A Hybrid Tool for Linking HOL Theorem Proving
with MDG Model Checking

Rabeb Mizouni

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal, Québec, Canada

April 2003

(© Rabeb Mizouni, 2003

CONCORDIA UNIVERSITY

Division of Graduate Studies

This is to certify that the thesis prepared

By: Rabeb Mizouni

Entitled: A Hybrid Tool for Linking HOL Theorem Proving with

MDG Model Checking

and submitted in partial fulfilment of the requirements for the degree of

Master of Applied Science

complies with the regulations of this University and meets the accepted standards
with respect to originality and quality.

Signed by the final examining committee:

Dr. M. Reza Soleymani

Dr. Otmane Ait Mohamed

Dr. Patrice Chalin

Dr. Sofiéne Tahar

Approved by

Chair of the ECE Department

2003

Dean of Engineering

ABSTRACT

A Hybrid Tool for Linking HOL Theorem Proving with

MDG Model Checking

Rabeb Mizouni

Nowadays, the formal verification of hardware is gaining a lot of importance in the
design flow of micro-electronics systems. There exists several formal hardware veri-
fication approaches each with its own advantages and drawbacks. Hence, the idea of
linking different approaches to benefit from their advantages has emerged as a poten-
tial ultimate solution. In this thesis, we describe a hybrid tool for formal hardware
verification that links the HOL (Higher-Order Logic) theorem prover and the MDG
(Multiway Decision Graphs) model checker. Our tool supports abstract datatypes
and uninterpreted function symbols available in MDG, allowing the verification of
high level specifications. For this purpose, we embedded in HOL the grammar of the
hardware description language, MDG-HDL, used to represent models to be verified.
Furthermore, we provided an embedding of the first-order temporal logic L,,4, used
to express properties for the MDG model checker. Furhtermore, we have developed
an interface which reads a HOL goal, generates the required MDG files, calls the
MDG model checker, and generates the HOL theorem on successful verification.

il

Our tool also handles design hierarchies by reducing the model to its subsystem
according to the property to be verified. Verification with the hybrid tool is faster
and more tractable than using either tool separately. This has been illustrated via a
number of simple hardware benchmark examples as well as a more elaborated design

case study.

v

A mes Parents qui me manquent tellement ...

A mon cher mari Anis...

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me the ability to
complete this thesis.

I am deeply indebted to my supervisor Dr. Tahar for his precious instruction.
His dynamic thinks, and his broad and profound knowledge have given me a great
help.

I would like to express my special gratitude to Dr. Curzon from Middlesex
University for his guidance and stimulating suggestions during my research work.

I am also obliged to Dr. Ait-Mohamed for his valuable discussions and hints.

The HVG group colleagues provided a nice atmosphere for discussions and
research, I thank them all, especially, Amr Talaat for his great help and valuable
feedback on the first draft of this thesis.

Last but not least, I would like to give my gratitude to Dr. Ben Ayed, who

introduced me to the formal methods subject and made me really enjoy it.

vi

TABLE OF CONTENTS

LIST OF TABLES o X
LIST OF FIGURES xi
LIST OF ACRONYMS e xii
1 Introduction 1
1.1 Formal Verification L. 2
1.1.1 Decision Diagram Based Methods)

1.1.2 Theorem Proving 7

1.2 Motivation 8
1.2.1 Verilog-HOL-MDG Project 8

1.2.2 Linking HOL and MDG Equivalence Checker 8

1.2.3 Linking HOL and MDG Model Checking 10

1.3 Related Worko oo 12
1.4 Scope of the Thesis 16
HOL and MDG 18
2.1 The HOL Theorem Prover 18
2.2 The MDG System 20
The Formalisation of the MDG Input Languages in HOL 28
3.1 Formalising MDG-HDL Grammar in HOL 28

Vil

3.1.1 Formalising the MDG Library in HOL 29

3.1.2 Embedding the MDG-HDL Grammar in HOL 32

3.1.3 Example of an Abstract-Counter 37

3.2 Formalising L,,44 into HOL Syntax 41
3.2.1 The L4y Syntaxo 41

3.2.2 Embedding £,,q0 in HOLo 43

4 MDG-HOL Linking (The Hybrid Tool) 47
4.1 The Hybrid Tool Behavior 47
4.1.1 Overviewo 47

4.1.2 Use of Hierarchy 49

4.1.3 ThelInput Files, 50

4.1.4 The Generated Files o1

4.2 The Hybrid Tool Structure 53
4.3 Application: The Timing Block 56
4.3.1 Timing Block Structure o6

4.3.2 Timing Block Behavior 0. o8

4.3.3 Timing Block Verification 60

5 Case Study: Island Tunnel Controller 63
5.1 Island Tunnel Controller Description 63
5.2 Specification and Properties Definitions 66

viil

5.3 Experimental Results

6 Conclusion and Future Work

A L, HOL Theory

A.1 CTL* like Properties

A.2 LTL like Properties

B MDG-HDL HOL Theory

Bibliography

X

71

75

I6)

76

78

86

2.1

3.1

4.1

0.1

5.2

LIST OF TABLES

Mux MDG table 26
Abstract Counter Behavior 39
Model Checking Results of the Timing Block 62
Model Checking Results with Block Extraction. 69
Model Checking Results without Block Extraction 70

1.1

1.2

1.3

1.4

2.1

2.2

3.1

4.1

4.2

4.3

4.4

4.5

4.6

0.1

5.2

2.3

LIST OF FIGURES

Formal Verification Approach 3
Intended Verilog-HOL-MDG Project Skeleton 9
Hybrid HOL-MDG Tool for Equivalence Checking[20] 10
HOL and MDG Model Checker Interface 11
Multiplexer Exampleo 22
The MDG Tool 23
Abstract Counter Implementation 40
Verification Procedure with the Hybrid Tool 48
Block Extractiono 49
Hybrid Tool Structure L. 54
Property Module Structure 95
Timing Block Implementation o7
Timing Block State Machine 58
Island Tunnel Controller Structure 64
The Island Controller 65
The Mainland Controller 65

xi

LIST OF ACRONYMS

ASM Abstract State Machines

ATM Asynchronous Transfer Mode

CTL Computational Tree Logic

FSM Finite State Machine

HDL Hardware Description Language

HOL Higher-Order Logic

ILC Island Light Controller

ITC Island Tunnel Controller

LTL Linear Temporal Logic

ML Meta Language

MLC Main Land Controller

PVS Prototype Verification System
ROBDD Reduced Ordered Binary Decision Diagram
RTL Register Transfer Lever

SMV Symbolic Model Verifier

TC Tunnel Controller

VIS Verification Interacting with Synthesis
VLSI Very Large Scale Integration

xi1

Chapter 1

Introduction

With the ever increasing growth in the design of digital systems, and the size of
microelectronics circuits, the role of design verification has gained a lot of impor-
tance. Nowadays, simulation is considered the main testing approach. Nevertheless,
serious design errors often remain undetected despite the major efforts to improve
simulation techniques. To overcome these limitations, formal verification has been
introduced [34]. Formal verification relies on a strong mathematical background.
It tries to mathematically prove that an implementation of a system fully satisfies
its specification. There exist today several formal verification approaches like the-
orem proving, model checking, equivalence checking, etc. Each has advantages and
drawbacks. In this thesis, we present our efforts in formalising and implementing
a way for allowing the HOL (Higher-Order Logic) theorem prover to support the

proof procedure of the Multiway Decision Graphs (MDG) model checker.

The MDG [5] system is a decision diagram based verification tool, primarily
designed for hardware verification. It supports both equivalence checking and model
checking. It is based on multiway decision graphs which extend Reduced-Ordered
Binary Decision Diagrams (ROBDD) [3] with abstract sorts and uninterpreted func-
tion symbols.

HOL [25] is an interactive theorem prover based on higher-order logic. It
can handle very large circuits for verification, without any restriction on the size.
However, since it implements a white box verification approach (user interactivity),
it is time-consuming and needs a high expertise of the user. Therefore, it does not
fit the current VLSI industry needs, which is more time-to-market oriented, where
fast, efficient, and trusted techniques are adopted for testing products. The idea
of developing hybrid approaches, integrating an interactive theorem prover and an
automated tool to reduce the verification efforts, emerges. Such hybrid approaches
benefit from the high expressiveness and scalability of the theorem prover, and the

automation of the model checker.

1.1 Formal Verification

Formal Hardware Verification is the proof that a circuit or a system (the imple-
mentation) behaves according to a given set of requirements (the specification) [34].

Any formal verification approach requires three components:

e The circuit (system) under investigation (called the implementation)

e The set of requirements this circuit should obey to (called the specification);

e The formal verification tool which is responsible of the verification process

(Figure 1.1).

Implementation Specification

Not Correct

Correct

Figure 1.1: Formal Verification Approach

In practice, one needs to model both the implementation and the specification
in the tool, and then uses one of the formal verification algorithms of the tool to
check the correctness of the system or in some cases also to give a kind of trace
(called counter-example) to where the error is. Formal methods have long been
developed and advocated within the computing science research community as they
provide sound mathematical foundation for the specification, implementation and
verification of computer systems. These methods exploit representations with for-

mally defined semantics in order to describe abstractly (independent of details of

implementation) the desired functional behavior of a system [34]. Such formalisa-
tion methods provide precise and unambiguous system specifications which can be
checked for completeness and internal logical consistency. The mathematical nature
of these specifications enable reasoning about consistency (i.e., whether the system
dynamics are consistent with system’s static properties) and the deduction of con-
sequences of the specification. Simulation, although widely used as a way of testing,
could never give the verification coverage needed. Directive test benches, and ran-
dom test benches are the ways adopted by simulation to get over this problem, but
it is becoming clear that the quality of the validation achieved by traditional simu-
lation is rapidly deteriorating microelectronic technology progresses. Thus, formal
verification is proposed as a method to help certify hardware and software, and con-
sequently, to increase confidence in new designs. Formally verifying designs may be
cost effective in safety critical applications, for systems in high volume or remotely
placed systems, and for systems that will go through frequent redesign because of
changes in technology. Formal Verification however, is not the golden solution for
circuit testing because of some limitations [26]. A correctness proof cannot guar-
antee that the real device will never malfunction; the design of the device may be
proved correct, but the hardware actually built can still behave in a way unintended
by the designer (this is the case for simulation too). Wrong specifications can play
a major role in this, because it has been verified that the system will function as

specified, but it has not been verified that it will work correctly. Defects in physical

fabrication can cause this problem too. In formal verification a model of the design
is verified, not the real physical implementation. Therefore, a fault in the modeling
process can give false negatives (errors in the design which do not exist). Although
sometimes, the fault covers some real errors.

Formal verification approaches can generally be divided into two main cate-
gories: reachability analysis, and deductive methods. Model checkers and equiva-
lence checkers are examples of the first approach. Many different theorem provers

(such as HOL) have been used for deductive verification.

1.1.1 Decision Diagram Based Methods

Reachability analysis approaches are internally categorised into two main flows:

model checking and equivalence checking.

Model checking: In this approach, a circuit is described as a state machine with
transitions to describe the circuit behavior. The specifications are described as prop-
erties that the machine should or should not satisfy. Traditionally, model checkers
used explicit representations of the state transition graph, for all but the smallest
state machines. To overcome this capacity limitation, different representations of
BDDs (Binary Decision Diagrams) are used to represent the state transition graphs
and this allows model checkers (such as SMV [24], and VIS [30]) to verify much
larger systems. Still, these model checkers face the state space explosion problems

while verifying large circuits [34].

Equivalence checking: In recent years, many CAD vendors offer equivalence
checking tools for design verification. For example, Formality from Synopsys [17]
performs logic equivalence checking of two circuits based on structural analysis.
The common assumption used in the equivalence checking is that two circuits have
identical state encoding (latches). With this assumption, only the equivalence of the
combinational portions of two circuits must be checked. However, these tools cannot
handle the equivalence of designs with no structure similarity. Another drawback of
equivalence checkers is that they all need golden circuits, used as the reference to be
compared with during the verification process. However, the correctness of golden

circuits is still questionable.

