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Abstract

In this paper, we are concerned with Delaunay triangulations
of the vertex set of a piecewise flat (pwf) surface. We first
propose the notion of well-formed Voronoi diagrams and es-
tablish a precise dual relationship between them and proper
Delaunay triangulations on pwf surfaces. Then we provide
an algorithm which, given any input manifold triangle mesh,
constructs a Delaunay mesh: a manifold triangle mesh whose
edges form an intrinsic Delaunay triangulation of its vertex
set. Rather than relying on a geodesic Delaunay triangula-
tion on the input mesh, our algorithm swaps the physical
mesh edges based on the locally Delaunay criterion. We
prove that when a physical edge that is not locally Delau-
nay is swapped, the surface area of the mesh is reduced. In
order to ensure a proper Delaunay triangulation, some new
vertices may need to be introduced, leading to a refinement
scheme, and we detail the cases involved.

CR Categories: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Curve, surface,
solid, and object representations

Keywords: Delaunay triangulation, Voronoi diagram, De-
launay mesh, edge swap, refinement, area minimization

1 Introduction

The Voronoi diagram of a point set P in R
2 is a partition of

the plane into cells, one for each point, often called a site,
in P . The Voronoi cell of a site p ∈ P is the collection of all
points in the plane that are closer to p than any other site in
P . The dual of the Voronoi diagram is obtained by connect-
ing sites in P if and only if they lie in adjacent Voronoi cells.
If the sites in P are in general position, i.e. no four of them
are cocircular, then the resulting tessellation is a triangula-
tion of the point set, called the Delaunay triangulation, and
it is unique (see [de Berg et al. 1998]).

The concept of Delaunay triangulations can be extended
to higher dimensions, e.g., in R

3 we are concerned with a
Delaunay tetrahedralization [Shewchuk 1997]. Under cer-
tain conditions it can also be extended to non-Euclidean ge-
ometries. In particular the intrinsic Delaunay triangulation
of a sufficiently dense set of points on a Riemannian mani-
fold is well defined in terms of geodesic curves [Leibon and
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Letscher 2000]. In this paper, we focus on the case presented
in [Bobenko and Springborn 2005]: Delaunay triangulations
of the vertex set of piecewise flat surfaces [Aleksandrov and
Zalgaller 1967; Bobenko and Springborn 2005].

Definition 1 (piecewise flat surface). A piecewise flat
surface or pwf surface (M, dM ) is a 2-dimensional differ-
ential manifold M , possibly with boundary, equipped with a
metric dM which is flat except at isolated points, the cone
points, where dM has cone-like singularities.

We show that the empty circumdisk property of Delaunay
triangulations can be used to establish a Voronoi-Delaunay
duality on pwf surfaces, which, to the best of our knowledge,
has not been done before. Unlike the planar case, ensuring
that the dual of the Voronoi diagram of a pwf surface forms
a proper triangulation [Fisher et al. 2006] is non-trivial and
is dictated by sampling. To this end, we propose the notion
of well-formed Voronoi diagrams and prove its precise dual
relationship to a proper Delaunay triangulation.

Despite the sampling issues and cone-like singularities,
the mostly flat metric of pwf surfaces allows many results
concerning Delaunay triangulations to be relayed from the
planar case. For example, the well-known Delaunay edge
swapping algorithm [Lawson 1977] is shown to work on a
pwf surface as well [Bobenko and Springborn 2005], with es-
sentially the same termination proof as in the planar case
via the harmonic index [Musin 1997].

The second part of this paper deals with Delaunay meshes,
which offers a further departure from its 2D counterpart. A
Delaunay mesh is a manifold triangle mesh [Floriani et al.
2004] whose edges form an intrinsic, proper Delaunay tri-
angulation of its vertex set and as such an edge swap can
change the manifold itself. In this paper we will introduce
an algorithm, based on edge swaps, that constructs Delau-
nay meshes. The main insight we offer and prove is that
swapping mesh edges based on the locally Delaunay cri-
terion [Bobenko and Springborn 2005] corresponds to area
minimization. However, we still need to deal with topologi-
cal constraints to ensure that the manifold property is main-
tained. We detail the potential problems involved and show
that they can be manifestations of a lack of well-formedness,
which we relate to poor sampling. Finally, we design appro-
priate refinement schemes to handle these difficulties and
experimentally confirm fast termination and improvement
of triangle qualities for the Delaunay meshes produced.

1.1 Motivation

Intrinsic Delaunay triangulations of surfaces have made re-
cent appearances in geometry processing literature. Most
notably, [Bobenko and Springborn 2005] have observed
that the linear finite element discretization of the Laplace-
Beltrami operator (the cot operator [Meyer et al. 2003]) has
no negative edge weights on a Delaunay triangulation; this
is desirable, e.g., as the discrete Harmonic maps computed



would be guaranteed to be one-to-one [Gu and Yau 2002].
They advocate constructing an intrinsic Delaunay triangu-
lation of the piecewise linear mesh surface and defining the
cot operator in terms of that. Such a construction was im-
plemented and described in a later paper [Fisher et al. 2006],
and it was shown that the condition number of the operator
was significantly improved in most cases. This improvement
is significant for any application that involves the numerical
evaluation of elliptic PDEs on triangle mesh surfaces. Ex-
amples include parameterization [Desbrun et al. 2002] and
reaction diffusion textures [Turk 1991].

It was primarily these results that have sparked our inter-
est in the notion of Delaunay meshes. As explained in [Fisher
et al. 2006], constructing an intrinsic Delaunay triangulation
of a triangle mesh requires maintaining a data structure to
record the connectivity describing the intrinsic triangulation
in addition to the data structure describing the triangle mesh
itself. This implementational burden would be unnecessary
if the triangle mesh was itself an intrinsic Delaunay triangu-
lation of its vertices: a Delaunay mesh.

In order to transform a given mesh into a Delaunay mesh,
we usually need to either distort its geometry or add vertices.
However, for most modelling and graphic applications, the
triangle mesh is considered an approximation to a smooth or
piecewise smooth surface. So there is no need to be strictly
faithful to the geometry of the input mesh; small distor-
tions may be tolerated. Further, many modern surface re-
construction and remeshing algorithms produce meshes that
are quite close to being Delaunay, thus only small adjust-
ments need be made. On the other hand, such distortions
change the geometry and therefore the underlying Voronoi
diagram. The impact of these changes on the Voronoi dia-
gram (and its resulting Delaunay mesh) as well as resulting
topological changes need to be considered in order to create
a robust algorithm.

1.2 Contributions

The contributions of our paper can be summarized as

• established the duality relationship between the
Voronoi diagram and the Delaunay tessellation of a
piecewise flat (pwf) surface (Section 3);

• using this duality to characterize, in terms of the
Voronoi diagram, meshes that admit a proper intrin-
sic Delaunay triangulation

• developed an algorithm (based on edge swaps and re-
finement) that produces a Delaunay mesh efficiently.
(Section 4.2);

• a proof that the edge swaps of this algorithm lead to
mesh surface area minimization (Section 4.2.1);

• a characterization of unswappable edges, their relation
to inadequate sampling, and an associated refinement
scheme (Section 4.2.4).

