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ABSTRACT

Fourier-based reprojection methods have the potential
to reduce the computation time in iterative tomographic
image reconstruction. Interpolation errors are a limita-
tion of Fourier-based reprojection methods. We apply
a min-max interpolation method for the nonuniform fast
Fourier transform (NUFFT) to minimize the interpolation
errors. Numerical results show that the min-max NUFFT
approach provides substantially lower approximation er-
rors in tomographic reprojection and backprojection than
conventional interpolation methods.

Keywords: Nonuniform FFT, min-max interpolation,
tomography

I. INTRODUCTION

Iterative methods for tomographic image reconstruction
offer numerous advantages over the conventional filtered
backprojection method. The late 1990’s saw commercial
release of 2D iterative reconstruction methods for PET
and SPECT systems. The computation burden of forward
and backprojection operations remains the primary hin-
drance to wider use of iterative methods for fully 3D im-
age reconstruction. This paper describes a new efficient
approach to forward and backprojection using a combina-
tion of the Fourier-slice theorem and a min-max method
for the nonuniform fast Fourier transform. This approach
is particularly well suited to the geometries of PET scan-
ners.

For most iterative reconstruction methods, each iter-
ation requires computation of one “forward projection”
and one “backprojection,” where the forward projection is
roughly a discretized evaluation of the Radon transform,
and the backprojector is the adjoint of the forward projec-
tor. The projection and backprojection steps traditionally
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involve operations such as computing the lengths of in-
tersections between each tomographic ray and each image
voxel. These operations are the principal computational
bottleneck in iterative reconstruction methods, particularly
in 3D image reconstruction. A variety of methods for ac-
celerating this process have been proposed, seee.g., [1].

One natural approach to forward projection is to use the
Fourier-slice theorem [2, p. 56]. This theorem relates the
1D FT of each projection to samples of the 2D FT of the
object on a polar grid1. The use of the Fourier-slice theo-
rem as a tool forreprojectionwas noted in the late 1980’s
by Crawfordet al. [3, 4], in the context of correction of
beam hardening in X-ray CT, and by Stearnset al. [5, 6],
in the context of filling in missing projections in (nonit-
erative) 3D PET image reconstruction. These approaches
were apparently largely abandoned thereafter due in part
to unacceptable image artifacts caused by the large in-
terpolation errors associated with conventional “gridding”
methods for converting between polar and Cartesian co-
ordinates in frequency space. The importance of accurate
interpolation for gridding has been analyzed rigorously [7,
p. 119]. We propose to apply our min-max approach to
the nonuniform fast Fourier transform (NUFFT) [8–11] to
this problem, thereby largely eliminating those artifacts
and perhaps helping salvage the utility of Fourier-based
reprojection.

More recently, Delaney and Bresler [12] proposed a
clever iterative algorithm that uses Fourier principles to
combine projection and backprojection into a single filter-
ing operation that is efficiently implemented with a fast
Fourier transform (FFT) algorithm. However, that formu-
lation is restricted to a particular type of weighting matrix
(block-circulant) that is suboptimal for data with nonsta-
tionary statistics, such as low-count PET scans. The pro-
posed NUFFT-based projector allows us to use weighting
matrices of the form needed in PET [13], albeit at the ex-

1Shift-invariant detector blur is easily included in this framework.
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pense of greater computation than required by the algo-
rithm in [12]. We suspect that the Delaney and Bresler
algorithm would be very useful for quickly forming an
initial image estimate for subsequent iterations by another
algorithm based on statistical weighting.

Very recently, Matejet al. have applied Fourier-based
reprojection [14] for (noniterative) fully 3D PET recon-
struction and [15] for calculation of attenuation correc-
tion factors in PET. They used Kaiser-Bessel windows
for interpolation, which are known to be reasonably accu-
rate [16,17] but without explicitly evaluating the accuracy.

