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Preface

The term qualitative constraint calculus comprises logical formalisms and algorithmic
methods used in the domain of Qualitative Representation and Reasoning, a steadily
growing and vital sub-domain of current AI research. In the past 25 years, since P. J.
Hayes’ work “Naive physics 1: ontology for liquids” (1978) and J. Allen’s work “Main-
taining knowledge about temporal intervals” (1983), researchers have intensely studied
representations of real-world phenomena by describing features of the world in purely
qualitative terms. This is because these formalisms aim at describing the common-
sense background knowledge on which our human perspective on the physical real-
ity is based. In fact, although qualitative calculi employ concepts from a wide range
of mathematical theories (geometrical notions such as lines, half-planes, and angels,
topological terms such as interior, boundary, or connectedness, concepts of size and
shape, etc.), qualitative representation formalisms usually are built on vocabularies that
are close to expressions in natural languages. This entails that qualitative representation
formalisms abstract from metrical aspects of the physical reality and, moreover, from
(maybe “over”-) sophisticated concept formations used in mathematics or physics.

From a computational point of view qualitative representation formalism are of par-
ticular interest: the fundamental idea underlying qualitative constraint calculi is to re-
strict the vocabulary of rich mathematical theories about space and time in such a way
that diversified aspects of space and time can be treated within distinguished fragments
with simple qualitative (in the sense of non-metrical) languages, but with good com-
putational properties. For that reason a large number of calculi for efficient reasoning
about spatial and temporal entities have been proposed in the literature. To mention just
of few of them, the so-called point algebra and Allen’s interval algebra describe possible
relations between instants or intervals in linear flows of time. Further temporal calculi
have been discussed for more general model classes such as tree-like or partial order
representations of time, and despite these one-sorted calculi, also many-sorted calculi
have been proposed (e. g., Vilain’s point-interval calculus). Examples of spatial calculi
include mereotopological calculi such as the region connection calculus proposed by
D. A. Randell, Z. Cui, and A. G. Cohn, its variants proposed and discussed by B. Ben-
nett, A. Isli, and I. Duentsch, and extensions investigated by A. Gerevini, J. Renz, and
B. Nebel, then M. J. Egenhofer, R. D. Franzosa’s 4- and 9-intersection calculi, fur-
thermore Frank’s cardinal direction calculus and its variants by S. Skiadopoulos and
M. Koubarakis, C. Freksa’s double cross calculus, the dipol calculus and its variants by
R. Moratz and F. Dylla, G. Ligozat’s flip-flop calculus, and many more.

An important application field for qualitative constraint calculi is the domain of
human-machine interaction. That is because artificial agents interacting with humans in
nondeterministic and uncertain environments must be able to process qualitative spatial
and temporal information communicated by humans and thus represented in various
conceptual schemata, on different levels of granularity, and within varying reference
systems. But applications are, of course, not limited to that domain, since qualitative
calculi may also play an interesting rôle in geographic information systems as well as
in robotics.
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When we started to organize this workshop, we identified a series of problem areas
concerning the application and integration of qualitative constraint calculi, which, as
we think, should be addressed at the workshop as well as in future research in the field:
Algebraic methods for integrating qualitative calculi. Researchers in the domain of
qualitative reasoning have developed a series of qualitative calculi, each of them deal-
ing with a rather restricted aspect of the world. But many of these calculi are closely
related to each other: some are simple extensions of others, some show similarities on
the syntactic level, some have related classes of intended models, i. e., they are based
on the same background theory. With regard to possible application fields, it seems im-
perative to provide a unified framework that allows for translating descriptions given in
terms of a specific qualitative calculus into terms of another one. This framework should
also enable artificial agents to reason with such qualitative descriptions. We think that
this problem could be tackled by algebraic, model-theoretical, and category-theoretical
methods.
Combinations of qualitative calculi. Information communicated by human agents usu-
ally mix concepts dealt with in different calculi. From a logical point of view, a repre-
sentation of these “mixed” descriptions can be obtained by considering combinations
of qualitative calculi. In particular, the analysis of different combinations of topological
and geometrical calculi seems a main issue in this area. From an algorithmic point of
view, it seems necessary to develop methods for solving constraint networks of com-
bined calculi by using established algorithmic techniques for the component calculi.
Qualitative calculi and ontology. From an ontological point of view, the qualitative rep-
resentation formalisms may be considered miniature ontologies in the sense of purpose-
driven formalizations of human background knowledge. Here the question arises how
these qualitative calculi can be integrated into upper ontologies such as DOLCE (De-
scriptive Ontology for Linguistic and Cognitive Engineering, developed at LOA, Trento
and Rome). This topic seems an important objective, since ontologies have recently
gained a prominent rôle for the mediation, alignment, and negotiation of spatial infor-
mation in multi-agent systems.
Qualitative calculi in action. We were interested in workshop contributions dealing
with interesting case studies in which qualitative calculi have been used for solving
particular problems. A main issue here is to identify typical problems that need to be
overcome in order to use qualitative calculi in real-world applications. In view of pos-
sible applications, we think that the qualitative reasoning domain will also benefit from
the development of generic constraint solvers for qualitative calculi (inclusively perfor-
mance analyses) and from a discussion of interesting benchmark problems that could
be used to evaluate such constraint solvers.

The papers now comprised in this workshop proceedings contribute to (at least par-
tially) answer the following research questions: What is a qualitative constraint calcu-
lus, and what is it good for? What has been the motivation for many people to study
such calculi during the past 25 years? What is the theoretical (in this context: algebraic,
logical) basis of these calculi? What are the specific techniques and what are the com-
putational methods used in this domain? What are the applications, where these tech-
niques have been implemented and have proved valuable? What are the tools that can
be used by researchers outside the particular community to develop own applications
upon established qualitative calculi?
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Aspects of qualitative world modeling are addressed in two contributions: S. Schif-
fer, A. Ferrein, and G. Lakemeyer report on current work in which a qualitative world
representation has been successfully used to implement tactics known from human soc-
cer theory. Using qualitative representations leads to significant reduction of the space
of possible game situations that need to be considered in soccer games. M. Ragni
presents a qualitative calculus that is applicable for representing dynamic aspects of
traffic scenarios (such as car movements or the evolution of traffic congestions).

Turning to more foundational aspects, G. Ligozat will address in his talk the rela-
tionship of algebraic and categorial concepts by investigating weak representations of
binary non-associative relation algebra, which are the basis for many constraint cal-
culi discussed in the literature. Moreover he will address the problem of characterizing
so-called tractable subclasses of such relation algebras in a general way. The topic of
B. Bennett’s talk will be foundational issues in spatial logic as well as some future direc-
tions for research in the domain of qualitative reasoning. In continuation of G. Ligozat’s
work, T. Mossakowski, L. Schröder, and S. Wölfl present a precise representation of bi-
nary qualitative constraint calculi from a categorial perspective.

Three contributions discuss algorithmic techniques for qualitative constraint calculi.
First, A. Scivos presents techniques that allow for reducing the computational complex-
ity of constraint satisfaction problems, when additional information on the structure
of possible solutions can be used. Then J.-F. Condotta, D. D’Almeida, C. Lecoutre,
and L. Saı̈s report on work about how local consistency concepts can be translated be-
tween qualitative constraint networks and discrete constraint networks. Finally, J. Renz
presents new techniques how large tractable subclasses of binary relation algebras can
be computed in an (almost) automatic way.

Last but not least, F. Dylla, L. Frommberger, J. O. Wallgrün, and D. Wolter present
a toolbox that integrates a specification language for qualitative constraint calculi as
well as a constraint solver that implements some standard techniques discussed in the
qualitative reasoning domain.

This workshop was organized to provide a forum for researchers from different
subfields of AI research (including Qualitative Reasoning, Logic, Constraint Solving,
Computational Linguistics, and Ontologies) to discuss the challenges and open prob-
lems within qualitative constraint based reasoning. We would like to thank the authors
of the contributions to this workshop as well as the members of the Program Commit-
tee, who helped in the review process and provided valuable comments and suggestions
to the authors (and the editors). We also owe thanks to the organizers of the KI 2006
conference. Furthermore, we acknowledge the financial support by the Transregional
Collaborative Research Center SFB/TR 8 Spatial Cognition. Special thanks go to Micha
Altmeyer who helped compiling the proceedings of the workshop.

Finally, we hope for stimulating discussions of interesting results at the workshop.

June 2006 Till Mossakowski and Stefan Wölfl
Program Chairs, QCC’06
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Algorithmic Techniques for Qualitative Constraint Calculi

Structural Approaches for PTIME Solvability of CSPs in Qualitative Reasoning . 40
Alexander Scivos

From Qualitative to Discrete Constraint Networks . . . . . . . . . . . . . . . . . . . . . . . . 54
Jean-François Condotta, Dominique D’Almeida, Christophe Lecoutre,
and Lakhdar Saı̈s

Qualitative Spatial and Temporal Reasoning: Efficient Algorithms for Everyone . 65
Jochen Renz

Tools for Qualitative Constraint Solving

SparQ: A Toolbox for Qualitative Spatial Representation and Reasoning . . . . . . . 79
Frank Dylla, Lutz Frommberger, Jan Oliver Wallgrün, and Diedrich
Wolter



VIII

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



Some Mathematical Aspects of Qualitative Spatial and
Temporal Reasoning

Abstract

Gérard Ligozat

LIMSI-CNRS, Paris-Sud University
ligozat@limsi.fr

Qualitative Calculi at Large

An impressive variety of qualitative temporal and spatial reasoning calculi have been
born since Allen’s first introduction of the interval calculus in 1983. To cite only a few,
we can mention Güsgen’s two-dimensional rectangle calculus, Ligozat’s generalized
interval calculi, the RCC-8 and RCC-5 calculi, the cardinal direction calculus, Freksa’s
double-cross calculus, Mitra’s star calculus, Pujari and Sattar’s INDU calculus, and
several others. Although those calculi are superficially very similar, it has recently been
discovered that their finer properties may differ in a significant way. The INDU calculus
is a remarkable case in point: for instance, many of the basic properties connecting the
classical notions of consistency for constraint networks, which are pleasant properties
of Allen’s calculus, are no longer true for the INDU calculus. Hence many methods
which relied on them become useless. Even on the algebraic side, the corresponding
algebra fails to be associative, hence is not a relation algebra in Tarki’s sense, as Allen’s
algebra notoriously is. This kind of realization led to reconsidering the basic facts about
qualitative calculi and asking obvious questions: what properties can be safely assumed
for any qualitative calculus? In what circumstances do more specific properties appear?
How does the presence or lack of particular properties affect the standard approaches to
the study of the calculi? Trying to answer such questions in a general context has led us
to develop a framework covering all particular cases, including those whose properties
differ significantly from those of Allen’s calculus.

Besides the interest in defining calculi, a sizeable body of work in the domain
of qualitative spatial and temporal reasoning has been devoted to the study of their
complexity, especially in connection with the basic problem of deciding whether a
given constraint network is consistent. Since for most of the calculi this problem is
not tractable, the question of identifying tractable subclasses has come into prominent
focus.

This talk will present two directions in which mathematical tools have proved valu-
able as generic tools for the study of qualitative reasoning formalisms.

Algebra and Category Theory: Weak Representations

The first topic is the use of the tools of universal algebra for a generic and abstract
definition of qualitative calculi. The central idea in this respect is the fact that most
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of the central notions in qualitative calculi can be expressed in terms of the category
of “weak representations” of particular kinds of algebras (of which Tarski’s relation
algebras are special cases) called non-associative algebras. We get a common algebraic
framework which is able to describe all existing qualitative calculi. The language of
the theory of categories provides a clean way of describing a calculus and the basic
concepts associated with it, such as various types of consistency. Moreover, it gives a
good handle on the study of the representations of the algebra, hence on the properties
of the corresponding logical theories.

Geometry and Topology: Conceptual Spaces and Tractability

The second topic is the search for tractable subclasses in the algebras associated to the
calculi. Following the initial work on the so-called convex relations in Allen’s algebra,
we describe the use of geometric and topological concepts for the characterization of
tractable subclasses in a wide range of calculi. A central role is played by various no-
tions of pre-convexity, a property which is connected to the geometry of the set of basic
relations in a calculus. The topic is closely related to the notions of neighborhoods of re-
lations as expressed in terms of “conceptual neighborhoods”. It can also be considered
as an example of the use of “conceptual spaces” in the sense of Gärdenfors.
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Qualitative World Models for Soccer Robots

Stefan Schiffer, Alexander Ferrein, and Gerhard Lakemeyer

Knowledge-Based Systems Group, Computer Science Department,
RWTH Aachen University, Aachen, Germanyy

{schiffer,ferrein,gerhard}@cs.rwth-aachen.de

Abstract. Until now world models in robotic soccer have been mainly quantita-
tive in nature, consisting of fine-grained (numerical) estimates of player positions,
ball trajectories, and the like. In contrast, the concepts used in human soccer are
largely qualitative. Moving to qualitative world models also for robots has the
advantage that it drastically reduces the space of possible game situations that
need to be considered and, provided the concepts correspond to those in human
soccer theory, it eases the task of agent specification for the designer. In this pa-
per we propose qualitative representations using ideas from spatial cognition and
employing Voronoi diagrams. We also discuss how reasoning with these repre-
sentations is achieved within our underlying agent programming framework.

1 Introduction

Until now world models in robotic soccer have been mainly quantitative in nature, con-
sisting of fine-grained (numerical) estimates of player positions, ball trajectories, and
the like. In contrast, the concepts used in human soccer are largely qualitative. Moving
to qualitative world models also for robots has the advantage that it drastically reduces
the space of possible game situations that need to be considered. Provided the concepts
correspond to those in (human) soccer theory, it also eases the task of agent specification
for the designer.

For example, if we use abstract to positional information like front-left, many sim-
ilar game situations are represented by the same qualitative values whereas all these
situations would differ in terms of their numerical values. This is useful, for example,
when we formulate the preconditions required to initiate a tactical move. With a qualita-
tive description we cover multiple similar settings, making the specification applicable
in many circumstances. We also ease the specification process since we are able to use
terms that are much closer to the natural language descriptions commonly used in hu-
man soccer theory. Besides, in the majority of cases a tactical instruction just cannot be
formulated with precise positions but instead always refers to a set of positions denoted
by a qualitative abstraction of regions such as front or left.

Dylla et al. [9] were among the first to address the question of how insights from
human soccer theory can be applied when specifying the behavior of soccer robots.
Their proposal is to analyze existing moves from human soccer theory as, for example,
described in [17] and to adapt these moves to the abilities of the respective robotic soc-
cer leagues. They identified requirements needed to adapt existing moves to a soccer
robot team one of which, they state, is that the robots in the team have to build a quali-
tative world model. The reason for this is that human soccer knowledge, which is often
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represented in the form of diagrams, has an inherent qualitative nature. To encode the
moves which are most often depicted only in a prototypical fashion a qualitative world
representation is needed to formalize behaviors for cooperative team play.

There already exists work on using qualitative information for autonomous agents.
For example, Stolzenburg et al. [21] compared methods how to intercept the ball in the
soccer simulator; one of the methods used qualitative abstracted ball coordinates. In
[11], Fraser et al. describe the inReach predicate for the ball distance while employing
a hysteresis function, Stone et al. [22] apply Reinforcement Learning in the Simulation
League using some handpicked qualitative predicates for state space abstraction. While
in these approaches only some qualitative aspects focusing on a particular task are cho-
sen, none of these fulfill all requirements that are necessary for a complete qualitative
framework.

In this paper we follow the ideas by Dylla et al. [9]. Continuing the work on using
human soccer knowledge for robotic soccer, we present qualitative enhancements to a
world model particularly suited for robots in the MIDDLE SIZE LEAGUE, where up to
five robots per team play on a 8m×12m indoor soccer field. However, the enhancements
could be applied to any other ROBOCUPsoccer league just as well. Drawing on previous
work in the area of spatial cognition, we present an approach to representing positions
on the field qualitatively. We also discuss models for further information needed to
transfer human knowledge on soccer such as to decide when a pass can be played to a
team-mate. This is done in the context of the logic-based action language READYLOG,
a variant of GOLOG [16], which we use for an exemplary specification of the soccer
move “kick-off”.

When using a qualitatively abstracted world model, an important issue is drawing
appropriate inferences. A simple example is to derive the result of distance near +
distance f ar. One option would be to apply one of the existing qualitative spatial cal-
culi (cf. [4] for a survey of existing calculi). However, this currently does not seem
feasible not only for computational reasons. Instead, we propose a hybrid quantitative-
qualitative representation of the respective world model information, which allows for
a limited form of reasoning about qualitative world model predicates, that seems ex-
pressive enough for most soccer applications. To be able to do so we have methods for
re-quantifying the qualitative values to their numerical counterparts.

In the next section we define our qualitative world model. In section 3 we briefly
introduce the language READYLOG and we show how it can be used to specify abstract
soccer moves. In section 4, we present an example illustrating our approach to reasoning
about the predicates in our qualitatively enhanced world model. Section 5 concludes the
paper.

2 Qualitative Representations

In the following we present the models which we use to abstract the quantitative data
gathered from the sensors of the robots and stored in the quantitative world model to a
qualitative representation of the world.



Qualitative World Models for Soccer Robots 5

Back

Front

close

middle

far

FrontLeft FrontRight

Left Right

BackRightBackLeft

(a) The combination of the distance and the
orientation relation

angle

radius
P(radius,angle)

(b) A point p defined in polar coordinates

Fig. 1: The combination of distance and orientation relations compared to the polar
coordinate system.

2.1 Positional Information

In [3], Clementini, Felici, and Hernandez present a unified framework which allows for
qualitative representation of positional information. The framework combines an orien-
tation and a distance relation. The position of a primary object is represented by a pair
of distance and orientation relations with respect to a reference object. Both relations
depend on a so-called frame of reference which accounts for several factors like the size
of objects and different points of view.

The framework also features basic reasoning capabilities such as the composition
of spatial relations as well as switching between different frames of reference. Unfor-
tunately, the reasoning features provided are not guaranteed to yield unique1 results,
for instance, for the composition of qualitative terms. However, as for the ROBOCUP
soccer domain we depend on unambiguous outcomes of such compositions since they
are needed to instruct the robot.

From a quantitative point of view, the combined description of a position with this
model can be seen as the representation of a point in polar coordinates. A point p in
polar coordinates is defined by the distance r from the origin to this point and the angle
ϕ measured from the horizontal x-axis to the line from the origin to p in the counter-
clockwise direction. Thus, the position of a point p is described as (r,ϕ). This descrip-
tion directly corresponds to the combination of the distance and the orientation relation.
We illustrate this in Figure 1. This correspondence is of particular interest concerning
our hybrid approach to reasoning which we will discuss in detail in section 4.

The number of subdivisions, that is the level of granularity within the qualitative
description of both distance and orientation can be chosen freely. In this paper we re-
strict ourself to one level with eight distinctions although it is possible and might be
of benefit to have multiple levels. For a recent approach to qualitative orientation with
adjustable granularity see [19].

1 By unique we mean results which contain exactly one relation.
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Fig. 2: Semantic regions on the playing field. Figure (a) shows the orientation grid
taken from [12]. Figure (b) shows the grid embedded into a soccer field. The re-
sulting semantic regions on the playing field are shown in Figure (c).

Beside the relative positional information described so far positions are also used in
a global frame of reference. A qualitative concept which is applied frequently is that of
semantic regions on the playing field. These regions are often used as tactical positions
corresponding to player roles. To model semantic regions in the sense of global posi-
tioning we employ a well-known approach to qualitative representation of positional
information proposed by Freksa and Zimmermann in [12, 13]. Qualitative orientation
information in two-dimensional space is given by the relation between a vector and a
point. The vector consists of a start point A and an end point B. It represents the orien-
tation of a possible movement. Now, imagine a line through A and B and two further
lines, one orthogonally going through A and B each. These three lines form an orien-
tation grid which has the form of a double-cross. Different positions of an additional
third point C can then be described with respect to this grid. Altogether the grid leads
to 15 different orientation relations.

The grid used for the representation of orientational alignment is based on a (move-
ment) vector. Unfortunately, we do not have an explicit movement in the context of
global positioning on the playing field. On the other hand, we can regard the direction
of play as a vector. From a tactical point of view one of the main objectives in a game is
to advance from a defensive situation in the team’s own half to an offensive one in the
opponent’s half. Thus, we can take the center of each team’s half as the start and end
point of an imaginary vector. If we place this vector onto the playing field we can relate
semantic positions on the field to the orientation relations provided by Freksa’s grid.
This yields a subdivision of the field into 15 regions. The regions and their derivation
are depicted in Figure 2.

Dividing the grid by the field’s horizontal and vertical axes results in zones for the
length of the field and in sides for the width. This system roughly corresponds to the
Cartesian coordinate system; zones and sides form perpendicular axes with the zones
corresponding to the x-axis and the sides corresponding to the y-axis. Thus, we can
still specify an object’s position in a coordinate system like manner, but by using zones
and sides we achieve a qualitative abstraction. The analogy to the Cartesian coordinate
system is of importance to our hybrid approach to reasoning again.
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In the following we are going to elaborate on possible applications of the qualitative
approaches to positional information we just presented.

2.2 Derived Predicates

Besides the greater comfort within the specification of tactical patterns we can use the
zone and side information to build further qualitative predicates. Consider, for instance,
the course of a soccer game. The overall positioning on the pitch is, besides the ball
possession, one of the fundamental indicators upon which to classify whether a team
is currently in a defensive or an offensive situation. Moreover, it is an important infor-
mation whether the game’s focus is on one of the sides of the playing field or in the
center.

With the zone information we can provide a predicate which we call game setting.
It expresses where on the pitch the main activity of play is. It can be used to derive
positioning instructions or simply to call appropriate sub-procedures in an agent’s pro-
gram. We compute the game setting by a weighted sum of the zone indices of all players
and of the ball: wteam ·

∑
i∈team zone(i)+wopp ·

∑
j∈opps zone( j)+wball · zone(ball). The

center of the possible values lies at a value of zero which states that the focus of play is
located in the midfield. To be able to perform a classification of the game’s focal point
in terms of a situation being offensive, balanced, or defensive we need to establish a
threshold. Upon this threshold we can decide to which of the above class the current
situation belongs. Feasible values for this threshold as well as for the weights for each
of the three different objects within the above formula were found empirically in real
world experiments. They can, however, also be learned which could lead to more ade-
quate results. Analogously to the game setting we can determine the gist of play with
respect to the sides of the pitch. We call this the game edge. The game edge renders
useful, for instance, if we need to decide which side of the pitch is less occupied and
can thus be used to advance into the opponent’s field half with a lower risk of being
attacked.

2.3 Reachability

Apart from the static semantic regions there are further aspects which can be useful to
determine. In particular, we are interested in dynamic spatial properties such as reacha-
bility of different kinds, which is central for the description and the execution of tactical
patterns in soccer. For a discussion of the different forms of reachability we refer to [9].
For all these different reachability relations the individual abilities of a single robot or
agent are relevant since even within the same league players of different teams may
have unequal capabilities in terms of speed and mobility. Nevertheless, there are some
general properties which hold for all players despite their physical abilities.

We consider the concept of Voronoi diagrams to be applicable for modeling a sim-
plified version of the reachability relations required. A Voronoi diagram V (S) of a set
S of n point sites is the partitioning of a plane with n points into n convex polygons
such that each polygon contains exactly one point and every point in the given polygon
is closer to its central point than any other. For a more detailed account on Voronoi
diagrams and their dual, the Delaunay triangulation DT (S), see e.g. [1].
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We make use of Voronoi diagrams and their dual the Delaunay triangulation to
model reachability as they separate the field into non-intersecting regions and we get a
connection graph between the players. We take the players as point sites in the plane and
construct V (S) and DT (S) with the Euclidean distance thereupon. Then, the Voronoi re-
gion of each player is the set of points closer to this player than to any other player.
Furthermore, in the dual of the Voronoi diagram V (S), the Delaunay triangulation
DT (S), two players’ point sites are connected
if and only if they share a common boundary
in the Voronoi diagram. Our idea of modeling
reachability with the aid of V (S) and DT (S)
is to consider players to be reachable to each
other if their Voronoi regions share a common
boundary, that is, they are connected in the
Delaunay triangulation DT (S). Fig. 3 depicts
the Delaunay triangulation and the Voronoi re-
gions for the geometric structure of several

Fig. 3: Voronoi diagram and Delaunay triangu-
lation of a soccer situation

players on a soccer playing field. The yellow lines represent the triangulation, the green
and red shaded regions correspond to the Voronoi regions of the attacking team and the
defending team, respectively.