2 Related Work

In addition to the elegant work of [Bobenko and Springborn
2005] on intrinsic Delaunay triangulation of pwf surfaces,
[Leibon and Letscher 2000] had earlier studied the same
problem on general Riemannian manifolds. Both works re-
lied on the empty circumdisk property to define Delaunay
triangulations whose edges are given by appropriate geodesic
arcs. In contrast to the planar case, sampling density of the

point set becomes relevant to ensure that the Delaunay tri-
angulations are well-defined over a manifold. To this end,
[Leibon and Letscher 2000] resorted to the notion of strong
convexity radius as a means of constraining sampling den-
sity. Weak bounds on the number of samples required to
obtain a well defined Delaunay triangulation are presented
in [Onishi and Itoh 2003], but the utility of this work in
practical applications seems limited.

To the best of our knowledge, there was no previous work
that produced Delaunay meshes as defined here. Although,
in light of our new insight, the early surface area minimiza-
tion algorithm of [O’Rourke 1981] turns out to be performing
Delaunay edge swaps, it is not guaranteed to produce a De-
launay mesh due to possible topological constraints, as we
note in Section 4.2.4. Appropriate refinement is necessary,
which we develop in this work. Note that many Delaunay
refinement techniques have been developed for planar trian-
gulations [Ruppert 1995; Rivara and Inostroza 1997] and 3D
tetrahedralizations [Shewchuk 1997].

Many works exist that employ Delaunay concepts and de-
scribe algorithms which produce meshes that are close to
being Delaunay. [Chew 1993] adapted his Delaunay refine-
ment technique to curved surfaces. This algorithm produced
an approximate geodesic triangulation of the surface with a
guaranteed angle bound of [30◦, 120◦]; intersections of the
surface with a sphere are used in place of geodesic disks.
Later, [Chen and Bishop 1997] used Delaunay refinement
in a planar parametric space from which a triangulation is
mapped back in 3D. Here the geodesic discs on the surface
were approximated by ellipses in the parameter space.

More recently remeshing algorithms have appeared that
are based on geodesic distances on a surface. [Peyré and Co-
hen 2003] describe a farthest point sampling method based
on geodesic distances computed by the fast marching method
of [Kimmel and Sethian 1998]. By taking the dual of the
Voronoi diagram of the sampled points, a triangulation is
produced that is a good approximation to the intrinsic De-
launay triangulation of the sample points. Another more
complicated technique was based on triangulating strips be-
tween equidistant curves [Sifri et al. 2003]. This algorithm
also uses the fast marching method to compute geodesic dis-
tances and finishes by taking the dual of the Voronoi diagram
of the samples as the triangulation defining the mesh.

There is another class of surface reconstruction and
remeshing algorithms that are based on the notion of a re-
stricted Delaunay triangulation. There are different defi-
nitions of the restricted Delaunay triangulation of a sur-
face [Edelsbrunner and Shah 1994; Amenta and Bern 1998;
Amenta et al. 2000] and they are not all equivalent [Dey
et al. 2005]. Nonetheless, the restricted Delaunay triangu-
lation does not define a Delaunay mesh in general. Perhaps
the simplest definition of a restricted Delaunay triangulation
is the dual of the restricted Voronoi diagram [Amenta et al.
2000]. The latter is the restriction of the 3D Voronoi diagram
to the surface. This definition corresponds to the “good tri-
angles” defined by [Amenta and Bern 1998]. In Section 4.1,
we discuss how the good triangles may not yield a Delaunay
mesh. But these meshes are again generally close to being
Delaunay and can be good candidates for post processing
via edge swapping.

Edge swapping for geometry processing is not new. Early
work on producing Delaunay triangulations in the plane
traces back to [Lawson 1977]. Following the assumption that
a smoother mesh is better, edge flipping algorithms designed
to minimize curvature measures have been proposed [van
Damme and Alboul 1995; Dyn et al. 2001]. These algorithms



produce visually pleasing meshes, but in general they are far
from being Delaunay meshes. A recent paper focuses more
on triangle element quality by edge swapping so as to min-
imize the discrete Willmore energy [Alboul et al. 2006]. All
of these mesh edge swapping algorithms tend to converge to
local rather than global minima. This includes the surface
area minimization algorithm of O’Rourke [O’Rourke 1981]
as well as the locally Delaunay edge swapping scheme we
describe in this paper.

3 Delaunay Triangulations and Voronoi Di-

agrams on pwf Surfaces

In this section we review, in Section 3.1, the Delaunay tri-
angulation on a piecewise flat (pwf) surface as defined by
[Bobenko and Springborn 2005] and then show in Section 3.2
that the duality relationship with the Voronoi diagram can
be extended to this setting. This allows us to characterize
in terms of Voronoi diagrams the meshes that will admit a
proper Delaunay triangulation, in Section 3.3.

3.1 Delaunay Triangulations on pwf Surfaces

Defining a Delaunay triangulation of a discrete set P of
points, called samples, on a Riemannian surface S requires
much more care than is needed in the planar setting. Diffi-
culties arise as there may not be a unique shortest geodesic
between two points, or since there may not be a unique
geodesic disk that has three given points on its boundary.

One approach is to put constraints on the density of sam-
ples on S. The idea is that in a sufficiently small neighbour-
hood a manifold is well approximated by a plane. Thus if
the samples are sufficiently close to each other, the obstacles
to defining a Delaunay triangulation will be avoided. This
is the approach developed by [Leibon and Letscher 2000].

Another approach is to constrain the types of surfaces and
samples under consideration. This is the approach that was
taken by [Bobenko and Springborn 2005] and is the one that
we will follow. This approach requires no explicit constraints
on the sampling density, but uses a weaker definition of a
triangulation than is traditional in differential geometry.

Definition 2. A tessellation of a compact Riemannian sur-
face S with respect to a finite discrete point set P is as fol-
lows.

Let E be a collection of curves on S, which form a con-
nected graph G whose vertex set is P , such that S − G is a
disjoint union of open subsets fi, each homeomorphic to a
disk. The elements of E are called edges of the tessellation.

The fi’s are called faces, and for each face there exists a
continuous map ϕi : γi → f̄i, where γi is a closed planar
polygon and f̄i is the closure of fi. The map ϕi is a home-
omorphism on the interior of γi, and is continuous on the
boundary and such that vertices of γi get mapped to elements
of P that lie on the boundary of fi. If γi is an n-gon, we
call fi an n-gon face, and in particular, if γi is a triangle,
then we also call fi a triangle face.

A triangulation is a tessellation in which all the faces are
triangle faces. A geodesic tessellation is a tessellation in
which all the edges are geodesics.

Note that edges cannot cross in a tessellation. The map-
pings ϕi are not required to be injective on the boundary of
γ. In particular, two edges of γi may be mapped onto a sin-
gle edge in E. Likewise, the restriction of ϕi to the vertices
of γi is not required to be injective.

We will confine our attention to compact pwf surfaces
without boundary (see Definition 1). On a pwf surface ev-
ery point has a neighbourhood that is either isometric to a
neighbourhood in R

2 or to a neighbourhood of the apex of
a single cone. A manifold triangle mesh can be considered a
pwf surface that is isometrically immersed in R

3. However
pwf surfaces are a more general class of objects, and they do
not necessarily admit an isometric immersion in R

3; the flat
torus is a well known counter example [do Carmo 1976].

We require that the finite set of sample points P includes
all of the cone points of M . In the pwf setting we often
refer to the elements of P as vertices, emphasizing that the
model pwf surface we have in mind is a mesh. The Delaunay
tessellation is defined in terms of empty disks.