The major advantage of the reachability analysis verification approaches is
automation. The machine (tool) is usually responsible for building the whole model
and automatically verifying either the equivalence or a property. But reachability
analysis verification has two main drawbacks, namely, first the state exploration
problem, where large designs (or deep datapaths) saturate the tool, stopping it
from continuing the verification process, and second, is the problematic description
of specifications as properties, specially in model checking, this description needs

experience and sometimes may not give full system coverage.

1.1.2 Theorem Proving

With theorem proving, an implementation and its specification are usually expressed
as first-order or higher-order logic formulae. Their relationship, stated as equivalence
or implication, is regarded as a theorem to be proven within the logic system, using
axioms and inference rules. Thus, theorem proving is a powerful verification tech-
nique. It can provide a unifying framework for various verification tasks at different
hierarchical levels. However, the task of proving complex theorems needs expertise.
A theorem prover or proof checker is a tool developed to partially automate the proof
process or to check a manual proof. Theorem proving systems are being widely used
on an industrial scale for hardware and software verification. Some of the well-known
ones are HOL (Higher-Order Logic) [25], and PVS (Prototype Verification System)
[6]. Theorem proving is considered a very strong verification tool because mathe-
matical formulae can express nearly all design levels. The proof procedures are very
efficient if they are constructed by experts. Also, hierarchical modeling is used to
give theorem provers nearly unlimited power; especially in handling deep datapath
designs, which can be modeled efficiently. The main problem with theorem proving
techniques is the lack of expertise and documentation. It takes a considerably long
time to learn and use theorem proving. Besides, there is a strong need for libraries

of specifications to be established, and more automated tools and approaches.

1.2 Motivation

1.2.1 Verilog-HOL-MDG Project

As described before, each of the verification techniques has advantages and draw-
backs. Hence, the combination of them in hybrid tools is expected to decrease the
verification complexity. The work described in this thesis is part of a larger project
to link Verilog [33], HOL and MDG as shown in Figure 1.2. Here, a Verilog model
is passed through a HOL generator to get an equivalent model in HOL. The MDG
tool provides four kind of verification approaches: the combinational equivalence
checking, the sequential equivalence checking, the invariant checking, and the model
checking. Within HOL, we use HOL tactics (proof scripts), called MDG_EQ_TAC
and MDG_MC_TAC, to generate the required MDG files ! and complete either the
verification of combinational /sequential equivalence or model checking of the sys-
tem. Since both Verilog and HOL provide the hierarchy, the description model will

be written in a hierarchical way.

1.2.2 Linking HOL and MDG Equivalence Checker

In [28], and later [20] a hybrid tool and a methodology tailored to perform hierarchi-

cal hardware verification have been developed by the Hardware Verification Group of

!The contents and functions of these files will be explained in Chapter 2

Verilog to HOL

Generator
Property(L_MDG) l
l Model(HOL)

Model (MDG-HDL)

MDG
Alg (MDG-HDL)
Equivalence
Checking

Order (MDG-HDL)
Invariant
I Checking

L_MDG to HOL l Property (L_MDG) | % ﬁde% i -
1 HOL
Fairness (L_MDG I
HOL Property MDG_EQ_TAC —>
L_MDG
MDG_MC_TAC

Figure 1.2: Intended Verilog-HOL-MDG Project Skeleton

Concordia University. They integrate the HOL theorem prover to the MDG equiv-
alence checker. Similar to the project we are presenting, the work is done within
the proof system but using the specification style of the automated verification tool.
The HOL-MDG tool is used to verify that structural specification of hardware im-
plementation implies its behavioral specification, rather than checking properties or
a partial specification. In fact, they use MDG to prove combinational or sequential
equivalence. The hybrid tool integrates automated hardware verification with inter-
active hierarchical hardware verification. Verification using the hybrid tool proceeds
as shown in Figure 1.3 [20]. An initial HOL goal is set to prove that the model imple-
mentation implies its behavioral specification. First, they try to do the equivalence
checking within the MDG tool by applying a HOL tactic MDG_EQ_TAC. This latter

mainly generates the MDG required files and ensures the interaction with the MDG

equivalence checker. If the design is large enough to cause state explosion, and since
the description model are written in a hierarchical way, a tactic HIER_VERIF_TAC
is called to break the design in sub-blocks. The same procedure is recursively applied

if necessary. At any point, the goal proof can be done in HOL.

HOL God

Y
Apply MDG_EQ TAC

State Explosion

Make HOL theorem Analyzé MDG Hierarchical
counter_example block
Y ‘ Y
Correct design HOL Proof Apply MDG_Hier_Verif

|

Figure 1.3: Hybrid HOL-MDG Tool for Equivalence Checking[20]

1.2.3 Linking HOL and MDG Model Checking

The earlier work presented above implements a tool linking the equivalence checking
part of the MDG tool with HOL. Although this can be a step for the automation of
HOL theorem prover, equivalence checking, as a technique, suffers from some draw-
backs. Furthermore, it is sometimes useful to have the possibility to check properties
within the theorem prover rather than the whole behavior. Usually to reduce the

10

\v HOL : H : MDG
MDG-HDL(HOL) | . O |, [MDG-HDL(MDG)
\ | _ |
Lmdg(HOL) | Y _ [Lmdg(MDG)

" HoL | D |mpG |
| G |
‘Theorenr Result ‘

Figure 1.4: HOL and MDG Model Checker Interface

verification complexity, abstraction techniques and hierarchical verification are used.
However, the tool in [20], although efficient in many ways, remains limited especially
when it comes to abstract types.

The main contribution of MDGs is that they make the integration of implicit
state enumeration and the use of abstract datatype and uninterpreted functions
possible [5]. In order to benefit from the abstraction of MDG, we need to formalise
the full input language for model description, MDG-HDL [40]. This formalisation
is introduced in HOL as a new theory. Besides, we have to able to express MDG-
like properties in the theorem prover. Since the input language of properties in
MDG is the £,,4, language, we have to embed it in HOL as well. Finally, we need
to implement the interface ensuring the communication between the two tools (cf.

Figure 1.4).

11

1.3 Related Work

Since higher-order logic based theorem provers suffer from lack of automation, many
projects were undertaken with the aim of linking theorem provers with model check-
ers or by embedding model checking packages into theorem provers. In our work, we
choose the first alternative, as we proppose an interface linking the HOL theorem
prover with the MDG model checker, allowing the definition and the verification of
properties in HOL.

An impressive earlier hybrid system was the pioneering work of Joyce and Seger
[18, 19] combined the theorem prover HOL with the symbolic trajectory evaluation
tool VOSS. Symbolic trajectory evaluation provides a rigorous technique for verify-
ing temporal relationship between node values, in addition of treating node values
symbolically. In their system, several predicates were defined in the HOL system.
HOL-VOSS presents a mathematical link between the specification language of the
VOSS system and the specification language of HOL. A tactic, VOSS_TAC, was im-
plemented in SML as a remote function. It calls the VOSS system that is then run as
a child process of the HOL system. A VOSS assertion can be expressed as a term of
higher-order logic. Symbolic trajectory evaluation is used to decide whether or not
the assertion is true. If it is the case, the assertion will be turned to a HOL theorem
which can be used to proceed with further verification procedures. Zhu et al. [41]
successfully applied HOL-VOSS for the verification of the Tamarack-3 microproces-

sor. As a continuation of HOL-VOSS, Aagarad et al. developed the Voss-ThmTac

12

system combining ThmTac with the VOSS System. Its power comes from the very
tight integration of the two provers, using a single language, fl, as both the theorem
prover’s meta-language and its object language. The Voss-ThmTac system has been
used to verify successfully an IA-32 Instruction length decoder.

Rajan et al. [29] proposed an approach for the integration of propositional p-
calculus model checking, based on BDDs, within an automated proof system PVS [6].
They used p-calculus as a medium for communicating between PVS and the model
checker. It was formalised by using the higher-order logic of PVS. The temporal
operators that apply to arbitrary state spaces are given the customary fixed-point
definitions using the p-calculus. These expressions were translated to the form
required by the model checker. This later was then used to verify the subgoals
generated within PVS. In [13], a complicated communication protocol was verified
by means of abstraction, used to extract a finite-state abstraction of the protocol
that preserves the property of interest.

The MEPHISTO system [21] was developed to manage the higher levels of
a verification, producing a first-order subgoals to be proved by the FAUST first
order theorem prover. MEPHISTO is a hardware-specific tool that converts the
original goal into a set of simpler subgoals, which are then automatically solved by
a general-purpose theorem prover. MEPHISTO gives some support for hierarchical
proof procedures providing a library of pre-proved modules.

In a later work, Schneider and Kropf [32] presented a verification method

13

which combines the advantages of deduction style proof systems like HOL with
those of traditional model checking approaches. Datapath oriented verification goals
involving abstract datatypes are expressed by a class of higher-order logic, which
allows a unified description of hardware structure and behavior at different levels of
abstraction.

Hurd [15] used PROSPER 2 [9] to combine the Gandalf, a first-order theorem
prover, with HOL. A HOL tactic, GANDALF _TAC, is used to enable first-order HOL
goals to be proved by Gandalf and mirror the resulting proofs in HOL. Gandalf is a
PROPSPER plug-in that can be called over a network, and a Gandalf server may
be set up servicing multiple HOL clients. GANDALF_TAC takes the original goal,
converts it to a normal form, writes it in the appropriate format, and sends it to
Gandalf. Gandalf then parses the proof, translates it to a HOL proof and proves
the original goal in HOL.

Scheinder and Hoffmann [31] linked the SMV model checker [24] to HOL using
PROSPER. They embedded the linear time temporal logic (LTL) in HOL and trans-
lated LTL formulae into equivalent w-Automata, a form that can be reasoned about
within SMV. The translation is completely implemented by means of HOL rules.
HOL terms are exported to SMV through the PROSPER plug-in interface. On
successful model checking, the results are returned to HOL and turned to theorems.

This hybrid tool allows SMV to be used as a HOL decision procedure. The deep

2Prosper provides an open proof architecture for the integration of different verification tools
in a uniform higher-order logic environment

14

embedding of the SMV specification language in HOL allows LTL specifications to
be manipulated in HOL.

Gordon [10] integrated HOL with the BuDDy BDD package. His aim was to
provide a platform for implementing intimate combinations of deduction and algo-
rithmic verification, like model checking. HOL was used to formalise the Quantified
Boolean Formulae of BDDs. By using a higher-order rewriting tool, the formulae
can be interactively simplified to get a smaller BDDs. The mapping of simplified
formulae to BDDs was done using a table. The BDD algorithm can also strengthen
its deductive ability in this system. In a later work [12], Gordon describes some
experiments in adding simple model checking infrastructure to the HOL98. The
main difference between this approach and other tools mentioned above is that the
tool provides a secure and general programming infrastructure to allow users to im-
plement their own BDD-based verification algorithms and then to integrate them
with existing HOL98 system.

Similar to [15, 19, 29], we integrate a theorem prover (HOL) to an existing
hardware verification tool (MDG) rather than embedding an external package within
the system as done in [10] and [31]. We work within the proof system but using the
specification style of the automated tool. This is done by embedding the languages of
the automated verification tool within the proof system. An additional novel aspect
in our work is the explicit support of model reduction based on the natural design

hierarchy and the specification to verify. The use of MDG as the automated tool

15

compared to related BDD tools is to our opinion a big asset that opens up interesting
possibilities of making use of MDG features for data abstraction. Thus pushing up
the abstraction level of what can be passed to the automated tool from the theorem
prover and ultimately allowing larger datapaths to be dealt with automatically.
More recently, Gordon [11] presented an embedding of the semantics of the
properties specification language Sugar2.0 [16] in higher-order logic supported by
HOL. The motivation of this work is mainly proving meta-theorems with a theorem
prover to provide a deeper kind of sanity checking, and developing machine read-
able semantics. Another advantage is the fact that Sugar provides ways to specify
properties in both simulation and formal verification, providing the users with an
interface to combine formal verification techniques, both theorem proving and model
checking, with simulation techniques. Similar to our project, this embedding gives
a way to specify properties in HOL, the L,,4, language in our case. While [11]
focuses on the formalisation of Sugar in HOL, in our project we further enable the

verification of the property outside HOL, using the MDG model checker.