2.4 Free Space

The notion of free space is another important aspect which can frequently be found in
the description of spatial settings and tactical patterns in soccer. The term free space de-
notes an area which is not occupied by any of the players of the opposing team. Consider
the Voronoi diagram being constructed upon all opponent players on the field. That is,
each opponent player corresponds to the center of a Voronoi region. The Voronoi edges
are formed by points that are equally far away from the two players the edge is between.
The Voronoi vertices reflect points in the plane which have the maximal possible dis-
tance to even three or more of the surrounding players. These vertices directly match
our interpretation of positions in free space as we sketched it above. Please note that we
include the four corner points of the playing field into the Voronoi diagram. We need
at least three Voronoi regions to obtain a Voronoi vertex. Including the corner points
yields a minimum of four regions thus guaranteeing that we do not have less than one
Voronoi vertex.

We provide two distinct ways to employ these vertices. First, we consider a clas-
sification request. Given a point on the playing field, we can ask how ’free’ this point
is. To answer such a request we compute the point’s distance to the nearest point site
in the opponent’s Voronoi diagram as well as its distance to the nearest Voronoi vertex.
The ratio between these two values is a good criterion on how ’free’ the given point is
because it reflects whether the point is closer to a free position or to an opponent player.
Since the ratio does not reflect the absolute distance to an opponent we additionally
take a minimal distance into account which has to be exceeded. Second, we can answer
inquiries for free point positions. Most times it is reasonable to specify a region of in-
terest in which to search for a free position. For simplicity we assume that we specify a
region of interest by a position in the pitch’s coordinate system (along with a maximal
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distance to search up to). Given this query, we determine the nearest Voronoi vertex to
the position. If the distance between the query point and the vertex is lower than the
maximal distance we return the vertex’ position. Otherwise, we return the position of a
point lying on a line starting at the query point going into the direction of the nearest
Voronoi vertex.

2.5 Additional Concepts

Within the course of a soccer game it is a vital piece of information whether or not
one’s team is in possession of the ball. That is, again, an information we can provide by
utilizing the structure of Voronoi diagrams. The simplest way to answer the question of
ball possession is to check if the ball is located in the Voronoi region of a player who
belongs to one’s own team. This is, of course, not always correct. For example, if the
player whose Voronoi cell the ball belongs to is not facing the ball it might be the case
that another player who has a greater distance to the ball but who is directly facing it
can reach it more quickly. It is, however, possible to take this additional information
into account and to refine the predicate accordingly.

As an additional qualitative predicate of particular interest in the soccer context we
now consider something we call passway vacancy. We denote a qualitatively abstracted
classification of the amount of space available along a potential pass way by this pred-
icate. That is to say, we classify the degree of exposure of a line segment going from
point Pstart to point Pend by examining possible points of interception. We derive our
classification by considering a ratio on how likely an interception is. Consider a straight
line from Pstart to Pend. We compute the minimal distance of each opposing player to
this line, that is either the length of a line perpendicular to the pass way or the distance
to the pass way’s nearest end point. Further, we compute the distance from each oppo-
nent to the starting point of the pass way. Then, we calculate the ratio between this two
values. That is to say, we determine if the opponent is so close to the pass way that it
can intercept a ball passed along the pass way.

3 Using Readylog For Behavior Specifications

READYLOG [10], a variant of GOLOG, is based on Reiter’s Situation Calculus [20, 18],
a second-order language for reasoning about actions and their effects. Changes in the
world are only due to actions so that a situation is completely described by the history
of actions starting in some initial situation. Properties of the world are described by
fluents, which are situation-dependent predicates and functions. For each fluent the user
defines a successor state axiom specifying precisely which value the fluent takes on
after performing an action. These, together with precondition axioms for each action,
axioms for the initial situation, foundational and unique names axioms, form a so-called
basic action theory [20].

GOLOG has emerged as an expressive language in recent years. It has imperative
control constructs such as loops (while), conditionals [16] (if ...then), and (recursive)
procedures (proc(name(parameters),body)), but also less standard constructs like the
nondeterministic choice of actions (|). Extensions exist for dealing with continuous
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Fig. 4: Example for the “build-up play” move.

change [15] and concurrency [6], allowing for exogenous and sensing actions [5] and
probabilistic projections into the future [14]. Another extension provides the facility to
do decision-theoretic planning [2] which involves Markov Decision Processes (MDPs)
(solve(p,h), where p is a GOLOG program, h is the MDP’s solution horizon). READY-
LOG integrates these and more features in one agent programming framework [10].

To encode the behavior one has to specify a domain axiomatization including the
actions the robot can perform together with their effects, and the fluents which describe
the properties of the world like the ball position. Examples of domain descriptions for
the soccer domain can be found in [7, 8].

3.1 A Soccer Move Example

We now specify the soccer move “kick-off” in READYLOG and we show that our qual-
itative world model (READYWORLD) supports the specification. We adapted three pos-
sible ways to build up a play as discussed in [17].

The first way to build up play is with a long pass (Fig. 4(a)). We immediately notice
that the term long is one of the coarse, qualitative notions we need to establish in order to
adapt human soccer theory for our autonomous soccer agents. We could also formulate
this as passing the ball from a back position to a front position on the playing field. The
second way to build up play is with a diagonal pass as depicted in Fig. 4(b). This time,
the term diagonal is of qualitative nature. Diagonal means passing to the side being
opposite to the current one. Fig. 4(c) shows the last possibility to build up play which
is with a deep pass (dashed line labeled with 1) followed by a subsequent back pass
(dashed line labeled with 2). The term deep is used to denote the space behind or in
between a group of opponent players. The endpoint of such a pass has to be the most
free position available in between or behind the group of opponents.

We now try to adapt as much of these descriptions as possible by integrating their
most essential parts into one pattern. All three possibilities have in common that the
ball is located in the back part on the pitch. According to a role ontology it is a player
currently having a defensive role which is about to initiate the pattern to build up play.
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proc build up play defender ,
if haveBall(ownNumber) then

getFreeSide(offense,FreeSide); getPassPartner(offense,FreeSide,PassPartner);
solve (

if ¬isKickable(ownNumber) then
interceptBall

else if isPassReachable(ownNumber,PassPartner) then
passTo(ownNumber,PassPartner)

endif
endif
| pickBest( bestSide ,{leftSide, middleSide, rightSide}

dribbleTo (ownNumber,middleZone,bestSide)
| kickTo(ownNumber,middleZone,bestSide) ) /∗ end of pickBest ∗/

| interceptBall ; kickTo( ownNumber, middleZone, middleSide ),
3, func Reward ) /∗ end solve with horizon 3 ∗/

else
interceptBall

endif
endproc

Fig. 5: The build-up play program for the defender.

We already characterized the possibility of a long pass as ’bringing’ the ball to the front
part of the pitch. Therefore, in this case the agent chooses to pass to a teammate who is
located in the attacking zone. For the two other possibilities the pass’ destination is the
midfield. The agent can either make a diagonal pass, that is the case if the target position
is on the opposite side of the field, or it can simply pass to a free area on the same side
or in the pitch’s center. To illustrate our adaptation of the build up play patterns for the
MIDDLE SIZE LEAGUE we depicted a diagram similar to the ones in [17] in Figure 4(d).

Figure 5 shows a program in our action language READYLOG capturing the above
example. Note that this specification contains several qualitative elements such as mid-
dleZone, leftSide, and offense as well as qualitative predicates such as isPassReachable.
With our qualitative world model we are able to simply transfer the qualitative notions
from the specification in [17]. Moreover, the use of qualitative terms and predicates
makes the program applicable in many game situations.

4 Reasoning

When a robot executes a READYLOG program like the one in Figure 5, it needs to
evaluate different courses of action and choose the most appropriate one. This happens
every time a solve-construct is encountered. Roughly, the robot evaluates the different
alternatives (nondeterministic actions separated by ′|′ and nondeterministic choice of ar-
guments (pickBest)) and chooses the one that maximizes expected utility in a decision-
theoretic fashion (see [2, 10] for details). The evaluation of one alternative involves
projecting the effects of the actions it contains into the future, starting from the current
(qualitative) world model.

For the purposes of this paper, the main question is how moving-actions involving
qualitative spatial terms are projected. For example, suppose the robot is currently in
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Fig. 6: An exemplary projection of qualitative values in READYLOG.

region [zoneBack,sideLeft] (Figure 6(a)). What should the effect of the action go(front-
right,far) be? Depending on the exact position of the robot, it could end up in any of 9
zones on the field.2 While this may still be manageable, things quickly get out of hand
when we want to project a sequence of actions. In the worst case, the eventual outcome
would span all 15 zones, that is, we lose all information about where the robot might
end up. Moreover, projecting all possibilities is too costly, as the robot needs to make a
decision on what to do next in the order of less than a second.

To avoid these complications and to remain computationally efficient, we simplify
the problem in the following drastic way: to project the path of the robot, we sim-
ply translate the qualitative information back to numeric (geometric) values, taking as
representative the mid-points of zones, sides, directions, and distances. The compo-
sition can be computed straight-forwardly using Euclidean geometry. The numerical
end-result is then converted back to a qualitative description in the same way we per-
form the qualitative abstraction in the first place. Figure 6 illustrates this for the action
go(front-right,far) starting in region [zoneBack,sideLeft]. There are several advantages
to this. Rather than having to entertain all possibilities, we only need to compute one.
Using mid-points also reduces the error in a reasonable way for practical purposes. Per-
haps most importantly, we can use the existing projection mechanism of READYLOG,
which requires that the effects of atomic actions are deterministic (in the case of a goto-
action, the effect must be a unique location).3 The method is clearly sound, as the result
is among those which a purely qualitative reasoner would obtain. It is not complete,
as there may be cases where the computed path would take the robot outside the field
and hence render the action illegal, even though other legal solutions may exist. Being
incomplete is not a big problem in this application. It is more important to obtain a
reasonable approximation fast in most circumstances. Also, plans often do not survive
very long in soccer, that is, they are often aborted because the world has changed in a

2 See also [3] for a discussion of ambiguities in their approach to qualitative representations of positional
information.

3 Note that this is different from nondeterministic actions, which are complex, that is, made up of a number
of primitive actions.
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way that makes the current plan invalid. Hence it is not worth spending too much effort
on figuring out what to do. Finally, we remark that, once a course of action has been
chosen, we employ the same method that we use during reasoning to compute actual
robot trajectories, using the real robot position as the starting location.

5 Conclusions

In this paper we proposed a qualitative spatial world model for soccer playing robots,
combining earlier work on semantic regions with that on orientation and distance rela-
tions. In addition, we used Voronoi diagrams to provide us with a notion of reachability,
which is important in the soccer domain. Computing robot trajectories from ambigu-
ous qualitative descriptions was achieved by mapping the qualitative terms to unique
geometric representatives.

The current reasoning scheme is admittedly somewhat ad hoc and was chosen
mainly for efficiency reasons. One refinement would be to consider more than one tra-
jectory. Also a comparison with existing spatial calculi [4] is needed. On the practical
side, while the above ideas are fully implemented, we need to carry out more experi-
ments to see how the qualitative approach fares in real games.
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Abstract. Allen’s interval algebra is one of the most prominent calculi in quali-
tative reasoning. Although that it has been developed for temporal reasoning and
representation, it has been soon used also for spatial reasoning, especially in ge-
ographical information systems (GIS). Another prototypical example are traffic
scenarios where cars can be represented by intervals on a road as the underlying
line. Most important are calculi able to model dynamic configurations, i.e. tem-
poralized qualitative spatial calculi. We use intervals to represent spatial objects
and construct a spatio-temporal relation algebra. By adding some restrictions on
the models, like continuity and size persistence constraints, the calculus becomes
more adequate, although the satisfiability problem also looks a lot harder. How-
ever, we are able to show that the satisfiability problem is NP-complete.

1 Introduction

Allen’s interval algebra is one of the most prominent calculi in qualitative reasoning.
Regardless the fact that it has been developed for temporal reasoning and representation,
it has also been used for spatial reasoning [10] especially in geographical information
systems (GIS) [8], and for directed intervals [16].

Qualitative Spatial Reasoning (QSR) abstracts from metrical details of the physical
world and enables computers to make predictions about spatial relations, even when
precise quantitative information is not available [4]. From a practical viewpoint QSR
is an abstraction that summarizes similar quantitative states into one qualitative charac-
terization. A complementary view from the cognitive perspective is that the qualitative
method compares features within the object domain rather than by measuring them in
terms of some artificial external scale [6]. This is the reason why qualitative descriptions
are quite natural for humans.

Balbiani and Condotta [2] have systematically investigated the computational com-
plexity of the block calculus, and identified tractable subclasses. Time played no role in
their investigations, so what they analyzed was the question, if a given set of constraints
is satisfiable, i.e. if it has a scenario. We call such problems static problems.

Assume that a scenario, i.e. a qualitative information about positions of objects, is
given. So what you may want to know is, if it is possible to transform under specified
constraints this scenario in another scenario. A well-known example may be the Tower
of Hanoi problem. Such problems are called dynamic problems. We will investigate
in the following the computational complexity of such dynamic problems with respect



16 Marco Ragni

to intervals. In order to investigate this we need to temporalize spatial problems. Most
important is that some natural additional constraints on the models are satisfied, e.g. the
transformation has to be continuous, meaning that objects should change their positions
without leaps.

What is the motivation for considering temporalized constraint formalisms? First
for modelling real-world problems we need of course temporal aspects. For example,
for applications ranging from logistics, planning, to robot navigation, and multi-agent
systems such temporal aspects are vital. Other applications range from geographical
information systems (GIS) to calculi for directed intervals [16]. The latter work has
investigated the question, what happens, if we combine intervals and direction. With
respect to more spatial domains, a theory of temporalized intervals may have interesting
applications, for example, when the movement of cars on highways, from overhauling
to accumulations of cars, have to be modeled. This can be done by identifying cars
or accumulation of cars by intervals (cf. Figure 1). Furthermore, a “real-world” model
should be, of course, able to differentiate between exceptional cars, e.g. a police car,
which is in some states prohibited to overtake. This should also be expressible in such
a language.

Another possible application may be in video controlled accumulation warning sys-
tems, where “blackouts” occur: A camera films a traffic scenario, then the transmission
breaks down, and after a while the camera is restarted and you get another traffic sce-
nario. The question is what has happened between the breakdown and before the restart
of the transmission? Such questions can only be answered in temporalized models. This
brief discussion already indicates how reasoning with temporalized interval relations
could be used for reasoning about traffic networks. The calculus is additionally used
in applications dealing with small-scale spaces like Web page design (Borning et. al.,
2000), as well as in applications with large-scale spaces like Geographic Information
Systems [8]. We see that for both applications a temporalization has its use.

Fig. 1: Intervals in transportation networks

The calculus RCC-8 has been temporalized by a time logic PTL [18] and the inter-
val algebra [7]. Here, we investigate such a temporalization of spatial structures which
use intervals, and we aim at a theory sufficient for describing transportation networks.
For this reason, we discuss the temporalization of algebras and ask which conditions
the models should satisfy. We suggest two main axioms that should be satisfied by any
adequate model. These axioms can be described as the continuity constraint, which
states that any change of scenarios should be continuous and the size/shape persistence
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constraint, which states that the size (and shape) of the objects should not be changed
over time. This is done by using an interval algebra for representing spatial objects (fol-
lowing the idea of [10]) and another interval algebra for modelling temporal aspects.
This temporalization of the interval algebra is a first and necessary step for tempor-
alizing objects in two or more dimensions like the block calculus. Some preliminary
work for temporalizing relation algebras has been done in [14] and [15]. In the first
paper a so-called generalized neighborhood graph has been developed to represent con-
tinuous movements and for precising the notion of consistency in temporalized relation
algebras. In the second paper the cardinal direction calculus has been temporalized and
connections to classical planning has been outlined.

The paper is organized as follows: In section 2 we review some basic concepts about
the interval algebra, and we sketch some results concerning complexity and the neigh-
borhood graph. In a next step, we introduce the notion of temporalization of relation
algebras and ask which requirements models of such dynamic satisfiability problems
should satisfy. In section 4 we work out the particularities of this new structure con-
cerning complexity questions and search unsatisfiable substructures. In particular, we
show that the satisfiability problem with respect to the continuity constraint of the mod-
els is NP-complete. Finally, section 5 summarizes the results of the paper and gives a
short overview of some questions that are left open in this paper.

2 The Interval Algebra

Since the interval algebra [1] is certainly the most prominent relation algebra in AI,
we will present here only its essentials. The interval algebra (IA) has thirteen base
relations between pairs of intervals. An interval X is represented as a tuple (x−,x+) of
real numbers, with x− < x+, denoting the start and endpoint of the interval respectively,
and relations between intervals are composed of disjunctions of base interval relations.

Symbol Relation Pictorial Representation
≺ (conv.: �) I before J I

J

m (mi) I meets J I
J

o (oi) I overlaps J I
J

d (di) I during J I
J

s (si) I starts J I
J

f (fi) I finishes J I
J

= I equals J I
J

Fig. 2: The thirteen base relations of the interval algebra
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Given a spatial or temporal CSP θ , a fundamental reasoning problem1 is deciding
the satisfiability of θ . The satisfiability problem of IA (short: IASAT) is NP-complete
[17]. Assume that two intervals are related by one of the base relations presented in
Figure 2. What happens if we move one of the intervals (in very small “steps”) towards
the other? This question is usually answered by presenting a neighborhood graph. The
neighborhood graph is also often understood as a similarity measure for the conceptual
neighborhood of relations.

≺ m o

s

fi di

d

si

f

oi mi ≻e

Fig. 3: The neighborhood graph of the interval algebra for intervals with fixed
(unchangeable) length.

3 Temporalization of Relation Algebras

Anything which can be described so far by the interval algebra are scenarios, i.e. snap-
shots of a situation. To model dynamic environments, we need in additional the possi-
bility to express time constraints. For this reason, we use another interval algebra for
describing temporal relations between the scenarios. From a computational complexity
point of view, the question of checking the consistency of one scenario is easier than
finding and checking the consistency of a chain of scenarios.

In this section we introduce some technical notions about temporalized constraint
formalisms. We adopt here the concepts introduced in [15].

Let VT and VS be disjoint sets of variables. A temporal (spatial) IA constraint is
a formula of the form I R J (X R Y ), where I,J ∈ VT (X ,Y ∈ VS ) and R = {r1, . . . ,rn}
is a subset of the set of all IA base relations {≺,m,o,s, f,d,=,�,mi,oi,si,fi,di}. An
IA constraint network is a finite set of IA constraints. Let V (C) be the set of variables
occurring in a given constraint network C. An assignment for an IA constraint network
C is a function τ : V (C)→ R2 that assigns to each variable Z that occurs in C a pair
of real numbers (τ1(Z),τ2(Z)) such that τ1(Z) < τ2(Z). The model relation w. r. t. an
assignment τ for C is introduced as follows:

τ |= I m J ⇐⇒ τ
2(I) = τ

1(J)

τ |= I o J ⇐⇒ τ
1(I) < τ

1(J) < τ
2(I) < τ

2(J)

τ |= I d J ⇐⇒ τ
1(J) < τ

1(I) < τ
2(I) < τ

2(J)
. . . (cf. Fig. 2)

1 Since all other problems in the CSP context can be reduced in polynomial time to satisfiability [9].
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and

τ |= I {r1, . . . ,rn} J ⇐⇒ τ |= I ri J for some 1≤ i≤ n.

Finally, an IA constraint network, C, is satisfiable if there exists an IA assignment
that models all relations of C. In this case the assignment is said to be a solution of C.
We differentiate between spatial interval variables, which are denoted in the following
by X ,Y,Z . . ., and temporal interval variables denoted by I,J,K, . . .

The temporalized interval calculus TIA combines constraint formulae of Allen’s
interval calculus for the spatial and and the temporal part. More precisely, we define
TIA constraint formulae as follows:

– Each temporal constraint I R J is a TIA constraint, i. e., I R J is a TIA constraint
for each pair of interval variables I,J ∈VT and each set R of Allen relations.

– For each interval variable I, each pair of spatial variables X and Y , and each set S
of IA relations, I : x S y is a TIA constraint.

A TIA constraint network is a finite set of TIA constraints. A standard interpreta-
tion of this constraint formalism is based on the following ingredients: we use the linear
ordering of the reals for interpreting interval variables.

A typical example of a TIA constraint network is the following:

I m J, I : X {m,o} Y, I : Y {m} Z, J : X {≺} Y, J : Y {m} Z,

This network expresses that during time interval I, the spatial interval X meets the
spatial interval Y , or X overlaps Y and Y meets the interval Z. During time interval J
the spatial configuration is different. The spatial interval X is before the spatial interval
Y , and so on.

Definition 1 (cp. Ragni and Wölfl [15]). An interpretation of a TIA constraint net-
work C is an ordered pair 〈τ,γ〉, where

– τ is an IA assignment for V (C)∩VT .
– γ assigns to each instant t ∈ R an IA assignment γt : V (C)∩VS → R2.

Then the function γ̂X : R→ R2, t 7→ γt(X) describes the movement of the object (inter-
val) X . The point γ̂X (t) is referred to as the position of X at time point t, and γ̂1

X (t) and
γ̂2

X (t) refer to the start and endpoint of the interval, respectively, at instant t.

We then define the model relation as follows:

〈τ,γ〉 |= I R J ⇐⇒ τ |= I R J

〈τ,γ〉 |= I : X S Y ⇐⇒ γt |= X S Y for each τ
1(I) < t < τ

2(I).

Note that we require that the spatial constraints hold in the interior of the time
interval (cp. [15, 7]) .

Definition 2. An interpretation 〈τ,γ〉 for a TIA constraint network C is said to be a
model of C if 〈τ,γ〉 |= φ for each φ ∈C.
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The core problem, then, is to find a sequence of scenarios (called transition chain),
which satisfies a given TIA CSP. We can abbreviate the problem for every time inter-
val by a triple 〈Σ ,σs,σ f 〉, where σs is the start scenario, σ f is the final scenario, and Σ

contains the (spatial) constraints for the objects. A transition chain from σ1 to σn is a
sequence σ1, ...,σn of scenarios for Σ , such that the changes from σi to σi+1 satisfy the
size persistence constraint, continuity constraint, and sequential movement constraint
explained in the following. The central question here is: what are the restrictions we
should impose on possible models (interpetations) of TIA constraint networks? In the
remainder of this paper we will use two “reality”-principles that spatio-temporal mod-
els should satisfy and a third constraint, which is introduced for the sake of simplicity.
First, we may want to restrict possible changes to those where the intervals do not
change their size. This is meant by the size persistence constraint. We may also want to
restrict possible changes to those that satisfy the principle of continuous transformation,
i.e. the classical neighborhood graph should be satisfied. In other words, it should not be
possible, for two intervals with, e.g. I ≺ J (before) to change suddenly into I o J (over-
laps) without going through I m J (meets) inbetween. The last restriction on the class
of models states that at any time only one object should change its position, i.e. there
should not be simultaneous movements. This is introduced for controlling the trans-
formations and for assuring the continuity constraint. All these constraints, however,
cannot be expressed by TIA formulae, but by deduction rules only.

As a consequence of the size persistence constraint it is sometimes possible to de-
duce relative sizes of intervals (conceived of as spatial objects). For example, if the
interval I is during the interval J (I d J), we know that the interval I must be smaller
than the interval J. As well, if we know from a scenario or from some constraints that
the interval I is smaller than an interval J, any solution which consists of at least one vi-
olating scenario cannot be a solution. Therefore we have to deduce from the constraints
additional constraints on the relative size of intervals.

Since solutions of TIA constraint networks have to satisfy these three additional
constraints, spatio-temporal problems seem to be much harder than the satisfiability
problems of IA.

4 The Computational Complexity

Our aim is to prove the following main theorem:

Theorem 1. TIASAT is NP-complete.

The NP-hardness of TIASAT follows directly from the NP-hardness of IASAT.
Given a neighborhood graph G, we define the neighborhood distance between spa-

tial relations as follows: For base relations B and B′, ∆G(B,B′) is defined as the length
of the shortest path in G between B and B′. For arbitrary relations S and S′ we set

∆G(S,S′) = min
B∈S,B′∈S′

∆G(B,B′).

Obviously, ∆G(S,S′) = 0 if and only if S intersects with S′, and ∆G(S,S′) = 1 if and
only if S and S′ are disjoint, but contain base relations B and B′ respectively such that
B′ is a neighbor of B in G. The conceptual distance of two scenarios σi,σ j is the sum
of all conceptual distances for all relations in σi to σ j.
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4.1 Reasons for Insatisfiability

There are four reasons, why dynamic satisfiability problems of intervals are unsatisfi-
able: First, there is no path in the classical neighborhood graph for transforming one
interval into the other (satisfying all constraints in Σ ). Second, if there is a path, a mov-
ing interval I changing its position wrt. to an interval J violates its constraints to a third
interval K. Third, the constraints induce a change of the sizes of an interval wrt. to an-
other interval. Fourth, the interval is chained, i.e. it is not possible to move an interval
because another interval is connected with it and therefore we would have to move both
in one step. We provide for any of these problems an example.