An immersed empty disk is a continuous map φ : D̄ →M ,
where D is an open round disk in the Euclidean plane and
D̄ is its closure, such that the restriction φ|D is an isometric
immersion (i.e. every p ∈ D has a neighbourhood which is
mapped isometrically) and φ(D) ∩ P = ∅.

We can think of φ as wrapping D on M , but it may wrap
around onto itself: φ is not injective in general. It should be
emphasized that φ is defined on the closure of D and that
only the image of D itself is required to be empty. Most of
the time we are working with empty disks that have elements
of P on their boundary, so that φ−1(P ) is non-empty.

Immersed empty disks are more convenient to work with
than geodesic disks because they allow us to work with or-
dinary disks in the plane, with the caveat that the mapping
φ is not injective in general. Since M is flat in a neigh-
bourhood not containing cone points, we can always find an
isometric immersion φ for an empty disk and if two immer-
sions φ and φ′ have the same geodesic disk as their image,
then there will be a planar isomorphism T : R

2 → R
2 such

that φ = φ′ ◦ T . So working with immersed empty disks is
really equivalent to working with geodesic disks.

Thus we can place D wherever is convenient on the plane.
In particular, we have the following useful lemma, whose
proof is indicated in [Bobenko and Springborn 2005, Lemma
6].

Lemma 1. Suppose that φ : D̄ → M and φ′ : D̄′ → M are
two immersed empty disks with φ(D) ∩ φ′(D′) 6= ∅. Then

there exists a disk D̃, D̃ ∩D 6= ∅ an isometry T : R
2 → R

2,

with T (D̃) = D′ and an isometric immersion φ̂ : D ∪ D̃ →

M such that φ̂|D̄ = φ and φ̂| ¯̃
D

= φ′ ◦ T .

The Delaunay tessellation of (M, dM ) on the vertex set
P is defined by the immersed empty disks φ : D̄ → M
such that φ−1(P ) is non-empty. If φ−1(P ) contains three or
more points, then the convex hull conv φ−1(P ) is a polygon
and φ|conv φ−1(P ) defines a face of the tessellation. If φ−1(P )
contains exactly two points, then the image of φ|conv φ−1(P ) is
an edge. It was established [Bobenko and Springborn 2005]
that this does indeed describe a tessellation, something that
is not obvious a priori.

Note that if a face contains more than three vertices, the
diagonals of the face are not included in the tessellation.
To obtain a Delaunay triangulation, we triangulate all non-
triangular faces. A face of the Delaunay triangulation is
still contained in an immersed empty disk, but there may be
more than three vertices on the disk’s boundary.

We say that the vertices are in general position if there
exists no empty disk with more than three vertices on its
boundary. In this case the Delaunay tessellation is the
unique Delaunay triangulation of the vertices. The Delau-
nay triangulation of the surface is often referred to as the in-
trinsic Delaunay triangulation to emphasize that it is based



on geodesic distances and not distances in the ambient Eu-
clidean space.

Now, consider an arbitrary geodesic triangulation T of the
vertices of M . Since the triangles are empty of cone points,
they are intrinsically planar. Given an edge e of T , we can
map the two triangular faces adjacent to e isometrically onto
the plane forming a quadrilateral with e as its diagonal. We
say that e is locally Delaunay if it is contained in a disk that
does not have the other two vertices of the quadrilateral
in its interior. This is different from the immersed empty
disk criteria in that we are only considering two additional
vertices of M .

A convenient characterization of a locally Delaunay edge
is presented in [Bobenko and Springborn 2005]:

Lemma 2. An edge is locally Delaunay if and only if the
sum of the two angles it subtends does not exceed π.

This follows from the fact that in a quadrilateral whose
vertices lie on a circle, opposite angles sum to π. As in the
planar case, the intrinsic Delaunay triangulation can be ob-
tained by systematically swapping the geodesic edges that
are not locally Delaunay. An edge e that is not locally De-
launay is replaced by the edge e′ that is the other diagonal
of the quadrilateral defined by the triangles adjacent to e.
This algorithm runs in O(n2) time, n being the number of
vertices in the mesh. The proof described in Shewchuck’s
thesis [Shewchuk 1997] holds without modification to the
case of a fixed piecewise flat surface.

For our purposes we are primarily concerned with Delau-
nay triangulations on the vertex set of meshes. A triangle
mesh comes with an inherent triangulation defined by its
faces and edges. We refer to this as the physical triangula-
tion of the mesh, and in particular, the edges of the mesh are
physical edges. This is to distinguish it from the Delaunay
triangulation of its vertices, which consists of geodesic edges
that do not correspond to the physical edges in general. We
define a Delaunay mesh as a triangle mesh whose physical
triangulation coincides with the Delaunay triangulation of
its vertices.

3.2 Voronoi Diagrams on pwf Surfaces

In this section we examine the Voronoi diagram of a pwf
surface and its relationship with the Delaunay tessellation.
Recall that we are restricting our attention to compact pwf
surfaces without boundaries. The Voronoi diagram of P
divides M into Voronoi cells, one for each p ∈ P , defined by
V(p) = {q ∈M |dM (p, q) ≤ dM ((s, q)∀s ∈ P}.

Definition 3. A Voronoi vertex is a point q ∈ M that has
three or more distinct geodesics realizing the shortest dis-
tance from q to P . A Voronoi edge is a curve C terminating
at Voronoi vertices and such that every point q on C has ex-
actly two geodesics realizing the minimum distance from q to
P . C is called an internal Voronoi edge if both the minimal
geodesics connect with the same vertex.

An equivalent view of Voronoi edges and Vertices is via
the immersed empty disk property: If φ : D̄ → M is an
immersed empty disk with centre c and with φ−1(P ) con-
taining three or more points, then φ(c) is a Voronoi vertex.
If φ−1(P ) contains exactly two points, p and q, then c lies
on a Voronoi edge, and it is an internal edge if φ(p) = φ(q).

According to this view each Voronoi vertex is associated
with a face in the Delaunay tessellation via the immersed
empty disk that defines them both. Thus there is a finite
number of Voronoi vertices. However, a Voronoi vertex is not

necessarily associated with distinct samples and a Voronoi
edge may terminate at the same Voronoi vertex at both ends.
For example an interior edge will generally terminate at a
Voronoi vertex together with a loop Voronoi edge.

Voronoi edges are geodesics between Voronoi vertices. To
see this, let φ : D̄ → M be an immersed empty disk with
{p, q} = φ−1(P ) and c ∈ D the centre. So φ(c) lies on
some Voronoi edge C. Since there are only two vertices on
the boundary of φ(D), we can find some ǫ and (exploiting
Lemma 1) another immersed empty disk φ′ : D̄′ → M with
centre c′, dR2(c, c′) = ǫ and with {p′, q′} = φ′−1(P ) such that
φ′(p′) = φ(p) and φ′(q′) = φ(q). Then any point c̃ on the
line segment [c, c′] will be the centre of an immersed empty

disk φ̃ : ¯̃D →M whose image is contained in φ(D̄) ∪ φ′(D̄′)
and thus has φ(p) and φ(q) as the only points of P on its
boundary. i.e. [c, c′] lies on the Voronoi edge C. The image

of [c, c′] under the joint mapping φ̂ (lemma 1) is geodesic,
since [c, c′] is a geodesic in the plane.