The concepts in this paper are somewhat related to
“gridding” methods for interpolation in frequency space.
Such methods have been considered both for tomography
and for general applications,e.g., [5, 16–43], and for MR
imaging [44–49]. In most of these papers, the focus was
using gridding to find anon-iterativeapproximate solution
to an inverseproblem. In contrast, we use Fourier-based
reprojection as a tool for calculating theforward problem,
and allow an iterative reconstruction methods to solve the
inverse problem. The optimality claims we make are for
the forward problem only. The prospect of using graph-
ics hardware to assist in this projection process is entic-
ing [50–54].

To our knowledge, the work herein and presented in [8]
represents the first application of a NUFFT method to iter-
ative tomographic image reconstruction. Pottset al. have
applied the NUFFT to direct Fourier reconstruction using
truncated gaussian bell as the interpolation kernel [42,43].
(A similar approach was described by Tabei and Ueda
without the NUFFT moniker [32].) That method is un-
doubtably very good, but no claims of optimality can be
made. Our min-max method is optimal for the NUFFT
need for reprojection, but we make no claim of optimal-
ity of our min-max interpolator for the direct Fourier re-
construction method. We conjecture that a min-max ap-
proach could be devised for the direct Fourier reconstruc-
tion method [39].

Section II reviews the min-max NUFFT method. Sec-
tion III describes the application of the NUFFT method to
reprojection. Section IV gives numerical results.

II. NUFFT IN 2D

The section reviews the NUFFT method presented in
[11]. We focus on the 2D case since [11] emphasized only
the 1D case. The extension to 3D is straightforward.

A. Problem statement

We are given a 2D finite-extent signalx[n1, n2], n1 =
0, . . . ,N1−1, n2 = 0, . . . ,N2−1, and we want to evaluate

its (discrete space) Fourier transform (DSFT):

X(ω1, ω2) =

N1−1∑
n1=0

N2−1∑
n2=0

x[n1, n2]e
−ı(ω1n1+ω2n2)

at a finite collection of (nonuniformly spaced) frequency
locations{(ω1,m, ω2,m) : m = 1, . . . ,M} .

The NUFFT approach is to first compute an oversam-
pled, weighted 2D FFT ofx[n1, n2], and then interpolate
the DFT coefficients onto the desired frequency locations.

The first step is to choose convenientK1 ≥ N1 and
K2 ≥ N2 and compute a weightedK1,K2-point DFT:

Y [k1, k2] =
N1−1∑
n1=0

N2−1∑
n2=0

s[n1, n2]x[n1, n2]e
−ı(γ1k1n1+γ2k2n2)

for k1 = 0, . . . ,K1 andk2 = 0, . . . ,K2, using the 2D
FFT algorithm, whereγ1 , 2π/K1 and γ2 , 2π/K2.
The nonzeros[n1, n2]’s are calledscaling factorsand are
designed to partially compensate for imperfections in the
subsequent interpolation step. Their choice strongly af-
fects the accuracy of the method [11]. For simplicity, we
consider onlyseparablescaling factors of the form

s[n1, n2] = s1[n1]s2[n2].

Furthermore, we assume thats1[n1] has a low-order
Fourier-series representation [11] of the form

s1[n1] =

L1∑
t=−L1

αte
ıγ1β1(n1−η1),

where the coefficients are Hermitian symmetric, the fun-
damental frequency scalingβ1 is a design variable, and
η1 , (N1 − 1)/2. Good values forβ1 and theα′ts are
tabulated in [11]. A similar expansion holds fors2[n2].

This first step requiresO(K1K2 log2K1K2) opera-
tions, which can be reduced toO(K1K2 log2N1N2) if
one applies a reduced FFT [11]. Of course

Y [k1, k2] = Y (ω1, ω2)
∣∣∣
ω1=γ1k1, ω2=γ2k2

,

whereY (ω1, ω2) denotes the FT of the modified signal
y[n1, n2] = x[n1, n2]s[n1, n2], so the DFT provides sam-
ples ofY (ω1, ω2) on the set

Ω , {(ω1, ω2) : ω1 = γ1k1, ω2 = γ2k2,

k1 = 0, . . . ,K1 − 1, k2 = 0, . . . ,K2 − 1}.