1.4 Scope of the Thesis

The remainder of this thesis is organised as follow. In Chapter 2, we overview the
MDG and HOL verification systems, emphasising the difference between theorem

proving and model checking approaches, the advantages as well as the verification

16

process of each. In Chapter 3, we describe our HOL-MDG linkage approach ex-
plaining the way we embedded MDG input languages into the logic of the HOL
interactive theorem prover. Chapter 4 presents the implementation of the tool, its
structure and its functionality. Chapter 5 illustrates the advantages of our hybrid
approach through a case study on an Island Tunnel Controller (ITC). And finally,

conclusions and future work will be discussed in Chapter 6.

17

Chapter 2

HOL and MDG

In this chapter, we give an overview of the linked tools: the HOL theorem prover

and the MDG system.

2.1 The HOL Theorem Prover

The HOL theorem prover, developed by Gordon [25], is an interactive proof assistant
that has been under development since mid-1980’s, and is based on ideas from the
Edinburgh LCF project [23]. The LFC approach implements a logic in a strongly
typed programming Meta Language (ML) [27]. The HOL system is based on higher-
order logic and was originally intended for hardware verification. Thanks to its
generality, HOL is being currently used in a variety of application areas. The basic
interface to the system is ML [27].

HOL offers two proof styles: forward and goal-directed backward proofs in a

18

natural-deduction-style calculus by creating theorems and applying inference rules to
the already created theorems. In the forward proof style, inference rules are applied
in sequence to previously proved theorems until the desired theorem is obtained
[25]. This approach has some problems since it is hard to know where to state the
proof and, for large proofs, to determine which sequence of rules to apply [26]. In
backwards proofs, the user sets the desired theorem as a goal, applies tactics to split
it in subgoals in such a way that if a corresponding inference rule was applied to
the subgoals, the theorem of the goal will be obtained. A tactic is an ML function
that when applied to a goal reduces it to a list of subgoals, along with a justification
function mapping a list of theorems to a theorem [25]. In practice, a mixture of
these two proof styles is used, with forwards proof interspersed within backwards
proofs.

Our tool links HOL98 to MDG model checker. HOL9S is the third version of
HOL system. Its key idea is that theorems are represented as an abstract ML types
whose only pre-defined values are axioms, and whose only operations are inference
rules. Theorems in HOL are built either by setting axioms or by applying rules of
inference to axioms or to existing theorems; also a proved goal is set to theorem:;
hence the consistency of the logic is preserved [2]. The HOL98 system provides a
range of pre-proved theorems and a set of pre-defined tools, which represents a rich
initial environment. In addition, users can enrich it by building their own theories.

A theory defines a set of types, operators, axioms, and rules to deal with them.

19

Usually, a theory is not independent as it needs to interact with other theories.
HOL allows hierarchical verification wherein design modules are divided into
submodules and the submodules are divided too until the lowest implementation
level is reached. To prove that the implementation of a module implies its specifica-
tion, the user should prove the implication of the implementation and the specifica-
tion of each submodule. The main advantage of hierarchical theorem proving is the
ability to deal with large scale design. Despite of the expressiveness power of higher-
order logic and the feature HOL system is offering, the verification process is still
a cumbersome task since it needs very deep understanding of the design structure
and a googd mastering of higher-oder logic and HOL, which make the verification

time-consuming.

2.2 The MDG System

The MDG system is a decision diagram based verification tool, primarily designed
for hardware verification. It is based on Multiway decision Graphs [5], which are an
extension of ROBDD (Reduced Ordered Binary Decision Diagrams) [3] by abstract
sorts and uninterpreted functions. The MDG tool is written in the logic program-
ming language Prolog. Also, it runs under Quintus Prolog V3.2. The advantage of

this tool is the fact of implementing a black box verification technique.

20

Multiway decision graphs [?] represent a new class of decision diagrams, pro-
posed to overcome the limitation of the ROBDD-based methods. These latter re-
quire a binary representation of the circuits. The idea behind MDGs is to introduce
abstract sorts and uninterpreted functions such that the model checking can be done
on larger state spaces.

The MDG language is based on an ordinary many-sorted first order logic.
The vocabulary consists of sorts, constants, variables and function symbols. The
conjunction, disjunction or composition of the latter are defined as terms. Since the
logic is typed, for each defined term, a type is assigned. For ROBDDs, the formulae
are of propositional logic and the leaf nodes of their associated diagrams labelled by
0 or 1. The extension to MDGs is done in such a way that the leaf nodes are labelled
by formulae, allowing the nodes to range over abstract sorts. An MDG is a finite
acyclic directed graph G where leaf nodes are labelled by formulae, the internal ones
are labelled by terms, and the edges issuing from an internal node N are labelled
by terms of the some sorts as the label node N. Each formula P is represented by a
graph G. So, when from as node there is a multiple edge B;, B,... issuing from it
corresponding and leading to the subgraphs G;, GG;..., which represent respectively
to the formulae Py, P, ..., then the whole graph G is obtained by the conjunction
of all the subgraphs.

As an example, we show the MDG of a multiplexer (Figure 2.1). We declare

the input signals and the output to be of the same abstract sort, then we define

21

abstract constant for each input and finally we set the order of variables to take into

account in constructing the MDG.

X
y4
y /‘/
S
(& MUX (b) MDG

Figure 2.1: Multiplexer Example

This MDG is suitable for any signals of type wordn we define.

The MDG tools accept hardware description in Prolog-style Hardware Descrip-
tion Language, called MDG-HDL [37], which allows the use of abstract variables for
representing data signals. This MDG-HDL description is then compiled into the
ASM (Abstract State Machine) [4] model represented by internal MDG data struc-
tures. An ASM is defined as a tuple D= (X, Y, Z, F;, Fr, Fp) where X represents
the set of input variables, Y represents the set of state variables, Z represents the
set of output variables, F; denotes the set of initial variables, Fp represents the
transition relation, and finally Fp denotes the output relation.

MDG-HDL supports structural descriptions, behavioral ASM descriptions, or

a mixture of both. The MDG tool contains mainly a combinational verification

22

module, sequential verification module, reachability analysis module and an MDG
package. The latter implements manipulation algorithms for MDGs. The reacha-
bility analysis algorithm checks that an invariant holds in all the reachable states of

an ASM using the abstract implicit enumeration technique.

Property Algebraic Vaiable Invariant
Specification Specification Order Specification

[CombChek ' |Modd Checking |

| : | SetheCklng :

Design '\ Combinationd | ' ' Inv.Checking !

Specificaion | 1| Veifiction | | [Seweid | |, Desin

S 1| Venficion || Implementation

| |

|

[Reachallily | !

: Andysis |

MDG Package
L(ES/NO (Counter Example)

Figure 2.2: The MDG Tool

Interacting together, these modules provide four applications: combinational/sequential
equivalence checking, invariant checking, and model checking. For the two first op-

erations, the user should provide the tool with :

e A behavioral model: it is given by a tabular representation of the transi-

tion/output relation or a truth table.

e A variables ordering file: it contains a total order of all variables, functions to

follow in the construction of the MDGs.

23

e An algebraic file: it contains the different sorts, functions and terms specified

in the description model.

e An implementation file: it is usually a netlist of components (predefined in

MDG-HDL) connected by signals.

e An invariant file: Since from the two models to verify, we build a product
machine, we impose that a given output should be equal to its correspondence

in the second circuit.

In addition, both behavioral and structural description files contain the signals and
their sorts, the output partition and the next partition in the case of sequential
circuit. However, the verification algorithms are different. For the combinational
verification, an MDG of each model is computed. Thanks to the canonicity of the
MDGs, the equivalence checking holds if the obtained MDGs are the same. If it is
not the case, the equivalence checking is failed. However, for sequential checking,
the verification is achieved by forming a circuit out of two circuits, feeding the same
inputs to them and verifying an invariant asserting the equality of the corresponding
outputs in all reachable states.

Invariant checking is achieved by using the symbolic reachability analysis [39]
technique. The algorithm makes sure that a given invariant holds over all the reach-
able states. Using this operation, the verification of safety properties become possi-

ble.

24

Finally, MDG encapsulates a model checker for safety and liveness properties.
It is based on implicit enumeration technique of the abstract state machine. The
input files are either the implementation or the specification of the circuit, the
algebraic description, the order variables and the property to be verified. In MDG
model checker, the design is represented by ASMs and the properties to be verified
are expressed by formulae in the first order ACTL-like [37] temporal logic, called
L14g(36]. The ASM model of L,,4, is composed of the original design model along
with a simplified invariant. This model is constructed before interacting with the
MDG. Furthermore, additional information is required to verify the property: the
user should provide the tool with the type of the property as well as the fairness
constraints imposed. Finally, the simplified invariant is checked on the composite
machine using the implicit abstract enumeration of ASMs. More information are
required by the model checker to verify the property. When a verification fails, the
MDG tool returns a counterexample, consisting of the state trace from the initial
state to the faulty one. However, this feature is still not provided in the tool for the
model checking operation.

As part of the MDG software package, the user is provided with a large set
of pre-defined modules such as logic gates, multiplexers, registers, bus drivers, etc.
Besides the logic gates which only use Boolean signals, all the other components
allow signals with concrete as well as abstract types. Moreover, a special structure

is defined called tables. Tables can be used to describe functional blocks in both

25

implementations and specifications. A table is similar to the truth table, it has as
entry values first order terms in the rows. It is composed of a list of rows. Each
row is a list of inputs values and their corresponding output. A default value of the
output is defined if the inputs sequence we have doesn’t fit the defined rows. Some
constraints are imposed in the table inputs. The first list contains variables and
cross-terms (where the output of a given function is concrete while its inputs contain
at least is o abstract sort). The last element of the list must be a variable (either
concrete or abstract). The other variables in the list must be concrete variables.
The remaining lists consist of the sets of values that the corresponding variables or
cross-terms can take. The last element in the list of values could be a first-order
term. This represents an assignment to the output variable. The other values must
be either ‘don’t care’ (represented by ‘“*’) or individual constants in the enumeration
of their corresponding variable sort. The last element in a table is the default value.
To illustrate this, we present in table 2.1 the table representation of the multiplexer

described above. The table is describing the behaviour of an abstract multiplexer.

IsEqual(x,u) | IsEqual(y,v) | select | z |
1 * 0 u
* 1 1 v

Table 2.1: Mux MDG table

Due to the constraints explained before, the entry of the table couldn’t be an

26

abstract term. To overcome this, we define cross-term function IsEqual that takes
as input x and its generic constant u and returns a boolean type. The same thing

is done for the input y. So, the table structure becomes:

table([[select, IsEqual(x,u), IsEqual(y,v),z],
[0: 1:*:11:])

[1,*,1,v][ul)

We choose u to be the default value. This table description is further inter-
nally translated into an MDG (decision diagram) with the variable ordering s, x, y
and z. However, we have no restriction on the inputs and outputs in definition of

components. The MDG component definition is :

component(muzl, muz(sel(s), inputs([(0,x),(1,y)]), output(y)))

27

Chapter 3

The Formalisation of the MDG
Input Languages in HOL

The aim of our work is linking the HOL theorem proving with the MDG model
checking. Both the model description and the property are given to HOL system.
For processing a model checking operation, the theorem prover has to interact with
MDG model checker and pass the required files to the latter. So, in a certain way,
we are restricted by the input languages of the MDG tool. To express an MDG like

specification and properties in HOL, we have to embed two languages:

e MDG-HDL(for model description).

e L4, (for properties specification).!

