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ABSTRACT involve operations such as computing the lengths of in-
Fourier-based reprojection methods have the potenﬁ%‘selcn?r?]s betweent_each tom;)hgraphlc'ra% and eatt:ht_|mag|;e
to reduce the computation time in iterative tomograph é))t(tile. ke_se_‘top(i_ra lons ar(te ff prmm&a dcompl:_a |Ionla
image reconstruction. Interpolation errors are a limit otieneck in lerative reconstruction methods, particuiarly

tion of Fourier-based reprojection methods. We app'ln ?D [[r_nagt(ra].reconstrucrt]lon. svarlety of mgthodslfor ac
a min-max interpolation method for the nonuniform fast. o aung this process have been proposg e:fﬁet J
Fourier transform (NUFFT) to minimize the interpolation ©ON€ natural approach to forward projection is to use the

errors. Numerical results show that the min-max NUFFourier-siice theorem [2, p. 56]. This theorem relates the
approach provides substantially lower approximation efP FT Of each projection to samples of the 2D FT of the

rors in tomographic reprojection and backprojection th&Piect on a polar gritl The use of the Fourier-slice theo-
conventional interpolation methods. rem as a tool foreprojectionwas noted in the late 1980’s

Keywords: Nonuniform FFT, min-max interpolation, E)e/acr:r:ar\:vaf%rgriagl}rES)’(Afr]a,LymCt'lr']eaﬁgnéixé';faﬁgle?gog] of
tomography in the context of filling in missing projections in (nonit-
erative) 3D PET image reconstruction. These approaches
_ o _were apparently largely abandoned thereafter due in part

Iterative methods for tomographic image reconstructiqg nacceptable image artifacts caused by the large in-
offer numerous advantages over the conventional filterggl,ation errors associated with conventional “gridding”
backprojection method. The late 1990's saw commerciglynogs for converting between polar and Cartesian co-
release of 2D iterative reconstruction methods for PEJginates in frequency space. The importance of accurate
and SPECT systems. The computation burden of forwgfgle oation for gridding has been analyzed rigorously [7,
and backprojection operations remains the primary hIB_- 119]. We propose to apply our min-max approach to
drance to wider use of iterative methods for fully 3D iMg,e nonyniform fast Fourier transform (NUFFT) [8=11] to
age reconstruction. This paper describes a new effiCigl nronlem, thereby largely eliminating those artifacts
approach to forward and backprojection using a combingsy nerhaps helping salvage the utility of Fourier-based
tion of the Fourier-slice theorem and a min-max methqurojection.
for the_ nonuniform fa_st Fourier transform. This approach More recently, Delaney and Bresler [12] proposed a
is particularty well suited to the geometries of PET SCallever iterative algorithm that uses Fourier principles to
ners. _ _ _ __combine projection and backprojection into a single filter-

'For mos_t lterative rec_onstructlon“methods, egch' 'tei:ffg operation that is efficiently implemented with a fast
ation req“uwes co_mpl_Jtatl”on of one “forward Ior(_)Jec_t'on_Fourier transform (FFT) algorithm. However, that formu-
and one bgckprqjectlon, whgre the forward projection Rtion is restricted to a particular type of weighting matrix
roughly a discretized evaluation of the Radon transformgy .\ _circyiant) that is suboptimal for data with nonsta-
and the backprojector is the adjoint of the forward proje onary statistics, such as low-count PET scans. The pro-
tor. The projection and backprojection steps traditional bsed NUFFT-based projector allows us to use weighting

*This work was supported in part by NIH grant CA-60711, NSimatrices of the form needed in PET [13], albeit at the ex-

grant BES-9982349, the UM Center for Biomedical Engineering Re-
search, and the Whitaker Foundation. 1Shift-invariant detector blur is easily included in this framework.