Lemma 3. A Voronoi cell is topologically a disk if and only
if it contains no internal edges.

Proof. Let q ∈ V(p) and assume that there are two minimal
length geodesics, α and β connecting p with q. Suppose V(p)
were a topological disk. Together α and β define a closed
curve contained in V(p). Let U be the region bounded by α
and β. Then there is an isometric embedding ϕ : U →֒ R

2.
But then ϕ(U) would be a region in the plane bounded by
two geodesics (line segments) between ϕ(p) and ϕ(q). Thus
U must be empty and α = β.

Conversely, if V(p) is not a disk then since it is compact
it has a smallest closed geodesic through p in a non-trivial
homotopy class [Leibon and Letscher 2000]. The midpoint
on this loop then has two distinct geodesics realizing the
minimal distance to p and so lies on an internal edge.

Since a minimal closed geodesic in V(p) must pass through
an internal edge, the interior of V(p) – that part which re-
mains when we remove all Voronoi edges – is a topological
open disk. Note also that we cannot have a Voronoi edge
that is a closed loop not containing any Voronoi vertices. If
such a loop were to exist, it would have to be the unique
boundary between two Voronoi cells that were both topo-
logically disks (Otherwise an internal or other edge would
create a Voronoi vertex). Therefore M must have only two
vertices and be topologically a sphere. If such a pwf surface
exists, it certainly cannot be realized as a mesh and it will
not concern us here.

These observations demonstrate that the Voronoi diagram
can be viewed as a tessellation. The faces of the tessellation
are the interiors of the Voronoi cells; those points q ∈ M
for which there is a single geodesic realizing the shortest
distance from q to P .

We now turn our attention to the duality relationship be-
tween the Delaunay tessellation and the Voronoi diagram.
A nice thing about pwf surfaces is that if φ : D̄ → M is
an immersed empty disk, and φ−1(P ) = {p, q}, then there
is a unique geodesic between φ(p) and φ(q) contained in the
image of φ; it is the image of the line segment between p and
q. In other words there is only one possible edge contained
in an empty disk with two samples on its boundary. This is
not true for more general surfaces.

The image of the centre of D lies on a Voronoi edge C. If
e = [φ(p), φ(q)] is the Delaunay edge defined by φ, then we
say C is the Voronoi edge associated with e and vise versa.
The following lemmas demonstrate that this association is
exclusive.



Lemma 4. There is a unique Delaunay edge associated with
each Voronoi edge.

Proof. Suppose that e = [a, b] and e′ = [a, b] are two Delau-
nay edges associated with the Voronoi edge C. Let u and u′

be the centres of the empty geodesic disks containing e and
e′ respectively. Now centred at every point between u and
u′ on C there is an empty immersed disk with a and b on its
boundary. Two such disks, if they are sufficiently close to
each other, must contain the same Delaunay edge (we can
appeal to Lemma 1). Thus we can push the disk centre from
u to u′ always maintaining e in the empty disk and thus we
must have e′ = e.

Lemma 5. Different Voronoi edges are associated with dis-
tinct Delaunay edges.

Proof. Let e = [a, b] be a Delaunay edge and suppose that
it is contained in two different empty immersed disks φ :
D̄ → M and φ′ : D̄′ → M . By Lemma 1 we can assume
that D ∩D′ contains a line segment whose image under the

combined map φ̂ is e. We have p, q ∈ ∂D∩∂D′ with φ̂(p) = a

and φ̂(q) = b. Let c and c′ be the centres of D and D′

respectively. Then at any point between c and c′ there is a
disk D̃ that is contained in D ∪D′ and touching p and q on

its boundary. The restriction of φ̂ to D̃ defines an immersed
empty disk. Therefore there is no Voronoi vertex between c
and c′ and thus they lie on the same Voronoi edge.

The results of this section can be summarized in the fol-
lowing theorem, which establishes a Voronoi-Delaunay dual-
ity on pwf surfaces.

Theorem 1. Considered together with its internal edges,
the Voronoi diagram of the vertices of a pwf surface is a
tessellation. Further, the empty circumdisk property defines
a one to one correspondence between the edges of the Voronoi
diagram and the edges of the Delaunay tessellation.

3.3 Proper Triangulations

It has been emphasized [Bobenko and Springborn 2005;
Fisher et al. 2006] that the Delaunay tessellation of a piece-
wise flat surface may not yield a proper triangulation. A
geodesic triangulation of a manifold surface S is proper if:

1. each triangle has three distinct vertices,

2. each vertex has valence at least three, and

3. two vertices are connected by at most one edge.

Proper triangulations correspond to what was called a
strongly regular triangulation1 in [Fisher et al. 2006]. Note
that the physical triangulation defined by a manifold trian-
gle mesh is necessarily proper2.

1We choose not to employ this use of the word regular since it

already has meaning in terms of the connectivity of a mesh. Fur-

ther, computational geometers use the word regular to describe

Delaunay triangulations in non-Euclidean metrics.
2The traditional definition of a triangulation of a surface S is

a homeomorphism K → S where K is a simplicial complex. This

means that triangles share no more than one edge and edges share

no more than one vertex. A manifold triangle mesh is then a pwf

surface triangulated on its vertex set and isometrically immersed

in R
3. It is quick to check that a triangulation so defined must

be proper.

A Delaunay triangulation that is proper is called a proper
Delaunay triangulation. The correspondence, established in
the previous section, between the Voronoi diagram of the
vertex set of a pwf surface and its Delaunay triangulation
provides an alternate characterization of a proper Delaunay
triangulation.

Let S be a Riemannian surface endowed with a set P of
sample points. We say the Voronoi diagram of P on S is
well formed if each Voronoi cell:

1. is topologically a disk (is not neighbours with itself),

2. has at least three distinct Voronoi neighbours, and

3. meets each Voronoi neighbour at a single contiguous
edge.

In the plane, a Delaunay triangulation is always a proper
triangulation. Likewise the Voronoi diagram of points on the
plane is always well formed. It was shown in [Leibon and
Letscher 2000] that if the set of samples on a smooth surface
is in general position and is sufficiently dense, then there
will be a unique and well defined proper Delaunay trian-
gulation. For pwf surfaces, [Bobenko and Springborn 2005]
have established that there always exists a unique Delaunay
tessellation of the vertex set. However, the tessellation does
not yield a proper Delaunay triangulation in general.

The lack of a proper Delaunay triangulation is an indica-
tion of a sparse set of vertices. This is easier to see in terms
of Voronoi diagrams.

Theorem 2. Let M be a pwf surface whose vertex set P is
in general position. The Delaunay triangulation of P on M
is proper if and only if the Voronoi diagram of P on M is
well formed.

Proof. The criteria for a proper triangulation have been enu-
merated to correspond with the enumeration of criteria for
a well formed Voronoi diagram when the triangulation in
question is a Delaunay triangulation. For each criterion for
a well formed Voronoi diagram we establish that its violation
leads to a violation of the corresponding criteria for a well
formed Delaunay triangulation and vise versa. The proof for
each case makes implicit reference to Theorem 1 from which
the correspondence follows immediately.