The second step is to choose a localJ1 × J2 neighbor-
hood withinΩ around each frequency location of interest
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ω1,m, ω2,m, and estimateX(ω1,m, ω2,m) by linearly inter-
polating the correspondingX[k1, k2] values. To express
the interpolator mathematically, define the following inte-
ger offset:

o1(ω) ,




(
argmin

k∈Z
|ω − γ1k|

)
−
J1 + 1

2
, J1 odd

(max {k ∈ Z : ω ≥ γ1k})−
J1
2
, J1 even,

(1)
likewise foro2(ω). Then the min-max interpolator derived
in [11] turns out to have the following separable form:

X̂(ω1, ω2) =

J1∑
j1=1

J2∑
j2=1

u?j1(ω1,N1, J1,K1)u
?
j2(ω2,N2, J2,K2)

· Y [{o1(ω1) + j1}K1 , {o2(ω2) + j2}K1]

where{·}K denotes the modulo-K operation (ensuring
that X̂ is 2π-periodic), and “?” denotes complex conju-
gate.

As derived in [11], the interpolation kernel itself has the
following form:

u1(ω) = Λ
′
1(ω)T1r1(ω)

whereΛ1(ω) is a diagonal matrix with elements

[Λ1(ω)]jj = e
−ı[ω−γ1(o1(ω)+j))]η1 ,

“ ′” denotes Hermitian transpose,T1 is a J1 × J1 matrix
with elements

[T−11 ]l,j =

L1∑
t=−L1

L1∑
s=−L1

αtα
?
s sinc

(
j − l + β1(t− s)

K1/N1

)
,

where sinc(t) , sin(πt)/(πt), andr1 is aJ1-vector with
elements

[r1]j =

L1∑
t=−L1

αt sinc

(
ω/γ1 − o1(ω)− j + β1t

K1/N1

)
.

We similarly defineu2,Λ2, T2, andr2.
Mathematically, for a given choice ofK1,K2,J1,J2 and

s[n1, n2], the interpolator described above minimizes the

worst-case approximation error
∣∣∣X̂(ω1, ω2)−X(ω1, ω2)

∣∣∣
over all signalsx[n1, n2] with unit norm. The rough in-
tuition is that the vectorr is the standard truncated sinc
interpolator, the matrixR optimally compensates for the
truncation, and theΛ provides the usual linear phase as-
sociated with frequency-space interpolation.

Matlab subroutines for evaluating the above quanti-
ties are available online2. To minimize computation
time per iteration, we precompute and store all of the
offsets{(o1(ω1), o2(ω2))} and interpolation coefficients
{u1(ω1), u1(ω2)} for the relevant(ω1,m, ω2,m)’s prior to
iterating.

III. T OMOGRAPHIC REPROJECTION

This section reviews reprojection starting with the con-
tinuous case and then working towards the discrete case
relevant for iterative image reconstruction and for which
the NUFFT is applicable.

Let g(x, y) denote the 2D image whose projections we

wish to compute, and assume thatg(x, y)
F2←→ G(fX, fY)

where

G(fX, fY) =

∫∫
g(x, y) e−ı2π(xfX+yfY) dx dy.

In polar coordinates:

Gθ(ρ) = G(ρ cos θ, ρ sin θ),

and sinceg(x, y) is real,G?θ(ρ) = Gθ(−ρ) .
By the Fourier-slice theorem [2, p. 56], the projection at

angleθ as a function of radial distancer is given by:

pθ(r) =

∫
L(r,θ)

g(x, y) dl =

∫
Gθ(ρ) e

ı2πρr dρ,

whereL(r, θ) denotes the line at angleθ taken counter-
clockwise from they axis, at distancer from the origin.