I. INTRODUCTION
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pense of greater computation than required by the alg- (discrete space) Fourier transform (DSFT):
rilthm_irr: [12]. I\:jVebsuspect th?tlt?e Del_alrlleyfand. Bresler Nio1 No1
algorithm would be very useful for quic orming an _ —(winy+wan
ingial image estimate fo?/subsequentogterat?:)ns by a?nother X(w,we) = Z Z zlm,nzle )
algorithm based on statistical weighting.
Very recently, Mategt al. have applied Fourier-baseddt a finite collection of (nonuniformly spaced) frequency
reprojection [14] for (noniterative) fully 3D PET reconocations{(wi,m,wa,m) : m=1,...,M}.
struction and [15] for calculation of attenuation correc- The NUFFT approach is to first compute an oversam-
tion factors in PET. They used Kaiser-Bessel windowed, weighted 2D FFT af[n1,n,], and then interpolate
for interpolation, which are known to be reasonably accthe DFT coefficients onto the desired frequency locations.
rate [16, 17] but without explicitly evaluating the accuracy. The first step is to choose convenielit > N; and
The concepts in this paper are somewhat related g = N2 and compute a weightell;, K»>-point DFT:
“gridding” methods for interpolation in frequency space. [k, ko] =
Such methods have been considered both for tomography ];7171 Na1
and for general applications,g, [5, 16—43], and for MR —o(v1 k1nq o kon
imaging [44—49]. In most of these papers, the focus was z z sl molfny, mle™tnhim )
using gridding to find aon-iterativeapproximate solution
to aninverseproblem. In contrast, we use Fourier-base®r k1 = 0,...,K; andks = 0,..., Ky, using the 2D
reprojection as a tool for calculating therward problem, FFT algorithm, wherey; £ 27/K; andvy, £ 27/Kos.
and allow an iterative reconstruction methods to solve ti&€ nonzeros[n, no]'s are calledscaling factorsand are
inverse problem. The optimality claims we make are fétesigned to partially compensate for imperfections in the
the forward problem only. The prospect of using grapisubsequent interpolation step. Their choice strongly af-
ics hardware to assist in this projection process is entf€cts the accuracy of the method [11]. For simplicity, we
ing [50-54]. consider onlyseparablescaling factors of the form
To our knowledge, the work herein and presented in [8]
represents the first application of a NUFFT method to iter-
ative tomographic image reconstruction. Pettsl. have Furthermore, we assume that[n;] has a low-order
applied the NUFFT to direct Fourier reconstruction usingourier-series representation [11] of the form
truncated gaussian bell as the interpolation kernel [42,43].
(A similar approach was described by Tabei anql Ueda B L B S —
without the NUFFT moniker [32].) That method is un- 1] = Z Qe ’
doubtably very good, but no claims of optimality can be
made. Our min-max method is optimal for the NUFFWhere the coefficients are Hermitian symmetric, the fun-
need for reprojection, but we make no claim of optimadamental frequency scaling; is a design variable, and
ity of our min-max interpolator for the direct Fourier res); = (N; — 1)/2. Good values fo3; and thea)s are
construction method. We conjecture that a min-max agabulated in [11]. A similar expansion holds fes{ns).
proach could be devised for the direct Fourier reconstruc-This first step require)(K; K, log, K1 K5) opera-
tion method [39]. tions, which can be reduced O(K; K> log, N1 No) if
Section Il reviews the min-max NUFFT method. Semne applies a reduced FFT [11]. Of course
tion Il describes the application of the NUFFT method to
reprojection. Section IV gives numerical results. Y[k, ko] = Y (w1, w2)

n1=0 n2=0

n1=0 n2=0

s[ni,na] = s1[n1]sa[nal.

t=—1IL1

wi=y1k1,wa=y2kz
Il. NUFFT N 2D whereY (wy,wz) denotes the FT of the modified signal

The section reviews the NUFFT method presented 1 72| = z[n1, n2]s[ni, no], so the DFT provides sam-
[11]. We focus on the 2D case since [11] emphasized oS OfY (w1, w2) on the set

the 1D case. The extension to 3D is straightforward. Q 2 {(w,w) : w1 = yik1, wo = ok,
A. Problem statement k1=0,.... K —1 k2 =0,..., K3 — 1}.
We are given a 2D finite-extent signalny, na], ny = The second step is to choose a logalx J; neighbor-

0,...,N1—1,n3 =0,...,N>—1, and we want to evaluatehood within{2 around each frequency location of interest
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W1 m, W2,m, and estimateéX (wy m,, wa,m) by linearly inter- Matlab subroutines for evaluating the above quanti-
polating the corresponding k1, k2] values. To expressties are available onlife To minimize computation
the interpolator mathematically, define the following inteime per iteration, we precompute and store all of the

ger offset: offsets {(01(w1), 02(w2))} and interpolation coefficients
I {u1(w1), u1(we)} for the relevantwy ,,, wa m)’s prior to
(arg min |w — ’yﬂf\) _ 4t , Jpodd iterating.
01(w) 2 keZ 2