3.1 Formalising MDG-HDL Grammar in HOL

As presented in Chapter 2, a special module called table is used to specify behavioral

description in MDG. In [8], the table structure as well as the MDG-HDL components

!Subset of the embedded Hol theories is presented in the Appendix A and B

28

library has been embedded in HOL, allowing the specification of concrete circuits
descriptions. Since there is no embedding of the MDG grammar, we were unable to
define descriptions, where abstract sorts, uninterpreted functions, and cross-terms
are declared. In the following section, we present the subset MDG-HDL library
formalisation previously embedded, then we expose the HOL theory we embedded

to cover the full MDG-HDL grammar.

3.1.1 Formalising the MDG Library in HOL
MDG-Tables Definition in HOL

The proposed embedding of MDG table in HOL consists of considering the MDG-
table specified by five arguments. The first argument is a list of the inputs, the
second is the single output, the third is a list of table rows. Each row is a list itself,
giving one allocation of values to the inputs. The entries in the list can be either
actual values or a special don’t-care marker. The latter matches any value the input
could hold. The fourth argument is a list of output values. Each is the value on
the output when the inputs have the values in the corresponding row. The final
argument is the default value, taken by the output if the input values do not match
any row. The first step in formalising this definition is to define the matching of
input values. These can be either a normal value of arbitrary type or a don’t-care
value. This latter expresses the fact then the output is independent from the value

of this input in the current inputs row. The values taken by a table are defined as

29

a new HOL type, with associated destructor function to access the value.

Fg4ef Table_Val = TABLE_VAL of 'a | DONT_CARE

Faef TableVal_to_Val(TABLE_VAL(v:'a))= v

The first HOL expression define a new HOL datatype “Table_Val”, which has two
constructors : TABLE_VAL and DONT_CARE. The former can take any type.
Curzon et al. [8] defined the matching of input values to table values. A match
occurs if either the table value is don’t-care, or the value on the input is identical
to the table value. This property must hold for each table entry. It is defined

recursively by the function table_match.

Faef (Table_match inputs [] (t:num) = T)
A (Table_match inputs (CONS v vs) t) =
(((HD(inputs) t) = TableVal_to_Val (v:'a Table_Val))

V (v = DONT_CARE))

A (Table_match (TL inputs) vs t)

HD and TL are two predefined HOL functions which return respectively the head
and the tail of a list. The test is first done on the first element in the input list. It is
repeated after that on the rest of the list, until reaching the empty list. Moreover, if
there is a match on a given row, the output has the corresponding value. Otherwise,
it must check the next row. If there is no match, the output equals the default value.

This is defined in a recursive manner on the input list as the relation table:

30

Faef (table inps (out:num —> 'b) ([]:(‘a Table_Val list) list)
V_out default t = (out t = default t))
A (table inps out (CONS v vs) V_out default t =

((Table_match inps v t) — (out t = (HD V_out)t)))

| (table inps out vs (TL V_out) default t)))

A given table will relate a given input to a given output, if the table relation is true

at all the times:

Fa4e; TABLE inps (out:num —> 'b) (V_outs:('a Table_Val list) list)

V_out default = Vt. table inps out V_outs V_out default t

The given definition is less flexible than the MDG tables one since, here, all the
input variables must be of the same type, while they can be from different sorts
in the MDG system. This is why Curzon et al. [8] choose to reserve a list for the
output instead of specifying the input like in the MDG tool: the last element in the

row correspond to the output value of the corresponding inputs.

The MDG Components Definition in HOL

The MDG library comes with a predefined set of components. Since the abstract
sort is not handled in the tool developed by Kort et al. [20], only components,
where their inputs and outputs are of concrete sorts, are defined. All the inputs and
outputs are declared as signal from type number to Boolean, dependent from the
variable t (time). For example, the fork component [8] was defined in a concrete

way:

mdg_fork x y = Vt. (x:num—>bool) t = y t

31

Besides, the behavior of each component is defined in term of tables. As an example,

the corresponding table of the fork component is:

FORK_TABLE x y = TABLE x:num—>bool] (y:num—>bool)
[[TABLE_VAL F];
[TABLE_VAL T]]

[FSIG;TSIG] FSIG

With the above exposed formalisation of the MDG-HOL library, there is no
possibility to express MDG terms containing abstract functions, generic constants,
or abstract variables. Therefore, we propose an embedding of the MDG grammar
syntax in HOL. This required major modifications to the pre-introduced theory. In
next section, we first describe the grammar of the MDG-HDL and then we expose

its corresponding embedding in HOL.

3.1.2 Embedding the MDG-HDL Grammar in HOL
MDG-HDL Grammar

MDGs incorporate variables of abstract types to denote data values and uninter-
preted function symbols to denote data operations. MDG terms are well formed
first-order term.The wellformedness condition prescribes that MDG formulas should
be in the form of directed formulas [5]. Let F be a set of function symbol and v

a set of variables. We denote the set of terms freely generated from F and v by

T(F.v).

32

The syntax of a directed formula is then given by the grammar below [1]:

Sort S = S|S

Abstract Sort S n= a| By ..

Concrete Sort underlineS = oal By

Generic Constant C t= al|blb]|..

Concrete Constant underlineC ::= a|b|c| ...

Variable mathcal X = V|V

Abstract Variable V n= x|yl z] ..

Concrete Variable underlineV. = z|y|z| ..

Directed Formula = Disj == ConjV Disj

Conj = FEqAConj | Eq

Eq = A=C(AeT(F,v)
v=c

V=A(A e1(F,v))
T
L
As in ordinary many-sorted first-order logic, the vocabulary consists of a
generic constants, concrete constants, abstract variables, concrete variables and
function symbols. Directed formulae are always disjunctions of disjunctions or con-
junctions of equations. The conjunction Conjis defined as be conjunction of at least

two equations Fq. Atomic formulae are the equations, generated by the clause Eq,

33

plus T (truth) and L (false). The equation can be the equality of concrete term and
a concrete constant, the equality of a concrete variable and a concrete constant,or

the equality of an abstract variable and an abstract term.

Embedding in HOL

In HOL, we define an abstract sort to be of type a to string. The second parameter
in this definition is specified mainly to permit the user to impose a specific MDG
sort. A concrete sort (Boolean sort included) is defined by the list of its enumerated

values.

Faef MDG_sort = ABSTRACT of 'a —>string
| CONCRETE of string ->string list

Next, predicates are defined to specify the type of the sort we are dealing with.

Faief (IsConcreteSort (ABSTRACT Abs MDG_name) = F)A
(IsConcreteSort (CONCRETE Conc val_list) = T)

IsConcreteSort returns true if the type is of concrete sort. Similary, we define a

predicate to determine abstract sorts.

Faief (IsAbstractSort (ABSTRACT Abs MDG_name) = T)A
(IsAbstractSort (CONCRETE Conc val_list)= F)

A variable is defined according to its type, concrete or abstract. It is defined

as a new Hol datatype:

l_def MDG_var = MDG_VAR of string — MDG_sort

To test the sort of the variable, we should fix its MDG_sort:

34

l_def IsConcreteVariable (MDG_VAR name sort)= IsConcreteSort sort

A function is defined by its domain which is a list of concrete variables, abstract
variables or a mixture of both, and its range, which is a unique output. The type
of the function is determined according to its domain and range. If the output is
from an abstract sort, so the function is defined to be an abstract function. If all
the inputs and the output are from concrete sort, so the function is defined to be
concrete. And finally, if the output of the function is concrete, and at least one of

its inputs is abstract, the function is defined to be cross function.

l—def MDG_Fun = MDG_FUN of string — MDG_VAR list — MDG_VAR

Some predicates are set to determine the kind of the function we define: abstract,
concrete or a cross function. Since the domain of the function is a list of variables,
to test if the function is concrete, we should test if the inputs and the outputs are
of concrete sort. So, we define a predicate to determine recursively if the list is of
concrete variables. The test is first done on A, the head of the list, and is repeated

recursively on ¢/, the tail of the list, until reaching the empty list.

F4ef ConcreteVarList(h::tl) = ((IsConcreteVar h) A
(ConcreteVarList t1))A

(ConcreteVarList [] = T)

Hence, a function is concrete if both its domain and its range are concrete:

Fa4ef concreteFunc (MDG_FUN name InputVarList OutputVar) =
(ConcreteVarList InputVarList) A\

(IsConcreteVariable OutputVar)

35

After defining one by one the different elements of the MDG vocabulary, it is possible

to define the different kinds of MDG_terms. An MDG_term is either:

a concrete constant, CONC_Const, one of the concrete sort enumeration,

e a generic constant, GEN_Const, constant defined for an abstract sort,

a variable, VAR_Term, either from concrete sort or abstract sort, or

e a function, FN_Term, from the MDG_Fun HOL datatype defined above.

The latter is done using the constructor TERM. It takes as argument a defined
MDG_Term and returns an MDG_Term.

The HOL definition is:

F4e; MDG_term = GEN_Const of 'a
| CONC_Const of string
| VAR_Term of MDG_VAR
| FN_Term of MDG_Fun

| TERM of MDG_term => MDG_term

The overall structure of the table defined in Section 3.1.1 will not be changed.
However, we impose that the entry of the table should be either a don’t care or an

MDG term.

Fa4e; Table_Val = TABLE_VAL of ‘a MDG_term | DONT_CARE

With the above embedding of the MDG-HDL grammar, it is now possible to define
components of MDG library that contain abstract variables and functionsymbols.

36

For instance, we added the components multiplexer, register, and transform.

example, the multiplexer component is defined as follow:

For

Fgef mdg_mux x1 x2 (y:num—>bool) z =
Vt.zt) =if (y t) then (x2 t)

else x1(t)

In the following section, we present an illustrative example of an abstract

counter using the above embedded theory. We proved, using HOL, the equivalence

of the specification and the implementation of the counter.

3.1.3 Example of an Abstract-Counter

We Consider a synchronous circuit which consists of a data register count, two

multiplexers muzl and muz2, and three functional blocks symbols inc, dec, and eqz.

The uninterpreted functions inc and dec take as input count of abstract sort and

produce an abstract output inc(count) and dec(count), respectively. The cross-term

eqz takes as input count and produces a concrete output of sort bool. y, the select

signal of the multiplexer, is the input of the counter. We consider count the output

of the counter. The transition relation of this machine is as follow:

R= [((y=0) Acount' = inc(count)) V
[((y = 1) A egz(count) = 0 Acount’ = dec(count)) V

[((y

1) A egz(count) = 1 Acount’ = count)

Our objective is to verify in HOL that the implementation of the counter

implies its specification.

37

Counter specification

The HOL specification of the abstract counter contains an abstract sort, two abstract
functions, and a cross function. The behavior of the abstract counter is summarised
in Table 3.1, where state and n_state represent the count and count’ respectively,
pe_val, inc_pc_val, and dec_pc_val are generic constant of the same abstract sort PC.
eqz represents eqz(count).

In HOL, the output of the tables should be defined as signals. Hence, we define

them as function of time ? :

Faef pcSIG = A(t:num).pc_val
Fgef decSIG = A(t:num).dec_pc_val
Faief incSIG = A(t:num).inc_pc_val

Faef dec_incSIG = A(t:num).pc_val

Before writing the table, we have to homogenise its inputs. Therefore, we define
functions to map from the initial type to the desired type. As an example, we give
here the definition the bool_to_MDG Term function, which maps the boolean type to

a concrete MDG type.

F4ef bool_to_MDGTerm:(bool—> string MDG_term) b =
if (b = T) then (CONC_Const "T")
else

(CONC_Const "F")

The table of the counter specification is shown below:

2)X t. x means that x is function of t.