1. If V(p) is not topologically a disk then it must contain
an internal Voronoi edge and the corresponding Delau-
nay edge e will begin and end at p. Then a Delaunay
triangle adjacent to e will not have three distinct ver-
tices. Conversely, if a Delaunay triangle does not have
three distinct vertices, then it has an edge e that ter-
minates at the same point p at both ends. This edge
corresponds to an internal edge in the Voronoi diagram
and thus V(p) is not topologically a disk.

2. The number of neighbours of V(p) is equal to the va-
lence of p in the Delaunay tessellation. Since P is in
general position, the Delaunay tessellation is itself the
Delaunay triangulation.

3. If V(p) and V(q) meet at two distinct edges, then they
give rise to two distinct Delaunay edges e = [p, q] and
e′ = [p, q] that share the same endpoints. Conversely, if
two distinct Delaunay edges meet at the same endpoints
p and q, then, since P is in general position, they will
each correspond to distinct Voronoi edges between V(p)
and V(q).



Proof completed.

This theorem allows us to use Voronoi diagrams to char-
acterize the meshes that will admit a proper Delaunay tri-
angulation. The dual picture does not yield additional in-
formation, but it gives another way to view the situation.
For example, by considering the Voronoi diagram it may be
easier to see how a refinement algorithm should proceed so
as to produce a proper Delaunay triangulation.

4 Delaunay Meshes

In this section, we consider the construction of Delaunay
meshes. Following our discussion in the previous section, a
natural approach would be to “straighten” the geodesic arcs
of an intrinsic proper Delaunay triangulation. In Section 4.1
we show using a simple example that this does not work in
general. The reminder of the section is devoted to our edge
swapping and refinement algorithm.

Much of our discussion will focus on closed meshes, where
we recall that according to Lemma 2, an edge e in the interior
of a manifold triangle mesh is locally Delaunay if and only if
the sum of its opposite angles does not exceed π. If the angle
sum exceeds π, we say that e is not locally Delaunay or NLD,
for brevity. A closed manifold triangle mesh is Delaunay if
all of its edges are locally Delaunay. Meshes with boundaries
are handled specifically in Section 4.2.5.

4.1 Geodesic Triangulations to Meshes

We can construct a geodesic Delaunay triangulation of some
(relatively) smooth surface as a preliminary step to produc-
ing a mesh: the vertices of the geodesic triangulation will
be the vertices of the mesh, and the mesh connectivity is
defined by the geodesic edges of the Delaunay triangulation.
This is how the remeshing algorithm of [Peyré and Cohen
2003] works for example. It can be expected that most of
the edges in a mesh produced in this way will be locally De-
launay if the sampling is adequate. However, no matter how
dense the sampling is, the final mesh need not be a Delau-
nay mesh. The transformation from a smooth surface S to
a piecewise linear mesh M comes at the cost of a geometric
approximation error. This distortion can cause a geodesic
Delaunay edge on the original surface to become an NLD
edge when it is realized as an edge in M .

To construct an example of this, consider a planar quadri-
lateral puqv such that all four sides are of equal length
and the opposite angles are equal, i.e., ∠upv = ∠uqv and
∠puq = ∠pvq. Suppose further that one of the diago-
nals is slightly shorter than the other. Specifically, let
|e| = |[p, q]| = l and |e′| = |[u, v]| = l + ǫ. For the symmetric
quad puqv, the longer diagonal edge e′ is NLD since it is sub-
tended by larger angles, i.e., ∠upv + ∠uqv > ∠puq + ∠pvq.

Consider a cylinder S of radius r. Allow the quad to hinge
on the diagonal e′ and place its four vertices on the cylinder
so that e′ is parallel to the axis of the cylinder (Figure 1). In
the geodesic realization of the quad, the geodesic diagonal
corresponding to e, drawn as the short circular arc between
p and q in Figure 1, will have length s = 4r arcsin( l

4r
). Thus

its length will be longer than that of the other diagonal in
the surface of S, |e′| = l + ǫ, if l

4r
> sin( l+ǫ

4r
), which is easily

realizable. In this case, e′ will be the locally Delaunay edge
on the surface of the cylinder S, and could be present in
the Delaunay triangulation of S, but it is NLD in its mesh
realization M . As a result, mesh M would not be Delaunay.
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Figure 1: The cylinder example to illustrate the discrep-
ancy between intrinsic Delaunay triangulations and Delau-
nay meshes. (a) In a quad with opposing angles equal and all
sides equal, the longer diagonal edge is NLD. For the quad
with planar faces this is edge e′ = [u, v], but in its geodesic
realization on the cylinder, the other diagonal, the (geodesic)
circular arc [p, q], is longer and therefore NLD. (b) A cross-
sectional profile of the cylinder at edge e = [p, q]. Detailed
explanations are given in the text.

Note that a similar example could be constructed if S were
a pwf surface. In other words, if we were to take a given mesh
M and produce a new mesh M ′ with the same vertices, but
with connectivity defined by the intrinsic Delaunay triangu-
lation of M , then M ′ will not be a Delaunay mesh in general,
even if M has a well formed Voronoi diagram.

Even if the sampling is sufficiently dense with respect to
the local feature size r, the above problem can still occur
as long as ǫ is sufficiently small. In practice, ǫ can indeed
be arbitrarily small while the samples would still technically
be in general position. A small ǫ corresponds to Voronoi
vertices that are extremely close together.

Rather than placing constraints on the relative distance
of Voronoi vertices of a sample set, it is presumably easier
to perform a few post-processing edge swaps.

4.2 Edge Swapping and Refinement

The edge swapping algorithm mentioned in the previous sec-
tion swapped geodesic arcs on a manifold of fixed geometry.
In contrast, we now consider swapping the physical edges of
a mesh in order to obtain a Delaunay mesh. This changes
the nature of the problem considerably, for now the geome-
try of the underlying domain is changing each time an edge
is swapped. In the case of fixed geometry, an edge could be
identified as being Delaunay by the empty circumdisk prop-
erty and its Delaunay status could not be changed by other
swaps. Now this is no longer the case; an edge which is
Delaunay at one instant may no longer be Delaunay in the
mesh that results when a nearby edge is swapped.

4.2.1 Algorithm

Our edge swapping algorithm is superficially similar to the
one described by [Bobenko and Springborn 2005], but now
we have a different surface after each swap. Also, we have
to deal with edges that are unswappable for topological rea-
sons. An outline of our algorithm, which takes any manifold
triangle mesh M as input, is given in Algorithm 1.

The order in which the edges are swapped is realized us-
ing a priority queue. The priority is related to the extent an
edge is locally Delaunay and is set to be the sum of the op-
posite angles at the edge minus π. We ensure that at every
step in the algorithm the current mesh, possibly refined, is a
manifold triangle mesh. The edge swapping and refinement
steps, along with discussions on termination and topological



while M contains an NLD edge do
while M contains a swappable NLD edge e do

M ← DelaunaySwap(M, e) (Section 4.2.2)
end while
while M contains an unswappable NLD edge e do

M ← TetRefine(M, e) (Section 4.2.4)
end while

end while

Algorithm 1: Edge swapping and refinement algorithm.
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Figure 2: (a) A swap tet puqv with opposing edges e and e′.
(b) A regular tet shows that both diagonals [p, q] and [u, v]
can be locally Delaunay.

issues leading to unswappable edges, will be described sub-
sequently. Let us focus on closed meshes for now. Meshes
with boundaries will be handled in Section 4.2.5.