Ji [1l. TOMOGRAPHICREPROJECTION
(max{k € Z : w>mk})— —, Jieven . . . L ) )

2 1 This section reviews reprojection starting with the con-
(1) dtinuous case and then working towards the discrete case

!lkezvlls? for02(u;)t. Thhen t:]he rplﬂ-m_ax mterpolakt)tlorfden\(e elevant for iterative image reconstruction and for which
in [11] turns out to have the following separable form: the NUEFT is applicable.

Ji I Let g(x,y) denote the 2D image whose projections we
X(wi,ws) = Z Z wish to compute, and assume thét, y) KN G(fx, fv)
Ji=1j2=1 where
uf (w1, N1, J1, K1) uf, (w2, Na, Ja, Ko)
“Y[{or(w1) +J1} g, »{02(w2) + 2} g, ] G(fx fv) = //g(w,y) e~ 2@ fxtulv) dg dy.

where {-} ;- denotes the modulé: operation (ensuring |n polar coordinates:
that X is 2r-periodic), and *” denotes complex conju- ‘
gate. Go(p) = G(pcosb, psinb),

A ived in [11], the i lation k l itself has th
fO";N(iJI:grl\flsrolmlh [11], the interpolation kernel itself has t gnd sincey(z, y) is real,G5(p) — Gol(—p).
' By the Fourier-slice theorem [2, p. 56], the projection at

uy(w) = A} (W) T (w) angled as a function of radial distaneeis given by:

whereA; (w) is a diagonal matrix with elements po(r) = / g(z,y) dl = /Ge(p) 2T dp,
L(r,0)

(A (w))); = e tw—r(or(w)+i)lm _
where L(r, 0) denotes the line at angletaken counter-
“» denotes Hermitian transpos#; is a.J; x J; matrix clockwise from they axis, at distance from the origin.
with elements A classical sinogram model would consist of samples
L ' pf pg(_r), but that approach ignores the detector blur qf the
[Tfl]z _ Z Z oot sinc(j — 1+ B(t— S)) imaging system. Assume that the detector response is sim-
7 # Ki/N; " ply shift-invariant radial blur with impulse respongér)
and corresponding frequency respoiiBgf ). Accounting

wheresinc(t) £ sin(nt)/(rt), andr; is a.J;-vector with  for the center of rotation of the imaging system, the detec-

t=—L1 s=—11

elements tor sampling distancé\,, and the detector blur, we wish
. . to compute
[r]; = Z o sinc(w/% —o1(w) —j+ 5115) .
T K1/N; yoln] = (po(r)* h(r))| 2)
1 r=(n—mnc)Ar

We similarly defineus, Ao, Th, andr,. — /Gg(p) H(p)e?mPAr(n=ms) g

Mathematically, for a given choice @f1,K5,J;,J> and -
s[n1,nz], the interpolator descrjbed above minimizes the = / Ye(p)ez?ﬂpArn dp, 3)
worst-case approximation errb]( (w1, ws2) — X (wi, WQ)‘ oo
over all signalsz[ny, ns] with unit norm. The rough in- forn = 0,..., N, — 1, whereN; is the number of radial

tuition is that the vector is the standard truncated sinsamples, and

interpolator, the matrix® optimally compensates for the A PN

truncation, and the\ provides the usual linear phase as- Yy(p) = Go(p) H(p)e 7P (4)
sociated with frequency-space interpolation. 2http://www.eecs.umich.edu/ ~fessler
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Typically n, = (N, — 1)/2. pcosf and fy = psinf with p = k/(KA,) for k =
For a forward projection, we must compute approxima-N/2,...,N/2 — 1.

tions to (3) for a finite collection of’s. For speed, we Step 2. Scale the NUFFT output by the factors

want to approximate (3) using al-point inverse FFT,

where we may choose any convenigfit> N,. Define B(pcos b, psin ) H (p)e 25"

d = 1/(KA,). Then the natural discretization of (3) is , . _
from (10), and by thé /A, in (6). This yields the required

