+1) = 0.

To address the probabilities of the unobserved words, the interpo-
lated Jelinek-Mercer approach is used. The recursion ends at the
uniform distribution.

popt(wi|w
i−1
i−n+1) = λ

w
i−1

i−n+1

p(wi|w
i−1
i−n+1)

+(1 − λ
w

i−1

i−n+1

)popt(wi|w
i−1
i−n+2).

This formulation allows us to use the EM algorithm to estimate
λ parameters over different levels in the same way it is used in
the Jelinek-Mercer model. The optimal additive constants are es-
timated as an internal part of the EM procedure as well. In the
expectation step, the contribution for each held-out set sample in
each n-gram level is calculated, and in the maximization step an
optimization procedure is run to determine the best additive con-
stants. As there is no closed form solution, iterative search is con-
ducted, but fortunately EM removes the dependency among the ad-
ditive constants at different n-gram levels, and instead of the Pow-
ell’s method used in [1] for optimizing Kneser-Ney model much
simpler one dimensional search is used. Additive constants were
allowed to take both the positive and the negative values.

While all the universal methods suggest adding a constant to
get the good estimate of the probability, absolute discounting achieves
surprisingly good performance while subtracting a constant. At
best, this result is surprising.

The IA model allows us to test whether the optimal additive
strategy for smoothing probabilities among the observed words is
to add or to subtract. Unlike absolute discounting and Kneser-Ney
whose only way to give some probability to the the backoff is by
definition through subtracting, the IA model uses other indepen-
dent methods for supplying the backoff probability while leaving
additive constant(s) unconstrained. Thus we can observe whether
it is better to subtract or to add as our guess motivated by the pre-
vious analysis might be.

5. TESTING METHODOLOGY AND RESULTS

Similar to [1] we compare smoothing techniques over variety of
training data sizes. However, we chose not to train language mod-
els with retained data sizes much smaller than held-out data size,
which is kept fixed for all the tests. Two held-out sets and a test
set size are both fixed at 2500 sentences. For each experiment, the
new nonoverlapping held-out, test, and training sets were selected
at random from the WSJ corpus. Segmentation was deliberately
made non-contiguous to avoid short-span phenomena and to ob-
tain the average performance, independent of set contents. The
vocabulary was reduced to the 20000 most frequent words in the

10
4

10
5

10
6

−0.25

−0.2

−0.15

−0.1

−0.05

0
Bigram performance relative to JM baseline

Training set size (sentences)

R
el

at
iv

e
co

di
ng

 le
ng

th

Jelinek−Mercer
Absolute discounting
Kneser−Ney
Kneser−Ney modified
IA model, std. backoff
IA model, K−N backoff

Fig. 1. Relative coding length per word for bigram models

database. To further reduce the vocabulary (and its impact on the
required memory for the system), the symbol “’s” was removed
from the end of words and was considered as a separate word. This
was not done in [1] but is common in speech compression. All out-
of-vocabulary words were mapped to a special symbol, and were
treated as a single word. End-of-sentence symbol was added at the
end of each sentence and its probability was also estimated. The
first word of every sentence was considered to come out of the
begin-of-sentence context, and no cross-sentence correlation was
kept.

For methods that require clustering of the interpolation param-
eters (Jelinek-Mercer and Interpolated Additive model), models
can be built for several cluster sizes and the model that scores best
on the second held-out set can be chosen. This is a slightly in-
convenient procedure because the computation of the IA model
takes much more time than e.g. Jelinek-Mercer smoothing. How-
ever, the clustering results obtained through the average count are
very stable over a large span of cluster sizes, and it was enough to
train the Jelinek-Mercer models for several values of bigram and
trigram cluster sizes and use the best results on the IA model as
well.