38

Fg4ef COUNTER_TABLE (state) (v:(num—>bool)) (y:(num—>bool))(n_state) =
TABLE ; bool_to_MDGTerm o v ;bool_to_MDGTerm o y]
(n_state o SUC)
[[TABLE_VAL (pc_val); DONT_CARE;TABLE_VAL (CONC_Const "F") 1;

[TABLE_VAL (inc_pc_val);TABLE_VAL (CONC_Const"F");
TABLE_VAL (CONC_Const"T") 1;

[TABLE_VAL (pc_val);TABLE_VAL (CONC_Const"F");
TABLE_VAL(CONC_Const"T") 1 ;

[TABLE_VAL (pc_val);TABLE_VAL (CONC_Const"T");
TABLE_VAL(CONC_Const"T")]]

[incSIG;dec_incSIG;decSIG;pcSIG] pcSIG

The first tree rows represent the possible inputs combination. The fourth list
represents the output for each row respectively. And finally, the pc_val is the default
value of the output if the input sequence is different from what is specified. In terms

of truth table, the counter table specification is equivalent to the Table 3.1.

‘ state ‘ eqz ‘ y H n_state

pc_val * |'F || inc_pc_val
incpcwval| F |T pc_val

pc_val T |T pc_val

pc_val F | T || dec_pc_val

Table 3.1: Abstract Counter Behavior

Counter Implementation

The implementation is composed of two multiplexers, one register for the n_state,
two (black-box) uninterpreted functions Dec and Ine, and finally one transform
function for the cross operator Fgz. In addition, we need to initialise the state value
so, we add an Initial predicate that sets the variable state at pc_val (c.f Figure 3.1).

39

ILito\o— Inc
FO Reg n_staiﬁ
-, Ez
| Dec

Figure 3.1: Abstract Counter Implementation

Faief Counter_IMP (v) (y:num —> bool) (n_state) =
Jx z w (state:num—>string MDG_term) statel.
(Reg statel n_state) A
(Mux1 x z (y:num —> bool) statel) A
(Inc n_state x) A
(Mux2 n_state w (v) 2z) A
(Dec (n_state) (w)) A
(Eqz (n_state) (v)) A
(Initial state)

Counter Verification

The goal to be proven in HOL is stated as the folowing implication:

!state v y n_state pc_val .

(Counter_IMP v y n_state) ==> (COUNTER_TABLE state v y n_state)

The proof should be done for any generic constant our counter takes. The proof was

conduct such that all definitions are first rewritten, and then using a combination of

two predefined HOL tactics: the ARITH_TAC tactic and PROVE_TAC. The First

one is used to split the goal to several subgoals. After that each subgoal is proven

individually. The original goal is proven when all the subgoals are proven.

40

3.2 Formalising £,,;, into HOL Syntax

3.2.1 The £,,5, Syntax

CTL (Computation Tree Logic), is a propositional branching time temporal logic,
widely used as a property specification language for model checking. In CTL, each
linear time operator (F, G, X, or U) must appear after a path quantifier A (for
all paths), and E (there exists a path). CTL* extends CTL by allowing temporal
operator in which a path quantifier is followed by an arbitrary linear time formula.
Thereafter, properties such A(p A Xq) are allowed in CTL* while, not allowed in
CTL. Xu [37] defined an Abstract_CTL* logic, called £,,,4,. This logic extends CTL*
by using the first-order logic rather than the propositional logic. L,,4,, however,is
a subset of the first order Abstract_CTL* [36]. L,,q, is the properties specification
language using for the MDG model checker. The properties allowed in L,,4, can
have the following templates:
Property :

A(Next_let_formula)

| AG(Next_let_formula)

| AF(Next_let_formula)

| A(Next_let_formula)U(Next_let_formula)

| AG((Next_let_formula) = (F(Next_let_formula)))

| AG((Next_let_formula) = ((Next_let_formula) = U (Next_let_formula)))

41

Only the universal path quantification is possible with the current version of MDG
model checker. The syntax of the existential path is still not defined. The Next_Let_Formula
is defined to be a nesting formula, or a basic formula.
Next_let_formula:

X (Next_let_formula)

| LET (Let_equation) IN (Let_equation)

| Next_let_formula (with concrete variables only) = Next_let_formula

| Next_let_formula Next_let_formula

| Next_let_formula (with concrete variables only)

| Basic_formula

Basic_formula:
Lterm = Rterm
| True

| False

Lterm : ASM _variable_Name

Rterm : ASM_variable_Name
| OrdVar_Name

| IntegeConstant

42

| SymbolicConstant

| Function

Let_Equation ::=
Let_equation Let_equation
|(Let_equation)

| OrdVar_Name = ASM _variable_Name

Function ::= Function_Name (parameter _list)

The parameters of the function can be either ordinary variables or functions.
The Let_equation can be the disjunction of Let_equations or an equality of an ordinary
variable and an ASM wvariable. The Basic_formula is true, false or the equality of
LTerm and RTerm. An Rterm can be a variable , constant or a function. However,
the LTerm is an ASM Variable. ASM variables, constant variables and the symbolic
constants represent both the set of variables (concrete and abstract) and the set of

constants (concrete and abstract).

3.2.2 Embedding £,,4, in HOL

In order to embed the L,,4, in HOL, it is important to respect the semantics of the

original language [37]. All properties are defined according to two notions: path and

43

state. A path is a sequence of states. The latter is an assignment to the set of state,
input and output variables. A full path starting from a state s; is denoted by:

T = (8i, Sit1, Sit2,)
All formulas in L4, are path formulas. Hence, given a property in L,,4, on an ASM
under a given interpretation ¢, the property holds on the ASM if and only if the
property is true for all paths starting from each initial state. The semantics of the
AG operator will be :

(r, o) = Gpiff (mj, 0)= p forall j>i
Since L4, is a CTL* like language [37], we divide the properties in two classes: the
first is the CTL like properties and the second is the LTL (Linear Time Temporal
Logic) like properties. For the latter ones, we define a property according to the
predicate we want to verify:

Each logical proposition is a function of the path, expressed here by s which
can be formulated as a history function keeping trace of the states among the path,

and the current state.

Fgep LMDG_G p s = Vt. p s t

The linear temporal operator F, is defined to be a function of p and s such

that exists ¢, where the property holds

Fgef LMDG.Fps = 3Jt. pst

In addition, the conjunction, the implication, and the disjunction of predicates
are defined as function of the proposition

44

Fgef LMDG_IMP pl1 p2 s t = —(pl s t) V p2 s t

The second class of properties is the CTL like ones. Here, we define the

property according to the predicate we want to define as well as its circuit.

Fgef LMDG_AG R p = Vs. ((R s) A (Vt. (p s t)))

Our objective is to precise that each path, considered in the property, belongs
to the circuit description we have. The composition of the different kind of templates
is done manually by the user. Therefore, the embedding we have is more expressive
than the original L,,4,.

When verifying liveness properties, one is usually interested only on the so-
called fair infinite computation paths. A fair computation path is a path along which
the states satisfy the fairness condition infinitely often. In MDG, if we consider
H as a fairness constraint, the formula representing the exception condition H is
called H_formula. Tts syntax is defined by the equality of two ASM _variables or
an ASM_variable and a constant, the conjunction, disjunction, implication of two
H_formulas, the negation or the nesting of H_formulas. However, only concrete
ASM _variables may appear in the H_formula. All fairness constraints imposed are
stored in a file, which is interpreted before the model checking procedure is invoked.

In HOL we represent fairness constraints by a predicate mentioning that the
condition should holds in each state. When fairness conditions are imposed, we add

it as a conjunction to the property as we will present in the next section.

45

F def

LMDG_FAIR p s

Vt. p st

46

Chapter 4

MDG-HOL Linking (The Hybrid
Tool)

In this chapter, we will focus on the implementation part of the link between HOL
and the MDG model checker. The implemented tool inputs are the model descrip-
tion, the property and the HOL goal. It generates automatically all the required
MDG files, which are then communicated to the MDG tool where the verification is
done. The obtained result is transmitted to HOL. Therefore, either a HOL theorem

is set or hand is given to the user to do the proof interactively.

4.1 The Hybrid Tool Behavior

4.1.1 Overview

The tool developed is an interface between the HOL theorem prover and the MDG
model checker. During the verification procedure, the user deals mainly with HOL.

As shown in Figure 4.1, the user starts by giving the HOL design (specification or

47

implementation), the HOL property and the goal to be proven. If this goal fits the
required pattern (our tool accepts only implication goals), the respective MDG files

are generated. The latter are sent to the MDG tool for model checking.

Hol goa

Accepteds,_NO

Yes

\
Input files Output files
Prop(HOL) Prop(MDG)
Design(HOL) Design(MDG)
» Order(MDG)
Fair(MDG)
Alg(MDG)

Y

Cal MDG and
do Verification

| Make Theorem | |Regu|ar HOL proof|

Figure 4.1: Verification Procedure with the Hybrid Tool

If the property holds, a HOL theorem is created. However, if the verification
within the MDG tool fails, we have to perform the proof interactively using HOL.
The tool does not accept any arbitrary HOL specification. It accepts only MDG-
styles specifications and properties. We use the embedded HOL theories to express
both the model and the properties descriptions. In the next sections, we detail the

feature of the input files to the generated files by our tool.

48

4.1.2 Use of Hierarchy

Usually, hardware systems under verification are described (in HOL) in a hierarchical
fashion. The main modules of the specification are divided into submodules. The
submodules are repeatedly subdivided until eventually the logic gate level is reached.

This is achieved by defining the structure “block” in a recursive manner.

block

New Model

subblock| | subblock],

subblock

subblock subblockl | subblock subblock subblockl | subblock

Figure 4.2: Block Extraction

The advantage of having such hierarchy is the ability to extract the block about
which we want to check a property (see Figure 4.2). Hence, the model checker deals
with the specification of the considered block only, not the whole design. As a result,
we save on model size without constraining the user to write another specification

for the appropriate block.

49

4.1.3 The Input Files
Design Specification File (HOL)

Design models are provided as a normal file of HOL definitions. They are written
in a hierarchical structure. Since the model definition must be analyzed by the tool
and ultimately converted into MDG, it should follow a specific form : it consists of
a conjunction of tables, which input and output arguments must be explicitly typed
and declared as MDG terms. This implies that all sorts (abstract and concrete),
variables, constants and functions must be specified. Structural models are written
in a subset of the HOL logic similar to that for behavioral specifications. However,
they are not limited to tables but can include any component of the MDG component

library.

Property Specification File (HOL)

Properties are provided as normal HOL definitions. They are written according
to the £,,4y theory we embedded in HOL. The fairness constraints are added as a
conjunction to the main property formula. The hybrid tool will extract the fairness

constraints and put them in a file before proceeding with the adequate treatment.

50

Proof Goal Specification (HOL)

There are different ways to specify a goal in HOL. However, when using our tool,

the goal should be an implication according to this form :

F Design D Property

looking to proof that the design verifies the property. Since the verification is done
in MDG, we need to formalise the (MDG) result in HOL. Therefore, we convert the

MDG results into a form that can be used [35]:

= Formalised M DGresult D Model D Property

The general conversion theorem into HOL has been proved [35]. The result given
by MDG tool can be interpreted and a HOL theorem can be instantiated for any

design and any property under consideration.

4.1.4 The Generated Files

Design Specification File (MDG-HDL)

It contains:

e The signals appearing in the design model and their sorts assignments.

e The output partition specifying the design output signals.

e A network of tables and/or MDG-HDL components.

o1

e We also give the set of initial states and transition/output relation partition

strategy.

Order File (MDG-HDL)

The order file contains the order of the variables with which the multiway deci-
sion graph is built. In our case, the order is generated statically. However, some

restrictions are imposed for abstract variables and functions name.

Algebraic File (MDG-HDL)

In the algebraic file, all concrete sorts used in the design specification are listed.
It also includes the declaration of all used functions (concrete, cross-function and
abstract). In addition, any generic constants (of abstract type) defined in the design

model should be mentioned here.

Property File (L4)

It has the form of a property acceptable by MDG. It follows the syntax described

in Section 3.3.

The MDG Fairness Files (L,,q4,)

In the HOL given property, the fairness constraints are part of the property, the
hybrid tool takes care of separating them from the property core before processing

them for the adequate treatment. This will be explained in the next section.