K/2—1 Zy[k]'s.
wln] ~ D 0Yp(ke)e2m koA Step 3. Take the inversE-point FFT of eachy}, set
k=—K/2 (for eachf) using (5). Discard all but the samples=
1 K/2-1 0,...,N; — 1. Check for residual imaginary part.
= = > Zylklentn, (5) A minimally suitable choice for the PSk(r) would
k=—K/2 be h(r) = Zrect(Z) for which H(fx) = sinc(wfx).
R This model accounts for the finite width of the detector
wherey = 27 /K and elements. A typical choice for the basis functiois
A 1
Zolk] = Kye(ké)' 6) b(z,y) = rect ) rect L.
r Ay Ay

The summation (5) is preciselyf-point inverse FFT.
Thus, given samplesy[k| of the spectrunt;(p) (or ap-

proximations thereof), we can determiggn] by asimple ~ The inverse FFT (5) yields uniformly-spaced radial

scaled inverse FFT. To compute those samplgé], we samples. Typical PET systems having circular geometries

B. Arc correction extension

apply the 2D NUFFT method. acquire nonuniform radial samples. For conventional FBP
_ o reconstruction prior to ramp filtering one interpolates the
A. Discretizing the 2D FT nonuniform radial samples onto equally-spaced samples,

In the practice of iterative image reconstruction, rath@ften calledarc correction Such “preprocessing” inter-
than operating on a continuous obje¢t:, y), we want to polation is suboptimal for iterative reconstruction since it

forward project a discretized object such as the followingestroys the statistical independence of the measurements.
It is preferable to build the nonuniform spacing into the re-

_ projection method.
9(z,y) = Z_ Z_ glni, na)b(x — niA1,y — nolly), The min-max NUFFT interpolation method described
=0 a0 7) in [11] is directly applicable to the case where (5) is re-
placed by nonuniform radial sampling.

N1—1 Nx—1

which has corresponding spectrum

G(fxr fv) = B(fx £+)Ga(@nfx A1, 2nfy Ay) - (8) C- Adjoint

The method described above is a linear operator and
hence corresponds implicitly to somi&y - N;) x (N7 x
Ny) matrix. Iterative algorithms usually also need the

whereB( fx, fy) is the 2D FT of the basis functidriz, y),
and the 2D FT ofj[n1, ns] is:

Ni—1Na—1 ability to compute matrix-vector multiplication by the
Ga(wi,wa) = 3 Y glny,nole *@rmi+e2n2) - (9)  transpose of that matrix, even though the matrix itself is
n1=0 ny=0 not stored explicitly. It is straightforward to “reverse” (not

invert!) the steps described above to develop an algorithm
to perform multiplicaton by the transpose, corresponding
Ya(p) = B(pcos 8, psin ) H(p) e 2 A to the adjoint of the forward operator, which is a form of

-Ga(2mrAipcosf, 2mrAypsin ) (10) backprojection.

Combining (4) and (8) yields

These relationships suggest the following approach to for- IV. RESULTS

ward projection. We evaluated the accuracy of the NUFFT-based repro-
Step 1. Use the 2D NUFFT method with = 27 fxA; jector using the Shepp-Logan digital phantom [2, 55] with

and ws = 27 fxAs to compute an accurate approxidV; x No = 128 x 128 pixels as shown in Fig. 1. We simu-

mation to the double summation in (9). Uge = lated a parallel-beam tomographic system with a sinogram



Fessler NUFFT-Reprojection 5

size of N, = 160 radial bins byN, = 192 angles over K/N = 2, the NUFFT approach is over 500 times faster
180, corresponding to CTI EXACT PET scanners. Wthan the exact Fourier reprojector. In this case, precomput-
included a rectangular detector respoh$e) = rect(r) ing the interpolation coefficients required less than 9 sec-
with width equal to the pixel size, partially representingnds and used about 17Mbyte of storage (with Matlab’s
the finite detector width in a PET system (rather than udeuble precision values). This precomputation depends
ing overly idealized line integrals). only on the scanner geometry, and not the object, so needs

We computed forward projections of this object threenly to be done once for a given tomographic system so
ways: using Fourier-based reprojection witlkact (to its computation time is largely irrelevant.