4.2.2 Swappability and Uniqueness

In the planar case, an edge e is seen to be a diagonal of
a quadrilateral formed by the two triangles adjacent to it.
An edge swap entails replacing e with the other diagonal of
the quadrilateral. In a geodesic triangulation of a piecewise
flat surface, the edge e and its two adjacent faces can be
isometrically unfolded onto the plane, so an edge swap can
be interpreted the same way. However, when swapping a
physical edge of a mesh, we cannot unfold the quadrilateral.

Consider an edge e connecting two vertices p and q in a
mesh M . Suppose that e is adjacent to triangles f1 = [p, q, u]
and f2 = [q, p, v]. And consider the Euclidean line segment
e′ = [u, v]. The edges of f1 and f2 together with e′ form
a tetrahedron σ, as shown in Figure 2(a). We call σ the
swap tet associated with e. Performing an edge swap on e
involves replacing e with the new edge e′ and faces f1 and
f2 with faces f ′

1 = [p, u, v] and f ′
2[q, v, u]. We say that e′ is

the opposing edge to e.

Lemma 6. If edge e in a (closed) mesh is not locally De-
launay, then its opposing edge e′ is.

This is easy to see since the sum of the interior angles of
a space quad is at most 2π. Refer to Figure 2(a), we have

∠puq + ∠uqv + ∠qvp + ∠vpu ≤ 2π, (1)

with equality holding only when the quad is planar. Note
that Lemma 6 is true in this setting, but its converse, which
holds for any planar quad in general position [de Berg et al.
1998], is not true in a mesh. The regular tet, as shown in
Figure 2(b), gives an example where both edges e and e′ are
locally Delaunay. Consequently, there can be multiple De-
launay meshes on the same vertex set and defining the same
topological surface. Thus in this sense, without demanding
further qualifications, we do not have a general uniqueness
theorem for Delaunay meshes, contrary to the case of fixed
geometry, be it planar 2D or a fixed pwf surface.
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Figure 3: A Delaunay swap may decrease minimum angle
and increase Harmonic index: Let e be NLD, then swap-
ping e into e′ is a Delaunay swap. However, one can bend
△[u, q, v] towards△[u, p, v] so that ∠puq becomes arbitrarily
small and the Harmonic index of△[p, u, q] becomes arbitrar-
ily large.

While Lemma 6 ensures that any swappable edge in our
algorithm would improve matters locally, it does not quite
lead to a termination proof. At the same time, an NLD edge
may be unswappable if the resulting mesh would become
non-manifold. We address these two issues next.

4.2.3 Delaunay Swaps and Area Minimization

Termination of edge swapping is traditionally shown by
defining some functional on a triangulation and proving that
it is increased (or decreased) with each swap. However, most
of the traditional measures which apply to 2D or intrinsic
Delaunay triangulations do not extend to the case of Delau-
nay swaps on a mesh. For example, the minimal angle in
the triangles adjacent to an edge can be decreased after a
Delaunay swap. Likewise, the harmonic index, exploited by
[Bobenko and Springborn 2005], may increase after a swap.
See Figure 3 for an example. It turns out that a measure
that is consistently non-increasing with each Delaunay swap
is the mesh surface area, which we prove below.

Theorem 3. If the sum of the two angles opposite to an
edge e is greater than the corresponding angle sum for the
opposing edge e′, then the combined area of the two triangles
adjacent to e is greater than or equal to the combined area
of the two triangles that would be adjacent to e′. Equality
arises only when e and e′ lie in the same plane.

Proof. We are concerned with the area of the quadrilaterals
defined by the two triangles adjacent to each edge. Note that
the quadrilaterals can be made planar without distorting the
area by unfolding them on the edge. The edges e and e′

define two different quadrilaterals, but they share the same
set of sides. Let a, b, c and d be the lengths of each of
the sides. We exploit Bretschneider’s formula [Bretschneider
1842] for the area of a quadrilateral ABCD:

A =
q

(s− a)(s− b)(s− c)(s− d)− abcd cos2
`

A+C
2

´

(2)

where s = (a + b + c + d)/2 is the semi-perimeter and A and
C are angles opposite edge e. Let B′ and D′ be the angles
opposite edge e′ in the other quadrilateral.

Noting that cos2 θ is monotonically decreasing in the in-

terval [0, π/2] and that A+C
2

> B′+D′

2
by hypothesis, we

have cos2(A+C
2

) < cos2(B′+D′

2
) if A+C

2
< π

2
. Thus, by

equation (2), the area of the quadrilateral associated with
e′ is less than the area of that associated with e. On the
other hand, if A+C

2
≥ π

2
, then by equation (1), we have

π/2 ≥ π − A+C
2
≥ B′+D′

2
with equality in the planar

case. Thus cos2(A+C
2

) = cos2(π − A+C
2

) ≤ cos2(B′+D′

2
).



(a) (b)

Figure 4: Unswappable swap tets. (a) 2-exposed. (b) 3-
exposed. The tet is given by vertices indicated by the black
dots.

Again equation (2) gives us a decrease in area except when
e and e′ lie in the same plane, in which case the area is
unchanged.

Thus, the surface area of the mesh is monotonically non-
increasing as we run the edge swapping part of our algo-
rithm. Since the number of possible triangulations is finite,
the first inner loop will either terminate, or be stuck in an
endless sequence of planar edge swaps. This latter possi-
bility is eliminated by the termination proof of the planar
Delaunay edge swapping algorithm [Lawson 1977]. Thus the
first inner loop of Algorithm 1 terminates. Next, we discuss
the handling of NLD edges that were left since they could
not be swapped due to topological constraints; this is dealt
with in the second inner loop by TetRefine.

4.2.4 Refining Unswappable Swap Tets

An edge e in M is unswappable if its opposing edge e′ al-
ready exists in M . Swapping e into e′ would result in a
non-manifold edge. To see when this can happen, we ex-
amine the swap tet σ associated with e. All six edges of σ
belong to M . At least two of the faces of σ, those adjacent
to e, also belong to M . There are three possible cases:

1. No other faces of σ belong to M : We say that the
swap tet is 2-exposed, reflecting the number of faces
shared by the mesh and the swap tet, as shown in
Figure 4(a). If edge e is NLD, then it corresponds to
sparse sampling around a thin structure, which can be
expected to arise if there is a violation of the third cri-
terion for a well formed mesh. Namely, the Voronoi
cells V(p) and V(q) would connect at two disjoint edges,
shown in Figure 5 in dark red.

2. Only one of the faces adjacent to e′ in σ belongs
to M : This would be the 3-exposed case, where an
edge is adjacent to a valence-three vertex, as shown in
Figure 4(b). Let edge e be NLD with two opposite
vertices p and q and let v be the valence-three vertex.
This situation is conveniently depicted in Figure 5 as
well, where we can observe that v has only two Voronoi
neighbours, p and q, violating the second criterion of
well-formedness defined in Section 3.3. Note that in
the plane, a valence-three vertex cannot be incident to
an NLD edge. On a surface, this situation indicates an
inadequately sampled local feature, or a spike of noise.

3. All four faces of σ belong to M : This 4-exposed case
only happens when σ is the entire mesh M , assuming
that M is a single connected mesh.
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Figure 5: A 2- or 3-exposed swap tet puqv with an NLD
edge e. Lines in red are those from the Voronoi diagram.
One way to view the situation is to suppose that the tet is
2-exposed. Then Voronoi cells V(p) and V(q) are incident
at two Voronoi edges, marked in dark red. Alternatively, let
the tet be 3-exposed with v being the valence-three vertex.
Then v has only two Voronoi neighbors, p and q.