52

4.2 The Hybrid Tool Structure

Our hybrid tool is written in SML. It is composed of five main modules: the Hybrid
Tool Interface, the Property Module, the Description File Module, the HOL Goal
Parser Module and the MDG Interaction Module (cf. Figure 4.3). The user’s in-
terface to the hybrid tool is a Java GUI, responsible for getting the HOL goal, the
property file and the model description file, passing them to HOL, loading the £,,4,
and MDG-HDL theories and at the end of the verification process, communicating
the result to the user [14]. In the second module, the Property Parser generates as
output a data structure from which the MDG File Generator produces the MDG
property file, and the Property Type Generator provides the property type. On the
other side, in the Description File Module, the specification is first flattened.
When parsing the goal, we get the name of the property and the block we
want to check. The latter can be either the main module in the specification or
one of its submodules. Since the specification is written in a hierarchical way, it is
possible to extract the target module, and its submodules, and to discard the others.
The Block Extraction Module achieves this task. In the next step, the corresponding
MDG files are generated (Algebraic, Order and Specification/Implementation). In
order to proceed with the model checking operation, these files should be used for
generating ASMs before interacting with MDG. Since the communication between
the linked tools is done automatically, we implemented a special module to take care

of the ASM generation task : ASM Generation Interface

53

Property (HOL) Design (HOL) Goa (HOL)

v v Y

Hybrid Tool Interface

I

i Property Parser :: Design Parsef Goal Parser :
! : ! BIockSpecllj
: | : Blockimp |
| " ProplD |
| : | Y :
: MDGHDL | 1, Bloc Extractor .
| enerator n I
\ 1 MDG_Term BlockSpec/ !
! : ! MDG_Fun Blockimp :
! ! MDG_Type |
| \i x |
| Generator Type | | MDG Code Generator |
! P (L0 Order(MDG-HDL) !
: Property type| op(L_!):: Design(MDG-HDL) :
I vy - L S A |

ASM Generation Interface Alg(MDG-HDL)
Y Y

MDG Interaction
¢ Y/N (MDG)

MDG Result Interpreter

y Y/N (HOL)

Correctness
Theorem generator

¢ Correctness theorem (HOL)

Figure 4.3: Hybrid Tool Structure

ASM Generation Interface Before interacting with MDG, two steps need to be
executed. The first one is to automatically build additional ASMs that represent
the L£,,4, property (cf. Figure 4.4).

The Next Manager is an implemented module in the MDG tool that takes care of
achieving this treatment. The New_prop represents the new property file generated

where ASMs representing the property are added to the specification. The second

54

Design(MDGD-HDL)
Order(MDGD-HDL)

- —— = -

Parsed Property Property file
(Parser

(M DG-HDL Generato)

Prop

vy
(Next Manager)

l new_Design

new_Prop
new_Order

Parsed Property

: Parsed Property
| No
Yy ___. . y
Fair fil ge_G_en_er?tPr_ ! new_Design C Propety Type Generator]
i fair constraints new_Order
. fair_new_Order new_Prop
' fair_new_Prop Prop Type
* fair_new_Design v

MDG InteractionModule

)

If so extra ASMs are constructed and connected to the original ones,

fair_new_Model.

l

Figure 4.4: Property Module Structure

95

step is to test if fairness constraints are imposed. We check this on the parsed

The MDG Interaction Module ensures the communication with MDG. it takes
all the generated MDG files, the property type and the fairness number. The latter
is provided by the property parser module. All these files are supplied to the MDG
tool which applies the verification process and passes the result to HOL through

the MDG Result Interpreter Module. 1f the property holds, a theorem is generated

4.3 Application: The Timing Block

The timing block is one of the blocks composing the Fairisle ATM (Asynchronous
Transfer Mode) switch fabric [22]. The Fairisle switch fabric is a real switch fabric
designed and used at the University of Cambridge for multimedia applications. Cur-
zon [7] formally verified this ATM switching element hierarchically using the HOL
system. Kort et al. [20] presented the verification of the ATM switching using the
HOL-MDG Hybrid tool where the submodules were verified using the MDG tool.
Also, Pisini et al. [28] presented the equivalence checking of the timing block module
using the hybrid tool . We present the formalisation of the state transition diagram
of the timing block in terms of MDG tables according to our new theory, as well as

the experimental result of some properties checked within our tool.

4.3.1 Timing Block Structure

The timing block controls the timing of the arbitration decision based on the frame
start signal and the time the routing bytes arrive. The implementation of the timing

block is shows in Figure 4.5. Its HOL specification is given as follow:

o6

X

»

act[0..3] ;
anyActive
/ o OR
4
dx
AND DFFd
frameStart INV frameStartBar
INV
OR DFFd
<Bar yterm
AND

Figure 4.5: Timing Block Implementation

x=routeEnable

Fder

VactO actl act2 act3 fs routeEnable_i.

TIMING_IMP (actO,actl,actQ,actS,fs) routeEnable =

JanyActive_i fsBar qxBar yterm dx dy gqx qy.

mdg_or4 (actO,actl,actQ,actB) anyActive
A mdg_not fs fsBar
A mdg_not gx gxBar
A mdg_and (qy,qxBar) yterm
A mdg_and4 (anyActive_i,qy,fsBar,qxBar) dx
A mdg_or (fs,yterm) dy
A mdg_reg dx qgx
A mdg_reg dy qy

A mdg_fork gqx routeEnable

57

4.3.2 Timing Block Behavior

Figure 4.6 shows the finite state machine of the behavior of the timing block, which

consists of three symbolic states (Run, Wait, Route), and has two inputs (frameStart

and anyActive) and one output (routeEnable).

dse

framestart=1/routeEnable=0

Figure 4.6: Timing Block State Machine

While the input and the output are all of Boolean sort, the state and next

state variables are of concrete sort with the enumeration :

We hence create a concrete MDG type :

Run, Wait, and Route.

F4ef state_Type = CONCRETE "state_Type" "run";"wait";

"route"]

The concrete constants generated from this types are:

Fgef Tun = CONC_Const "state_Type"
F4ef cwait = CONC_Const "state_Type"
F4ef Toute = CONC_Const "state_Type"

Since the inputs of MDG table should be of the same sort, we use the same function

bool_to_MDG Term to homogenise the input types of the tables. The former converts

o8

the Boolean type t to the MDG_term type we defined. The HOL defined table for

the transition relation of the timing block is defined in HOL as follows :

F4ef transition ((anyActive:num—>bool),(fs:num—>bool),(state:num—>string
MDG_term)) (n_state:num—>string MDG_term) =
TABLE bool_to_MDGTerm o anyActive; bool_to_MDGTerm o fs; state]
(n_state o SUC)
[[DONT_CARE; TABLE_VAL(CONC_Const"F"); TABLE_VAL(run)];
[TABLE_VAL(CONC_Const"T"); TABLE_VAL(CONC_Const"F"); TABLE_VAL(wait)];
[DONT_CARE; TABLE_VAL(CONC_Const"F"); TABLE_VAL(route)]]

[runSIG; routeSIG; runSIG] waitSIG

The outputs are defined as signals: function of time t as mentioned before for the
true signal and the false signal.

The MDG generated Table is:

F4ef component(tab_si,table([[anyActive,fs,state,n_statel,
[*,0,run,run],
[1,0,wait,route],

[*,0,route,run]wait])).

To specify the Timing Block behavior, we defined three tables: active, transi-
tion and output. The HOL specification is represented by the conjunction of those

tables:

Faie; Timing (actO ,actl, act2, act3, fs) routeEnable =
B anyActive state n_state.
(active (actO,actl,act2,act3) anyActive) A
(transition (anyActive,fs,state) n_state)A

(output state routeEnable)

59

4.3.3 Timing Block Verification

The model checking is done within the MDG tool. We provide the tool with the
MDG-HDL like specification and the L,,4, properties. By calling the HOL tactic
for model checking, the MDG files are generated, and the property treatment is
processed. Finally, the model checking is run in MDG and the result is returned

back to HOL. The following properties were verified.

e The first property is a liveness one showing that the system will be in the state
Run in some of the computation paths. The initial state is Wait. The HOL

property is defined as :

F4ef Timing propertyl (state) =

LMDG_AF (CONVERT timing state) (LMDG_X((\ state t. state t = run)))

The first part of the property makes reference to the circuit we want to check.
CONVERT is a function of the circuit and the state which express the fact
that each path considered during the verification process belongs to the com-

putatoin tree of the considered model. The MDG property derived is :

AF (X (state = run))

e The second property is a safety one. We checked that if the system is on state
run and the FrameStart signal is set then in the next state, the state will be
Wait and the output of the timing is set to 0:

60

A((state = crun & fs= 1) -> (X(state = cwait & routeEnable = 0))

e In the third property, we verify fairness constraint. In HOL, the constraint is

added as a conjunction to the property:

Timing_propertyl_fair (state) =
(timing_propertyl)

/\ (LMDG_FAIR (\ fs (t:num) . "(fs t = 1)))

However, in MDG, fairness are expressed separately in a different file, e.g.,

I (fs = 1)

e In the fourth property, we did the model checking on the implementation of

the time block circuit.

A((anyActive_i_1= 0) -> (X(routeEnable_o = 1)))

The property mentions that if the signal anyActive_i_1 is equal to 0, then in the
next state the output will be set to 1. MDG checked the property and returns
that the model does not verify this property (when the anyActive_i_1 is set to
0, the output in the next state is always equal to 0). So, the HOL goal is not

proved. Unfortunately, the model checker does not provide a counter-example.

The model checking of these properties succeeded, and we summarise the results
given by MDG in the table bellow:

61

Property H CPU; ‘ Memory gy, H Nodes ‘ Components ‘ Signals ‘

Propertyl || 0.15 66908 123 9 17
Property2 || 0.18 72212 145 11 20
Property3 || 0.19 68812 116 10 17
Property4 || 0.20 98644 226 16 23

Table 4.1: Model Checking Results of the Timing Block

To be more accurate, the user should allow for an extra two to three minutes,
required time for the tool to load the HOL theories and the input files, generate the
MDG ones and finally interact with MDG system. The model checking within the
tool is definitely faster than proving directly with HOL. Yet, the direct proof should
be feasible in the theorem prover. For the failed property, the HOL goal is not
proved. However, it is still possible to set the negation of the theorem. While the
Timing BLock is a small illustrative example, in the next Chapter, we will present

a significantly larger case study.

62

Chapter 5

Case Study: Island Tunnel
Controller

In this chapter, we illustrate our methodology using the Island Tunnel Controller
(ITC) [40] as a case study. It is ideal for illustrating purposes since its specification

contains abstract sorts and uninterpreted functions. Some properties are verified

using our hybrid tool HOL-MDG.

5.1 Island Tunnel Controller Description

The Island Tunnel Controller is depicted in Figure 5.1. It controls the traffic lights
at both ends of a tunnel connecting the mainland and the island. Four sensors
are installed at both ends of the tunnel to detect the vehicles presence: one at the
tunnel entrance (ie) and one at the tunnel exit (iz) in the island side, and one at the
tunnel entrance (me) and one at the tunnel exit (mz) on the mainland side. It is
assumed that all cars are finite in length, that no cars gets stuck in the tunnel, that

no cars do not exit the tunnel before entering the tunnel, that cars do not leave the

63

tunnel entrance without travelling through the tunnel, and that there is sufficient

distance between two cars such that the sensors can distinguish the cars. The

1 i

I = Mainland Island [> il

+
X

mgl Light mr Tunnel Light
) - —> il
mrl mgl Controller “ontroller Controller Ll
) mg ig ‘
mx me MLC TC ILC - i

me iv
my 1y

mx _T <_

> T X
ic* ic¢+ ic+ fc * rc++ tC-*'““% +mrc-

[sland Counter Tunnel Counter

Tunnel

Mainland

a b

Figure 5.1: Island Tunnel Controller Structure

island tunnel controller is composed of five modules: The Island Light Controller,
the Tunnel Controller, the Mainland Light Controller, the Island Counter and the
Tunnel Counter (refer to [37] for the state transition diagrams of each component).
The Island light Controller (ILC) has four states: green, entering, red and exiting.
The outputs igl and irl control the green and red lights on the island side respectively;
wu indicates that the cars from the island side are currently occupying the tunnel,
and 7r indicates that ILC is requesting the tunnel. The input iy requests the ILC to
release control of the tunnel, and ig grants control of the tunnel from the island side

(cf. Figure 5.2). A similar set of signals is defined for the Mainland Light Controller

64

iy A=0/ie=1

Figure 5.2: The Island Controller

(MLC). However, in this module, the behaviour depends on a cross-function lessn
which takes as input an abstract sort and generates as output a Boolean type (cf.