A classical sinogram model would consist of samples
of pθ(r), but that approach ignores the detector blur of the
imaging system. Assume that the detector response is sim-
ply shift-invariant radial blur with impulse responseh(r)
and corresponding frequency responseH(f). Accounting
for the center of rotation of the imaging system, the detec-
tor sampling distance∆r, and the detector blur, we wish
to compute

yθ[n] = (pθ(r) ∗ h(r))
∣∣∣
r=(n−ηr)∆r

(2)

=

∫
Gθ(ρ)H(ρ)e

ı2πρ∆r(n−ηr) dρ

=

∫ ∞
−∞
Yθ(ρ)e

ı2πρ∆rn dρ, (3)

for n = 0, . . . ,Nr − 1, whereNr is the number of radial
samples, and

Yθ(ρ) , Gθ(ρ)H(ρ)e
−ı2πρ∆rηr . (4)

2http://www.eecs.umich.edu/ ∼fessler
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Typically ηr = (Nr − 1)/2.
For a forward projection, we must compute approxima-

tions to (3) for a finite collection ofθ’s. For speed, we
want to approximate (3) using anK-point inverse FFT,
where we may choose any convenientK ≥ Nr. Define
δ = 1/(K∆r). Then the natural discretization of (3) is

yθ[n] ≈

K/2−1∑
k=−K/2

δYθ(kδ)e
ı2π(kδ)∆rn

=
1

K

K/2−1∑
k=−K/2

Zθ[k]e
ıγkn, (5)

whereγ , 2π/K and

Zθ[k] ,
1

∆r
Yθ(kδ). (6)

The summation (5) is precisely aK-point inverse FFT.
Thus, given samplesZθ[k] of the spectrumYθ(ρ) (or ap-

proximations thereof), we can determineyθ[n] by a simple
scaled inverse FFT. To compute those samplesZθ[k], we
apply the 2D NUFFT method.

A. Discretizing the 2D FT

In the practice of iterative image reconstruction, rather
than operating on a continuous objectg(x, y), we want to
forward project a discretized object such as the following:

g(x, y) =

N1−1∑
n1=0

N2−1∑
n2=0

g[n1, n2]b(x− n1∆1, y − n2∆2),

(7)
which has corresponding spectrum

G(fX, fY) = B(fX, fY)Gd(2πfX∆1, 2πfY∆2) (8)

whereB(fX, fY) is the 2D FT of the basis functionb(x, y),
and the 2D FT ofg[n1, n2] is:

Gd(ω1, ω2) =

N1−1∑
n1=0

N2−1∑
n2=0

g[n1, n2]e
−ı(ω1n1+ω2n2). (9)

Combining (4) and (8) yields

Yθ(ρ) = B(ρ cos θ, ρ sin θ)H(ρ) e
−ı2πρ∆rηr

· Gd(2π∆1ρ cos θ, 2π∆2ρ sin θ) (10)

These relationships suggest the following approach to for-
ward projection.

Step 1. Use the 2D NUFFT method withω1 = 2πfX∆1
and ω2 = 2πfX∆2 to compute an accurate approxi-
mation to the double summation in (9). UsefX =

ρ cos θ and fY = ρ sin θ with ρ = k/(K∆r) for k =
−N/2, . . . ,N/2 − 1.

Step 2. Scale the NUFFT output by the factors

B(ρ cos θ, ρ sin θ)H(ρ)e−ı2πρ∆rηr

from (10), and by the1/∆r in (6). This yields the required
Zθ[k]’s.

Step 3. Take the inverseK-point FFT of eachYk set
(for eachθ) using (5). Discard all but the samplesn =
0, . . . ,Nr − 1. Check for residual imaginary part.

A minimally suitable choice for the PSFh(r) would
be h(r) = 1

w rect
(
r
w

)
for which H(fX) = sinc(wfX).

This model accounts for the finite width of the detector
elements. A typical choice for the basis functionb is

b(x, y) = rect

(
x

∆1

)
rect

(
y

∆2

)
.