We analyze now the difficulty to compute possible paths from an initial scenario to a
final scenario. Here the conceptual distance plays an important role. For a given problem
〈Σ ,σs,σ f 〉 we can calculate in polynomial time whether any interval in the scenario σs
can change its actual position (represented by relations to any other interval) according
to the neighborhood graph to its position in the scenario σ f .

Example 1. Assume that the following two scenarios are given (we will use here I1, I2, . . .
as spatial variables):

σs:
I1 I2 I3 I4 I5

σ f :
I4 I1 I5 I2 I3

We assume that all intervals have the same size. As in the scenario σs I1 ≺ I4, and in σ f
I1 � I4 hold, obviously

I1{≺,m,o,=,oi,mi,�}I4 ∈ Σ .

In other words, if only one of these relations for I1 and I4 is not in Σ the problem is
necessarily unsatisfiable.

Lemma 1. For two spatial intervals I and J with σs: Ir1J and σ f :Ir2J, we can check
in constant time if the path of the neighborhood graph from r1 to r2 is contained in Σ

or not.

Let us now investigate the relative size of intervals. We can deduce the relative sizes
of some intervals from the constraints in Σ and the base relations which hold in the
scenarios σs and σ f . For example, if I d J then we know immediately that the interval I
must be smaller than the interval J. The same is true for the relations s, f. Such relative
sizes can cause unsatisfiability as we see in the following example.

Example 2. Assume that the following scenarios are given:
The scenario σs: The scenario σ f :
{J s I, K f I, J m K} { J s K , I f K , J m I}

K
J

I

I
J

K

This is an unsatisfiable problem because of the size persistence constraint. Note that
initially there are no such size constraints given in Σ . Such constraints must be added
later.
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All the different sizes of intervals can be perfectly expressed in the point algebra PA.
The relative size of two intervals can only be compared by {<,=,>}. The satisfiability
problem of this substructure can be solved in P.

The sequential movement constraint and the size constraint can imply so-called
immobile intervals. Such intervals cannot be moved because of their constraints (in Σ );
they are related via a point relation. We call a relation a point relation if it is one of the
following relations {m,mi,=,s,si, f,fi}. If between two intervals only a point relation
holds, none of these two intervals will be moved during the whole transition process.
We call the other relations set relations. Those relations can be moved during the whole
transition process as illustrated in the following example.

Example 3. Consider the following problem:
σs = {I o J,J ≺ K, I ≺ K}
σ f = {I o J,J o K, I o K}
Σ = {I{o}J,J{≺,m,o}K, I{≺,m,o}K}

The following five scenarios describe a continuous deformation from σs to σ f :

J
I

K

1

J
I

K

2

J
I

K

3

J
I

K

4

J
I

K

5

An example of a constraint (in Σ ) that implies immobile intervals is I1{m}I2. In the
following, we will provide two examples where through immobile intervals the qualita-
tive size of intervals comes into play. The distances between two immobile intervals can
be compared by the length of other intervals. Since these intervals are not measured by
a metric, but by their length wrt. other intervals, we call this distance relative distance.

Example 4. Consider the constraints I1{m}I2 and I5{m}I6 ∈ Σ and I3 ≺ I4 ∈ σs. Assue
that the scenario σs has the following form:

I1 I2

I3 I4
I5 I6

If in the scenario σ f the relation I3 o I4 should hold, the relative distance of the
immobile intervals comes into play.

I1 I2

I3 I4
I5 I6

It is clear that the distance between the two immobile intervals should be smaller
than the sum of the sizes of the two intervals I3 and I4. This is true for any constel-
lation between two immobile intervals. Furthermore it is immediately clear that such
immobile intervals help to compare different sizes of intervals.

Example 5. Assume two (immobile) intervals I2 and I5 (because of the constraints
I1{m}I2 and I5{m}I6 ∈ Σ ) and two intervals I3 and I4 passing by:
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I1 I2

I3
I5 I6

I1 I2

I4
I5 I6

The two immobile intervals I2 and I5 imply a comparison between the length of the two
intervals I3 and I4.

Lemma 2. Length constraints can be calculated in P.

4.2 Main Theorem

We solve the problem by distinguishing between local and global solution of a problem
〈Σ ,σs,σ f 〉. Consider every set Vj to consist of three different variables I j,J j,K j appear-
ing in Σ . Let Σ j be the set of constraints in Σ involving the three variables in Vj, σi j
and σ j f respectively. C j, the one-step transition chain for 〈Σ j,σs j,σ f j〉. We will call
all the triples 〈Σ j,σs j,σ f j〉 local transition chain problems. We will call the solution of
such problems local solution and the solution of a general satisfiability problem will be
called global solution.

We investigate now the complexity of TIASAT, but, as we have seen, it is sufficient
to investigate the complexity of the local transition problem.

A transition chain from σ1 to σn is a sequence σ1, ...,σn of scenarios for Σ such
that the changes from σi to σi+1 satisfy the neighborhood graph and such that only one
object changes its position.

Instance: An initial scenario σs, a final scenario σ f ,
and a constraint network Σ .

Question: Is there a transition chain from σs to σ f
that does not violate the constraints in Σ?

This transition chain can be seen as a plan which transforms the objects of σs under the
model constraints Σ to σ f . We call such problems transition chain problems.

By generating the generalized neighborhood graph [14], more precisely, the (3,1)-
neighborhood graph which represents all transformations between scenarios consisting
of (exactly) three intervals (with the constraints of section 2), we can prove the existence
of a transition chain from each scenario to another scenario of fixed length. The longest
path that are in the generalized neighborhood graph, i.e. the transformation distance
between a scenario consisting of three intervals to another has the maximal length of
24.

Lemma 3. Let Σ be a satisfiable spatial CSP involving three variables. If the scenario
transformation 〈Σ ,σi,σ f 〉 is solvable under the size persistence, sequential movement
and continuity constraints, then in Σ there exists a one-step transition chain from σi to
σ f of at most 24 scenarios.

We will call (for two intervals I,J) the relation, which holds in the initial scenario,
the initial relation, and the relation, which holds in the final scenario, the final relation.
It becomes clear that during the transition chain both intervals I,J have to traverse
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through the relations of the neighborhood graph from the initial relation to the final
relation (if there is an interval K in-between I,J, it is clear that we have to traverse first
the relations of the neighborhood graph of K, before I can change its relative position
to J). We will call these changes goal-directed transition.

Lemma 4. If a transition chain problem is solvable, then there is in any scenario for
any two intervals a goal-directed transition possible.

Proof (sketch). Let us assume that a given satisfiability problem is solvable and there
are two intervals Il and Ik that have to change their position w.l.o.g. from Il ≺ Ik to Il � Ik
(assume the identical length of both intervals) only before a certain scenario σc 6= σ f . If
there is a solution for this problem, then it must hold that Il{≺,m,o,=,oi,mi,�}Ik ∈ Σ .
Because these constraints do not change during the whole transition process, there must
be in the interval σc, an interval Im in-between Il and Ik, i.e. Il ≺ Im ≺ Ik, and in Σ is
the only relation between Il and Im w.l.o.g. ≺. But, if in σ f the relative position should
be Im ≺ Ik ≺ Il , then there cannot be a solution, because Il and Im had to change their
relative position from ≺ to �. This is not possible because of the constraints in Σ and
we get a contradiction. ut

Lemma 5. 1. Two intervals I1, I2 cannot change their position, and make a problem
unsatisfiable if:
(a) The constraints of I1 and I2 in Σ are violated.
(b) The constraints of at least one other interval I3 with one of the intervals I1, I2,

are violated.
Furthermore a problem can be unsolvable because of:
(c) Cycles in the solution path.
(d) The relative size constraints are violated.

2. For a transition chain problem, the problems (a),(b),(c) and (d), can be checked in
polynomial time.

Proof (sketch). We show (a) and (b) simultaneously: For that it is to show that two
intervals I1, I2 cannot change their relative position (with respect to Σ ) because of the
constraints between them, or between them and (at least) another interval, but this fol-
lows directly from the definition of the transition chain problems. Lemma 1 proves that
(a) can be checked in polynomial time, and (b) can be proved by calculating for any
three intervals the possibility to change their initial position from σs to σ f , with Lemma
5 this can be done in polynomial time. ut

The algorithm has to handle the above mentioned problems, e.g. to check the con-
sistency of the relative size of the intervals with the point algebra PA. This can be done
in polynomial time.

Theorem 2. If a transition chain problem has a local solution, then it has a global
solution.

Proof (sketch). Let us assume that a transition chain problem has a local solution. Then
we show that by synchronizing all C j (the one-step transition chains) we can find a
transition chain from σi to σ f with respect to Σ involving less than 24n2 transitions
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(scenarios of Σ ). The case of parallel transitions is not to be considered, because of the
sequential movement constraint, they are not possible. The calculations can be done
in the following graph: The vertices are defined as the constraints that are changed in
one or more chains. The directed edges correspond to the order of the changed con-
straints. For instance, if we have given a scenario σi = {I o J,J o K, I o K} and a final
scenario σ f = {I m J,J m K, I ≺ K}, we can compute the needed changes in advance -
we know that to reach the final scenario the relations between I and K have to traverse
the neighborhood graph from the relation {o} to {m}. Therefore the transition chain has
to change first c1 = I{m}K, then c2 = I{≺}K then c3 = I{m}J and finally c4 = J{m}K.
The synchronization graph contains the vertices c1, c2, c3, c4 and the directed edges are
going from c1 to c2 from c2 to c3 and from c3 to c4. It is clear that all the vertices with
identical content in the transition chains are collapsed into the same vertex, and the
edges are appropriately updated. Then we apply topological sort and we get a transition
chain with respect to Σ from σi to σ f . With Lemma 4 we know that this chain involves
less than 24n2 transitions. ut
Theorem 3. The satisfiability problem of temporalized intervals with respect to the size
persistence, the sequential movement and continuity constraint is NP-complete.

Proof. The NP-hardness follows from the NP-hardness of the satisfiability problem
of IA. Therefore it is sufficient to show that the membership is in NP. We guess a
sequence of 24 · n2 sets of constraints in which all pairs of spatial variables associated
with I are constrained by a base relation. Let Θ 1

b ,Θ 2
b , . . .Θ m

b be such a sequence, where
m = 24 ·n2. We check the following in polynomial time:

1. All the generated scenarios satisfy the size persistence constraint. This can be
checked by constructing an extended spatial CSP, where the relative size of the
constraints and the relative distance of the immobile objects can be expressed in
the point algebra and as the satisfiability problem of this algebra lies in P, we can
check all these constraints in polynomial time.

2. We check the continuity constraint in polynomial time: First, there is a finite num-
ber of scenarios in any transition chain (less than 24n2) and second we have only to
check if the conceptual distance ∆ of the previous scenario to the actual scenario is
1. If the conceptual distance of the previous scenario to the actual scenario is 0, we
remove one.

3. Each (guessed) constraint set Θ i
b in the sequence for a sub-interval I is a scenario

for the set of (induced) constraints associated with I, except for the first and the
last Θb-sets in the sequence, which can also be scenarios for the spatial constraints
associated with the predecessor and the successor, respectively, sub-intervals of
I (as we have described, we have a sequence of Θb-sets for each (induced) sub-
interval).

4. The consistency of any scenario can be checked in polynomial time because of the
path consistency algorithm. 2

5 Summary and Conclusion

Starting from the question of how qualitative spatial reasoning can be made more “real
world” like, we investigated the temporalization of the interval algebra which has been



26 Marco Ragni

used as a spatial algebra. Such a temporalization demands from the models certain
properties to be really “real-world” descriptions: First the size persistence constraint,
i.e. the size of the objects do not change, second the sequential movement constraint,
i.e. an object moves after another object and third the continuity constraint, i.e. that the
change of the relation between the objects happens continuously. Different problems
can make a constraint system unsatisfiable (cf. Examples 1, 2, and 3). Furthermore, we
investigated the complexity of the general satisfiability problem for the temporalized
interval algebra under the given axioms and showed that it is NP-complete. The proof
technique seems to be transferable to other temporalized relation algebras.

This work will be continued as follows: Transfer the results to higher dimensions
starting with the block calculus. Apply the proof technique to other relation algebras. In
a next step investigate a generalization of the linear time model to nonlinear structures.
Use the presented spatio-temporal framework and combine it with the direction calculus
[16]. This promises to be a relation algebra suitable for general transportation networks.
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Abstract. In the domain of qualitative constraint reasoning, a subfield of AI
which has evolved in the last 25 years, a large number of calculi for efficient
reasoning about space and time has been developed. Reasoning problems in such
calculi are usually formulated as constraint satisfaction problems. For temporal
and spatial reasoning, these problems often have infinite domains, which need to
be abstracted to (finite) algebras in order to become computationally feasible.
Ligozat [13] has argued that the notion of weak representation plays a crucial
rôle: it not only captures the correspondence between abstract relations (in a re-
lation algebra or non-associative algebra) and relations in a concrete domain, but
also corresponds to algebraically closed constraint networks.
In this work, we examine properties of the category of weak representations and
treat the relations between partition schemes, non-associative algebras and con-
crete domains in a systematic way. This leads to the notion of semi-strong rep-
resentation, which captures the correspondence between abstract and concrete
relations better than the notion of weak representation does. The slogan is that
semi-strong representations avoid unnecessary loss of information. Furthermore,
we hope that the categorical perspective will help in the future to provide new
insights on the important problem of determining whether algebraic closedness
decides consistency of constraint networks.

1 Introduction

Qualitative reasoning aims at describing the common-sense background knowledge on
which our human perspective on the physical reality is based. Methodically, qualitative
constraint calculi restrict the vocabulary of rich mathematical theories dealing with tem-
poral or spatial entities such that specific aspects of these theories can be treated within
decidable fragments with simple qualitative (i. e., non-metric) languages. Contrary to
mathematical or physical theories about space and time, qualitative constraint calculi
allow for rather inexpensive reasoning about entities located in space and time. For this
reason, the limited expressiveness of qualitative representation formalism calculi is a
benefit if such reasoning tasks need to be integrated in applications. For example, some



A Categorical Perspective on Qualitative Constraint Calculi 29

of these calculi may be implemented for handling spatial GIS queries efficiently and
some may be used for navigating, and communicating with, a mobile robot.

In the past 25 years the number of calculi for efficient reasoning about space and
time has grown quite steadily. Examples of temporal calculi include the so-called point
algebra, Allen’s interval algebra [2], and Vilain’s point-interval calculus [20]. The most
prominent spatial calculi are mereotopological calculi (e. g., [3]), Frank’s cardinal di-
rection calculus [9], Freksa’s double cross calculus [10], Egenhofer and Franzosa’s 4-
and 9-intersection calculi [7, 8], Ligozat’s flip-flop calculus [14], and various region
connection calculi proposed by Randell et al. [18], Cohn et al. [5], Düntsch et al. [6],
and Gerevini and Renz [11].

Reasoning problems in qualitative calculi are usually formulated as so-called con-
straint satisfaction problems. Starting from a set of base relations (i. e., a family of
relations that partitions the set of all tuples of domain elements), a constraint is a for-
mula of the form xRy with variables x and y (taking values in given domains Dx and
Dy) and a set of base relations R defined between the domains of x and y — the set of
base relations, R, is read disjunctively and hence expresses imprecise knowledge about
the concrete scenario described by the constraint formula. The constraint satisfaction
problem with respect to a fixed qualitative calculus is to determine for a given con-
straint network (i. e., a finite set of constraints) whether there exists an assignment to its
variables such that all constraints of the network become true. Further typical reasoning
tasks are to check that some constraint is entailed by a constraint network, and to com-
pute an equivalent minimal constraint network (all these reasoning tasks are equivalent
under polynomial Turing reductions).

A crucial aspect for developing efficient algorithms for qualitative spatial and tem-
poral reasoning is the fact that the underlying model classes usually contain infinite
models. Hence, in order to test satisfiability of constraint networks, it is not feasible to
enumerate all models and all possible assignments to variables in a fixed model until one
finds a satisfying assignment. For this reason other techniques (such as path-consistency
algorithms) must be applied for testing satisfiability. These techniques usually depend
on the so-called composition table of the calculus at hand (for an example, see sec-
tion 3). The idea behind these methods is to encode domain-dependent knowledge in a
table that lists which relations may possibly hold between two objects a and b, when
knowledge about the relations of a resp. b to some other objects is available.

However, there are different possibilities of how to read these composition tables
[4]. And as a result of a somehow conceptual confusion, the path consistency method
has sometimes been employed, although the underlying interpretation of composition
was not justified by the given domain. To clarify this confusion, Ligozat [12] introduced
the notion of weak representation, which not only captures the correspondence between
abstract relations (in a relation algebra or non-associative algebra) and relations in a
concrete domain, but also corresponds to algebraically closed constraint networks.

In this paper, we provide an even more abstract, namely a category-theoretical, point
of view in order to examine properties of the weak representations and treat the rela-
tions between partition schemes, non-associative algebras, and concrete domains in a
systematic way (some initial category-theoretic treatment is given by Ligozat [13]).
This leads to the notion of semi-strong representation, which, in our opinion, captures
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the correspondence between abstract and concrete relations better than the notion of
weak representation does.

The paper is organized as follows. In section 2, we will provide the basic category-
theoretical background. In section 3, we discuss the category of partition schemes and
show how qualitative calculi may be represented in a category-theoretical framework.
Then in section 4, the category of non-associative relation algebras is introduced. Sec-
tion 5 and section 6 are dedicated to discuss the relationships between strong and weak
composition as well as those between weak and strong representations of abstract (non-
associative) relation algebras. In this section we will also discuss a new reasonable
notion of representation, which is slightly weaker than the concept of strong representa-
tion, but which is conceptually more adequate than the concept of weak representation.

2 Categorical Background

To start with, let us briefly recall some basic notions of category theory which we will
refer to in the following sections (for useful introductory texts see [16, 1]).

A category C consists of a class Ob(C) of objects, for each pair (A,B) of objects a
class homC(A,B) of morphisms, where we write f : A→ B for f ∈ hom(A,B), a choice
of an identity idA : A→ A for each object A, and a composition operation assigning to
each pair (g, f ) of morphisms f : A→B and g : B→C its composite g◦ f : A→C. These
data are subject to two equational laws: composition is associative, i. e., h◦(g◦ f ) = (h◦
g) ◦ f whenever these terms are defined, and identities are neutral w. r .t. composition,
i. e., idB ◦ f = f = f ◦ idA for each morphism f : A→ B.

Given two categories A and B, a functor F : A→ B assigns to each A-object A a
B-object FA, and to each A-morphism f : A→ B a B-morphism F f : FA→ FB such
that identities and composition are preserved, i. e., FidA = idFA for each object A, and
F(g◦ f ) = Fg◦F f whenever g◦ f is defined.

Example 1. The category Set of sets and maps has as its objects all sets, and as mor-
phisms X → Y all maps f : X → Y . Composition is the usual composition of maps, and
identities are identity maps. Set has several non-full subcategories (a subcategory A of
a category B is called full if homA(A,B) = homB(A,B) whenever A,B ∈ObA), such as
the category of sets and injective maps and the category Setsurj of sets and surjective
maps.

The category Top of topological spaces has as its objects all topological spaces, and
as morphisms X → Y all continuous maps f : X → Y . Top is a typical example of a
concrete category, given in terms of structured objects over a base category, in this case
Set. Formally, one has a forgetful functor Top→ Set that maps every topological space
to its underlying set and each continuous map to the map itself.

An important strength of the definition of category is that it is stable under numerous
constructions yielding new categories, such as the following. Given a category C, its
dual Cop is the category having the same objects as C, and as morphisms A→ B the
C-morphisms B→ A. Given functors F : A→ C and G : B→ C, the comma category
(F,G) has triples (A, f ,B) as objects, where A∈ObA, B∈ObC, and f : FA→GB, and
pairs (g,h) as morphisms (A1, f1,B1)→ (A2, f2,B2), where g : A1→ A2, h : B1→ B2,
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and Gh ◦ f1 = f2 ◦Fg. An important special case of the latter construction is that F
is a constant functor taking all objects to a fixed object C ∈ ObC, and all morphisms
to idC. In this case, the comma category (F,G) is denoted more simply as (C,G), and
its description simplifies as follows: objects are pairs ( f ,B), where B ∈ ObB and f :
C → GB, and morphisms ( f1,B1) → ( f2,B2) are morphisms h : B1 → B2 such that
Gh◦ f1 = f2.

Given two functors F,G : A → B, a natural transformation η : F → G consists
of a family (ηA : FA→ GA)A∈A of B-morphisms, such that the following naturality
condition is fulfilled: for each A-morphism f : A1→ A2, G f ◦ηA1 = ηA2 ◦F f .

3 Partition Schemes

As stated before, qualitative calculi usually start from a set of so-called base relations,
which is a family of relations that partitions the set of all tuples of domain elements at
hand. This approach can be formally captured by the notion of partition scheme.

Definition 1 (cp. Ligozat and Renz [15]). Let U be a non-empty set. A partition
scheme on U is defined by a finite (index) set I with a distinguished element i0 ∈ I,
a unary operation ` on I, and a family of binary relations (Ri)i∈I on U such that

(a) (Ri)i∈I is a partition of U ×U in the sense that the Ri are pairwise disjoint and
jointly exhaustive.3

(b) Ri0 is the diagonal relation {(x,x) | x ∈U}.
(c) R

i`
is the (set-theoretical) converse of relation Ri, for each i ∈ I.

The relations Ri are referred to as basic relations. In the following we often write

U×U =
⋃
i∈I

Ri

to denote partition schemes.

Here, we additionally introduce morphisms of partition schemes.

Definition 2. Let (Ri)i∈I and (S j) j∈J be partition schemes on U and V , respectively. A
morphism (h,k) : U×U =

⋃
i∈I Ri−→V×V =

⋃
j∈J S j is a pair of functions h : U−→V

and k : I−→J such that

(a) k(i0) = j0,
(b) k(i`) = k(i)`, and
(c) (h×h)[Ri]⊆ Sk(i), i. e., for all x,y ∈U with x Ri y, h(x)Sk(i) h(y) holds.

If such a morphism exists, we also say that (V ×V =
⋃

i∈J S j) is refined (via (h,k)) to
(U×U =

⋃
i∈I Ri) (note that the source scheme is the target of the refinement).

3 Ligozat and Renz require the Ri to be non-empty. This requirement leads to the problem that, for example,
the RCC8 calculus leads to a partition scheme only for certain (e.g. connected) topological spaces. We
hence drop this requirement in this paper.
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Together with pairwise identities and composition, this gives a category Part of
partition schemes.

Example 2. RCC5 is a functor RCC5 : Setop
surj−→Part, where Setsurj is the category

of sets and surjective maps. A set S is sent to the partitioning of P(S)×P(S) into the
five relations DR, PO, PP, PPi, and EQ (cf. Table 1). A surjective function f : S1−→S2
is mapped to ( f−1, id). For such an f , f−1 preserves emptiness, and by surjectivity of
f also non-emptiness, of sets. Since set-theoretic intersection and difference commute
with f−1, f−1 preserves the RCC5 relations (cf. Table 1).

Table 1: Characteristic properties of RCC5 relations. n means “non-empty”, e
means “empty”, ? means “don’t care”.

relation X1∩X2 X1 \X2 X2 \X1
PO n n n
DR e n n
EQ ? e e
PP ? e n
PPi ? n e

Example 3. RCC8 is a functor RCC8 : Topop
surj,open−→Part, where Topsurj,open is the

category of topological spaces and surjective open continuous maps. Let (S,O) be such
a topological space and let Reg denote the set of all non-empty regular closed subsets.
The functor sends (S,O) to the partitioning of Reg×Reg into the relations PO, EQ,
DC, EC, TPP, NTPP, TPPi, and NTPPi (cf. Table 2). A surjective continuous and open
function f : (S1,O1)−→ (S2,O2) is mapped to ( f−1, id). Then f−1 commutes with int
(additionally to the properties listed in Example 2), and by Table 2, f−1 preserves the
RCC8 relations.

Table 2: Characteristic properties of RCC8 relations. n means “non-empty”, e
means “empty”, ? means “don’t care”.

relation X1∩X2 X1 \X2 X2 \X1 int(X1)∩ int(X2) X1 \ int(X2) X2 \ int(X1)
PO n n n n n n
EC n n n e n n
DC e n n e n n
EQ n e e n ? ?
T PP n e n n n n

NT PP n e n n e n
T PPi n n e n n n

NT PPi n n e n n e
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Example 4. The refinement of RCC5 into RCC8 is a natural transformation θ : RCC8→
RCC5 ◦U , where U : Topsurj−→Setsurj is the forgetful functor. θ just forgets regular
closedness of sets, and sends each RCC8 relation to the corresponding RCC5 relation
(e.g. both TPP and NTPP are sent to PP). The homomorphism property of θ(S,O) follows
from the fact that Table 1 is part of Table 2.