In the typical implementations, n-gram contexts are kept in
hashtables for the fast access. To be able to handle some of the
experiments, in [1] the authors reduce the language model data
structures only to those contexts that are relevant to the training
and testing. However, the training procedures involve a relatively
small held-out set. It is therefore more efficient to simply create a
linked list with tokens containing only the necessary statistics for
the computations involved with each word from the held-out set.
The language model reduction can then be omitted. The linked-list
access to data is much faster, and compared to hashtable imple-
mentation (even when the reduced set of contexts is used), we ex-
perienced over ten-fold increase in the training speed for the class
of the absolute discounting models.

The results of tests are shown in Figures 1 and 2. Relative dif-
ference in average coding length of the test set was plotted against
the training set size. All plots show relative performance of the

10
4

10
5

10
6

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05
Trigram performance relative to JM baseline

Training set size (sentences)

R
el

at
iv

e
co

di
ng

 le
ng

th

Jelinek−Mercer
Absolute discounting
Kneser−Ney
Kneser−Ney modified
IA model, std. backoff
IA model, K−N backoff

Fig. 2. Relative coding length per word for trigram models

smoothing techniques compared to the Jelinek-Mercer baseline
method with a single interpolation constant for every n-gram level.
We test IA technique both in configuration with the standard and
the Kneser-Ney back-off. Similarly to modified Kneser-Ney model,
there is no theoretical justification for using Kneser-Ney backoff.
Still, the perplexity of the model is reduced significantly.

The interpolated additive model outperforms (slightly) the mod-
ified Kneser-Ney model, when in configuration with Kneser-Ney
style back-off. A significance of this result increases when we ob-
serve the time needed to train these models. This time is given in
the Table 1, and is represented by the average number of passes
through the data during the training. 1 Convergence criterion used
was not the standard Euclidian distance in the parameter space, of-
ten default for the Powell’s method, but the improvement in the
iteration round, more akin to the EM type algorithms. The com-
mon precision used for termination in all algorithms was 10−4

bits/word.
It has been argued in [16] that the modified Kneser-Ney model

takes too long to train, especially with longer-span language mod-
els. The Powell’s algorithm, used in both the standard and modi-
fied Kneser-Ney algorithms, runs in time roughly quadratic in the
number of estimation parameters. Thus the addition of n-gram lev-
els leads to poor scalability. Because of this in the tests presented
in [16], the authors use the standard Kneser-Ney smoothing.

The interpolated additive model promises better scalability,
since the complexity does not increase with the addition of n-gram
levels. Each additional additive constant is added for its individ-
ual estimation independent of other additive constants in the max-
imization phases of the EM.

The most interesting observation that is not shown on the plots
is that the optimal bias (the additive smoothing constant) for the
proposed model was always negative, as estimated by the opti-
mization on the held-out set. This matches the assumption in the
absolute discounting model that a constant amount should be sub-

1The IA and the absolute discounting model have almost equivalent
operations in a pass through the held-out set.

Model Bigram Trigram
Jelinek-Mercer 5.8 6.5

Kneser-Ney 25.17 54.5
interpolated additive 48.83 58.75
modified Kneser-Ney 110.0 201.83

Table 1. Average number of passes through the training data

tracted from all the word counts in the context. It can be shown
that subtracting is asymptotically suboptimal if all the active sym-
bols have linear lower-bounds for their count as a function of sam-
ple size (in other words if their probabilities are bounded away
from zero). However, if there were elements that grow sublinearly
in the sequence, subtracting strategy could outperform even the
universally optimal strategy for the given alphabet. The apparent
existence of such symbols suggests that language can not be rep-
resented as a static i.i.d source.

6. DISCUSSION

We presented the most popular techniques for language modeling,
along with some early additive smoothing approaches. We also
presented results obtained through asymptotic analysis of the ad-
ditive methods and showed that they do not achieve optimal redun-
dancies when the alphabet is unknown. To address this problem,
we proposed the IA method that learns the optimal bias from the
data and also learns the vocabulary through backing off. The re-
sults show that IA outperforms both the absolute discounting and
Jelinek-Mercer model. IA with Kneser-Ney style back-off outper-
forms, albeit by a smaller margin, the Kneser-Ney and the modi-
fied Kneser-Ney methods.