B. Arc correction extension

The inverse FFT (5) yields uniformly-spaced radial
samples. Typical PET systems having circular geometries
acquire nonuniform radial samples. For conventional FBP
reconstruction prior to ramp filtering one interpolates the
nonuniform radial samples onto equally-spaced samples,
often calledarc correction. Such “preprocessing” inter-
polation is suboptimal for iterative reconstruction since it
destroys the statistical independence of the measurements.
It is preferable to build the nonuniform spacing into the re-
projection method.

The min-max NUFFT interpolation method described
in [11] is directly applicable to the case where (5) is re-
placed by nonuniform radial sampling.

C. Adjoint

The method described above is a linear operator and
hence corresponds implicitly to some(Nθ ·Nr) × (N1 ×
N2) matrix. Iterative algorithms usually also need the
ability to compute matrix-vector multiplication by the
transpose of that matrix, even though the matrix itself is
not stored explicitly. It is straightforward to “reverse” (not
invert!) the steps described above to develop an algorithm
to perform multiplicaton by the transpose, corresponding
to the adjoint of the forward operator, which is a form of
backprojection.

IV. RESULTS

We evaluated the accuracy of the NUFFT-based repro-
jector using the Shepp-Logan digital phantom [2,55] with
N1×N2 = 128×128 pixels as shown in Fig. 1. We simu-
lated a parallel-beam tomographic system with a sinogram
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size ofNr = 160 radial bins byNθ = 192 angles over
180◦, corresponding to CTI EXACT PET scanners. We
included a rectangular detector responseh(r) = rect(r)
with width equal to the pixel size, partially representing
the finite detector width in a PET system (rather than us-
ing overly idealized line integrals).

We computed forward projections of this object three
ways: using Fourier-based reprojection withexact (to
within double precision in Matlab) evaluation of the 2D
FT (9), using Fourier-based reprojection with the 2D
NUFFT approximation to (9) using min-max optimized
Kaiser-Bessel interpolation withJ = 4 andK/N = 2,
and using a bilinear interpolation approximation to (9).
Fig. 1 shows a representative example; the sinograms are
visually indistinguishable. The maximum percent dif-
ference between the NUFFT method and the exact FT
method, defined by

maxn,θ |y
FT
θ (n)− y

NUFFT
θ (n)|

maxn,θ |yFTθ (n)|
· 100%,

is only 0.04%. By comparison, using conventional bi-
linear interpolation for the polar to cartesian conversion
yielded maximum error of over 3%. The min-max NUFFT
approach reduces the maximum error by two orders of
magnitude for this choice ofJ .

Iterative algorithms also require the adjoint operator
(backprojector). Fig. 2 compares the adjoint of the exact
Fourier-based reprojector and the adjoint of the NUFFT-
based reprojector (using the Kaiser-Bessel interpolator
with J = 4 andK/N = 2) when applied to a ramp-
filtered sinogram. Again the NUFFT approach agreed
with the exact approach within 0.08%, which is certainly
well below the noise levels in typical PET scans.

For a more systematic comparison, we compared the
exact Fourier-reprojected sinograms to the the NUFFT-
based sinograms for several values of the neighborhood
sizeJ = J1 = J2 and the FFT oversampling factorK/N .
For simplicity we useduniform scaling factorsfor this
study. For reasonable values ofJ andK/N the sino-
grams are indistinguishable when printed in grayscale or
in profiles, so are not shown. Fig. 3 shows the tradeoff be-
tween computation time (using Matlab’stic command
on a 1GHz Pentium III running Linux) and percent RMS
difference between the exact approach and the NUFFT-
based approach. We also examined thel1 andl∞ norm dif-
ferences which showed identical trends. This figure shows
that an oversampling factor ofK/N = 2 provides a good
tradeoff between accuracy and computation time for this
geometry and computer. UsingJ ≈ 6 with K/N = 2
seems to be a reasonable compromise. UsingJ = 5 and

K/N = 2, the NUFFT approach is over 500 times faster
than the exact Fourier reprojector. In this case, precomput-
ing the interpolation coefficients required less than 9 sec-
onds and used about 17Mbyte of storage (with Matlab’s
double precision values). This precomputation depends
only on the scanner geometry, and not the object, so needs
only to be done once for a given tomographic system so
its computation time is largely irrelevant.