4 Non-Associative Algebras

We are interested in approximating compositions of relations in a finite way. Ligozat
and Renz [15] consider so-called non-associative relation algebras in order to capture
weak composition (as introduced in the following section).

Definition 3 (Maddux [17]). A non-associative (relation) algebra is a tuple A =
(A,+,−, ·,0,1, ; ,` ,∆) such that:

1. (A,+,−, ·,0,1) is a Boolean algebra.
2. ∆ is a constant, ` a unary and ; a binary operation such that, for any a,b,c ∈ A:

(a) (a`)` = a (b) ∆ ;a = a;∆ = a (c) a;(b+ c) = a;b+a;c
(d) (a+b)` = a` +b` (e) (a−b)` = a`−b` ( f ) (a;b)` = b`;a`

(g) (a;b) · c` = 0 if and only if (b;c) ·a` = 0

Given non-associative algebras A and B, a homomorphism from A to B is a homo-
morphism h : A−→B on the underlying Boolean algebras such that

(a) h(∆)≥ ∆ ,
(b) h(a`) = h(a)` for all a ∈ A, and
(c) h(a;b)≥ h(a);h(b) for all a,b ∈ A.

Together with set-theoretic identities and composition, this defines the category NA of
non-associative algebras.

A non-associative algebra is a relation algebra if the operation ; is associative. Let
RA denote the full subcategory of NA consisting of all relation algebras. A homo-
morphism of non-associative algebras is strong if the above inequalities (a) and (c) are
equalities. Let NAs be the (non-full) subcategory of NA consisting of the strong homo-
morphisms.

An atomic non-associative algebra is one that is atomic as a Boolean algebra. The
atoms are also called basic relations in this case.

5 Strong and Weak Composition

In our setting, strong composition can be modelled by a contravariant functor S : Setop→
RA. On objects, it maps a set U to P(U ×U) equipped with the usual set-theoretic in-
terpretation of + as union, − as set difference, · as intersection, 0 as empty relation, 1
as the universal relation U ×U , ; as composition, ` as converse, and ∆ as the diagonal
relation. Given a function f : U −→V , S( f ) takes inverse images w.r.t. f × f , i. e., a
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relation R ⊆ V ×V is taken to S( f )(R) = ( f × f )−1[R]. By abuse of notation, we will
denote the composition of S with the inclusion of RA into NA by S : Setop−→NA. The
drawback of this construction is that the (usually infinite) space of all relations is not
structured. This structuring can be obtained by using a partition scheme.

The notion of weak composition approximates composition of set-theoretic rela-
tions (which is strong composition) within a partition scheme, thus leading to a non-
associative algebra. The functor W : Partop−→NA maps a partition scheme

U×U =
⋃
i∈I

Ri

to the non-associative algebra that has P(I) as its Boolean algebra component. The
converse is given by pointwise application of `; the diagonal is i0. Composition is given
by weak composition:4

I1; I2 = {i | i1 ∈ I1, i2 ∈ I2,(Ri1 ◦Ri2)∩Ri 6= /0}.

Given a morphism (h,k) of partition schemes, W(h,k) is just k−1. In order to prove
that this is a homomorphism of non-associative algebras, note that (Ri1 ◦Ri2)∩Ri 6= /0
implies (Sk(i1) ◦Sk(i2))∩Sk(i) 6= /0.

6 Weak, Strong and Semi-Strong Representations

We now discuss representations of abstract non-associative algebras in concrete (i.e.
set-theoretic) domains. With the above machinery, we are able to recast the definition
of Ligozat and Renz [15] as follows:

Definition 4. A weak representation of a non-associative algebra A (in a domain with
underlying set U) is a homomorphism of non-associative algebras ϕ : A−→S(U). A
weak representation is diagonal-persevering, if ϕ(∆) = ∆ .

Note that our notion of weak representation is slightly weaker than that in [13], because
we do only require that ϕ(∆) contains the diagonal relation, while [13] requires weak
representations to be always diagonal-preserving.

Proposition 1. Given two weak representations ϕ,ψ : A−→S(U) with

ϕ(a)⊆ ψ(a) (a ∈ A),

we already have
ϕ = ψ.

Proof. Writing a for the complement 1−a of a, we have for a ∈ A that ϕ(a) = ϕ(a) =
ϕ(a), and similarly ψ(a) = ψ(a). Since ϕ(a) ⊆ ψ(a), we get ψ(a) ⊆ ϕ(a). But this
means ψ(a)⊆ ϕ(a). Altogether, ϕ(a) = ψ(a). ut

4 Note that it is common in the category theory community to use ◦ for function composition in applicative
order, and ; for diagrammatic order. By contrast, in the qualitative reasoning community both ◦ and ; are
used for composition of relations in diagrammatic order. ◦ stands for the usual set-theoretic composition,
; for weak composition.
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Definition 5 (cp. Ligozat [13]). Given weak representations ϕ : A−→S(U) and ψ : A→
S(V ), a morphism h : ϕ−→ψ of weak representations is a function h : U −→V such
that for all a ∈ A5 and (x,y) ∈U×U , if (x,y) ∈ ϕ(a), then (h(x),h(y)) ∈ ψ(a).

Proposition 2. A morphism h : ϕ−→ψ of weak representations equivalently is a func-
tion h : U−→V such that ϕ = S(h) ◦ψ . That is, the category of weak representations
WR(A) is the comma category (A,S).

Proof. The implication (x,y) ∈ ϕ(a)⇒ (h(x),h(y)) ∈ ψ(a) is equivalent to ϕ(a) ⊆
S(h)(ψ(a)). By Prop. 1, this is equivalent to ϕ(a) = S(h)(ψ(a)). ut

Definition 6. The category WR of weak representations (over varying non-associative
algebras) is a comma category. Objects are weak representations ϕ : A−→S(U), and
morphisms are commutative squares:

A1
k //

ϕ2

��

A2

ϕ2

��
SU1

Sh // SU2

Theorem 1. The functor W : Partop−→NA (introduced in section 4) can be extended
to a functor W : Partop−→WR, by regarding the non-associative algebra of a partition
scheme as weakly represented in the underlying set of the partition scheme itself.

Proof. U×U =
⋃

i∈I Ri can be represented in SU by just mapping a set J⊆ I to
⋃

j∈J R j.
This clearly is a homomorphism of Boolean algebras, preserves the diagonal as well as
converse relations (by the definition of partition scheme), and weakly preserves com-
position by the definition of weak composition. Given a morphism (h,k) : (U ×U =⋃

i∈I Ri)−→ (V ×V =
⋃

i∈J S j), let W(h,k) be (k−1,Sh). To prove that this is a mor-
phism in WR, given J0 ⊆ J, in light of Prop. 1 it suffices to show that⋃

i∈k−1(J0)

Ri ⊆ (h×h)−1(
⋃
j∈J0

S j).

But this easily follows from (h×h)[Ri]⊆ Sk(i). ut

A weak representation is strong if it is strong as a homomorphism of non-associative
algebras. Unfortunately, weak representations arising from partition schemes are usu-
ally not strong. However, a weak representation postulates only a very loose connection
between abstract and set-theoretic composition. Consider the following examples:

Example 5. Let RCC5 be the non-associative algebra of RCC5, U be a non-empty set,
and ϕ : RCC5−→SU map the base relations as follows: EQ is mapped to U ×U , and
the other base relations are mapped to /0. This is easily extended to sets of base relations.

5 Ligozat requires this only for basic relations, i.e. for the atoms of an atomic non-associative algebra. This
seems to be unnaturally weak; in case of finite algebras, it is equivalent to our formulation.
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Example 6. Let A be an atomic non-associative algebra such that composition and con-
verse distributes over arbitrary joins (note that this holds in particular for any finite non-
associative algebra), with ∆ atomic (note that this implies ∆ = ∆`). Then we can define
a non-associative algebra Loss(A). Loss(A) is like A, but with composition ; replaced
by composition #, which is defined on basic relations as follows:

a#b =


b, if a = ∆

a, if b = ∆

1, if a 6= ∆ 6= b,∆ ≤ a;b
1−∆ , otherwise

By the distributivity assumption, the laws for non-associative algebras need only be
verified for basic relations, which is not difficult.

Since Loss(A) enlarges the composition of A, the identity is a homomorphism id :
Loss(A)→ A. Hence, any weak representation of A leads to a weak representation of
Loss(A) by composing with id : Loss(A)→A. In particular, we get weak representations
of Loss(RCC5) and Loss(RCC8).

These weak representations are hardly useful for anything, because abstract composi-
tion only provides very little information about concrete composition. While Example 5
is in a sense pathological because the representation is not diagonal-preserving (and
this is exploited in an extreme way), the representations of Example 6 are diagonal-
preserving. In this example, abstract compositions are larger than necessary. Indeed,
most information about concrete composition is thrown away, and only information
about the diagonal relation is kept. In the light of the possibility to have a better weak
representation (namely the standard representations for RCC5, RCC8 etc.), this must
be considered as an unneccessary loss of information. Therefore, we cannot agree with
the slogan of [15] “A qualitative calculus is a weak representation.” Apparently, a qual-
itative calculus has a connection between its abstract non-associative algebra and its
concrete domain that is stronger than the one described in terms of weak representa-
tions. Hence, we will strengthen the representation condition as follows, in order to
capture the situation that no unnecessary loss of information occurs:

Definition 7. Given an atomic non-associative algebra A, a weak representation ϕ : A→
S(U) is said to be semi-strong if for all b,c ∈ A,

b;c =
∨
{a | a atomic,(ϕ(b)◦ϕ(c))∩ϕ(a) 6= 0}.

While the weak representations induced by RCC5 and RCC8 (Examples 2 and 3)
are semi-strong, the weak representations of Examples 5 and 6 are not. The notion of
semi-strong representation thus avoids the inclusion of representations that have only a
limited connection between the abstract algebra and the concrete representation, while
simultaneously providing more flexibility than strong representations, which are too
strong to capture weak composition. Indeed, semi-strong representations are precisely
the notion that captures weak composition:

Observation 1. The weak representation induced by a partition scheme is semi-strong.
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Proof. Obvious, by definition of weak composition. ut

Recall from [19] that a (finite) constraint network on an atomic non-associative
algebra A is a pair N = (N,ρ), where N is a (finite) set of nodes (or variables) and ρ a
map ρ : N×N→A. For each pair (i, j) of nodes, ρ(i, j) is the constraint on the arc (i, j).
A network is atomic if ρ is in fact a map into the set of atoms of A. It is normalized
if ∀i, j ∈ N, ρ(i, j) = ∆ if i = j, and ∀i, j ∈ N, ρ( j, i)` = ρ(i, j). A network (N′,ρ ′)
is a refinement of (N,ρ) if ∀i, j ∈ N we have ρ ′(i, j) ≤ ρ(i, j). Finally, a network is
algebraically closed, or a-closed, if ∀i, j,k ∈ N, ρ(i, j) ≤ ρ(i,k);ρ(k, j). (Note that a
network can be made a-closed using the path-consistency algorithm.)

The crucial observation of Ligozat and Renz [15] is the following: Given a normal-
ized and atomic constraint network N over a non-associative relation algebra A, N is
a-closed if and only if it corresponds to a weak representation ρN in WR(A). Now an
a-closed network N is consistent w.r.t. a given domain of interpretation ϕ ∈WR(A)
if and only if there is a morphism of weak representations h : ϕ−→ρN . This can be
summarized as follows:

Observation 2. For a weak representation that is weakly terminal6in WR(A), a-closed-
ness decides consistency of constraint networks.

Ligozat and Renz [15] point out that the question whether a-closedness decides
consistency of constraint networks is of fundamental nature, and they give a criterion
to determine whether a qualitative calculus enjoys this property. Still, it may be hard
to apply their criterion in practice. With our categorical approach via weakly terminal
objects, we can try to apply standard categorical, algebraic and coalgebraic methods for
answering the question whether a-closedness decides consistency.

7 Conclusion

We have outlined a categorical framework for the unifying treatment of (binary) qualita-
tive constraint calculi. In particular, we have introduced a category of partition schemes
and defined standard calculi such as RCC5 and RCC8 as functorial indexings of par-
tition schemes. Moreover, we have identified the category of weak representations of
non-associative algebras as a comma category over the category of non-associative al-
gebras, and we have proposed a strengthening of the notion of weak representation:
semi-strong representations capture the properties of weak composition more precisely
than both weak and strong representations do. They allow coarser abstractions than
strong representations, but avoid unnecessary loss of information (that can occur with
weak representations). We suggest to strengthen the slogan of Ligozat and Renz [15]
“A qualitative calculus is a weak representation” in the following way:

A qualitative calculus is a semi-strong representation.

This paper could only present the main ideas of a category-theoretical approach to qual-
itative constraint calculi. The following questions still remain open:

6 A weakly terminal object of a category C is an object T in C such that to each object A in C, there exists
a morphism A→ T .
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– Weakly terminal representations in WR(A) have the pleasant property that a-closed-
ness decides consistency of constraint networks. Does this characterize weak ter-
minality?

– Given a non-associative algebra, what are its weakly terminal representations? This
question, however, is of more theoretical interest, because usually, one does not start
with a non-associative algebra, but rather with a concrete domain.

– Hence, the following question is more important: Given a partition scheme, if we
apply the functor W : Partop−→WR to it, how to determine whether the resulting
semi-strong representation is weakly terminal? And if it is not weakly terminal,
can it be embedded somehow in a semi-strong and weakly terminal representation
(possibly using a refinement of the partition scheme)? We hope to apply algebraic
and coalgebraic methods to tackle this problem.

A further perspective is indicated by the fact that we had to restrict the functorial
representation of typical calculi such as RCC5 and RCC8 to not entirely natural non-full
subcategories, e.g. the category of surjective open continuous maps in the case of RCC8.
The main suspect as the cause of this technical difficulty is the disjointness requirement
in the definition of partition scheme, which forces the use of base relations such as
“proper part of” and which itself is motivated by constructions of representations where
the base relations play the role of atoms. A technically more pleasing alternative might
be to choose a more natural set of base relations, compatible with preimage formation in
the relevant category (this would classify relations such as “part of” or “interior part of’
as natural, but ‘proper part of” as unnatural), from which other relations may be built
as Boolean combinations. One may then hope to obtain representations using newly
constructed atoms, in analogy to the use of maximally consistent sets in propositional
logics.
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Abstract. Automatic reasoning tasks are often solved with qualitative calculi
based on a non-associative algebra of relations between basic entities. Such en-
tities can be points, employees, program modules, regions, or line segments. In
many cases, it is an NP-hard problem to decide consistency for a given constraint
system of relations (constraint satisfaction problem, CSP).
Established attempts of reducing the complexity to PTIME reduce the set of re-
lations that are allowed. However, such a modification is not always appropriate.
In many applications, e. g. mereology or intra-company communication analy-
sis, additional information on the structure of the solution can be used. In this
paper, structure-based approaches of ensuring polynomial-time decidability of
CSPs over the full set of relations for such applications with roles and hierarchies
are motivated and explained. They work for many calculi.
For dependency networks, a reasoning technique based on scenario types is in-
troduced along with a proof for its tractability.

1 Introduction

Automatic reasoning is an essential task in many applications such as robotics, geo-
graphical information systems (GIS), natural language understanding, network design,
logistics and planning tasks, expert systems, and automatic program verfication. In
many of these cases, no detailed quantitative information is available or explicable. For
example, visual images display only the relative alignment of objects, text descriptions
often contain qualitative descriptions such as “A is inside B”, and causal dependencies
can only be described in terms of qualitative information (“B depends on A”).

In such cases qualitative approaches that define formal representations of everyday
descriptions are used as an effective way of concluding implications of the given infor-
mation [4]. Triggered by Allen’s interval calculus IA [1], a series of qualitative temporal
and spatial calculi have been successfully proposed and analyzed in the recent decades.
Some prominent examples are calculi for qualitative directions [5, 9], point and interval
algebras in linear [23], branching [2, 17] and arbitrary time structures [3], the RCC-8
and RCC-5 calculi for reasoning about topological relations [7, 18], and a calculus for
dependencies [16]. They share the formal framework of a binary non-associative alge-
bra of relations [10]. It consists of variables for entities or objects and a fixed set of
binary relation labels that are used to designate constraints on the possible relations for
each pair of objects. In order to specify that different basic relations are possible, all
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labels for unions of such basic relations are contained in the set of relation labels. If no
restriction is known on the relation between two objects, the universal relation label (>)
is used. All other relation labels stand for restricting relations. Conclusions about the
spatial, temporal, causal, or structural relations are drawn by formal rules for converse
relations, composition, and intersection of relations [12, 4, 14].

In all these cases, a problem instance is given as a constraint system, i. e. a finite set
of variables and relational constraints between them. Calculi are typically used to find
sound conclusions. This problem can be polynomially reduced to the problem of check-
ing if a given constraint system is consistent (constraint satisfaction problem, CSP).

1.1 Related Work

For most of the calculi mentioned above, the general problem with all unions of rela-
tions is proven to be NP-hard [16]. As NP-hard problems are considered too difficult
in practice, several methods have been developed to restrict the problem to a subclass
of problems that is in PTIME: tractable subclasses of relations, coarsening the relations,
and tree decomposition.

In the first approach the problem is restricted to those with a smaller set of relation
labels. For example, for IA and for the RCC-5 and RCC-8 calculi, all tractable subclasses
are known [15, 19, 8].

However, there are calculi, e. g. Freksa’s double-cross calculus, for which the CSP is
NP-hard even over basic relations [21]. Hence, the first approach does not work. Instead
of working with this calculus, a calculus with a coarser set of basic relations is chosen
for which the CSP is PTIME.

The third method, called tree decomposition, can be applied when the restricting
relations are scarce. Let the graph (V,E) for a constraint system be the set of its variables
V with edges between those pairs that have a restricting relation label (i. e. not >). The
CSP can be answered in PTIME if the resulting graph has a finite tree width k in the
sense of [20] because then it is decomposable into small subproblems (of size ≤ k) [6].

In all these cases, the PTIME decidability is acchieved by restricting the relation
labels that are allowed, at least on most of the edges. However, in some situations, none
of these methods work, in other cases they involve loss of information.

1.2 The New Approach

Other modifications of standard CSPs will be defined in this paper. For them, PTIME al-
gorithms for solving the CSP are presented. In many situations, a system, e. g. a com-
munication network, has an underlying structure. The idea is to use such structural
information of the models that are solutions of the CSP.

For instance, consider the information flow in a company. The dependency calculus
for directed graphs [16] with employees as entities suits to determine if some informa-
tion is passed on to a specific employee. Employees have roles like “boss”, “secretary”,
which determine who informs whom, hence which relations hold formally (cf. Fig. 1).
Roles can be organized in a hierarchy.

This observation is generalized. If the relations between some pairs in a solution
are required to be the same, the complexity of the CSP might be reduced. Two general
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Fig. 1: Roles in a company determine the communication structure.

approaches will be presented: a modification involving only roles, and one with a hier-
archical structure. The idea of the role approach is to assign a functional role to each
entitiy. The relation between entities is then determined by their roles. The idea of the
hierarchical approach is to define groups of objects, and groups of such groups, and to
ensure that on a higher level individual differences of the entities within the group do
not play a role. The conditions might seem quite limiting, and indeed they must be re-
strictive to reduce the computational complexity of the problem. But but they coincide
with restrictive conditions frequently found in many fields of application.

For instance, consider mereological descriptions that determine if one part of the
human body is contained in another one. Suppose two parts are contained in different
organs. Then they are surely separated, no matter how exactly the parts of each organ
are arranged. Organs thus correspond to functional roles: They determine the relations.
Organs and sub-organs form a structural hierarchy.

Another reasoning task is to determine the locations of vehicles in complex transport
systems. Let mobile trains and immobile locations be represented as entities in a point
algebra for partial orders like [3]. Assume there are at most k different tracks with
certain locations on them. At a fixed point in time, each train can be on one of the
k tracks. Even if the order of the stops along a track and the alignment of the tracks
are not completely specified, the relations of trains and locations on different tracks
only depends on their current tracks (cf. Fig. 2). As will be shown in this paper, such
structural conditions can be combined with “traditional” conditions like the actuality
that all relations between trains on the same track are relations of linear orderings.
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Fig. 2: The train example: Uncertainty only occurs within each oval.

The remainder of this paper is organized as follows: In section 2, the traditional
formalism for constraint satisfaction problems is presented, and the two new approaches
are introduced from a formal point of view. In section 3, an example of a modified CSP
is presented with a proof sketch that it is solved in PTIME. Section 4 summarizes the
results and suggests questions for further research.
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2 Formalization

2.1 General Non-associative Reasoning Algebras

The basic concepts and ideas will be formalized in this chapter. First, recall the main
important terms of qualitative reasoning.

As Ligozat and Renz [10] point out, almost all successful calculi are based on a
formalism once described by Maddux [11].

Definition 1 (Non-associative Algebra). A non-associative algebra R is a tuple R=
(R,∪,∩,⊥,>, ; ,̆ ,eq) such that:

1. (R,∪,∩,⊥,>) is a Boolean algebra.
2. eq is a constant, ˘ a unary and ; a binary operation s. t., for any a,b,c ∈ R:

(ă )̆ = a eq;a = a;eq = a
a;(b∪ c) = a;b∪a;c (a;b)̆ = b̆ ; ă
(a∪b)̆ = ă ∪ b̆ (a∩b)̆ = ă ∩ b̆
(a;b)∩ c̆ =⊥ if and only if (b;c)∩ ă =⊥

A non-associative algebra is a relation algebra in the sense of Tarski [22] if it is asso-
ciative (i.e. (a;b);c = a;(b;c)).

For qualitative reasoning, the elements a,b, . . .∈R of the non-associative algebra are
relation labels on which constraints can be defined. Semantically, they should represent
relations. If a∩ b = a, we write a v b. Recall that b is called atomic or basic if x v b
implies x ∈ {⊥,b}. The set of basic relation labels is denoted by B(R).

Definition 2 (Semantics). A reasoning algebra is a non-associative algebra together
with a representation (U,φ). Hereby, U is a set called universe and φ : R→P(U×U))
maps relation labels to relations and is a homomorphism of Boolean algebras. φ is de-
fined on basic labels and extended to the boolean algebra in the natural way. Reversely,
the labeling function rel : U ×U → B(R) maps a pair (u1,u2) to the basic relation for
which (u1,u2)∈ φ(rel(u1,u2)) holds. Recall that a constraint system (or constraint net-
work) C = (V,c) over a reasoning algebra consists of a set of variables V and a function
c : V ×V → R that assigns a relation label to each pair of variables (written as con-
straints: v cvw w). A constraint system where all labels are basic relations is called a
scenario.

As mentioned above, it is an important question if such a constraint system is con-
sistent. A constraint system is solved by interpreting the variables with values from the
universe U in a way that is consistent with the constraints.

Definition 3 (Satisfiability). An interpretation θ : V →U satisfies the constraint sys-
tem C = (V,c) iff for all x,y : (xθ ,yθ ) ∈ φ(cxy) (i. e. rel(xθ ,yθ )v cxy).

Each constraint system is an instance of the general constraint satisfaction problem
(CSP) of the underlying reasoning algebraR.

Input: A constraint system C overR
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Question: Is C satisfiable?

Formally, a problem can be seen as a pair P = (I,S). Hereby, I is a class of input
descriptions (instances) and S is the subclass of I containing the inputs with positive
answer. The size of a problem instance in case of a CSP is the number of variables n.

2.2 CSPs with Structural Conditions

A structural condition can alter the problem class by imposing additional constraints on
the solution. Solutions of the original CSP that do not fulfil the condition are rejected.

Definition 4 (Modified Problem). For a problem P = (I,S) and a property p, the p-
modification of P is the problem P|p = (I,S|p), whereby S|p = {s ∈ S| p holds of s}.

Note that the allowed class of inputs is unchanged. Only the understanding of a
solution is restricted. Different modifications will be investigated starting with strict
preconditions, then gradually relaxing them.

The example from section 1 in which each employee has a functional role may illus-
trate such a condition. In a solution, only the roles of two employees should determine
their relation (cf. Fig. 3). This is formally described by a role consistency property.
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Fig. 3: Between a role A employee and a role B employee always the same relation
r holds.

Definition 5 (Role Consistency). Let F be a finite set of functional roles. For a con-
straint system C = (V,c), a role assignment is a mapping ρ : V → F .

A role-consistent interpretation is an interpretation θ of C for which holds:

ρ(v1) = ρ(v′1), ρ(v2) = ρ(v′2) ⇒ rel(vθ
1 ,vθ

2 ) = rel((v′1)
θ ,(v′2)

θ )

In other words, for each pair of roles i, j, there is some basic relation ri, j such that

For all roles i, j ∈ F : ρ(v) = i, ρ(w) = j ⇒ rel(vθ ,wθ ) = ri, j.