As we have just observed, unswappable NLD edges can
be expected to arise when criteria of well-formedness are vi-
olated, implying that they are a manifestation of poor sam-
pling. Naturally, our remedy would involve adding (or pos-
sibly removing) vertices. It is not hard to show that an NLD
edge e can always be split into two locally Delaunay edges
by inserting a vertex where e is crossed by the geodesic con-
necting the two vertices opposite to e; see Figure 6. We use
this split to repair a 2-exposed NLD edge. Those bounding
edges of the swap tet which become NLD after the split may
be handled by subsequent swaps.

v
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Figure 6: Splitting an NLD edge e = [p, q]. Let us fold the
faces adjacent to e onto the plane. Clearly, edge [p, x] will be
locally Delaunay if and only if it lies inside the circumcircle
of △[p, v, u]. Likewise, x must lie inside the circumcircle of
△[v, q, u] in order for [x, q] to be locally Delaunay. Thus any
point in the intersection of these two circumcircles will cut e
into two locally Delaunay edges. A natural point to choose
is z, the intersection of [u, v] and [p, q].

NLD edges that are 3-exposed edges must be dealt with
more carefully. Suppose e is a 3-exposed edge adjacent to
a valence-three vertex v. Note that e cannot be adjacent
to two valence-three vertices, as that would imply that the
swap tet is 4-exposed. If we split e at x as we would a 2-
exposed edge, then [x, p] may become a 3-exposed NLD edge
again. Instead, we split all three edges adjacent to v at a
distance s from v. We choose s to be half the length of the
shortest edge adjacent to v. In this way the three new equal
length edges adjacent to v are guaranteed to be Delaunay;
see Figure 7. However, at least one of the new edges that
are not adjacent to v can become a 2-exposed NLD edge,
which may be repaired in the next iteration.

Both of these repair operations fix the problem edge with-
out altering the geometry. An alternate means of dealing
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Figure 7: Edge [u, v] is a 3-exposed NLD edge adjacent to
the valence-three vertex v. The red lines indicate how it is
repaired; a, b and c are all equidistant from v. Note that
this repair has now created a 2-exposed NLD edge [u, a].

with a 3-exposed NLD edge would be to simply remove the
valence-three vertex. This may be appropriate if the vertex
was considered to be a misplaced sample on a smooth surface
and its removal would not alter topology. The latter would
be the case for the 4-exposed case, where the entire mesh
is a swap tet. In this case we would treat it in exactly the
same way as the 3-exposed case, as illustrated in Figure 7.

Although our refinement schemes can be expected to rem-
edy the problem of unswappable NLD edges, it remains to be
shown that the algorithm outlined in Section 4.2 terminates.
We do not have a proof at this point, but will pursue it in
our future work. In our experiments on a few dozen distinct
meshes, which we discuss in Section 5, we never encountered
more than five iterations of the outer loop.

4.2.5 Boundaries and Features

In [Bobenko and Springborn 2005; Fisher et al. 2006] meshes
with boundaries are dealt with by using a constrained De-
launay triangulation; there was not really another choice
available in that context. However, we are by necessity al-
lowing ourselves to add Steiner vertices. Therefore, we can
also ensure that all the boundary edges are Delaunay.

Definition 4. A boundary edge e is Delaunay if and only if
it subtends a non-obtuse angle.

If the angle is obtuse, the Voronoi cells of the endpoints
will be separated by the Voronoi cell of the other vertex; see
Figure 5 for an example. If this were the case, we would bi-
sect the angle subtended by e, and split e where the bisector
intersects. Similarly, feature edges can be identified and if
a feature edge is not locally Delaunay, it can be split at the
crossing point of the other geodesic diagonal, as described
in Section 4.2.4. This provides a method for minimizing
geometric distortion when creating Delaunay meshes from
coarse meshes or meshes with ridge features.

5 Experimental Results

We have performed our edge swapping and refinement algo-
rithm on a few dozen mesh models and statistics collected
on some representative tests are reported in Table 1. The
first group of models are well-known meshes which serve as
examples of “typical” test datasets. In the second group, we
choose several low-resolution meshes some of which, e.g., the
knot, horse, and skull, have thin structures. These models
have a greater percentage of 3- or 2-exposed tets compared
with those from the first group and would provide a more
rigorous test for the refinement component of our algorithm.

The coarse knot, horse, and isis models were produced via
the QSlim mesh simplification software of [Garland 1998].
The final group contains a few meshes that were produced
by the remeshing algorithm of [Peyré and Cohen 2003]; these
meshes are generally quite close to being Delaunay.

As can be observed from the results reported, our al-
gorithm has consistently terminated after swapping only a
small percentage of the total number of edges in the mesh,
with only a small number of the outer loops of Algorithm 1
iterated. Thus the edge swapping and refinement scheme is
seen to work quite efficiently in practice. We have not found
a single case where Algorithm 1 failed to terminate. It is
worth noting that although the Peyré hand (with a coarse
sampling) and horse models approximate Delaunay geodesic
triangulations of the original fine mesh surfaces, the meshes
produced do have edges, though only a fraction, that are not
locally Delaunay.

We have also collected statistics concerning the angle
quality of the original and the resulting Delaunay meshes.
As we have mentioned, the smallest angle is not required
by theory to increase, but Table 1 shows that in practice it
generally does with few exceptions. In all cases the size of
the maximum angle, as well as the percentage of both small
angles (less than 30◦) and large angles (greater than 120◦)
decreased in the Delaunay mesh.

In the last column of Table 1, we report the approxima-
tion error of the Delaunay meshes produced, measured using
the well-known Metro tool [Cignoni et al. 1998]. As we can
see, the geometric approximation error tends to be large for
coarse models. The coarse knot model has an abundance of
two-exposed tets, the edge swapping algorithm is expectedly
not doing a good job of respecting the geometry; Figure 8(a)
and (b) show the original and the Delaunay coarse knot mod-
els. In contrast, the geometric error associated with the De-
launay versions of the corresponding full-resolution models
is much smaller; see results for models from the first group.

We can reduce the geometric error by adding Steiner
points rather than swapping edges when the dihedral an-
gle is too large; this in effect enables “feature preservation”.
We threshold on the scalar product of the normals adjacent
to the edge that is to be swapped. If this product is less than
the threshold, we will split the edge rather than swapping it.
In Figure 8(c) and Figure 9(c) we show the results when the
threshold is 0.9. The edges are split where the other diagonal
of the associated quadrilateral would cross it, as described in
Section 4.2.4. As can be seen in the images, and the reported
Metro error, this does a good job of reducing the geometric
approximation error at an expense of increased vertex count.
We can also observe that this refinement method is not alto-
gether satisfactory. When the threshold is sufficiently close
to 1, implying a severe restriction placed on allowable edge
swaps, the algorithm often does not terminate. When the
threshold is quite high we see regions of dense sampling in-
dicating that this simplistic refinement scheme is working at
its limit (the dark regions in Figure 8(c)).