Figure 5.3).

lessn=0V/ [my_A=1)A (lessn=1)]

(lessn=1) A

(my_A=0) \ (me=
(mg_A=1)A\(mx=0)

(me=0)\(mx=1) (lessn=1)\ mx=0 mx=1
me=1)\(my=0)

mx=1

Figure 5.3: The Mainland Controller

The Tunnel Controller (TC) processes the requests for access issued by the
ILC and MLC. The Island Counter and the Tunnel Counter keep track of the car’s

number currently on the island and in the tunnel, respectively. For the tunnel

65

controller, the counter tc is increased by 1 depending on tc+ or decremented by 1
depending on tc- unless it is already 0. The Island Counter operates in a similar way,

except that the incrementation and to decrement depend on ic+ and ic-, respectively.

5.2 Specification and Properties Definitions

For the two modules ILC and MLC, we need to define an enumerated type :
state_type which takes one of the different possible sates of the system. Here, the

suffix c¢_is added to the names.

state_Type = CONCRETE "state Type" ["c_green";"cred"; "c_entering";"c_exiting"]

c_green = CONC_Const "state_Type"

In our specification, all the types are concrete except one abstract sort of
type wordn used to describe the tunnel controller and the tunnel counter. The two
uninterpreted function inc and dec are specified as well. We also define two cross-
functions lessn and equz. The design specification is written hierarchically, where
blocks are represented by the conjunction of their respective tables. The whole
system is the conjunction of the five blocks mentioned above.

Next, we have specified and verified a number of properties on the Island Tun-
nel Controller. In the following, we describe four samples for illustration purposes,

c¢|

where the symbols “&”, “!” and “->” mean logical and, negation, and implication
respectively (using L,,q, syntax). Experimental results of a larger set of properties

are displayed in Table 5.1.

66

e Propertyl: Let is be the state variable of the 1LC, and gl its the green
light variable. The green light of the ILC module must be off if there is a car

exiting the tunnel.

LMDG_AG ((CONVERT ILC_comp is)
(LMDG_IMP

(LMDG_AND (is (t:num).(ix = true)) (is (t:num). (is t = c_red)))

(is (t:num).(igl t = true))))

The derived MDG property is:

AG ((is = cred & ix = 1) -> (igl = 0))

e Property2: Let mglbe the green light variable of the MLC and ms its state
variable. The green light of the MLC module should be on in a future state

during the computation. This property verifies the liveness of the component.

LMDG_AG (MLC_comp mgl) (ms (t:num). (mgl t= true))

The derived MDG property is:

AF (mgl = 1)

67

e Property3: Let mtc_min be the signal to decrement the counter of the ML.C
module, and mgl its green light variable. These two signals can never be set
to 1 at the same moment, because when exiting the tunnel, the counter is

decremented; hence, the red light must be on.

LMDG_AG((CONVERT (MLC_comp mgl))
(LMDG_NOT(LMDG_AND (ms (t:num). mtc_min =true)

(ms (t:num). mgl = true))))

The derived MDG property is:

AG (! ((mtc_min = 1) & (mgl = 1)))

e Property4: Let my and 4y be the signals to increment the mainland, and the

island counters, respectively. The TC should never increment both counters.

LMDG_AG (CONVERT ILC_comp(igl) MLC_comp (mgl))
(LMDG_NOT (LMDG_AND

(C is (t:num). (igl = true)))

(ms (t:num). (mgl true))))

The derived MDG property is:

AG('((my = 1) & (iy = 1)))

68

5.3 Experimental Results

We set up HOL goals, which denotes that the properties we proposed imply the
design specification. Table 5.1 describes the model checking results of these and
other properties, including CPU time, memory usage and number of MDG nodes
generated. We also report the number of components and signals of the reduced

(extracted) design model effectively used for model checking in MDG.

‘ Property H CPU; ‘ Memory gy, H MDG Nodes ‘ Components ‘ Signals ‘

Propertyl || 0.32 0.66 318 18 32
Property2 || 0.36 0.77 313 13 31
Property3 || 0.41 0.73 401 16 34
Property4 || 1.12 1.91 1266 13 29
Property5 || 0.91 1.26 1027 10 26
Property6 || 0.93 1.77 1166 13 29
Property7 || 1.15 1.39 11002 16 33
Property8 || 1.15 1.39 11002 16 33

Table 5.1: Model Checking Results with Block Extraction

It is clear here that the verification is much faster than doing the proof in-
teractively with HOL. Moreover, since the user has just to give the tool the HOL
goal, specification and property, the HOL-MDG communication and verification are
done automatically. All properties were successfully verified. After interpreting the
MDG result, respective HOL theorems were created.

In addition, since our specification is written in a hierarchical way, during each
property verification, our hybrid tool extracts the module to be proved. To see the
advantage of such block extraction, we checked the first two properties on the whole

69

ITC design (See Table 5.2).

‘ Property H CPU; ‘ Memory gy . H MDG Nodes | Components | Signals

Propertyl || 0.74 1384668 830 26 62
Property2 || 0.87 1467908 1027 24 60

Table 5.2: Model Checking Results without Block Extraction

The obtained results demonstrate that the block extraction performs savings
in memory usage and CPU run time by more than 50 %.

In summary, our hybrid tool has a better verification performance than the
MDG model checker and the HOL theorem prover individually. However, the en-
hancement achieved with the block extraction in the MDG side is not guarantied

when a global property on the whole design is verified.

70

Chapter 6

Conclusion and Future Work

Formal verification approaches are more and more used in the verification process of
digital systems. Despite of their efficiency, existing tools still have some drawbacks.
Theorem proving, for instance, suffers from interactivity and the need of continuous
guidance, while model checking, though full automatic, suffers from state space ex-
plosion. To improve the verification process, many hybrid approaches were proposed
as a way to take advantage of different formal verification techniques.

In this thesis, we proposed a tool for linking HOL theorem proving and MDG
model checking. HOL, a theorem prover based on high-order logic, allows the use
of hierarchical verification and abstraction. MDG, a decision diagram based tool,
provides features for model checking and the use of a relatively limited abstraction.
The hybrid tool we proposed generates the required MDG files and communicates

them to the MDG tool, where the property is checked. Thereafter, the verification

71

result is returned back to HOL. The verification of the properties within the MDG
tool introduces automation to HOL since the proof is not conducted interactively.
Moreover, our tool allows a block extraction feature, which increases the performance
of the model checker by reducing the memory usage and the CPU time.

An interface between the two tools is implemented using MoscowML. The
input languages of the model checker were first embedded into HOL allowing the
definition of MDG like specification and properties. The user communicates mainly
with the theorem prover. Second, the tool described in [20] has been extended to
handle abstract datatypes. Our purpose from this expansion is to have the possibility
to do equivalence checking of complex circuits which might cause problems in the
model checker.

The embedding of the £,,4, language provides a way to write properties in
HOL. The embedding of the MDG-HDL grammar provides the tool with abstract
types needed, benefiting from the abstraction allowed in HOL as well as the abstract
sorts, the uninterpreted functions, featured by the MDGs.

We presented the Timing Block of an ATM switch fabric as an example, then
the Island Tunnel Controller as a case study illustrating the verification within the
built tool. The obtained results shows that the verification is more tractable than
using each tool individually.

Our hybrid tool can help in resolving the problem of non-termination in MDG.

This problem has been discussed in [5, 38]. In [1], Ait et al. proposed an approach for

72

solving the non-termination problem by using the schematization method, namely
-terms. As, we are using a hierarchical approach, when considering a model, some
modules are verified in the MDG tool, and for the other modules that will generate
an infinite set of states, HOL theorem prover will be used. Here, for each module,
rather than the specification of its behavioral, we should specify the environment
of the module. The abstract counter we presented is an example illustrating the
feasibility of this approach. Since it is specified with abstract terms in table inputs,
its verification with MDG leads to the non-termination problem, while we prove in
HOL its equivalence. Future examples can be tackled to ensure the usability of the
tool for such problems.

Another future issue of our project is the integration of reachability analysis
in HOL. In fact, we are defining a property in HOL according to the model we want
to check. HOL should be able to compute the different design paths and verify
the property according to the input MDG tables we have as input language for the
specification. Actually, if the MDG tool does not give a result for a property because
of state explosion, the user will have hard time to prove such module within HOL.
Since, there is no way to compute paths from the table structures.

Developing HOL tactics to treat the conjunction and the disjunction of prop-
erties can be a good extension of the current tool. This means, rather than sending
only one property to be verified, the user would have the possibility to specify

many properties in HOL. Then, the tactic will split the property resulting from

73

conjunction (or disjunction) to separated properties and treat each property inde-
pendently. The verification of each property will be done within MDG. The obtained
results(theorems) are later on conjuncted (or the disjuncted). Finally the result is

returned back to HOL.

74

Appendix A

L4y HOL Theory

As explained in Chapter 3, we proposed an embedding in HOL of the MDG property
input language : L,,q,. It represents a subset of the Abstract_CTL* [37].
Since L4, is a ACTL* [37] like language, we divide the properties in two

classes: the first is the CTL* like properties and the second is the LTL like properties.

A.1 CTL* like Properties

Fgey val LMDG_AG = Define ¢
LMDG_AG R p = Vs. ((Rs) A (Vt. (p s t)))¢;
F4ef val LMDG_AF = Define ¢
LMDG_AF R p = Vs. ((Rs) A (3t. (p s t)))¢;
Fgef val LMDG_A = Define °

LMDG_AR p t=Vs. (Rs) A (ps t);

Only the univesal path quantifier is allowed in MDG, however, we embedded

75

in HOL the existantial path quantifier too.