CSP|ρ stands for the CSP where solutions are required to be role-consistent with respect
to ρ .

Instead of classifying the entities, the relations between entities can be classified.
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Definition 6 (Type Consistency). Let T = {1, . . . ,k} be a finite set of relation types.
For a constraint system C = (V,c), a type assignment is a mapping τ : V ×V → T .

A type-consistent interpretation is an interpretation θ for which holds: For each type
t there is a basic relation rt such that rel(vθ ,wθ ) = rτ(v,w) holds for all v,w.

CSP|τ stands for the CSP where the solution is type-consistent with respect to τ .

Lemma 1. Let R be a reasoning algebra for which the consistency of a scenario is
decidable in PTIME. If there are finitely many types used in a type assignment τ , the
corresponding type-consistent CSP|τ is in PTIME.

Proof. For each type, a basic relation must be chosen. Each set of choices yields a
scenario. Each scenario can be tested in PTIME. The number of scenario tests only
depends on the number of types, not on the problem size (number of constraints). ut

Proposition 1. Let R be a reasoning algebra for which the consistency of a scenario
is decidable in PTIME. If there are finitely many roles used in a role assignment ρ , the
corresponding role-consistent CSP|ρ is in PTIME.

Proof. A pair of roles defines a type of relation. A role-consistent solution thus corre-
sponds with a type-consistent solution. If there are finitely many roles, there are finitely
many types of pairs. The claim now follows from the previous Lemma 1. ut

Role consistency means that entities of the same role all have the same relation
among each other. What happens if role consistency is required only for entities of
different roles, but if relations between entities of the same role are not restricted? If no
condition is imposed, the problem is generally NP-hard. However, additional conditions
on the interplay of relations can still guarantee solvability in PTIME. One idea is to
define a set D of relations that may occur between entities with different roles, and a set
C of relations allowed between entities of the same role. The CSP modified by such a
condition will be abbreviated by CSP|ρ,C,D.

A subsystem of a constraint system containing only relations r of C is called a C-
block, and its solution is called a C-model. In many reasoning algebras, choices of C
and D are possible in a way that a collection of C-models can be composed to a (C∪D)-
model in a way that any D-relation between entities of different C-blocks may hold, no
matter which relations hold within the blocks.

Definition 7 (Composed Scenarios). Suppose D = ({w1, . . . ,wk},d}) is a scenario
and for i ≤ k let Ci = ({vi1, . . . ,viki},c(i)}) be scenarios of the same reasoning algebra.
Then, the composed scenario (cf. Fig. 4) is the scenario

C =
D⋃
C1 . . .Ck := ({vi j|i≤ k, j ≤ ki},{c′vi jvi′ j′

}) with c′vi jvi′ j′
=

{
dwiwi′ (i 6= i′)
c(i)

vi jvi j′ (else).

Definition 8 (Independence). For a reasoning algebra R, let two subsets of basic re-
lations be defined, a set C ⊆ B(R) (“close” relations) and a set D ⊆ B(R) (“distant”
relations). Let C and D be called independent iff it holds:
For each D-block D and collection C1 . . .Ck of C-blocks, the composed scenario C =⋃D C1 . . .Ck is consistent iff all individual networks D and Ci are consistent.
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Fig. 4: Scenario composition: For the scenario C composed of blocks Ci, the sce-
nario D defines “exterior” relations across blocks, and all relations within each
block remain unchanged.

Independence holds in many cases. In all prominent reasoning algebras, if θ solves
a constraint system, its restriction to a subsystem solves the subsystem. The other di-
rection depends on D and C, and often is easily verified.

Example. In the cardinal directions calculus for points in the plane [9] with the basic
relations B(R) = {eq,N,NE,E,SE,S,SW,W,NW} (North, Northeast, etc.), the subsets
D = {NE,SE,SW,NW} and C = B(R) are independent. (cf. Fig. 5)
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Fig. 5: Independence of B(R) and D = {NE,SE,SW,NW} in the cardinal direc-
tion calculus: A D-model can be “cut” at any entity wi parallel to the cardinal
directions. All points can be shifted further away from the cut without altering
the relations, hence a gap large enough to contain a model of Ci can be created. Its
points hereby inherit the relations with other points of the D-model. This “shifting”
technique can be applied in several cases to prove independence.

Lemma 2. Suppose C ⊆ B(R) and D ⊆ B(R) are independent and the CSP over the
power set P(C) is tractable. Then CSP|ρ,C,D is in PTIME.

Proof. The idea is to group all entities of the same role to a “block”, and to solve the
problem that occurs by substituting each block by a “top level” entitiy.

Let an instance I = (V,c,ρ,C,D) of CSP|ρ,C,D be given. For each role i ≤ k, let
ρ−1(i) =: Vi ⊂ V be the set of variables (entities) assigned to the role i. Due to the
constraint that the solution contains C-relations within each Vi, for all v,w ∈Vi trim cvw
to cvw∩C. For the instance I, there is a corresponding “top level instance” Î = ({Vi|i≤
k}, ĉ), whereby

ĉi j :=
⋂

vi∈Vi, v j∈V j

cviv j ∩D
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is the (least restrictive) common constraint of all relevant pairs. Deriving all these con-
straints has the complexity O(n2).

Suppose θ is a solution of I. Then, for all vi ∈Vi and v j ∈Vj, rel(i, j)= rel(vθ
i ,vθ

j )v
cviv j , hence rel(i, j) v

⋂
cviv j = ĉi j, i. e. Î is solvable. Hence, the solvability of Î is a

necessary condition for the solvability of I. But, is it sufficient?
Claim: I is solvable if, and only if, Î and each block Vi are solvable.
Suppose Î and all blocks have a model. As D is independent from C, there is a

composed model. This model fulfils all role constraints. The other direction is trivial.
This condition can be checked in PTIME because Î is of size k (independent of the
problem size n), and all constraints within a block are trimmed to a tractable class. ut

Remark. The proof still works if each block contains only constraints of tractable
classes Ci ⊆ R. Generally, if the CSP for the blocks is of complexity O( f (n)), then the
complexity of CSP|ρ,C,D is O( f (m)) where m is the maximal size of a block.

From the proof, the following algorithm is extracted:

For all i, j do calculate the trimmed and common relations ĉi j.
If the top instance Î is inconsistent return “no”.
else for i≤ k do

if Ĉk is inconsistent return false.
else return “yes”.

An application. Recall the example from section 1 in which trains follow different
tracks. The description can be formalized in the point algebra [3] for partial orders
PApo with the basic relations R = {eq,<,>, ||}. PApo in general is NP-hard.

The assigned tracks are functional roles. Assume that each track is a linear segment,
but the exact location of the trains involves uncertainty. Then, the “close” relations C
are the classical point algebra relations B(PAlin). PAlin is tractable [23]. Let D be the set
of all PApo relations except eq. Then C and D are independent. Hence, by Lemma 2 the
consistency of a description can be checked in PTIME.

Slight modifications in the algorithm allow to handle all PApo relations as “distant”
relations D without losing the tractability. The modified algorithm works as follows:

For all solutions of the “top level CSP”:
If in the solution for some i, j : rel(wθ

i ,wθ
j ) = “=”.

(Temporarily) identify the corresponding roles i and j
If a it has a solution, return “yes”
else reverse the identification of roles and loop.

After all top level solutions are tested, return “no”.

2.3 Polynomially Structured Hierarchies

In typical cases, D might be chosen as C \ {eq}, or C = B(R). Then D ⊆C. Thus, the
composed model again is a C-model and can be a component in a higher level composed
model, and so on (cf. Fig. 6). In this section, the following result will be shown: If such
a structural hierarchy can be used, a modified CSP can be checked in PTIME even when
C is an intractable set. It is sufficient that the set D is tractable, or that on each level
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the number of components is less than a global limit k. A special case is when we have
precise information about many relations, e. g. how the tracks in the train example (cf.
Fig. 2) are related to each other. Only fine grain relations within each block are uncer-
tain. The idea is to limit the size of such blocks to k. The structural design is motivated
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Fig. 6: A structure σ defines how a hierarchy of blocks corresponds with nodes of
a tree.

by tasks from real-world applications. As mentioned above, hierarchical structures are
often found in companies: Several employees form a work team, several teams form a
department, several departments form a larger unit, and so on. The structure can be rep-
resented by a tree in which each node represents a unit, and children represent subunits.

The idea of the role assignment will now be generalized to a structure.

Definition 9. A structure σ for a set V of entities is a tree and an assignment of the
entities v ∈V to complete branches of the tree. For fixed σ , for each node ν of the tree
let Vν ⊆V be the set of all entities mapped to a branch containing ν (cf. Fig 6). Nodes
are called neighbored if they are children of the same node.

Let an interpretation of a constraint system be called consistent with a structure σ

iff σ reflects how it is composed of subcomponents.

Definition 10 (Structural Consistency). For a constraint system C and a structure σ

for its entities, an interpretation θ of C is structurally consistent with σ iff if for each
pair of neighbored nodes ν ,ν ′, there is a basic relation rν ,ν ′ such that

v ∈Vν ,w ∈Vν ′ ⇒ rel(vθ ,wθ ) = rν ,ν ′ .

Let CSP|σ be the CSP where the solution is structurally consistent with σ and let
CSP|σ ,C,D be the CSP such that there is a solution with relations from D that are struc-
turally consuistent with σ and with interior relations in C.

How can such a CSP be solved? If D ⊆C, C and D independent, a decomposition
algorithm similar to the one for CSP|ρ,C,D works:

1. Trim the interior constraints: For all leaves ν and v,w ∈ Vν derive ĉvw := cvw ∩C.
Check if all the interior blocks are solvable.

2. For all neighbored ν ′,ν ′′ derive ĉν ′ν ′′ := (
⋂

v′∈V
ν ′ , v′′∈V

ν ′′
cv′v′′)∩D.

3. Each ν defines a block Ĉν =({ν ′|ν ′ child of ν},{ĉν ′ν ′′ |ν ′,ν ′′ children of ν}) . Solve
each block individually. The CSP is solvable iff all blocks are solvable.
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Without loss of generality, each interior node has at least two children. Then, there
are O(n) many nodes, hence O(n) many blocks. The time-critical task is solving the
blocks. If each block can be solved in polynomial time, we call the instance polynomi-
ally structured.

Definition 11 (Polynomial Structure). A constraint system is called polynomially k-
structured if for each ν :

– ν is an interior node having at most k children, or
– ν is an interior node and the set of common relations {ĉν ′ν ′′ |ν ′,ν ′′children of ν} is

contained in a tractable class, or
– ν is a leaf and Vν contains at most k entities, or
– ν is a leaf and the set of trimmed interior relations {ĉvw|v,w ∈ Vν} is contained in

a tractable class.

Note. This structure (which defines which nodes belong to which block) is known,
but the relations might contain uncertainties. If the tree is of bounded degree k, no
tractability assumption on C,D is necessary. Fig. 7 shows some examples.
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Fig. 7: Trees, chains, and compositions of tractable constraint systems are polyno-
mially k-structured.

Theorem 1. Suppose D ⊆ C ⊆ B(R), C and D are independent. Then CSP|σ ,C,D for
polynomially k-structured constraint systems is in PTIME.

Proof. Similar to the role consistency check, all inner constraints ĉvw and for each pair
of neighbored nodes ν ,ν ′ the common constraints ĉνν ′ must be calculated. O(n2) con-
straints must be touched once, as can easily be verified. O(n) many polynomially solv-
able blocks are checked independently. ut

3 A Special Case: Tractability of a Structured CSPs

However, what if C and D are not independent, e. g. if C = D = B(R) is needed? An
approach tracking all dependencies is applicable in many cases. For example, consider
the calculus CDC [16] with the following 5 basic relations over entities x,y, . . . in a
partial order 〈X ,≤〉:
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x≺ y iff x≤ y and not y≤ x.
x = y iff x≤ y and y≤ x.
x� y iff y≤ x and not x≤ y.
xg y iff ∃z z≤ y∧ z≤ x and neither x≤ y nor y≤ x (then z is called a witness ).
x)( y iff neither ∃z z≤ y∧ z≤ x nor x≤ y nor y≤ x .

Theorem 2 (A Tractability Theorem). For the dependency calculus CDC, CSP|σ for
polynomially k-structured constraint systems are solvable in PTIME.

Proof (sketch, here given for k = 2). The idea is, after deriving ĉvw and ĉν ′ν ′′ like before,
a solution is searched from within each block to the top level (by induction).

As dependencies might restrict or enhance the satisfiability, different “types” of
scenario are defined. For each block, a list of possible types is generated. A scenario
type corresponds with properties that may cause problems when adding more blocks or
corresponds with “problems” that must be solved by additional nodes. (In the following
proof, most types are defined by restrictions on the allowed basic relations.) In the proof,
each scenario type contains either only consistent or only inconsistent scenarios. ut

Definition 12 (Typology). Let S(R) be the class of all R scenarios. A typology for
R is a finite set T = {Ti|i ≤ t} of scenario types partitioning S(R) such that for each
Ti,T j ∈ T and b ∈ B(R) there is a type Tb,i, j ∈ T such that for any Si ∈ Ti,S j ∈ T j the
composition

S =
({si,s j},{b})⋃

SiS j

of Si and S j with ({si,s j},{b}) is in Tb,i, j. A type T is called allowed in a constraint
system (V,{cvw|v,w}) iff T contains a scenario (V,{bvw|v,w}) with bvw v cvw(∀v,w).

This means: The types of two blocks and the common basic relation b between them
determine the type of the result. This relationship can be stored in a table.

point
single unsatisfied

forked rel.linear order

Fig. 8: Some examples for CDCtypes. “linear order” contains all scenarios that
only contain the relations�,=,≺. “single point” only contains the trivial one point
scenario. Both consist of consistent scenarios. “unsatisfied forked rel.” contains all
scenarios where some g relation has no witness. These types can be checked in
PTIME.

Lemma 3 (CDC Typing is PTIME). CDC has a finite typology of types such that for
each scenario S, its type can be determined in PTIME.
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Proof (sketch). An extensive case analysis yields a list of 8 types that can be determined
by looking at the 3-element subnetworks. Fig. 8 shows some examples. ut

Lemma 4. For any polynomially k-structured CDC constraint system, we can derive
in PTIME the list of types allowed in it.

A CSP |σ instance is satisfiable iff a satisfiable type Ti is allowed in the top level
constraint system.

This lemma can be proven by induction over the k-structure.

This allows the following algorithm:

1. For each v,w and ν ′,ν ′′ determine ĉvw and ĉν ′ν ′′ .
2. For each interior block Ci and scenario type T j check if T j is allowed in Ci.
3. For each level:

(a) Determine the type list of the next exterior system,
(b) Determine (using the table) the type list of the next level, based on the present

level type list and the exterior system type list.
4. If a satisfiable type is allowed on top level, return “yes” else return“no”

Fig. 9 shows some example dependencies. The effect of the typology is that some
types directly restrict the relations possible in the next level. Some examples:

– If a relation other than = occurs in a block, = cannot occur as an exterior relation.
– If )( occurs in a block, > cannot occur as a exterior relation.
– If )( and g occur in some block below the top level, the system is not satisfiable.

����

�����
�����

�� �	
 
� �
� �� �� �� �� �� �� �����= r\{=} If the witness for 

the CSP is not satisfiable.
is not in its block, but || is, 

�������� ������ �������������� ������    !!

" "" "# ## #
$% &'( ()
* *+ + ,,--. ./ / r\{>}

Fig. 9: Some examples for dependencies.

The proof can be generalized to other reasoning algebras in which dependencies be-
tween “interior” and “exterior” relations can occur. A precondition is that the types of
one hierarchical level determine the types of the next level and that types of consis-
tent scenarios do not contain inconsistent scenarios and vice versa. Hence, a similar
result holds for all reasoning algebras in which dependencies are determined by a finite
typology of types that are determined in PTIME.

4 Conclusion and Outlook

In order to identify new cases in which a CSP of a generally intractable reasoning
algebra can be solved in PTIME, some structural conditions were investigated. The basic
idea is to reduce complexity by grouping the entities of a constraint system into blocks.
Only scenarios in which the basic relations across blocks is equal are considered as
solutions. Three tractable cases were presented:
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1. All relations within each block are required to be equal.
2. The set C of basic relations possible within each block and the set D of basic rela-

tions possible across blocks are independent.
3. A finite typology of scenarios allows to track dependencies and possible scenarios

along a polynomial k-structured hierarchy.

Knowing a hierarchical structure condition of a problem might open the way to sol-
vability in PTIME. These new conditions can be combined with traditional conditions,
e. g. the premise that only constraints of a tractable subclass occur within some blocks.

These methods widen the range of problems that can be considered tractable. As
general concepts, they are not per se restricted to specific reasoning algebras. For well-
known reasoning algebras, it is advidable to investigate which subsets of their basic
relations are independent of each other. For other subsets, the question remains if a
finite scenario typology exists. First results suggest that many reasoning algebras have
such a typology. Sufficient criteria might soon be proven.

Another open research task is the development of a formal logical language to talk
and reason about scenario types. With such a framework, an automatic generation of a
scenario typology from a reasoning algebra specification could hopefully be feasible.
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Abstract. In this paper, we present some preliminary results about the connec-
tions existing between qualitative and discrete constraint networks. We present a
natural encoding of any qualitative networkN into a discrete one P such that the
constraints of N become the variables of P and the constraints of P are defined
by the weak composition table of the used qualitative algebra. We then introduce
some properties about the (global) consistency of networks, circumscribing con-
ditions under which the two models are equivalent. We also relate some domain
filtering consistencies (such as generalized arc consistency) of discrete networks
encoding qualitative ones with ◦-consistency, where ◦ denotes the weak compo-
sition of the qualitative calculus.

1 Introduction

The need for reasoning about time and space arises in many areas of Artificial Intel-
ligence, including computer vision, natural language understanding, geographic infor-
mation systems (GIS), scheduling, planning, diagnosis and genetics. Numerous for-
malisms for representing and reasoning about time and space in a qualitative way have
been proposed in the past two decades [1, 16, 13, 5, 15, 11, 4].

Those formalisms involve a finite set of basic relations denoting qualitative rela-
tionships between temporal or spatial entities. Intersection, overlapping, containment,
precedence are examples of such qualitative relationships. For instance, in the field
of qualitative reasoning about temporal data, there is a well known formalism called
Allen’s calculus [1]. It is based on intervals of the rational line for representing tem-
poral entities and thirteen basic relations between such intervals are used to represent
the qualitative situations between temporal entities: an interval can follow another one,
meet another one, and so on.

Typically, Qualitative Constraint Networks (QCNs) are used to express information
on a spatial or temporal situation. Each constraint of a QCN represents a set of accept-
able qualitative configurations between some temporal or spatial entities and is defined
by a set of basic relations.

On the other hand, the discrete Constraint Satisfaction Problem (CSP) is at the
heart of Constraint Programming. Its task is to determine the satisfiability of a Dis-
crete Constraint Network (DCN), i.e. a network such that each variable takes its values
in an associated discrete domain. For solving DCNs, tree search algorithms are com-
monly used. To limit their combinatorial explosion, various improvements have been
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proposed. Such improvements mainly concern ordering heuristics, filtering techniques
and conflict analysis, and can be conveniently classified as look-ahead and look-back
schemes [8].

In this paper, we report on current work concerning the representation of qualita-
tive networks by discrete ones. More particularly, we define and study a transformation
that allows for translating a QCN into a DCN. We show that satisfiability (unlike unsat-
isfiability) is preserved by this transformation. Moreover, we study the links between
local consistency concepts of qualitative and discrete models. The final objective of this
work is to detect and import into the qualitative domain the most efficient inference and
search methods of the discrete model.

This paper is organized as follows. After introducing some technical background
about discrete and qualitative constraint networks, we introduce an encoding of quali-
tative networks into discrete ones while addressing the issue of satisfiability. Then, we
relate local consistencies from the two qualitative and discrete paradigms. Finally, we
conclude with some perspectives.

2 Background on Discrete Constraint Networks

Definition 1. A Discrete Constraint Network (DCN) P is a triple (X ,D,C) where:

– X is a finite set of variables;
– D is a mapping which associates to each variable x ∈ X a finite set of values D(x)

called domain;
– C is a finite set of constraints such that each constraint c ∈C involves a subset of

variables of X , called scope and denoted by vars(c), and has an associated relation,
denoted rel(c), which contains the set of tuples allowed for the variables of its
scope.

A solution to a discrete constraint network is an assignment of values to all the
variables such that all the constraints are satisfied. A constraint network is said to be
satisfiable or consistent iff it admits at least one solution. Two discrete constraint net-
works are equivalent iff they admit the same set of solutions.

Arc Consistency (AC) remains the central property of discrete constraint networks
and establishing AC on a given network P involves removing all values that are not
arc-consistent.

Definition 2. Let P = (X ,D,C) be a DCN. A pair (x,a), with x ∈ X and a ∈ D(x), is
arc-consistent iff ∀c ∈C | x ∈ vars(C), there exists a support of (x,a) in C, i.e. a tuple
t ∈ rel(c) such that t[x] = a and t[y]∈D(y) ∀y∈ vars(c)1. P is arc consistent iff ∀x∈ X ,
D(x) 6= /0 and ∀a ∈ D(x), (x,a) is arc-consistent.

The definition above is given in the general case, that is to say for instances involv-
ing constraints of any arity. Then, one usually talks about Generalized Arc Consistency
(GAC) (e.g. see [6]) or hyper-arc consistency (e.g. see [3]). We will say that an as-
signment of a value to each variable of a set S ⊆ X of variables is consistent iff any

1 t[x] denotes the value assigned to x in t
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constraint c ∈C only involving assigned variables of S (i.e. vars(c)⊆ S) is satisfied. P
is said to be (i, j)-consistent iff any consistent assignment to i variables can be extended
to a consistent assignment to j additional variables. Also, the k-consistency concept
(with k ≥ 1) is defined [9] as being equivalent to (k−1,1)-consistency. Finally, a DCN
is strong k-consistent iff it is j-consistent, for any j in {1, . . . ,k}.

To solve a discrete constraint network, one can apply inference or search methods
[8]. Usually, domains of variables are reduced by removing inconsistent values, i.e.
values that can not occur in any solution. We can then compare the different states of a
network during inference or search by focusing on domains as follows:

Definition 3. Let P = (X ,D,C) and P ′ = (X ,D′,C) be two DCNs. P ′ ⊆ P iff ∀x ∈ X ,
D′(x)⊆ D(x).

3 Background on Qualitative Calculi

3.1 Relations and Operations

A qualitative calculus involves a finite set B of binary2 relations, called basic relations,
defined on a domain D. The elements of D represent temporal or spatial entities. Each
basic relation of B corresponds to a particular possible configuration between two tem-
poral or spatial entities. The relations of B are jointly exhaustive and pairwise disjoint,
which means that any pair of elements of D belongs to exactly one basic relation in
B. Moreover, for each basic relation B ∈ B there exists a basic relation of B, denoted
by B∼, corresponding to the transposition of B. Moreover, we suppose that a particular
relation of B is the identity relation on D, we denote this basic relation by Id. The set
A is defined as the set of relations corresponding to all unions of the basic relations:
A = {

⋃
E : E ⊆ B}. It is customary to represent an element B1∪ . . .∪Bm (with Bi ∈ B

for each i such that 1≤ i≤m) of A by the set {B1, . . . ,Bm} belonging to 2B. Hence, we
make no distinction between A and 2B in the sequel.

As an example, consider the well known temporal qualitative formalism called
Allen’s calculus [2]. It uses intervals of the rational line for representing temporal en-
tities. Hence, D is the set {(x−,x+) ∈ Q×Q : x− < x+}. The set of basic relations
consists of a set of thirteen binary relations B = {eq,b,bi,m,mi,o,oi,s,si,d,di, f , f i}
corresponding to all possible configurations between two intervals. These basic rela-
tions are depicted in Figure 1. We have Id = eq.

As a set of subsets, A is equipped with the usual set-theoretic operations including
intersection (∩) and union (∪). As a set of binary relations, it is also equipped with the
operation of converse (∼) and an operation of composition (◦) sometimes called weak
composition or qualitative composition. The converse of a relation R in A is the union
of the transpositions of the basic relations contained in R. The composition A◦B of two
basic relations A and B is the relation R = {C ∈ B | ∃x,y,z ∈ D,x A y,y B z and x C z}.
The composition R◦S of R,S ∈ A is the relation T =

⋃
A∈R,B∈S{A◦B}. Computing the

results of these various operations for relations of 2B can be done efficiently by using
tables giving the results of these operations for the basic relations of B. For instance,

2 In this paper, we focus on binary relations but this work can be extended to n-ary relations with n > 2.
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Fig. 1: The basic relations of Allen’s calculus.

consider the relations R = {eq,b,o,si} and S = {d, f ,s} of Allen’s calculus, we have
R∼ = {eq,bi,oi,s}. The relation R◦S is {d, f ,s,b,o,m,eq,si,oi}.