We believe that the main contribution of this paper is the added
insight to the non static nature of language. Similar evidence that
language can not be modeled properly by a static model was also
offered e.g. through successful use of cache based language mod-
els [18]. We have shown that only the existence of sublinear word
sequences in a context would justify count discounting asymptot-
ically. It is up to the future research to identify words responsible
for those effects, if they all come from temporal phenomena, are
topic dependent, etc. We believe that additional perplexity reduc-
tion can be achieved by discounting those words. Note that the
current rule of thumb for improving the quality of the language
model was to add more training data. Although by doing so we
indeed improve the model, we inevitably observe more irrelevant
words, an issue that we think should be addressed.

We also believe that the language models used in speech recog-
nition should be evaluated dynamically, with online acquisition of
training data similar to the ongoing conversation and on the fly pa-
rameter smoothing. This is also where we see the applicability of
the proposed IA model where scalability and fast adaptation would
play important roles.

7. REFERENCES

[1] S. F. Chen and J. Goodman. An empirical study of smoothing
techniques for language modeling. Computer Speech and
Language, 13:359–394, 1999.

[2] P. S. de Laplace. Essay Philosophique sur la Probabilités.
Courcier Imprimeur, Paris, 1816.

[3] H. Jeffreys. Theory of Probability. Clarendon, Oxford, 1939.

[4] I. H. Witten and T. C. Bell. The zero frequency problem:
Estimating the probabilities of novel events in adaptive text
compression. IEEE Transactions on Information Theory,
37(4):1085–94, July 1991.

[5] Q. Xie and A. R. Barron. Asymptotic minimax regret for data
compression, gambling and prediction. IEEE Transactions
on Information Theory, 46(2):431–445, March 2000.

[6] Q. Xie and A. R. Barron. Minimax redundancy for the class
of memoryless sources. IEEE Transactions on Information
Theory, 43(2):646–657, March 1997.

[7] W. A. Gale and K. W. Church. What’s wrong with adding
one. Corpus-Based Research Into Language (Oosdijk, N. and
de Haan, P., eds), 1994.

[8] R. E. Krichevsky and V. K. Trofimov. The performance of
universal encoding. IEEE Transactions on Information The-
ory, 27(2):199–207, March 1981.

[9] A. Orlitsky, N. Santhanam, and J. Zhang. Always good tur-
ing: Asymptotically optimal probability estimation. Interna-
tional Journal of Foundations of Computer Science, to ap-
pear in October 2003.

[10] F. Jelinek and R. L. Mercer. Interpolated estimation of
markov source parameters from sparse data. Proceedings
of the Workshop on Pattern Recognition in Practice, pages
381–397, May 1980.

[11] P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, J. C. Lai,
and R. L. Mercer. An estimate of an upper bound for the
entropy of english. Computational Linguistics, 18:31–40,
1992.

[12] S. F. Chen. Building Probabilistic Models for Natural Lan-
guage. PhD Thesis, 1996.

[13] H. Ney and U. Essen. On smoothing techniques for bigram-
based natural language modeling. Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal
Processing, 2:825–829, 1991.

[14] H. Ney, U. Essen, and R. Kneser. On structuring probabilis-
tic dependences in stochastic language modeling. Computer
Speech and Language, 8:1–38, 1994.

[15] R. Kneser and H. Ney. Improved backing-off for m-gram
language modeling. Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing,
1:181–184, May 1995.

[16] J. Goodman. A bit of progress in language modeling. Com-
puter Speech and Language, pages 403–434, October 2001.

[17] H. Ney, S. Martin, and F. Wessel. Statistical language mod-
eling using leaving-one-out. In Corpus Based Methods in
Language and Speech Processing, pages 174–207, 1997.

[18] R. Kuhn and R De Mori. A cache-based natural language
model for speech recognition. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 12(6):570–583, June
1990.