within double precision in Matlab) evaluation of the 2D gijnce iterative algorithms require repeated forward and
FT (9), using Fourier-based reprojection with the 2lgackprojections, it is conceivable that even small errors
NUFFT approximation to (9) using min-max optimizedh the reprojector could accumulate. We simulated noisy
Kaiser-Bessel interpolation with = 4 and K/N = 2, PET sinogram measurements from the phantom shown in
and using a bilinear interpolation approximation to (9Fig. 4. We ran 20 iterations of the conjugate gradient algo-
Fig. 1 shows a representative example; the sinograms gfigm for a data-weighted least-squares cost function [13]

visually indistinguishable. The maximum percent difyith a standard quadratic first-order roughness penalty.
ference between the NUFFT method and the exact e ran it twice; once with the exact Fourier-based re-

method, defined by projector, and once with the NUFFT approximation using
J =5andK/N = 2 and the Kaiser-Bessel interpolator.
FT _ ,,NUFFT
maxp g |y, - (1) FTye ()] | 100%, Fig. 4 shows that the reconstructed images were visually
maxn g |yg - (1)] indistinguishable. The maximum percent difference was

is only 0.04%. By comparison, using conventional b,_ess than 0.12% at the 20th iteration. So perhaps there is

linear interpolation for the polar to cartesian conversioﬂight error accumulation with iteration, butit is negligible

yielded maximum error of over 3%. The min-max NUFF'feIat'Ve to Poisson noise.
approach reduces the maximum error by two orders offhe difference between the FBP image and the
magnitude for this choice of. QPWLS-CG image is not so dramatic in this 2D example.
lterative algorithms also require the adjoint operatde difference should be more significant in 3D acquisi-
(backprojector). Fig. 2 compares the adjoint of the exdé®ns.
Fourier-based reprojector and the adjoint of the NUFFT-We have focused on comparing the NUFFT approxima-
based reprojector (using the Kaiser-Bessel interpolatan to the sum (9) against exact evaluation by the discrete-
with J = 4 and K/N = 2) when applied to a ramp- space Fourier transform. This has allowed us to focus on
filtered sinogram. Again the NUFFT approach agredbe effects of the interpolation errors in the NUFFT ap-
with the exact approach within 0.08%, which is certainlgroach. However, we must acknowledge that (5) is itself
well below the noise levels in typical PET scans. an approximation that in some sense “degrades” both the
For a more systematic comparison, we compared tN&JFFT and the DSFT relative to tlexactformula (2). In
exact Fourier-reprojected sinograms to the the NUFHFhe case of square pixels and a rectangular R@Fas we
based sinograms for several values of the neighborhdwal/e used in these examples, it is possible to compute (2)
sizeJ = J; = J and the FFT oversampling factéf/N. exactly. Returning to the Shepp-Logan phantom, we com-
For simplicity we useduniform scaling factordor this puted the exact projection using (2) and (7) and compared
study. For reasonable values dgfand K/N the sino- it to the Fourier-based reprojector using the exact DSFT.
grams are indistinguishable when printed in grayscale Bhe maximum percent difference of the sinograms was
in profiles, so are not shown. Fig. 3 shows the tradeoff b@74%. So this is the magnitude of the error introduced
tween computation time (using Matlakltie command by the discretization (5). It must also be acknowledged
on a 1GHz Pentium 1l running Linux) and percent RM$hat the series expansion (7) is an approximation in prac-
difference between the exact approach and the NUFFRite. It is quite plausible that the modeling error in that
based approach. We also examinedttend!., norm dif- approximation will dominate thex 1% errors we have
ferences which showed identical trends. This figure showeported here for the NUFFT approach, so we conclude
that an oversampling factor &/N = 2 provides a good that the NUFFT approach with min-max interpolation is
tradeoff between accuracy and computation time for thigable since the interpolation errors are smaller than the
geometry and computer. Using ~ 6 with K/N = 2 discretization errors inherent to and Fourier-based repro-
seems to be a reasonable compromise. Ugirg 5 and jector, which in turn are probably smaller than the object
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discretization errors. comes from following the oversampled 2D FFT by cal-
culation ofall projection views. This would seem to limit
V. DiscussioN the applicability to primarily the conjugate-gradient fam-