3.2 Qualitative Constraint Networks

A qualitative constraint network (QCN) is a pair composed of a set of variables and a set
of constraints. The set of variables represents spatial or temporal entities of the system.
A constraint consists of a set of acceptable basic relations (the possible configurations)
between two variables. Formally, a QCN is defined in the following way:

Definition 4. A QCN is a pair N = (V,C) where V = {v1, . . . ,vn} is a finite set of n
variables and C is a map that assigns to each pair (vi,v j) of V ×V a set C(vi,v j) ∈ 2B

of basic relations. In the sequel, C(vi,v j) will be also denoted by Ci j. C is such that
Cii ⊆ {Id} and Ci j = C∼ji for all vi,v j ∈V .

With regard to a QCN N = (V,C), we have the following definitions. A solution of
N is a map σ from V to D such that (σ(vi),σ(v j)) satisfies Ci j for all vi,v j ∈ V . N is
consistent iff it admits a solution. A QCN N ′ = (V ′,C′) is a sub-QCN of N (denoted
byN ′ ⊆N ) if and only if V = V ′ and C′i j ⊆Ci j for all vi,v j ∈V . A QCNN ′ = (V ′,C′)
is equivalent to N if and only if V = V ′ and both networks N and N ′ have the same
solutions. The minimal QCN of N is the smallest (for ⊆) sub-QCN of N equivalent to
N . An atomic QCN is a QCN such that each Ci j contains exactly one basic relation. A
scenario of N is an atomic sub-QCN of N .

Given a QCNN , the main issue to be addressed is the consistency problem: decide
whether or not N admits (at least) a solution. Most of the algorithms used for solving
this problem are based on a method which we call the ◦-closure method. The ◦-closure
method is a constraint propagation method allowing to enforce the (0,3)-consistency of
a QCNN = (V,C), which means that all restrictions ofN to 3-variables are consistent.
The ◦-closure method consists in iteratively performing the following operation: Ci j :=
Ci j ∩ (Cik ◦Ck j), for all vi,v j,vk of V , until a fix-point is reached. The QCN obtained in
this way is a sub-QCN of N which is equivalent to it, and such that Ci j ⊆Cik ◦Ck j, for
all vi,v j,vk of V .
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This latter property is expressed by saying that this sub-network is ◦-closed (to
simplify, in the sequel, we will assume that a ◦-closed QCN does not contain the empty
relation associated with a constraint). When the QCN obtained in this way contains
the empty relation as a constraint, we can assert that the initial QCN is not consistent.
However, when it is not the case, we cannot (in the general case) infer the consistency
of the network. Despite this, the ◦-closure method is the main constraint propagation
method used for qualitative constraint networks.

4 Encoding Qualitative Networks into Discrete Ones

The idea of mapping qualitative networks into discrete ones is quite natural, but, to the
best of our knowledge, it has not been formalized and studied in the general case (i.e.
for any qualitative algebra). However, we can cite the work of Pham et al. [14] who
propose such a transformation for the Interval Algebra (IA). More precisely, any IA
network N can be encoded into a discrete network P as follows. First, each constraint
ofN is mapped to a variable of P whose domain corresponds to the atomic relations of
the constraint (and, as a consequence, a subset of B). Second, each triple of constraints
of N is mapped to a ternary constraint of P such that the associated relation contains
all valid 3-tuples satisfying the weak composition.

In this section, we propose a more preservative encoding of qualitative networks
into discrete ones. In our case, a QCN N is transformed into a ternary DCN P where
the constraints of N become the variables of P and the constraints of P are such that
their associated relations are defined by the entire table of weak composition. More
formally, we define such a transformation, denoted TDCN, as follows:

Definition 5. Let N = (V,C) be a QCN. TDCN(N ) is the DCN P = (X ,D,C′) defined
by:

– for each pair of variables vi,v j ∈ V with 0 < i ≤ j ≤ n, X contains a variable xi j.
The domain of xi j is defined by Ci j;

– for each triple of variables vi,v j,vk ∈V with 0 < i < k < j≤ n, C′ contains a ternary
constraint C′i jk involving the three variables xi j,xik,xk j and defined by C′i jk = TC
with TC = {(a,b,c) ∈ B3 : a ∈ b◦ c}.

Remark that the main difference between the approach that we describe below and
the approach of [14] is that the ternary constraints of the discrete network are not re-
duced by weak composition. Hence, we remain closer to the initial qualitative networks.

Firstly, we can prove that this transformation is sound for the consistency problem:

Proposition 1. Let N = (V,C) be a QCN. If N is consistent then TDCN(N ) is consis-
tent.

Proof. Let N = (V,C) be a QCN and TDCN(N ) = (X ,D,C′) be the DCN obtained
from N . If N is consistent then there exists a consistent scenario S = (V,C′′) of N .
As S is consistent and atomic, S is ◦-closed. Now, let us consider the assignment
I of the variables X defined by I(xi j) = bi j with C′′i j = {bi j} for all xi j ∈ X . S is a
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Fig. 2: The transformation TDCN.

subnetwork of N , hence I(xi j) ∈ D(xi j). Let xi j,xik,xk j ∈ X with 0 < i < k < j ≤ n,
C′′i j ⊆C′′ik ◦C′′k j as S is ◦-closed. As a consequence, (I(xi j), I(xik), I(xk j)) ∈ TC. Hence,
(I(xi j), I(xik), I(xk j)) ∈ C′i jk. We can conclude that I is a solution of TDCN(N ). So,
TDCN(N ) is consistent. ut

Unfortunately, the encoding is not complete for some qualitative calculi. As an il-
lustration, let us consider the QCNN depicted in Figure 3 which is defined in the cyclic
interval algebra [10, 4]. This qualitative networkN is inconsistent whereas the discrete
network TDCN(N ) is consistent. A solution of this DCN is given by instantiating each
variable by the value of its domain. Despite this, we have the following weaker property:

Proposition 2. Let N = (V,C) be a QCN. If TDCN(N ) is consistent then N admits a
◦-closed scenario.

Proof. Let N = (V,C) be a QCN and P = TDCN(N ) = (X ,D,C′). If P is consistent
then there exists a consistent instantiation I for P . Let S = (V,C′′) be the QCN defined
by : C′′i j = {I(xi j)} for all 0 < i ≤ j ≤ n, C′′i j = (C′′ji)

∼ for all 0 < j < i ≤ n. Remark
that C′′i j 6= {} for all 0 < j < i ≤ n. Let i, j,k ∈ {1, . . . ,n}. Firstly, consider the case
where i, j,k are distinct numbers. Suppose without any loss of generality than i < k < j.
We have (I(xi j), I(xik), I(xk j)) ∈ TC, as a consequence there exists di,d j,dk ∈ D such
that di C′′i j d j, di C′′ik dk, dk C′′k j d j, d j C′′ji di, dk C′′ki di and d j C′′jk dk. Moreover we
can remark that di C′′ii di, d j C′′j j d j and dk C′′kk dk since C′′ii = C′′j j = C′′kk = {Id}. From
all this we know that S is an atomic QCN and is consistent on all triples of distinct
variables vi,v j,vk ∈V . It results that C′′i j ⊆C′′ik ◦C′′k j for all distinct variables vi,v j,vk ∈V .
Now, consider i, j,k ∈ {1, . . . ,n} with i = j. We have C′′i j = {Id}. By definition of the
weak composition and the converse we know that {Id} ∈ b◦b∼ for all b ∈ B. It results
that C′′i j ⊆ C′′ik ◦C′′k j for all k ∈ {1, . . . ,n} since C′′k j = C′′ki = (C′′ik)

∼. Now suppose that
i, j,k ∈ {1, . . . ,n} with i = k (resp. j = k). We have C′′i j ⊆C′′ik ◦C′′k j since C′′ik = {Id} and
C′′k j = C′′i j (resp. C′′k j = {Id} and C′′ik = C′′i j). We can conclude that S is ◦-closed. ut

A qualitative calculus will be said to be nice iff it satisfies the following property:
a scenario is consistent if and only if it is ◦-closed. In fact, many qualitative calculi are
nice, and in particular the well known Allen’s calculus. From Propositions 1 and 2, we
can establish the following property (whose proof is immediate):
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Variable x D(x)
x11 {eq}
x12 {o}
x13 {oi}
x14 {ppi}
x22 {eq}
x23 {o}
x24 {ppi}
x33 {eq}
x34 {ppi}
x44 {eq}

Constraints Ci jk for 0 < i≤ j ≤ 4 and 0 < k ≤ 4
{(eq,eq,eq),(eq,o,o),(eq,s,s),(eq,d,d),

(eq, f i, f i),(eq, ppi, ppi),(o, ppi, ppi),(o,o,oi),
. . .}

Fig. 3: A QCN N of the cyclic interval algebra. Although N is inconsistent,
TDCN(N ) = (X ,D,C) is consistent.

Proposition 3. LetN be a QCN defined in a nice qualitative calculus.N is consistent
iff TDCN(N ) is consistent.

We can also show that the transformation TDCN preserves minimality and equiva-
lence.

Proposition 4. Let N be a QCN. N is minimal iff TDCN(N ) is minimal.

Proposition 5. LetN andN ′ be two QCNs. IfN andN ′ are equivalent then TDCN(N )
and TDCN(N ′) are equivalent.

To close this section, we define the converse transformation of TDCN, namely the
transformation TQCN.

Definition 6. Let N = (V,C) be a QCN and P = (X ,D,C′) be a DCN such that P ⊆
TDCN(N ). TQCN(P) is the QCN (V,C′′) defined by C′′i j = D(xi j) and C′′ji = (C′′i j)

∼ for
all 0 < i≤ j ≤ n.

We have the following properties :

Proposition 6. Let N be a QCN.

(a) N = TQCN(TDCN(N ));
(b) if P ⊆ TDCN(N ) then TQCN(P)⊆N ;
(c) if N ⊆N ′ then TDCN(N )⊆ TDCN(N ′). ut
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5 Equivalence between Local Consistencies

In this section we study the relationships of qualitative and discrete constraint networks
in terms of (local) consistencies.

Proposition 7. Let N be a ◦-closed QCN. N and TDCN(N ) are (0,3)-consistent.

Proof. For the first claim, let N = (V,C) be a ◦-closed QCN. We know that Ci j ⊆
Cik ◦Ck j for all 0 < i, j,k ≤ n. There exists bi j ∈Ci j, bik ∈Ci j and bk j ∈Ck j such that
bi j ∈ bik ◦bk j. By definition of the weak composition, there exist yi,y j,yk ∈D such that
yi bi j y j, yi bik yk and yk bk j y j. Moreover, by definition of QCNs we know that b∼i j ∈C ji,
b∼ik ∈Cki and b∼k j ∈C jk. Hence, by definition of the inverse we have: y j b∼i j yi, yk b∼ik yi

and y j b∼k j yk. Moreover yi Cii yi, y j C j j y j and yk Ckk yk since Cii = C j j = Ckk = {Id}.
It results that the restriction ofN on vi,v j,vk is consistent for all 0 < i, j,k≤ n. We can
conclude that N is (0,3)-consistent.

For the second claim let P = TDCN(N ) = (X ,D,C′). Consider three variables xi j,
xik,xk j ∈ X with 0 < i < k < j≤ n (we consider these triples of variables since there are
no constraint on other triples of variables). We have Ci j ⊆Cik ◦Ck j. As a consequence,
there exists bi j ∈ Ci j, bik ∈ Cik and bk j ∈ Ck j such that bi j ∈ bik ◦ bk j. We have bi j ∈
D(xi j), bik ∈ D(xik), bk j ∈ D(xk j) and (bi j,bik,bk j) ∈ C′i jk. We can conclude that P is
(0,3)-consistent. ut

Moreover, we have the following properties.

Proposition 8. Let N be a ◦-closed QCN. TDCN(N ) is strongly 3-consistent.

Proof. Let P = TDCN(N ) where N = (V,C) is a ◦-closed QCN. From the fact that
each domain of P is not empty and each constraint is a ternary constraint we can assert
that P is (0,1)-consistent and (1,1)-consistent. Now, let us prove that P is also (2,1)-
consistent. Let us consider three variables xi j,xik,xk j ∈ X with 0 < i < k < j ≤ n (we
just consider triples of variables corresponding to the scope of a constraint). Let I be a
partial consistent assignment on xi j and xik. We know that I(xi j) ∈Ci j and I(xik) ∈Cik.
Moreover, Ci j ⊆Cik ◦Ck j. It results that there exists bk j ∈Ck j such that I(xi j) ∈ I(xik)◦
bk j. Hence, (I(xi j), I(xik),bk j) ∈ TC, and besides, bk j ∈ D(xk j). As a consequence, by
defining I(xk j) with bk j we extend I in a partial consistent assignment to xk j. In a similar
way of reasoning, we can extend a partial consistent assignment on xi j and xk j to the
variable xik and extend a partial consistent assignment on xik and xk j to the variable xi j.
Hence P is (2,1)-consistent. We can conclude that P is a strongly 3-consistent DCN.

ut

Proposition 9. Let N be a ◦-closed QCN. TDCN(N ) is generalized arc-consistent.

Proof. Let P = TDCN(N ) where N is a ◦-closed QCN. From Proposition 8, we know
that P is strongly 3-consistent. Since P only involves ternary constraints, it results that
P is (1,2)-consistent and also generalized arc-consistent. ut

A corollary of these propositions is that ifN is a ◦-closed atomic QCN then TDCN(N )
is a consistent DCN.
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Proposition 10. Let N be a QCN. If TDCN(N ) is a generalized arc-consistent then N
is ◦-closed.

Proof. Let P = TDCN(N ) = (X ,D,C′) with N = (V,C) a QCN. Suppose that P is
generalized arc-consistent. Consider 0 < i, j,k ≤ n. Suppose that i < k < j without any
loss of generality. Let bi j ∈Ci j. We have bi j ∈ D(xi j). P is generalized arc-consistent,
it results that there exist bik ∈ D(xik) and bk j ∈ D(xk j) with (bi j,bik,bk j) ∈ C′i jk. As
bik ∈ Cik and bk j ∈ Ck j we have bi j ∈ Cik ◦Ck j. Hence, Ci j ⊆ Cik ◦Ck j. From this we
also have C∼i j ⊆ (Cik ◦Ck j)∼. Hence, C ji ⊆ C jk ◦Cki. Now let bik ∈ Cik. We have bik ∈
D(xik). P is generalized arc-consistent, it results that there exist bi j ∈ D(xi j) and bk j ∈
D(xk j) with (bi j,bik,bk j) ∈ C′i jk. From the definition of the weak composition, since
(bi j,bik,bk j) ∈ TC we can assert that (bik,bi j,b∼k j) ∈ TC. As bi j ∈Ci j and b∼k j ∈C jk we
have bik ∈Ci j ◦C jk. Hence, Cik ⊆Ci j ◦C jk. From this we also have C∼ik ⊆ (Ci j ◦C jk)∼.
Hence, Cki ⊆Ck j ◦C ji. With a similar line of reasoning we can prove that Ck j ⊆Cki ◦Ci j
and C jk ⊆ C ji ◦Cik. Now suppose that i = j. We have Ci j = C ji = {Id}. Moreover we
know that {Id} ⊆ b◦b∼ for all b ∈ B. It results that Ci j ⊆Cik ◦Ck j and C ji ⊆C jk ◦Cki.
Morevover it easy to see that Cik ⊆Ci j ◦C jk, Cki ⊆Ck j ◦C ji, C jk ⊆C ji ◦Cik and Ck j ⊆
Cki ◦Ci j. We obtain the same result with i = k or k = j. Finally we can assert that N is
a ◦-closed QCN. ut

As a consequence, a way to obtain the ◦-closure of a QCN is to transform it into a
DCN via TDCN. Indeed, we can then apply a GAC algorithm and transform the obtained
DCN into a QCN via TQCN (see Figure 4).

N P = TDCN(N )

GAC

P ′N ′ = TQCN(P ′)

◦-closure

Fig. 4: The ◦-closure through the DCNs.

6 Future Work and Conclusions

Abscon [12] and QAT (Qualitative Algebra Toolkit) [7] are two JAVA constraint pro-
gramming libraries developed at CRIL-CNRS. The first one is dedicated to discrete
constraint networks. It can solve instances of any arity and implements state-of-the-art
generic filtering (constraint propagation) and search algorithms. The second one is spe-
cialized in qualitative constraint networks. It aims to provide open and generic tools
for defining and manipulating qualitative algebras and qualitative networks based on
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these algebras. QAT also provides several methods to tackle the main centers of interest
when dealing with qualitative constraint networks, mainly the consistency problem, the
problem of finding one or all solutions, and the minimal network problem.

Currently, using these libraries, we are studying the interest of mapping qualitative
networks into discrete ones. One of our ultimate objective is to detect which (inference
or search) methods from the discrete CSP community could be efficiently specialized to
the qualitative algebras. For example, we project to experimentally determine whether
exploiting GAC could be an efficient alternative ◦-closure for qualitative constraints.
Another current line of research is the study of SAT encodings for QCNs.
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Abstract. In the past years a lot of research effort has been put into finding
tractable subsets of spatial and temporal calculi. It has been shown empirically
that large tractable subsets of these calculi not only provide efficient algorithms
for reasoning problems that can be expressed with relations contained in the
tractable subsets, but also surprisingly efficient solutions to the general, NP-hard
reasoning problems of the full calculi. An important achievement in this direction
was Renz’s refinement algorithm which provides a heuristic for proving tractabil-
ity of given subsets of relations. In this paper we modify and extend the refine-
ment algorithm and present a procedure which identifies large tractable subsets of
spatial and temporal calculi automatically without any manual intervention and
without the need for additional NP-hardness proofs. While we can only guarantee
tractability of the resulting sets, our experiments show that for RCC8, our proce-
dure automatically identified all maximal tractable subsets. Using our procedure,
other researchers and practitioners can automatically develop efficient algorithms
for their spatial or temporal calculi without any theoretical knowledge about how
to formally analyse these calculi.

1 Introduction

Dealing with spatial and temporal information is an essential part of any intelligent sys-
tem and of our everyday lives. When giving route descriptions or describing objects
or situations, spatial information of one form or another is usually always contained
in the description. While it is common in engineering and other disciplines to repre-
sent spatial information in a quantitative way using, for example, coordinate systems,
human communication mostly uses a qualitative description which specifies qualitative
relationships between spatial entities. A description like “The book is on the desk to the
left of the computer” is much more natural than giving a coordinate description of the
location of the book. A qualitative representation is characterised by having a finite and
usually small number of different relationships. Even though a qualitative description
is less exact than a quantitative description, this is often an advantage, as it gives the
possibility to give only as much details as are necessary to identify, e.g., a spatial entity.
If more details are required, additional or finer relationships between spatial entities can
be specified [2].

In the area of qualitative spatial representation and reasoning, it is distinguished be-
tween different aspects of space, such as direction, topology, distance, size, or shape.
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For temporal information we can have similar aspects, although they might have differ-
ent names. For all these aspects, qualitative relationships can then defined on a particular
level of granularity.

When developing a qualitative spatial or temporal calculus [7], one has to select the
domain of entities that are being described. This could be points in a d-dimensional
space, intervals or line segments, or extended spatial regions. The set of spatial or tem-
poral entities is usually infinite. The next step is to define a pairwise disjoint and jointly
exhaustive set of n-ary base relations (we assume in the following binary relations), i.e.,
between any n spatial entities of our domain, exactly one of the base relations holds.
Knowledge about the relationships between given entities can be represented in the form
of constraints xRy where x and y are variables over the domain of entities and R is a re-
lation of our set of relations [5]. Given a set of such constraints we can then formulate
different reasoning problems such as deriving unknown relations, eliminating impossi-
ble relations, computing the minimal representation, or checking the consistency of the
given set of constraints. Since most reasoning problems can be polynomially reduced
to the consistency problem, this is considered to be the most important reasoning prob-
lem. The theoretical properties of the consistency problem depend on the chosen set of
relations and the chosen domain, but in most cases it is NP-hard.

In the past years much research effort has been put into identifying subsets of a given
set of relations for which the consistency problem can be decided in polynomial time,
so-called tractable subsets (e.g. [1, 8, 6]). Of particular interest are maximal tractable
subsets which form the boundary between tractable and NP-hard subsets [10, 14, 4].
If the given spatial knowledge can be restricted to relations of these sets, then reason-
ing is tractable. But the main advantage of tractable subset is that they can be used to
considerably speed up the time for deciding instances of NP-hard problems [9, 15]. As
shown by Renz and Nebel [15], almost all instances of the NP-hard consistency prob-
lem for RCC8 [11], even those instances in the phase transition, which are commonly
considered to be the hardest instances, could be solved very fast by combining differ-
ent heuristics based on the maximal tractable subsets of RCC8. Therefore, a theoretical
analysis of the reasoning problems and identifying tractable subsets is essential for ob-
taining efficient solutions to the spatial and temporal reasoning problems, which in turn
is a requirement for applications of these calculi.

Identifying tractable subsets is a very hard problem, in particular when spatial enti-
ties like extended spatial regions are involved which cannot be easily represented. How-
ever, due to the similar structure of the consistency problem over spatial and temporal
relations–they are all based on a set of base relations and the same set of operators–it
was possible to develop a general method that can be applied to all sets of relations, by
which tractability of a subset can be proved simply by running an algorithm [12]. The
refinement method introduced in Renz [12] requires as input two sets of relations S and
T , S is the set that is being tested for tractability and T is a set for which it is known
that path-consistency decides consistency. The refinement method further needs a re-
finement strategy, which is a mapping of relations S ∈ S to relations T ∈ T for which
T is a refinement of S, i.e, T ⊆ S. The algorithm then checks for all possible path-
consistent triples of relations of S whether the specified refinements can be made and
also keeps track of and tests new refinements that are induced by the algorithm. Since
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there are 22|B| different subsets for a given set of base relations B, we cannot apply the
refinement method to all subsets, but can only run it for a small number of candidate
sets. One way of identifying these candidate sets is to make a number of NP-hardness
proofs in order to identify relations that make the consistency problem NP-hard when
combined with the base relations. These relations can be used to restrict the number
of candidate sets for tractable subsets. Further, we have to find a refinement strategy
for each candidate set to a corresponding set T . Due to the large amount of existing
theoretical analysis on RCC8 and the interval algebra, e.g., a large number of NP-hard
relations was known, applying the refinement method to these two calculi and identi-
fying large tractable subsets was relatively easy. But what if we have a new calculus
where we don’t have all the theoretical results already available?

In this paper, we modify and extend the refinement method and present a general
procedure by which large tractable subsets of arbitrary spatial and temporal calculi can
be identified fully automatically without any additional requirements or interactions.
This procedure will return one or more tractable subsets of a given spatial or temporal
calculus. While we cannot guarantee maximality of the resulting tractable subsets, the
procedure identified all maximal tractable subsets of RCC8. But even if the resulting
tractable subsets are not maximal, they can still give us efficient solutions to the NP-
hard consistency problems if they are used as split sets in Renz and Nebel’s reasoning
algorithms [15].

The paper is structured as follows. In section 2 we give an introduction to spatial
and temporal reasoning and to the refinement method. In section 3 we describe our
procedure, in section 4 we apply it to RCC8 and compare the output of the procedure
to the known results. Finally, in section 5 we give a discussion of our results.

2 Background

2.1 Qualitative Spatial and Temporal Reasoning

A qualitative spatial or temporal calculus consists of a domain D of spatial or temporal
entities which is usually infinite and a set of base relations B which partitions D×D
into jointly exhaustive and pairwise disjoint relations, i.e., between any two entities
of D exactly one base relation holds [7]. Since the domains are infinite, we do not
work on the tuples contained in the relations but only manipulate the relation symbols.
We have different operators for doing so, union (∪), intersection (∩), converse (^),
composition (◦) and weak composition (�) of relations. Composition is defined as R ◦
S = {(a,c)|∃b.(a,b)∈ R and (b,c)∈ S}. Since we cannot deal with the tuples contained
in the relations, we can in many cases only use weak composition which is defined as
R�S = {T |T ∈ B : T ∩ (R◦S) 6= /0} [13]. The relations used by a spatial and temporal
calculus are those contained in the powerset 2B of the base relations.

The consistency problem CSPSAT(S) for spatial and temporal calculi, where S is a
subset of 2B is defined as follows [14]:

Instance: Given a set V of n variables over a domain D and a finite set Θ of binary
constraints xRy where R ∈ S ⊆ 2B and x,y ∈ V .
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Question: Is there an instantiation of all n variables in Θ with values from D which
satisfies all constraints in Θ?