Since iterative algorithms require repeated forward and
backprojections, it is conceivable that even small errors
in the reprojector could accumulate. We simulated noisy
PET sinogram measurements from the phantom shown in
Fig. 4. We ran 20 iterations of the conjugate gradient algo-
rithm for a data-weighted least-squares cost function [13]
with a standard quadratic first-order roughness penalty.
We ran it twice; once with the exact Fourier-based re-
projector, and once with the NUFFT approximation using
J = 5 andK/N = 2 and the Kaiser-Bessel interpolator.
Fig. 4 shows that the reconstructed images were visually
indistinguishable. The maximum percent difference was
less than 0.12% at the 20th iteration. So perhaps there is
slight error accumulation with iteration, but it is negligible
relative to Poisson noise.

The difference between the FBP image and the
QPWLS-CG image is not so dramatic in this 2D example.
The difference should be more significant in 3D acquisi-
tions.

We have focused on comparing the NUFFT approxima-
tion to the sum (9) against exact evaluation by the discrete-
space Fourier transform. This has allowed us to focus on
the effects of the interpolation errors in the NUFFT ap-
proach. However, we must acknowledge that (5) is itself
an approximation that in some sense “degrades” both the
NUFFT and the DSFT relative to theexactformula (2). In
the case of square pixels and a rectangular PSFh(r) as we
have used in these examples, it is possible to compute (2)
exactly. Returning to the Shepp-Logan phantom, we com-
puted the exact projection using (2) and (7) and compared
it to the Fourier-based reprojector using the exact DSFT.
The maximum percent difference of the sinograms was
0.74%. So this is the magnitude of the error introduced
by the discretization (5). It must also be acknowledged
that the series expansion (7) is an approximation in prac-
tice. It is quite plausible that the modeling error in that
approximation will dominate the� 1% errors we have
reported here for the NUFFT approach, so we conclude
that the NUFFT approach with min-max interpolation is
viable since the interpolation errors are smaller than the
discretization errors inherent to and Fourier-based repro-
jector, which in turn are probably smaller than the object
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discretization errors.

V. DISCUSSION

We have described a Fourier-based reprojection method
using the NUFFT with min-max interpolation for the po-
lar to Cartesian conversion in spatial frequency space. The
method yields accuracies that are considerably improved
over conventional bilinear interpolation. We have not yet
compared to Kaiser-Bessel or gaussian interpolation in
this context. We showed in [11] that the optimized min-
max method (with optimized scaling factors) outperforms
gaussian interpolation (even with numerically optimized
width) in the 1D case by about an order of magnitude.

There are several limitations of Fourier-based reprojec-
tion that would need to be overcome before it would be
widely used in iterative tomographic image reconstruc-
tion.

Due to interpolation errors, sinograms with slightly
negative values may be produced, even for a nonnegative
input image. In our implementation we simply truncate
to zero any negative values (when the input image is non-
negative). Strictly speaking this nonlinearity could affect
the convergence of some iterative algorithms, an issue that
could be investigated further.

There is not an obvious approach to forming fan-beam
projections, at least not without further interpolations that
conceivably may degrade spatial resolution. An exception
would be when the fan angle is small [56]. Perhaps a min-
max approach could be found for the parallel-fan inter-
polation, perhaps by some change of variables. Thus the
applicability to X-ray CT is an open question. Cone-beam
CT is an additional challenge [36].

The Fourier approach appears unsuitable for SPECT
since it cannot easily accommodate nonuniform attenu-
ation and depth-dependent detector response. Perhaps
some form of the frequency distance principle could over-
come this limitation? Combining with fast rotation meth-
ods may be another avenue to explore [57].

The simplest version of the method is only suitable for
shift-invariant radial blur, which is only an approximation
to the PSF of PET systems. However, one could combine
ideal “line integral” reprojection with a subsequent shift-
variant radial blur operator to model effects such as crystal
penetration partially. Such a factorized model would not
include the depth-dependent effects that are particularly
relevant when the object field of view approaches closely
the detector ring, such as in some small-animal PET scan-
ner designs.