We have described a Fourier-based reprojection metHBPf @/gorithms where ordered subsets are not needed.
using the NUFFT with min-max interpolation for the po- Bron_stelnet al. have recently applied this algorithm to
lar to Cartesian conversion in spatial frequency space. THEraction tomography [58].
method yields accuracies that are considerably improved
over conventional bilinear interpolation. We have not yet _
compared to Kaiser-Bessel or gaussian interpolation inTn€ author thanks Robert Lewitt for references and
this context. We showed in [11] that the optimized mir2€lPful comments on a draft of this paper.
max method (with optimized scaling factors) outperforms REFERENCES
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Exact DSFT NUFFT/Bilinear NUFFT/KB(J=4)

KIN=2
K/IN=2

cpu=101.5s cpu=0.11s cpu=0.15s

Shepp-Logan Bilinear |Error]| 15 KaiserB |Error| 0.18

3.2% max

0 0.04% max

Figure 1. Shepp-Logan digital object and its sinograms computed by exact Fourier reprojection, Fourier reprojection
with bilinear interpolation, and NUFFT reprojection with min-max interpolation. The scales on the error sinograms
differ by two orders of magnitude.
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N/2—1
Z YkezZWkn/N (11)
k=—N/2

Sinogram

Exact DSFT NUFFT/KB L os2mpys | L

~ —e

A, N

=2

This is precisely the iFFT with a scale factor in front.
However, this approach has the disadvantage that it never
uses the DC sample locatidn(0), which will be exact in
cpu=144.0s cpu=0.34s the NUFFT (with uniform scaling factors), but rather fre-
qguency locations nearby that will need to be interpolated
generally. This might lead to DC inconsistencies from
Figure 2: The adjoints of the exact FT-based reprojectpfojection view to projection view. The complex expo-

and NUFFT-based reprojector yield very similar backpraential in front of the final sum in (11) seems a bit of a
jector. nuisance too; it may lead to larger than desirable imagi-

nary components.

4, KIN

J=

max |error| = 0.08%

NUFFT Reprojector vs Exact FT Reprojector B. Odd number of “integer” samples
3 -
A HSEE %m% Instead we might prefer to usg, = Y (k¢), i.e, sam-
—=— = . . .
25k —— NUFFT (K/N=3) ples at m‘Feger multiples of. To preserve symmetries so
-6~ NUFFT (K/N=4) thaty(n) is “as close to real as possible” then we could
ot use an odd number of samples in the discretization:
S
= N/2
i 15 y(n) ~ Z 6Yk6127r(k5)Arn
= k=—N/2
1 11 N/2
- - = 12nkn/N
osh = A N Z Yke .
' T k=—N/2

55 2 This is not quite the iDFT we want since it has + 1

"NUFFT CPUtime ' points, which will be odd since we are assuming that
is even. HoweverYy,, = Y_*N/2 due to the Hermitian

Figure 3: RMS error vs CPU time tradeoff for NUFFTsymmetry ofY'(-), so theN/2 terms in the above sum

based reprojector with min-max interpolation and uniformre

scaling factors.

Y_N/QEZQW(—N/Q)n/N + YN/QGZZW(N/Q)n/N

= Yonp(=1)"+ Yy ,n(=1)"

_ [Y,N/g +YjN/2} o2m(—N/2)n/N

VIl. APPENDIX: DISCRETIZING

Here are two other possible approaches to discretiz-
ing (3), neither of which seems preferable to (5).

SO
A. Even number of mid-point samples y(n) ~ 11 N§:1 Z,.027kn/N
If we want an even number of samples when discretiz- Ay k=—N/2 ’
ing the integral (3), then we could use the midpoints b\?v_here
tween each integer by defining = Y ((k + 1/2)J). Us-
ing the natural spacing= 1/(INA,) yields: Zp =
N/2-1 2real(Y_N/2) , k=-N/2
yn) ~ Y oVe?rl(htl/2dAm { Y, k=-N/2+1,...,N/2—1.

k=—N/2
N/2-1 Taking the real part is a nonlinear operation which | would

5e027(8/2)Arn Z Y, 2k Am prefer to avoid for iterative algorithms.

k=—N/2



Fessler NUFFT-Reprojection

Phantom S Exact DSFT  []° NUFFT(J=5)
0 0
O O
© ©
) )
(@] o
(q\] (q\]
4726.6 sec 13.0 sec
0 0
x 10~
FBP H5 Exact - NUFFT [16

0

Figure 4: FBP and QPWLS-CG reconstructions of thorax phantom.
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