The consistency problem is in general an NP-hard problem, but if a subset T of 2B is
known for which the consistency problem can be solved in polynomial time, a so-called
tractable subset, then the consistency problem can be solved by splitting Θ into sets of
constraints Θ ′ such that for every constraint xRy ∈Θ there is a constraint xR′y ∈Θ ′

where R′ is a refinement of R, i.e., R′ ⊆ R, and by backtracking over all possible sets
Θ ′ [9]. It has been shown that if large tractable subsets are known, in the ideal case
maximal tractable subsets, i.e, tractable subsets that become NP-hard if extended by
any other relation, then instances of the NP-hard consistency problem can be solved
very efficiently [15].

A popular local consistency algorithm for solving the consistency problem is the
algebraic closure algorithm, or a-closure algorithm. It successively makes every triple
〈x,y,z〉 of variables in Θ a-closed by applying the following operation until a fixpoint
occurs: xRy := xRy∩ (xS � Ty) where xSz and zTy ∈ Θ . If a fixed point occurs, Θ is
called algebraically closed or a-closed. If the empty relation occurs during this process,
Θ is inconsistent. If composition ◦ is equivalent to weak composition �, then the a-
closure algorithm corresponds to the path-consistency algorithm [13]. In many cases
a-closure decides consistency of atomic CSPs. This will be a requirement for applying
our methods.

2.2 The Refinement Method

The refinement method [12] is a general method for proving tractability of CSPSAT(S)
for sets S ⊆ 2B. It requires a subset T of 2B for which a-closure is already known
to decide CSPSAT(T ). Then the method checks whether it is possible to refine every
constraint involving a relation in S according to a particular refinement scheme to a
constraint involving a relation in T without changing consistency. It is based on the
following definition.

Definition 1 (Reduction by Refinement).
Let S,T ⊆ 2B. S can be reduced by refinement to T , if the two conditions are satisfied:

1. for every relation S ∈ S there is a relation TS ∈ T with TS ⊆ S,
2. every algebraically closed set Θ of constraints over S can be refined to a set Θ ′

of constraints over T by replacing xiSx j ∈Θ with xiTSx j ∈Θ ′ for i < j, such that
enforcing a-closure to Θ ′ does not result in the empty relation.

It is clear that if a-closure decides CSPSAT(T ) for a set T ⊆ 2B, and S can be reduced
by refinement to T , then a-closure decides CSPSAT(S). Therefore, it is sufficient for
proving tractability of CSPSAT(S) to show that S can be reduced by refinement to a
set T for which a-closure decides CSPSAT(T ). Renz [12] developed an algorithm by
which this can be shown. The algorithm uses a refinement matrix that manages the dif-
ferent refinements and which contains for every relation S∈S all specified refinements.

Definition 2 (Refinement Matrix).
A refinement matrix M of S has |S|×2|B| Boolean entries such that for S ∈ S , R ∈ 2B,
M[S][R] = true only if R⊆ S.
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Algorithm: CHECK-REFINEMENTS

Input: A set S and a refinement matrix M of S.
Output: fail if the refinements specified in M can make an algebraically closed triple of
constraints over S inconsistent; succeed otherwise.

1. changes← true
2. while changes do
3. oldM←M
4. for every algebraically closed triple

T = (R12,R23,R13) of relations over S do
5. for every refinement T ′=(R′12,R

′
23,R

′
13) of T

with oldM[R12][R′12] = oldM[R23][R′23] =
oldM[R13][R′13] = true do

6. T ′′← ALGEBRAIC-CLOSURE(T ′)
7. if T ′′ = (R′′12,R

′′
23,R

′′
13) contains the empty

relation then return fail
8. else do M[R12][R′′12]← true,

M[R23][R′′23]← true,
M[R13][R′′13]← true

9. if M = oldM then changes← false
10. return succeed

Fig. 1: Algorithm CHECK-REFINEMENTS

The algorithm CHECK-REFINEMENTS (see Figure 1) takes as input a set of rela-
tions S and a refinement matrix M of S. This algorithm computes all possible alge-
braically closed triples of relations R12,R23,R13 of S (step 4) and enforces a-closure
(using a standard procedure ALGEBRAIC-CLOSURE) to every refinement R′12,R

′
23,R

′
13

for which M[Ri j][R′i j] = true for all i, j ∈ {1,2,3}, i < j (steps 5,6). If one of these
refinements results in the empty relation, the algorithm returns fail (step 7). Other-
wise, the resulting relations R′′12,R

′′
23,R

′′
13 are added to M by setting M[Ri j][R′′i j] = true

for all i, j ∈ {1,2,3}, i < j (step 8). This is repeated until M has reached a fixed point
(step 9), i.e., enforcing a-closure on any possible refinement does not result in new re-
lations anymore. If no inconsistency is detected in this process, the algorithm returns
succeed. A similar algorithm, GET-REFINEMENTS, returns the revised refinement
matrix if CHECK-REFINEMENTS returns succeed and the basic refinement matrix
if CHECK-REFINEMENTS returns fail. If CHECK-REFINEMENTS returns succeed
and GET-REFINEMENTS returns M′, we have pre-computed all possible refinements of
every algebraically closed triple of variables as given in the refinement matrix M′. Thus,
applying these refinements to an algebraically closed set of constraints can never result
in an inconsistency when enforcing a-closure.

So if a suitable refinement matrix can be found, then CHECK-REFINEMENTS can
be used to immediately verify that reasoning over a given set of relations is tractable.

Corollary 1 ([12]). Let S,T ⊆ 2B be two sets such that a-closure decides CSPSAT(T ),
and let M be a refinement matrix of S. Suppose GET-REFINEMENTS(S, M) returns
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M′. If for every S ∈ S there is a TS ∈ T with M′[S][TS] = true, then a-closure decides
CSPSAT(S).

3 A General Procedure for Identifying Tractable Subsets

In this section we present our new algorithms for identifying large tractable subsets of a
spatial or temporal calculus. We assume that (1) we are given a set of jointly exhaustive
and pairwise disjoint base relations B, (2) that the weak compositions and the converses
of the base relations are known, and also that (3) a-closure decides consistency for
atomic CSPs over B, i.e, for CSPs that contain exactly one base relation for each pair
of variables. As a final condition, we assume that (4) the set 2B preserves complexity
for the closure of subsets under intersection, converse and weak composition, i.e., the
closure Ŝ of S has the same complexity as S.

As shown in [13], weak composition and a-closure are sufficient for the purpose
of deciding consistency for most spatial and temporal calculi. In [13] it has also been
shown how conditions (3) and (4) can be tested. Note that condition (3) is not actually
a strict condition. Our procedure can also be applied if this is not yet known. However,
the results of our procedure, i.e., tractability of the resulting sets, is only guaranteed to
be correct if condition (3) is satisfied. We will discuss this point in the last section of
this paper. As shown in [13], condition (4) is a direct consequence of condition (3). As
a consequence of conditions (3) and (4), we know that the closure of the set of base
relations, the set B̂, is also tractable.

3.1 Identifying Tractable Relations

Our refinement procedure consists of different steps which we will describe separately.
The first step is to identify single tractable relations, i.e., relations which give a tractable
subset of 2B when combined with the base relations. During this step we will also obtain
relations which are potentially NP-hard, i.e., single relations that might lead to an NP-
hard set of relations when combined with the base relations.

For this we will test every single relation which is not contained in B̂ and see
whether it can be refined to relations of B̂. For every relation R 6∈ B̂, we first compute
the closure of B̂ ∪{R} and apply the refinement algorithm to every possible refinement
of R which is contained in B̂. The algorithm is given in Figure 2 and consists of two
parts, CHECK-SINGLE-REFINEMENT which checks all refinements for a single rela-
tion R that is added to an existing set of relations T , and FIND-TRACTABLE-SINGLES
which calls CHECK-SINGLE-REFINEMENT for all relations not contained in B̂. Even
though the closure of R and B̂ will likely contain more relations, we only extend the
refinement matrix in CHECK-SINGLE-REFINEMENT with a refinement for R. This re-
finement will propagate through to the other relations as they can all be decomposed
into relations of B̂ ∪ {R}. A similar algorithm GET-SINGLE-REFINEMENT returns the
revised refinement matrix obtained by running CHECK-SINGLE-REFINEMENT.

Algorithm CHECK-SINGLE-REFINEMENT has three different outcomes for a re-
lation R and a set T , succeed, fail, and unknown. The most desirable one is
succeed which means that there is an initial refinement of R to R′ ∈ T such that the
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CHECK-REFINEMENTS algorithm computes an updated refinement matrix by which all
relations of the closure of T̂ ∪ {R} can be refined to a relation of T̂ without changing
consistency. If this is the case, and a-closure decides consistency for T , then a-closure
also decides consistency for the closure of T̂ ∪{R}. This is an immediate consequence
of Corollary 1. If all possible refinements of R to relations of T fail, CHECK-SINGLE-
REFINEMENT returns fail. In this case the closure of T̂ ∪ {R} cannot be refined to
T and all attempts to refine R lead to an inconsistency. This does not say anything
about whether adding R to T leads to an NP-hard set or not. But it means that tractabil-
ity for this set cannot be shown using the refinement method and that there is some
likelihood that the resulting set is NP-hard. For the purpose of this paper, where we
analyse the power of refinements and try to identify large tractable subsets using re-
finements, we will therefore assume that for any relation R for which CHECK-SINGLE-
REFINEMENT(R,T ) returns fail the set {R}∪T is intractable.

A third possible outcome of CHECK-SINGLE-REFINEMENT is unknown, which
means that there is a refinement of R to R′ ∈T which does not result in an inconsistency,
but which also does not lead to the refinement of all relations of the closure of T̂ ∪{R}
to relations of T̂ . Increasing T by some relations might lead to a successful refinement
of R, so we cannot yet conclude whether R leads to a tractable set or not.

FIND-TRACTABLE-SINGLES calls CHECK-SINGLE-REFINEMENT for the different
relations not contained in B̂ while keeping track of their outcome. It is worth noting
that if a relation R returns succeed and therefore leads to a tractable subset, then all
relations in the closure of B̂ ∪ {R} also lead to a tractable subset and don’t have to be
tested using CHECK-SINGLE-REFINEMENT. We conclude this step with the following
lemma.

Lemma 1. Let B be a set of base relations and T and H be the result of FIND-
TRACTABLE-SINGLES(B). If a-closure decides consistency for CSPSAT(B), then all
relations of T are contained in tractable subsets of 2B.

3.2 Identifying Candidates for Tractable Subsets

Using the algorithm specified in the previous subsection, we can identify relations that
must be contained in a tractable subset, but we don’t know yet what the tractable subsets
are and how many tractable subsets there are. It could be that the whole set T forms a
tractable subset, but it could also be that some of the relations in T lead to intractability
when combined with each other. One possibility to find an answer to these questions
would be to test all subsets of T using the refinement method, but there are obviously
too many such sets. Our next step will therefore be to find out which relations might lead
to intractability when combined with the base relations. For this purpose we will assume
that any of the relations of the setH returned by FIND-TRACTABLE-SINGLES(B) leads
to intractability when combined with B. Under this assumption, it is clear that any pair
of relations of T that contains a relation of H in its closure will be intractable as well.
This is done by the algorithm FIND-INCOMPATIBLE-PAIRS in Figure 3. Therefore,
whenever two relations of T are incompatible, they must be contained in two different
tractable subsets.



72 Jochen Renz

Algorithm: CHECK-SINGLE-REFINEMENT

Input: A single relation R ∈ 2B, a tractable set T ⊂ 2B which is closed under weak com-
position, converse and intersection, and a refinement matrix M.
Output: succeed if the closure of {R}∪T can be refined to T , fail if any refinement
of R to R′ ∈ T leads to an inconsistency, and unknown otherwise.

1. good← false
2. S← closure({R}∪T )
3. for every refinement R′ of R with R′ ∈ T do
4. newM←M; newM[R][R′] = true
5. if CHECK-REFINEMENTS(newM,S) == succeed then
6. M′← GET-REFINEMENTS(newM,S)
7. if for every i ∈ S there is a j ∈ T such that M′[i][ j] = true then return succeed
8. else good← true
9. if good == true return unknown
10. else return fail

Algorithm: FIND-TRACTABLE-SINGLES

Input: A set of base relations B
Output: A set of relations T ⊆ 2B such that CSPSAT({T} ∪B) is tractable for every
T ∈ T , and a set of relations H ⊆ 2B each of which potentially leads to NP-hardness
when combined with B.

1. T ← closure(B); bB← closure(B); H= /0
2. M[i][i] = true for all i ∈ T and M[i][ j] = false for all i 6= j
3. for every relation R 6∈ T do
4. result← CHECK-SINGLE-REFINEMENT(R, bB,M)
5. if result == succeed then T ← T ∪ closure({R}∪B)
6. if result == fail then H← (H∪{R})
7. return T and H

Fig. 2: Algorithms CHECK-SINGLE-REFINEMENT and FIND-TRACTABLE-SINGLES

FIND-TRACTABILITY-CANDIDATES computes all candidates for tractable subsets
starting from the closure of the base relations and successively adding new tractable
relations. Each new relation that is added, is first tested whether it is incompatible with
any of the relations already contained in the candidate. If it is not incompatible, then
the closure of the current candidate with the new relation is computed and it is tested
whether the resulting set can be refined to the current candidate using the CHECK-
SINGLE-REFINEMENT algorithm. If it doesn’t return fail, then the new relation is added
and the current candidate is updated. The algorithm keeps track of all relations that
cannot be added to the current candidate. If any of these relations is not yet contained
in one of the candidates, then a new candidate must be generated which does contain
this relation. The new candidate will be tested in the next while loop of the algorithm.
If all tractable relations are contained in at least one candidate, then it is still possible
that there are more candidates, namely, if there is a pair of tractable relations which is
not incompatible and which is not yet contained together in any of the candidates. The
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Algorithm: FIND-INCOMPATIBLE-PAIRS

Input: A set of relations T such that CSPSAT({T}∪B) is tractable for all T ∈ T and a set
of relations H such that CSPSAT({H}∪B) is NP-hard for all H ∈H.
Output: A list L of all pairs 〈T1,T2〉 with T1,T2 ∈ T such that closure({T1}∪{T2}∪B)
contains a relation of H.

1. L← /0
2. for all Ti,Tj ∈ T do
3. if closure({Ti}∪{Tj}∪B) ∩H 6= /0 then L← L∪〈Ti,Tj〉
4. return L

Algorithm: FIND-TRACTABILITY-CANDIDATES

Input: A set of relations T such that CSPSAT({T}∪B) is tractable for all T ∈ T , a set
of relations H such that CSPSAT({H} ∪B) is NP-hard for all H ∈ H, and a list L of
incompatible pairs.
Output: Candidates for tractable subsets T S i of 2B

1. n← 0; max← 1
2. M[i][ j] = true for i = j and false otherwise
3. candidate← bB; newcandidate← bB
4. while (true) do
5. nextrels← /0; n← n+1
6. for all Ti ∈ T and Ti 6∈ candidate do
7. if 〈Ti,R〉 6∈ L for an R ∈ candidate then nextrels← nextrels ∪{Ti}; continue;
8. newcandidate← closure(newcandidate ∪{Ti})
9. if CHECK-SINGLE-REFINEMENT(Ti, candidate, M) 6= fail then
10. candidate← newcandidate
11. T Sn = candidate
12. newrel is any relation in (nextrels ∩

S
iT S i)

13. if newrel 6= /0 then
14. candidate← closure(B∪ newrel); newcandidate← candidate; max← max+1
15. while max == n do
16. Tk,Tj ∈ T is a pair such that 〈Tk,Tj〉 6∈ L and {Tk,Tj} is not contained in any T S i
17. if there is no such pair then return all T S i
18. candidate← closure(B∪{Tj}); newcandidate← closure(candidate ∪{Tk})
19. if CHECK-SINGLE-REFINEMENT(Tk, candidate, M) == fail then
20. L← L∪〈Tk,Tj〉; continue
21. candidate← newcandidate; max← max+1

Fig. 3: Algorithms FIND-INCOMPATIBLE-PAIRS and FIND-TRACTABILITY-
CANDIDATES
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algorithm tests each pair of relations which is not yet contained in a tractable subset and
tests whether the closure of both these relations with the base relations can be refined
to the closure of one of the relations with the base relations. If this is not possible
and CHECK-SINGLE-REFINEMENT returns fail, then this pair is added to the list
of incompatible pairs. If a pair is found which can be refined, then a new candidate
is formed which contains the pair and tested in the next loop of the algorithm. If all
pairs are tested, then the algorithm returns all candidates for tractable subsets. All these
candidates have in common that they do not contain any incompatible pair, they do
not contain a potentially NP-hard relation, and single refinements can be made without
resulting in an inconsistency. What we do not know yet, is whether the whole candidate
can be refined to a known tractable set. This will be tested in the final step.

3.3 Testing the Candidates

In this step we will prove tractability of the candidates we found in the previous section
or identify tractable subsets of the candidates in case they are not tractable. Tractability
can be proven using the refinement method. One way of doing so is to use a heuristic as
specified in [12], such as applying the identity refinement matrix to the candidate. The
identity refinement matrix refines all relations that contain the identity relation to the
refinement where the identity relation is eliminated. This heuristic was very successful
for proving tractability of subsets of RCC8 and the Interval Algebra [12], but if this
heuristic is not successful, a manual intervention is necessary. We will therefore specify
an algorithm which can prove tractability in the general case.

All we know at the moment is that the closure of the base relations is tractable
and if we can find a refinement of a candidate set to the closure of the base relations,
then we know that the candidate set is tractable. But what refinement strategy can we
use? We can extend tractability of the closure of the base relations to a larger set by
adding one of the tractable relations and computing its closure. For the next relation
to be added, it is sufficient to refine it to the larger tractable subset we obtained in the
step before. If a new relation cannot be refined, we know that we cannot add it to the
tractable subset, if CHECK-SINGLE-REFINEMENT returns unknown, we will try to
add a different relation instead and test this relation again at a later stage.

This is very similar to what has been done in the algorithm FIND-TRACTABILITY-
CANDIDATES except for the special treatment of the relations for which the interleaved
CHECK-SINGLE-REFINEMENT calls return unknown. If none of these calls returned
unknown for any of the relations that have been added to a candidate, then this candi-
date must be tractable and no further processing is required.

Definition 3. Given a set of relations S ⊆ 2B. The closure sequence C(S;R1, . . . ,Rn) is
a subset of 2B which is recursively defined as follows:

1. C(S;R) = closure(S ∪{R})
2. C(S;R1, . . . ,Rn) = closure(C(S;R1, . . . ,Rn−1)∪{Rn}).

Lemma 2. Given a set of relations T ⊆ 2B. Suppose T is equivalent to the closure
sequence C(B;R1, . . . ,Rn) and suppose that M is a refinement matrix where the diagonal
is true and all other entries are false.
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Algorithm: TEST-CANDIDATES

Input: Candidates for tractable subsets T S i of 2B

Output: Tractable subsets T S i of 2B

1. for all T S i do
2. queue← /0;
3. M[i][ j] = true for i = j and false otherwise;
4. for each relation R ∈ T S i \ bB do queue← queue ∪(R,0);
5. tractable← bB;
6. loop← 0; changes← false;
7. while queue 6= /0 do
8. take and delete the first pair (R,num) from queue;
9. if (num > loop and changes == false) then break;
10. if (num > loop) then loop← num; changes← false;
11. if CHECK-SINGLE-REFINEMENT(R, tractable,M) == true then
12. tractable← closure(tractable ∪{R});
13. delete all pairs (S,n) from queue (for any n) for which S ∈ tractable;
14. changes← true;
15. else add (R,num+1) to the end of the queue;
16. T S i← tractable;
17. return T S〉 for all i;

Fig. 4: Algorithm TEST-CANDIDATES

If CHECK-SINGLE-REFINEMENT(Ri,C(B;R1, . . . ,Ri−1),M) returns true for all 1≤ i≤
n, then CSPSAT(T ) is tractable.

Proof. If CHECK-SINGLE-REFINEMENT(Ri,C(B;R1, . . . ,Ri−1),M) returns true, then
Si = C(B;R1, . . . ,Ri) can be reduced by refinement to Si−1 = C(B;R1, . . . ,Ri−1) and,
hence, CSPSAT(Si) is tractable if CSPSAT(Si−1) is tractable. Since we know that CSP-
SAT(B̂) can be decided by a-closure, tractability of CSPSAT(T ) follows by successively
applying CHECK-SINGLE-REFINEMENT to the corresponding closure sequence.

Our algorithm TEST-CANDIDATES in Figure 4 takes each candidate and succes-
sively tests for each relation contained in the candidate whether a refinement to the
already known tractable subset is possible. If this is not possible for a relation, the same
relation will be tested again at a later stage.

The whole procedure is then a sequence of the three steps (1) FIND-TRACTABLE-
SINGLES, (2) FIND-INCOMPATIBLE-PAIRS and FIND-TRACTABILITY-CANDIDATES,
and (3) TEST-CANDIDATES. The input to this procedure is a set of base relations and
the composition and converse table, and the output is one or more tractable subsets.

Theorem 1. Given a set of base relations B such that algebraic closure decides CSP-
SAT(B). For each set T S i ⊆ 2B which is returned by our algorithm, CSPSAT(T S i) is
tractable.
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3.4 Applying the New Procedure

We implemented the procedure and tested it for RCC8 in order to see if we can identify
the known maximal tractable subsets or how close the results of our method are to
the actual maximal tractable subsets. We know that there are three maximal tractable
subsets of RCC8 that contain all base relations. Since we are interested in efficient
algorithms, we will only consider tractable subsets that contain all the base relations.

Applying the first step or our procedure (FIND-TRACTABLE-SINGLES) to RCC8
resulted in 76 relations that are contained in H and 179 relations that are contained in
T . Note that the empty relation which is the 256th relation of RCC8 is not considered
here. It is remarkable that the 76 relations ofH correspond exactly to those relations that
were shown to be NP-hard when combined with the RCC8 base relations in [14, 12].
For some of the relations of T , CHECK-SINGLE-REFINEMENT returned unknown, but
all these relations were added to T as part of computing the closure of other relations
for which CHECK-SINGLE-REFINEMENT returned succeed. This seems to indicate
that a relation is not part of a tractable subset only if CHECK-SINGLE-REFINEMENT
returns fail, but this has to be analysed in more detail.

The second step, FIND-TRACTABILITY-CANDIDATES returned three candidates for
tractable subsets. The second candidate was introduced by a relation that was not con-
tained in the first candidate, while the third candidate was introduced by a compatible
pair which was not contained in the previous two candidates. That means the first two
candidates cover all relations of T . What is very remarkable is that the three candi-
dates actually correspond to the three maximal tractable subsets of RCC8 identified in
[12]. For the third step, proving tractability of the candidates, we therefore could have
used the identity refinement heuristic, but of course we have to assume that we do not
know the maximal tractable subsets yet. Therefore, we applied our algorithm TEST-
CANDIDATES to the three candidates. Not surprisingly, tractability of all three candi-
dates could be shown using TEST-CANDIDATES. The whole procedure ran in less than
one hour on a Pentium-Duo 3.00 GHz CPU with 2GB RAM. By far the most time was
spend on the interleaved CHECK-SINGLE-REFINEMENT calls. This could be consider-
ably reduced if we use refinement arrays instead of refinement matrices as introduced
in [12].

We also experimented with weaker versions of FIND-TRACTABILITY-CANDIDATES
which doesn’t use the interleaved calls to CHECK-SINGLE-REFINEMENT. This version
was considerably faster and also identified three candidates. The first two candidates
were the same, while the third candidate contained 170 relations, ten relations more than
in the normal version of FIND-TRACTABILITY-CANDIDATES. These relations were all
eliminated by TEST-CANDIDATES and the output of the weaker version of our proce-
dure was again the three known maximal tractable subsets of RCC8. A further speed
up was obtained by changing the order in which the relations are tested. Testing those
relations first whose closure with the base relations is large avoids computing CHECK-
SINGLE-REFINEMENT for all those relations that are already contained in the closure.
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4 Conclusions

Using our general procedure, we were able to identify all maximal tractable subsets
of RCC8 completely automatically without any manual intervention and without the
need to give NP-hardness proofs for some of the relations. All NP-hard relations were
identified in the first step by our revised refinement algorithm. Note that we can of
course not guarantee that all maximal tractable subsets can be found in all cases or that
the relations we assume to be NP-hard are actually NP-hard. We can only guarantee
that the sets our procedure finds are tractable subsets. But for the purpose of developing
efficient algorithms, the large tractable subsets identified by our procedure should be
enough to give a considerable speed up in solving instances of the NP-hard reasoning
problem.