The method is not ideally suited to “ordered-subsets”
or block-iterative methods since the greatest efficiency

comes from following the oversampled 2D FFT by cal-
culation ofall projection views. This would seem to limit
the applicability to primarily the conjugate-gradient fam-
ily of algorithms where ordered subsets are not needed.

Bronsteinet al. have recently applied this algorithm to
diffraction tomography [58].
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Figure 1: Shepp-Logan digital object and its sinograms computed by exact Fourier reprojection, Fourier reprojection
with bilinear interpolation, and NUFFT reprojection with min-max interpolation. The scales on the error sinograms
differ by two orders of magnitude.
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Figure 2: The adjoints of the exact FT-based reprojector
and NUFFT-based reprojector yield very similar backpro-
jector.
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Figure 3: RMS error vs CPU time tradeoff for NUFFT-
based reprojector with min-max interpolation and uniform
scaling factors.

VII. A PPENDIX: DISCRETIZING

Here are two other possible approaches to discretiz-
ing (3), neither of which seems preferable to (5).

A. Even number of mid-point samples

If we want an even number of samples when discretiz-
ing the integral (3), then we could use the midpoints be-
tween each integer by definingYk = Y ((k + 1/2)δ). Us-
ing the natural spacingδ = 1/(N∆r) yields:

y(n) ≈

N/2−1∑
k=−N/2

δYke
ı2π[(k+1/2)δ]∆rn

= δeı2π(δ/2)∆rn
N/2−1∑
k=−N/2

Yke
ı2πkδ∆rn

≈
1

∆r
eı
2π
N
n/2


 1
N

N/2−1∑
k=−N/2

Yke
ı2πkn/N


 .(11)

This is precisely the iFFT with a scale factor in front.
However, this approach has the disadvantage that it never
uses the DC sample locationY (0), which will be exact in
the NUFFT (with uniform scaling factors), but rather fre-
quency locations nearby that will need to be interpolated
generally. This might lead to DC inconsistencies from
projection view to projection view. The complex expo-
nential in front of the final sum in (11) seems a bit of a
nuisance too; it may lead to larger than desirable imagi-
nary components.

B. Odd number of “integer” samples

Instead we might prefer to useYk = Y (kδ), i.e., sam-
ples at integer multiples ofδ. To preserve symmetries so
that y(n) is “as close to real as possible” then we could
use an odd number of samples in the discretization:

y(n) ≈

N/2∑
k=−N/2

δYke
ı2π(kδ)∆rn

=
1

∆r

1

N

N/2∑
k=−N/2

Yke
ı2πkn/N .

This is not quite the iDFT we want since it hasN + 1
points, which will be odd since we are assuming thatN
is even. However,YN/2 = Y

?
−N/2 due to the Hermitian

symmetry ofY (·), so the±N/2 terms in the above sum
are

Y−N/2e
ı2π(−N/2)n/N + YN/2e

ı2π(N/2)n/N

= Y−N/2(−1)
n + Y ?−N/2(−1)

n

=
[
Y−N/2 + Y

?
−N/2

]
eı2π(−N/2)n/N

so

y(n) ≈
1

∆r

1

N

N/2−1∑
k=−N/2

Zke
ı2πkn/N ,

where

Zk ={
2 real

(
Y−N/2

)
, k = −N/2

Yk, k = −N/2 + 1, . . . ,N/2 − 1.

Taking the real part is a nonlinear operation which I would
prefer to avoid for iterative algorithms.



Fessler NUFFT-Reprojection 11

0

5Phantom

0

5FBP

0

5

4726.6 sec

20
 it

er
 o

f C
G

Exact DSFT

0

5

13.0 sec

20
 it

er
 o

f C
G

NUFFT(J=5)

−4

6
x 10

−3

Exact − NUFFT

Figure 4: FBP and QPWLS-CG reconstructions of thorax phantom.