6 Discussion and Future Work

We have established a Voronoi-Delaunay duality on piece-
wise flat (pwf) surfaces utilizing the empty circumdisk prop-
erty. The notion of well-formed Voronoi diagrams was pro-
posed and shown to lead to proper Delaunay triangulations
on pwf surfaces. We developed an edge swapping and refine-
ment algorithm which produces Delaunay meshes, a partic-
ularly useful geometric surface representation. Experiments



Mesh #E Swaps(# | %) #P # 3/2-exp Min angle Max angle % Small % Large Error

knot 15000 1321 (8.8%) 1 0/0 20.5 20.5 95.9 95.9 7.4 7.3 0.0 0.0 0.0033%

horse 59547 2950 (5.0%) 5 4/4 1.7 1.6 171.3 164.3 8.7 7.9 1.3 1.2 0.474%

igea 165000 19349 (11.7%) 1 0/0 0.1 6.1 179.8 148.3 10.0 5.2 2.2 0.3 0.104%

bone 150000 9906 (6.7%) 4 2/3 0.1 5.8 179.7 150.5 8.2 6.1 1.3 0.4 0.102%

bigfish 41994 5744 (13.7%) 1 0/0 0.0 0.0 179.4 155.2 15.8 14.9 2.7 0.9 0.1%

coarse knot 1200 830 (69.2%) 5 0/238 0.3 12.0 178.7 123.1 42.7 7.6 17.4 0.2 2.37%

coarse horse 1050 216 (20.6%) 2 1/5 3.5 11.6 171.3 133.5 17.9 6.3 5.5 0.3 1.65%

coarse isis 1800 411 (22.8%) 1 0/0 2.8 8.9 173.3 137.1 20.3 9.2 5.8 0.5 1.63%

skull 33156 1952 (5.9%) 4 10/60 2.2 4.3 162.9 150.7 4.8 3.2 0.7 0.1 0.633%

Peyré hand 894 22 (2.5%) 1 0/0 24.7 31.0 129.9 112.5 0.6 0.0 0.2 0.0 1.4%

Peyré horse 1944 17 (0.9%) 3 1/1 12.0 18.1 136.4 113.8 0.2 0.2 0.1 0.0 0.87%

Table 1: Output statistics for our edge swapping and refinement algorithm on several mesh models. Mesh sizes are measured
by #E, the number of edges. We report the number of edge swaps performed until termination both in absolute number
and as a percentage of the mesh size. The number of passes (#P ) refers to the number of times through the outer loop of
the Algorithm 1. The fifth column indicates the number of 3-exposed and 2-exposed tets that were repaired, respectively.
The next four double columns have before, on the left, and after, on the right, of the minimum (Min angle) and maximum
(Max angle) face angles in the meshes, where angles are measured in degrees, as well as the percentage of angles that are less
than 30◦ (% Small) and the percentage of angles that are more than 120◦ (% Large). The last column reports the geometric
approximation error measured by the Metro tool, given as a percentage of the Hausdorff distance between the original and
the output Delaunay mesh against the length of the bounding box diagonal of the former. The longest running time was on
the bone model which took 6.3 seconds to process on a 2.4 GHz Opteron processor.

(a) (b) (c)

Figure 8: (a) The original coarse knot model with 400 vertices. (b) Delaunay mesh produced using Algorithm 1. The mesh has
638 vertices vertices and the Metro approximation error is 2.37%. (c) Delaunay mesh produced with “feature preservation”
turned on. Namely, no edges with the dot product of their incident face normals exceeding the threshold of 0.9 can be swapped.
Metro error is reduced to 0.365%, but it has 5088 vertices.



(a) (b) (c)

Figure 9: (a) The original coarse isis model. (b) Delau-
nay mesh produced using Algorithm 1: 602 vertices with
Metro error 1.63%. (c) Delaunay mesh produced with “fea-
ture preservation” turned on (threshold = 0.9). Metro error
is reduced to 0.65%, but with an addition 230 vertices pro-
duced.

show that our algorithm works efficiently and the resulting
meshes possess desirable angle quality.

On geometric approximation errors: For a large class
of modern meshes, edge swapping is a simple and fast way
of turning a given mesh into a Delaunay mesh. For densely
isotropically sampled smooth surfaces, the transformation
to a Delaunay mesh comes with a small cost in geometric
approximation error. From the angle statistics Delaunay
meshes are well suited as a domain for the numerical solution
of PDEs. It is exactly these well sampled smooth structures
that are suited to most numerical computations anyway.

However, it is worthwhile to emphasize, that Delaunay
meshes are not meant to improve the visual appearance of
coarsely sampled meshes. This has become clear in the ex-
amples in Figure 8 as well as Figure 9. Furthermore, the
example used in Section 4.1 (see Figure 1) also serves to
emphasize that Delaunay meshes by no means minimize the
geometric approximation error. The cylinder represents a
ridge feature that could appear in a mesh and generally it
is better to have the edges align with the direction of mini-
mal absolute principal curvature [Dyn et al. 1990; Dyn et al.
2001]. Thus, in terms of geometry approximation the NLD
edge turns out to be the better choice while its opposing
edge takes a bite out of the ridge feature.

For efficient geometry approximation on a sparse vertex
budget we would want anisotropic sampling – lower sampling
along directions of low principle curvature – and a triangula-
tion that aligns long skinny triangles accordingly. However,
such a sampling is not appropriate for a numerical evalua-
tion of differential operators, for example. For this task a
denser isotropic sampling and a Delaunay mesh would be

more appropriate.

Area minimization: The fact that Delaunay swaps are
area reducing is intriguing. It seems likely that there are
more interesting implications to be drawn. One avenue to ex-
plore is the possibility that a sequence of increasingly refined
Delaunay meshes that converge point-wise to a given smooth
surface will also have converging surface normals. Hilde-
brandt and Polthier [Hildebrandt et al. 2005] have shown
that this is equivalent to surface area convergence.

The notion of well-formed Voronoi diagrams: The
Voronoi conditions for the existence of a proper Delaunay
triangulation could, for example, be useful in the generation
of coarse base meshes for parameterization. While Leibon
and Letscher [Leibon and Letscher 2000] have given suffi-
cient conditions for the existence of a well defined proper
Delaunay triangulation on a Riemannian surface, we have
given necessary and sufficient conditions on a pwf surface.
In fact, a well formed Voronoi diagram will be a necessary
condition on any manifold surface, and this could be used
to guide sampling algorithms such as the one presented by
[Peyré and Cohen 2003].

Termination and complexity of edge swapping: There
are a couple of gaps in our analysis of Algorithm 1. The most
important one is the lack of a solid proof of termination. In
preliminary tests we have found, that – by itself, without
changing the geometry – the edge split refinement that we
use to repair two-exposed tets to create a Delaunay mesh
does not always converge if we allow no edge swaps at all.
It would be good to employ a more sophisticated refinement
technique, perhaps an adaptation of the one presented by
Rivara and Inostroza [Rivara and Inostroza 1997]. Such an
algorithm, with a termination guarantee would allow for the
production of Delaunay meshes without geometry distortion.
This could be substituted for the second inner loop in Al-
gorithm 1. It would do away with the need for an outer
loop.

Having a better understanding of the termination criteria
for our algorithm will also aid a complexity analysis. Al-
though the algorithm invariably terminates after swapping
only a fraction of the total number of edges in practice, the
first inner loop is presumably O(n2) in theory. It would be
good to have a proof of this for completeness.
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