Some further analysis of our procedure will be necessary in order to obtain a clear
understanding of the effect of the relations for which CHECK-SINGLE-REFINEMENT
returns unknown. For the cases we tested, this had no effect as all these relations were
found to be tractable by other means. For base relations where this is not possible, our
procedure could be further extended by testing these relations again once the tractability
of the resulting candidates has been verified. Then these relations could be refined to
one of the larger tractable subsets instead of the closure of the base relations which
could lead to larger tractable subsets. We could also use an optimistic view and add all
these relations to the set of tractable relations T and see in later steps if they have to be
removed again. A further improvement could be to integrate step 3 into step 2. We will
also implement our procedure using refinement arrays instead of refinement matrices
and then apply it to some other sets of spatial or temporal relations. First tests appear to
be very promising.

One point worth discussing are the consequences of having such a procedure which
automatically makes a theoretical analysis of a problem and automatically identifies
efficient algorithms. It is certainly very desirable for people working in applications of
spatial and temporal information. They only have to run our procedure and don’t have to
wait for years for some experts to make an analysis. On the other hand what happens to
all the experts for doing a theoretical analysis, are they not needed anymore? Will it not
be worth a publication anymore to identify maximal tractable subsets analytically if they
can just as well be identified using our procedure? The answer to the first question is
easy. Even with our procedure, it is still necessary to show that a-closure decides atomic
CSPs. Showing this is a very hard problem as it is necessary to relate the relations
to their semantics and to their domains. A heuristic for how to show this is given in
[13] but it is still a very challenging problem. This also gives an answer to the second
question. Tractable subsets can only be found if it can be shown that a-closure decides
atomic CSPs, so this still requires a theoretical analysis. Also, our procedure does not
guarantee maximality yet. So an accompanying theoretical analysis is still very useful
and gives insight into why a problem is hard.
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Abstract. A multitude of calculi for qualitative spatial reasoning (QSR) has been
proposed during the last two decades. The number of practical applications that
make use of QSR techniques is, however, comparatively small. One reason for
this may be seen in the difficulty for people from outside the field to incorporate
the required reasoning techniques into their software. Sometimes, proposed cal-
culi are only partially specified and implementations are rarely available. With
the SparQ toolbox presented in this text, we seek to improve this situation by
making common calculi and standard reasoning techniques accessible in a way
that allows for easy integration into applications. We hope to turn this into a com-
munity effort and encourage researchers to incorporate their calculi into SparQ.
This text provides an overview on SparQ and its utilization.

1 Introduction

Qualitative spatial reasoning (QSR) is an established field of research pursued by inves-
tigators from many disciplines including geography, philosophy, computer science, and
AI [2]. The general goal is to model commonsense knowledge and reasoning about
space as efficient representation and reasoning mechanisms that are still expressive
enough to solve a given task.

Following the approach taken in Allen’s seminal paper on qualitative temporal rea-
soning [1], QSR is typically realized in form of calculi over sets of spatial relations (like
‘left-of’ or ‘north-of’). These are called qualitative spatial calculi. A multitude of spa-
tial calculi has been proposed during the last two decades, focusing on different aspects
of space (mereotopology, orientation, distance, etc.) and dealing with different kinds
of objects (points, line segments, extended objects, etc.). Two main research directions
in QSR are mereotopological reasoning about regions [13, 4, 15] and reasoning about
positional information (distance and orientation) of point objects [5, 10, 9, 12, 14] or
line segments [16, 11, 3].

Despite this huge variety of qualitative spatial calculi, the amount of applications
employing qualitative spatial reasoning techniques is comparatively small.

We believe that important reasons for this are the following: Choosing the right cal-
culus for a particular application is a challenging task, especially for people not familiar
with QSR. Calculi are often only partially specified and usually no implementation is
made available—if the calculus is implemented at all and not only investigated theoret-
ically. As a result, it is not possible to “quickly” evaluate how different calculi perform
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in practice. Even if an application developer has decided on a particular calculus, he has
to invest serious efforts to include the calculus and required reasoning techniques into
the application. For many calculi this is a time-consuming and error-prone process (e.g.
involving writing down huge composition tables, which are often not even completely
specified in the literature).

Overall, we are convinced that the QSR community should strive for making the
fruits of its work available to the public in a homogeneous framework. We have thus
started the development of a qualitative spatial reasoning toolbox called SparQ1 that
aims at supporting the most common tasks—qualification, computing with relations,
constraint-based reasoning, etc. (cp. section 3)—for an extensible set of spatial calculi.
A complementary approach aiming at the specification and investigation of the inter-
relations between calculi has been described in [20]. Here, the calculi are defined in
the algebraic specification language CASL. In contrast, our focus is on providing an
implementation of QSR techniques that is tailored towards the needs of application de-
velopers. In its current version, SparQ mainly concentrates on calculi from the area of
reasoning about the orientation of point objects or line segments. However, specify-
ing and adding new calculi is in most cases very simple. We hope to turn this into a
community effort, encouraging researchers from other groups to incorporate their own
calculi.

In this text, we describe SparQ and its utilization. The current version of SparQ
and further documentation will be made available at the SparQ homepage2. The next
section briefly recapitulates the relevant terms concerning QSR and spatial calculi as
needed for the remainder of the text. In section 3, we describe the services provided
by SparQ. Section 4 explains how new calculi can be be incorporated into SparQ and
section 5 describes how SparQ can be integrated into own applications.

2 Reasoning with Qualitative Spatial Relations

A qualitative spatial calculus defines operations on a finite set R of spatial relations.
The spatial relations are defined over a particular set of spatial objects, the domain D
(e.g. points in the plane, oriented line segments, etc.). While a binary calculus deals
with binary relations R ⊆ D×D, a ternary calculus operates with ternary relations
R⊆ D×D×D.

A spatial calculus establishes a set of typically jointly exhaustive and pairwise dis-
joint (JEPD) base relations BR. The set R of all relations considered by the calculus
contains at least the base relations, the empty relation /0, the universal relation U, and
the identity relation Id; the set R should be closed under the operations defined in the
following. Typically, the powerset of the base relations 2BR is chosen forR.3

As the relations are subsets of tuples from the same Cartesian product, the set oper-
ations union, intersection, and complement can be directly applied:

Union: R∪S = { x | x ∈ R∨ x ∈ S }
1 Spatial Reasoning done Qualitatively
2 http://www.sfbtr8.uni-bremen.de/project/r3/sparq/
3 Unions of relations correspond to disjunction of relational constraints and thus we will often simply speak

of disjunctions of relations as well and write them as sets {R1, ...,Rn}.
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Intersection: R∩S = { x | x ∈ R∧ x ∈ S }
Complement: R = U \R = { x | x ∈U ∧ x 6∈ R }

where R and S are both n-ary relations on D. The other operations depend on the arity
of the calculus.

2.1 Operations for Binary Calculi

For binary calculi, two other important operations are required:

Converse: R` = { (y,x) | (x,y) ∈ R }
(Strong) composition: R◦S = { (x,z) | ∃y ∈ D : ((x,y) ∈ R∧ (y,z) ∈ S) }

For some calculi no finite set of relations exists that includes the base relations and is
closed under composition as defined above. In this case, a weak composition is defined
instead that takes the union of all base relations that have a non-empty intersection with
the result of the strong composition:

Weak composition: R◦weak S = { d | T ∈ BR∧d ∈ T ∧T ∩ (R◦S) 6= /0 }

2.2 Operations for Ternary Calculi

While there is only one possibility to permute the two objects of a binary relation which
leads to the converse operation, there exist 5 such permutations for the three objects of
a ternary relation. This results in the following operations4 [21]:

Inverse: INV(R) = { (y,x,z) | (x,y,z) ∈ R }
Short cut: SC(R) = { (x,z,y) | (x,y,z) ∈ R }
Inverse short cut: SCI(R) = { (z,x,y) | (x,y,z) ∈ R }
Homing: HM(R) = { (y,z,x) | (x,y,z) ∈ R }
Inverse homing: HMI(R) = { (z,y,x) | (x,y,z) ∈ R }

Composition for ternary calculi is defined accordingly to the binary case:

(Strong) comp.: R◦S = { (w,x,z) | ∃y ∈ D : ((w,x,y) ∈ R∧ (x,y,z) ∈ S) }

Other ways of composing two ternary relations can be expressed as a combination
of the unary permutation operations and the composition [17] and thus do not have to be
defined separately. The definition of weak composition is identical to the binary case.

4 It is not needed to specify all these operations as some can be expressed by others.
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2.3 Constraint Reasoning with Spatial Calculi

Spatial calculi are often used to formulate constraints about the spatial configurations
of a set of objects from the domain of the calculus as a constraint satisfaction problem
(CSP): Such a spatial constraint satisfaction problem then consists of a set of variables
X1, ...,Xn (one for each spatial object) and a set of constraints C1, ...,Cm (relations from
the calculus). Each variable Xi can take values from the domain of the utilized calculus.
CSPs are often visualized as constraint networks which are graphs with nodes corre-
sponding to the variables and arcs corresponding to constraints. A CSP is consistent, if
an assignment for all variables to values of the domain can be found, that satisfies all
the constraints. Spatial CSPs usually have infinite domains and thus backtracking over
the domains can not be used to determine global consistency.

Besides global consistency, weaker forms of consistency called local consistencies
are of interest in QSR. On the one hand, they can be employed as a forward checking
technique reducing the CSP to a smaller equivalent one (one that has the same set of
solutions). Furthermore, in some cases they can be proven to be not only necessary but
also sufficient for global consistency for the set R of relations of a given calculus. If
this is only the case for a certain subset S of R and this subset exhaustively splits R
(which means that every relation from R can be expressed as a disjunction of relations
from S), this at least allows to formulate a backtracking algorithm to determine global
consistency by recursively splitting the constraints and using the local consistency as a
decision procedure for the resulting CSPs with constraints from S [8].

One important form of local consistency is path-consistency which (in binary CSPs)
means that for every triple of variables each consistent evaluation of the first two vari-
ables can be extended to the third variable in such a way that all constraints are satisfied.
Path-consistency can be enforced syntactically based on the composition operation (for
instance with the algorithm by van Beek [19]) in O(n3) time where n is the number of
variables. However, this syntactic procedure does not necessarily yield the correct result
with respect to path-consistency as defined above. Whether this is the case or not needs
be investigated for each individual calculus.

2.4 Supported Calculi

The calculi currently included in SparQ are the FlipFlop Calculus (FFC) [9] with the
LR refinement described in [18], the Single Cross Calculus (SCC) and Double Cross
Calculus (DCC) [5], the coarse-grained variant of the Dipole Relation Algebra (DRAc)
[16, 11], the Oriented Point Relation Algebra OPRAm [12], as well as RCC-5 and
RCC-85 [13]. An overview is given in Table 1 where the calculi are classified accord-
ing to their arity (binary, ternary), their domain (points, oriented points, line segments,
regions), and the aspect of space modeled (orientation, distance, mereotopology). As
can be seen, mainly calculi for reasoning about orientation have been incorporated so
far, but calculi dealing with other kinds of base objects or dealing with other aspects of
space can be integrated just as easily. We briefly describe DRAc as it will be used in
the examples in the remainder of this text.

5 Currently only the relational specification is available for RCC, but no qualifier.



SparQ: A Toolbox for Qualitative Spatial Representation and Reasoning 83

Table 1: The calculi currently included in SparQ

arity domain aspect of space
Calculus binary ternary point or. point line seg. region orient. dist. mereot.

FFC/LR
√ √ √

SCC
√ √ √

DCC
√ √ √

DRAc
√ √ √

OPRAm
√ √ √

RCC-5/8
√ √ √

l

A B
C

r

es A B

C

D

(a) (b)

Fig. 1: Illustration of DRAc: (a) The FlipFlop relations used to define Dipole re-
lations. (b) A dipole configuration: dAB rlll dCD in DRAc.

DRAc A dipole is an oriented line segment as e.g. determined by a start and an end
point. We will write dAB for a dipole defined by start point A and end point B. The idea
of using dipoles was first introduced by Schlieder [16] and extended in [11]. The coarse-
grained dipole calculus variant (DRAc) describes the orientation relation between two
dipoles dAB and dCD with the preliminary of A, B, C, and D being in general position,
i.e., no three disjoint points are collinear. Each base relation is a 4-tuple (r1,r2,r3,r4)
of FlipFlop relations relating one point from one of the dipoles with the other dipole. r1
describes the relation of C with respect to the dipole dAB, r2 of D with respect to dAB,
r3 of A with respect to dCD, and r4 of B with respect to dCD. The distinguished FlipFlop
relations are left, right, start, and end (see Figure 1 (a)). Dipole relations are usually
written without commas and parentheses, e.g. rrll. Thus, the example in Figure 1 (b)
shows the relation dAB rlll dCD.

3 SparQ

SparQ consists of a set of modules that provide different services required for QSR that
will be explained below. These modules are glued together by a central script that can
either be used directly from the console or included into own applications via TCP/IP
streams in a server/client fashion (see section 5).

The general syntax for using the SparQ main script is as follows:

$ ./sparq <module> <calculus identifier> <module specific parameters>

Example:

$ ./sparq compute-relation dra-24 complement "(lrll llrr)"
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Fig. 2: An example configuration of three dipoles.

where ‘compute-relation’ is the name of the module to be utilized, in this case the
module for conducting operations on relations, ‘dra-24’ is the SparQ identifier for the
dipole calculusDRAc, and the rest are module specific parameters, here the name of the
operation that should be conducted (complement) and a string parameter representing
the disjunction of the two dipole base relations lrll and llrr6. The example call thus
computes the complement of the disjunction of these two relations. SparQ provides the
following modules:

qualify transforms a quantitative geometric description of a spatial configuration into
a qualitative description based on one of the supported calculi;

compute-relation applies the operations defined in the calculi specifications (intersec-
tion, union, complement, converse, composition, etc.) to a set of spatial relations;

constraint-reasoning performs computations on constraint networks.

Further modules are planned as future extensions. This comprises a quantification mod-
ule for turning qualitative scene descriptions back into quantitative geometric descrip-
tions and a module for neighborhood-based spatial reasoning. In the following section
we will take a closer look at the three existent modules.

3.1 Qualification and Scene Descriptions

The purpose of the qualify module is to turn a quantitative geometric scene description
into a qualitative scene description composed of base relations from a particular calcu-
lus. The calculus is specified via the calculus identifier that is passed with the call to
SparQ. Qualification is required for applications in which we want to perform qualita-
tive computations over objects whose geometric parameters are known.

The qualify module reads a quantitative scene description and generates a qualita-
tive description. A quantitative scene description is a space-separated list of base object
descriptions enclosed in parentheses. Each base object description is a tuple consisting
of an object identifier and object parameters that depend on the type of the object. For
instance, let us say we are working with dipoles which are oriented line segments. The
object description of a dipole is of the form ‘(name xs ys xe ye)’, where name is the
identifier of this particular dipole object and the rest are the coordinates of start and end

6 Disjunctions of base relations are always represented as a space-separated list of the base relations en-
closed in parentheses in SparQ.



SparQ: A Toolbox for Qualitative Spatial Representation and Reasoning 85

point of the dipole. Let us consider the example in Figure 2 which shows three dipoles
A, B, and C. The quantitative scene description for this situation would be:

( (A -2 0 8 0) (B 7 -2 2 5) (C 1 -1 4.5 4.5) )

The qualify module has one module specific parameter:

mode This parameter controls which relations are included into the qualitative scene
description: If the parameter is ‘all’, the relation between every object and every
other object will be included. If it is ‘first2all’ only the relations between the first
and all other objects are computed.

The resulting qualitative scene description is a space-separated list of relation tuples
enclosed in parentheses. A relation tuple consists of an object identifier followed by
a relation name and another object identifier, meaning that the first object stands in
this particular relation with the second object. The command to produce the qualitative
scene description followed by the result is7:

$ ./sparq qualify dra-24 all
$ ( (A -2 0 8 0) (B 7 -2 2 5) (C 1 -1 4.5 4.5) )
> ( (A rllr B) (A rllr C) (B lrrl C) )

3.2 Computing with Relations

The compute-relation module allows to compute with the operations defined in the cal-
culus specification. The module specific parameters are the operation that should be
conducted and one or more input relations depending on the arity of the operation. Let
us say we want to compute the converse of the llrl dipole relation. The corresponding
call to SparQ and the result are:

$ ./sparq compute-relation dra-24 converse llrl
> (rlll)

The result is always a list of relations as operations often yield a disjunction of base
relations. The composition of two relations requires one more relation as parameter
because it is a binary operation, e.g.:

$ ./sparq compute-relation dra-24 composition llrr rllr
> (lrrr llrr rlrr slsr lllr rllr rlll ells llll lrll)

Here the result is a disjunction of 10 base relations. It is also possible to have disjunc-
tions of base relations as input parameters. For instance, the following call computes
the intersection of two disjunctions:

$ ./sparq compute-relation dra-24 intersection "(rrrr rrll rllr)"
"(llll rrll)"

> (rrll)

7 In all the examples, input lines start with ‘$’. Output of SparQ is marked with ‘>’.
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3.3 Constraint Reasoning

The constraint-reasoning module reads a description of a constraint network—which is
a qualitative scene description that may include disjunctions and may be inconsistent
and/or underspecified—and performs a particular kind of consistency check8. Which
type of consistency check is executed depends on the first module specific parameter:

action The two actions currently provided are ‘path-consistency’ and ‘scenario-consi-
tency’ and determine which kind of consistency check is performed.

The action ‘path-consistency’ causes the module to enforce path-consistency on the
constraint network using van Beek’s algorithm [19] or detect the inconsistency of the
network in the process. We could for instance check if the scene description generated
by the qualify module in section 3.1 is path-consistent which of course it is. To make it
slightly more interesting we add the base relation ells to the constraint between A and
C resulting in a constraint network that is not path-consistent:

$ ./sparq constraint-reasoning dra-24 path-consistency
$ ( (A rllr B) (A (ells rllr) C) (B lrrl C) )
> Modified network.
> ( (B (lrrl) C) (A (rllr) C) (A (rllr) B) )

The result is a path-consistent constraint network in which ells has been removed. The
output ‘Modified network’ indicates that the original network was not path-consistent
and had to be changed. Otherwise, the result would have started with ‘Unmodified net-
work’. In the next example we remove the relation rllr from the disjunction between A
and C. This results in a constraint network that cannot be made path-consistent which
implies that it is not globally consistent.

$ ./sparq constraint-reasoning dra-24 path-consistency
$ ( (A rllr B) (A ells C) (B lrrl C) )
> Not consistent.
> ( (B (lrrl) C) (A () C) (A (rllr) B) )

SparQ correctly determines that the network is inconsistent and returns the constraint
network in the state in which the inconsistency showed up (indicated by the empty
relation () between A and C).

If ‘scenario-consistency’ is provided as argument, the constraint-reasoning module
checks if a path-consistent scenario exists for the given network. It uses a backtracking
algorithm to generate all possible scenarios and checks them for path-consistency as
described above. A second module specific parameter determines what is returned as
the result of the search:

return This parameter determines what is returned in case of a constraint network for
which path-consistent scenarios can be found. It can take the values ‘first’ which
returns the first path-consistent scenario, ‘all’ which returns all path-consistent sce-
narios, and ‘interactive’ which returns one solution and allows to ask for the next
solution until all solutions have been iterated.

8 The constraint-reasoning module also provides some basic actions to manipulate constraint networks that
are not further explained in this text. One example is the ‘merge’ operation that is used in the example in
section 5.
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Path-consistency is also used as a forward-checking method during the search to
make it more efficient. For certain calculi, the existence of a path-consistent scenario
implies global consistency. However, this again has to be investigated for each calcu-
lus. As a future extension it is planned to allow to specify splitting subsets of a calcu-
lus for which path-consistency implies global consistency and provide a variant of the
backtracking algorithm that decides global consistency by searching for path-consistent
instantiations that only contain relations from the splitting subset. In the following ex-
ample, we use ‘first’ as additional parameter so that only the first solution found is
returned:

$ ./sparq constraint-reasoning dra-24 scenario-consistency first
$ ( (A rele C) (A ells B) (C errs B) (D srsl C) (A rser D) (D rrrl B) )
> ( (B (rlrr) D) (C (slsr) D) (C (errs) B) (A (rser) D) (A (ells) B)

(A (rele) C) )

In case of an inconsistent constraint network, SparQ returns ‘Not consistent.’

4 Specifying Calculi in SparQ

For most calculi it should be rather easy to include them into SparQ. The main thing
is to provide the calculus specification. Listing 1 shows an extract of the definition of
a simple exemplary calculus for reasoning about distances between three point objects
distinguishing the three relations ‘closer’, ‘farther’, and ‘same’. The specification is
done in Lisp-like syntax.

(def-calculus "Relative distance calculus (reldistcalculus)"
:arity :ternary
:base-relations (same closer farther)
:identity-relation same

5 :inverse-operation ((same same)
(closer closer)
(farther farther))

:composition-operation ((same same (same closer farther))
(same closer (same closer farther))

10 (same farther (same closer farther))
(closer same (same closer farther))
(closer closer (same closer farther))
(closer farther (same closer farther))
[...]

Listing 1. Specification of a simple ternary calculus (excerpt).

The arity of the calculus, the base relations, the identity relation and the different
operations have to be specified, using lists enclosed in parentheses (e.g. when an op-
eration returns a disjunction of base relations). In this example, the inverse operation
applied to ‘same’ yields ‘same’ and composing ‘closer’ and ‘same’ results in the univer-
sal relation written as the disjunction of all base relations. Some operations like homing
and short cut operations are left out in the example (cmp. section 2.2).



88 F. Dylla, L. Frommberger, J. O. Wallgrün, D. Wolter

In addition to the calculus specification, it is necessary to provide the implementa-
tion of a qualifier function which for an n-ary calculus takes n geometric objects of the
corresponding base type as input and returns the relation holding between these objects.
The qualifier function encapsulates the methods for computing the qualitative relations
from quantitative geometric descriptions. If it is not provided, the qualify module will
not work for this calculus.

For some calculi, it is not possible to provide operations in form of simple tables
as in the example. For instance,OPRAm has an additional parameter that specifies the
granularity and influences the number of base relations. Thus, the operations can only be
provided in procedural form, meaning the result of the operations are computed from
the input relations when they are required. For these cases, SparQ allows to provide
the operations as implemented functions and uses a caching mechanism to store often
required results.

5 Integrating SparQ into Own Applications

SparQ can also run in server mode which makes it easy to integrate it into own applica-
tions. We have chosen a client/server approach as it allows for straightforward integra-
tion independent of the programming language used for implementing the application.

When run in server mode, SparQ takes TCP/IP connections and interacts with the
client via simple plain-text line-based communication. This means the client sends com-
mands which consist of everything following the ‘./sparq’ in the examples in this text,
and can then read the results from the TCP/IP stream.

An example is given in Listing 2: A Python script opens a connection to the SparQ-
server and performs some simple computations (qualification, adding another relation,
checking for path-consistency). It produces the following output:

> ( (A rrll B) (A rrll C) )
> ( (A rrll B) (A rrll C) (B eses C) )
> Not consistent.
> ( (B (eses) C) (A () C) (A (rrll) B) )

6 Conclusions & Outlook

The SparQ toolbox presented in this text is a first step towards making QSR techniques
and spatial calculi accessible to a broader range of application developers. We hope that
this initiative will catch interest in the QSR community and encourage other researchers
to incorporate their calculi into SparQ.

Besides including more calculi, extensions currently planned for SparQ are a mod-
ule for neighborhood-based reasoning techniques [6, 3] (e.g. for relaxing inconsistent
constraint networks based on conceptual neighborhoods and for qualitative planning)
and a module that allows quantification (turning a consistent qualitative scene descrip-
tion back into a geometric representation). This requires the mediation between the
algebraic and geometric aspects of a spatial calculus together with the utilization of
prototypes. Moreover, we want to include geometric reasoning techniques based on
Gröbner bases as a service for calculus developers as these can for instance be helpful
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# connect to sparq server on localhost, port 4443
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((’localhost’, 4443))
sockfile = sock.makefile(’r’)

5 # qualify a geometrical scenario with DRA-24
sock.send(’qualify dra-24 first2all ’)
sock.send(’((A 4 6 9 0.5) (B -5 5 0 2) (C -4 5 6 0))’)
scene = readline() # read the answer
print scene

10 # add an additional relation (B eses C)
sock.send("constraint-reasoning dra-24 merge")
sock.send(scene + ’(B eses C)’)
scene2 = readline() # read the answer
print scene2

15 # check the new scenario for consistency
sock.send(’constraint-reasoning dra-24 path-consistency’)
sock.send(scene2)
print readline() # print the answer
print readline() # print the resulting constraint network

Listing 2. Integrating SparQ into own applications: an example in Python

to derive composition tables [11]. The optimization of the algorithms included in SparQ
is another issue that we want to grant more attention to in the future. Finally, we intend
to incorporate interfaces that allow to exchange calculus specifications with other QSR
frameworks (e.g. [20]).
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