F4ey val LMDG_EG = Define ¢
LMDG_EG R p = Js. (R s) A (Vt. (p s t)))¢;
F4ef val LMDG_EF = Define ¢

LMDG_EF R p = Jds. ((Rs) A (Ft. (p s t)))*;

A.2 LTL like Properties

Fgef val LMDG_G = Define °
LMDG_.Gp s =Vt. pst ¢
F4ey val LMDG_F = Define °
LMDG_.F p s t = Jtl. p s t1 ¢;
F4ey val LMDG_U = Define °

LMDG_U pl p2 s = Jt. (p2 st A (Vtl. t1 <t = pl s tl))*;

76

Fgef val LMDG_X = Define °

LMDG_X p s t = p s (t+1)°¢;

F4ey val LMDG_NOT = Define °
LMDG_LNOT p st =~ pst ¢

Fgef val LMDG_IMP = Define °

LMDG_IMP pl p2 s t = —=(pl s t) V p2 st *;
Fgef val LMDG_AND = Define °

LMDG_AND pl p2 s t = (pl s t) A p2 st *;
Fgef val LMDG_OR = Define ¢
LMDG_OR pl p2 st =pl stV p2st ¢
F4ey val LMDG_FAIR = Define ¢

LMDG_FAIR p = Vs t. (p s t) *;

Fgef val LMDG_VAL = Define °

LMDG_VAL v s t = v °;

Fgef val LMDG_VAR = Define °

LMDG_VAR x s t = s x t ;

Fgef val LMDG_IS = Define ¢

LMDG_IS ql g2 st = (ql st = g2 s t) *;
F4ey val LMDG_TRUE = Define ¢

LMDG_TRUE s t = T ;

F4ef val LMDG_FALSE = Define °
LMDG_FALSE s t = F ;

Fgef val LMDG_START = Define ¢

LMDG_START p s = Vs. p s 0 ¢;

77

Appendix B

MDG-HDL HOL Theory

We present bellow a subst of the embedded MDG-HDL grammar and the table

structure in HOL. MDG sorts

Fa4ey Hol_datatype ‘MDG_sort = ABSTRACT of 'a — string

CONCRETE of string — string list‘ ;

Predicates to determine the type of a given sort

Faiey Define ‘(IsConcreteSort (ABSTRACT Abs mnme) = F)A

(IsConcreteSort (CONCRETE Conc z) = T)¢ ;
Faiey Define ‘(IsAbstractSort (ABSTRACT Abs mme) = T)A

(IsAbstractSort (CONCRETE Conc z)= F)°‘ ;

F4ey Define ‘bool_type = CONCRETE "bool_type" ["true";"false"]‘;

78

MDG Variables

Fgef Hol_datatype ‘MDG_VAR

MDG_VAR of string — MDG_sort°‘;

MDG functions

Fgef Hol_datatype ‘MDG_Fun = MDG_FUN of string — MDG_VAR list — MDG_VAR °;

MDG Terms

F4ef MDG_term = GE_Const of 'a
| CONC_Const of string
| VAR_Term of MDG_VAR
| FN_Term of MDG_Fun
| TERM of MDG_term => MDG_term
F4ef Define ‘(IsGenericConstant (GE_Const Abs) = T)
A (IsGenericConstant (CONC_Const z)= F)
A (IsGenericConstant (VART var) = F)
A (IsGenericConstant (FN fun) = F)
A (IsGenericConstant (TERM terml term) = F)*;
F4ef Define ‘(IsConcreteConstant (GE_Const Abs) = T)
A (IsConcreteConstant (CONC_Const z)= F)
A (IsConcreteConstant (VART var) = F)
A (IsConcreteConstant (FN fun) = F)

A (IsConcreteConstant (TERM terml term) = F)°;

79

F4ef Define ¢(IsFunction (GE_Const Abs) = F)

A (IsFunction (CONC_Const z)= F)

A (IsFunction (VART var) = F)

A (IsFunction (FN fun) = T)

A (IsFunction (TERM terml term) = F)°‘;
F4ef Define ¢(IsVariable (GE_Const Abs) = F)

A (IsVariable (CONC_Const z)= F)

A (IsVariable (VART var) = T)

A (IsVariable (FN fun) = F)

A (IsVariable (TERM terml term) = F)°‘;

MDG Table Structure

Faef val TABLE_VAL_AX =
Hol_datatype ‘Table_Val = TABLE_VAL of ’'a MDG_term DONT_CARE®;
Fgey val TableVal_to_Val = Define
‘(TableVal_to_Val (TABLE_VAL (v:'a MDG_term)) = v)°¢ ;
Fiey val Table_match = Define ‘ (Table_match inputs [1 (t:num) = T)
A (Table_match inputs (CONS v vs) t =
(((HD(inputs) t) = TableVal_to_Val (v:'a Table_Val))
V (v = DONT_CARE)) A (Table_match (TL inputs) vs t))°;
F4ef (table inps (out:num —> 'b) ([]:(‘a Table_Val list) list)
V_out default t = (out t = default t))
A (table inps out (CONS v vs) V_out default t =
((Table_match inps v t) — (out t = (HD V_out)t)))
| (table inps out vs (TL V_out) default t)))
Fgef TABLE inps (out:num —> 'b) (V_outs:(‘a Table_Val list) list)

V_out default = Vt. table inps out V_outs V_out default t

80

Definition of some MDG Tables

F4ef bool_to_MDGTerml:bool—> string MDG_term) b =
if (b = T) then (CONC_Const "T") else (CONC_Comst "F"));
Faiey FSIG =A(t:num) . (CONC_Const "F");
Faef TSIG =A(t:num) . (CONC_Comnst "T");
Fa4ey NOT_TABLE (x:num—>bool) (y:num—>bool) =
TABLE [bool_to_MDGTerml o x] (bool_to_MDGTerml o y)
[[TABLE_VAL(CONC_Const "T")]]
[FSIG] TSIG ;
Fgef NOT_TABLE2 (x:num—>bool) (y:num—>bool) =
TABLE [bool_to_MDGTerml o x] (bool_to_MDGTerml o y)
[[TABLE_VAL (CONC_Const "F")1;
[TABLE_VAL (CONC_Comst "T")]] [TSIG;FSIG] (ARB);
l—def val AND_TABLE = new_definition("AND_TABLE“,
——‘AND_TABLE (x1:num—>bool) (x2:num—>bool) (y:num—>bool) =
TABLE [bool_to_MDGTerml o x1;bool_to_MDGTerml o x2] (bool_to_MDGTerml o y)
[[TABLE_VAL(CONC_Const "F");TABLE_VAL(CONC_Const "F")1;
[TABLE_VAL(CONC_Comnst "F"); TABLE_VAL(CONC_Const "T")]
[TABLE_VAL(CONC_Comnst "T"); TABLE_VAL(CONC_Const "F")];
[TABLE_VAL(CONC_Const "T"); TABLE_VAL(CONC_Const "T")7]

[FSIG;FSIG;FSIG;TSIG] TSIG ‘——);

81

F4ef AND4_TABLE(x1:num—>bool) (x2:num—>bool) (x3:num—>bool) (x4 :num—>bool) (y) =
TABLE[bool_to_MDGTerml o x1;bool_to_MDGTerml o x2;
bool_to_MDGTerml o x3;bool_to_MDGTerml o x4](bool_to_MDGTerml o y)
[[TABLE_VAL (CONC_Const"T"); TABLE_VAL(CONC_Comnst "T");
TABLE_VAL(CONC_Const"T") ; TABLE_VAL(CONC_Const"T")]]1 [TSIG] FSIG
Fgef OR_TABLE (x1:num—>bool) (x2:num—>bool) (y:num—>bool) =
TABLE [bool_to_MDGTerml o x1;bool_to_MDGTerml o x2] (bool_to_MDGTerml o y)
[[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Comnst "F")1;
[TABLE_VAL (CONC_Comst "F"); TABLE_VAL (CONC_Const "T")];
[TABLE_VAL (CDNC_ConSt "T"); DONT_CARE]]
[FSIG;TSIG;TSIG] (ARB);
F4ef OR4_TABLE (x1:num—>bool) (x2:num—>bool) (x3:num—>bool)
(x4 :num—>bool) (y:num—>bool) =
TABLE [bool_to_MDGTerml o x1;bool_to_MDGTerml o x2;
bool_to_MDGTerml o x3;bool_to_MDGTerml o x4] (bool_to_MDGTerml o y)
[[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "F");
TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "F")]]
[FSIG] TSIG ;
Fa4ey NAND_TABLE (x1:num—>bool) (x2:num—>bool) (y:num—>bool)=
TABLE [bool_to_MDGTerml o x1;bool_to_MDGTerml o x2](bool_to_MDGTerml o y)
[[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "F")I1;
[TABLE_VAL (CONC_Comst "F"); TABLE_VAL (CONC_Const "T")];
[TABLE_VAL (CONC_Comst "T"); TABLE_VAL (CONC_Const "F")];
[TABLE_VAL (CONC_Const "T");TABLE_VAL (CONC_Const "T")]]

[TSIG;TSIG;TSIG;FSIG] (ARB);

82

Fg4ef NOR_TABLE (x1:num—>bool) (x2:num—>bool) (y:num—>bool) =
TABLE [bool_to_MDGTerml o x1;bool_to_MDGTerml o x2] (bool_to_MDGTerml o y)
[[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Comst "F")];
[TABLE_VAL (CONC_Comnst "F"); TABLE_VAL (CONC_Comnst "T")];
[TABLE_VAL (CONC_Const "T"); TABLE_VAL (CONC_Const "F")1;
[TABLE_VAL (CONC_Comnst "T");TABLE_VAL (CONC_Const "T")
[TSIG;FSIG;FSIG;FSIG] (ARB);
Fa4e; XOR_TABLE (x1:num—>bool) (x2:num—>bool) (y:num—>bool)=
TABLE [bool_to_MDGTerml o x1;bool_to_MDGTerml o x2] (bool_to_MDGTerml o y)
[[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "F")1;
[TABLE_VAL (CONC_Comst "F"); TABLE_VAL (CONC_Const "T") 1;
[TABLE_VAL (CONC_Comst "T"); TABLE_VAL (CONC_Const "F")];
[TABLE_VAL (CONC_Const "T");TABLE_VAL (CONC_Const "T")]]
[FSIG;TSIG;TSIG;FSIG] (ARB);
Fa4ef FORK_TABLE (x:num—>bool) (y:num—>bool)=
TABLE [bool_to_MDGTerml o x] (bool_to_MDGTerml o y)
[[TABLE_VAL (CONC_Const "F")I;
[TABLE_VAL (CONC_Const "T")1]

[FSIG;TSIG] FSIG;

83

Definition of MDG pre-defined components

"def val mdg_not = new_definition(“mdg_not",

——‘mdg_not x y = V(t:num) . y t = —(x t) ‘—=);
l—def val mdg_and = new_definition(“mdg_and",

——‘mdg_and (x1,x2) y = VY(t:num) . y t = (x1 t) A (x2 t) ‘—=);
l—def val mdg_and3 = new_definition("mdg_and3“,

——‘mdg_and3 (x1,%2,x3) y = VY(t:num) . y t = (x1 t) A (x2 t) A
(x3 t)‘——);
l—def val mdg_and4 = new_definition("mdg_and4“,

——‘mdg_and4 (x1,x2,x3,x4) y = VY(t:num) . y t = (x1 t) A (x2 t) A (x3 t)

(x4 t)‘——);
l—def val mdg_or = new_definition(“mdg_or“,
——‘mdg_or (x1,x2) y = V(t:num) . y t = (x1 t) V (x2 t) ‘—=);

l—def val mdg_or4 = new_definition(“mdg_or4",
——‘mdg_or4 (x1, x2, x3, x4) y = V(t:num) . y t = (x1 t) V (x2 t) V
(x3 t) V (x4 t)‘——);

l—def val mdg_nand = new_definition("mdg_nand“,

——‘mdg_nand (x1, x2) y = V(t:num) . y t = =(x1 t) V =(x2 t) ‘—=);
"def val mdg_nor = new_definition(“mdg_nor",

——‘mdg_nor (x1, x2) y = V(t:num). y t = —(x1 t) A (32 t) ‘—);
"def val mdg_nor3 = new_definition("mdg_norB“,

——‘mdg_nor3 (x1, x2, x3) y = VY(t:num). y t = —(x1 t) A =(x2 t) A

—(x3 t)——);

84

"def val mdg_xor = new_definition(“mdg_xor",
——‘mdg_xor (x1, x2) y = V(t:num). y t = ((x1 t) A
—(x2 t)) V. —(x1 t) A (x2 £)) ‘—=);
Fgef val mdg_reg = new_definition("mdg_reg",
——‘mdg_reg x y = Vt. (y)(t+1) = x t'——);
"def val mdg_fork = new_definition("mdg_fork“,
——‘mdg_fork x y = Vt. (x) t =y t‘—);
l—def val mdg_transform = new_definition ("mdg_transform",

——‘mdg_transform x1 x2 =Vt .dy. x2(t) =y (x1 t)

85

Bibliography

1]

0. Ait Mohamed, X. Song, and E. Cerny. On the non-termination of MDG-
Based Abstract State Enumeration. Theoretical Computer Science Journal, To

appear.

G. Birtwistle, B. Graham, and S. K. Chin. new_theory’ HOL’; An Introduction to
Hardware Formal Verification in Higher Order Logic. Laboratory for Applied

Logic, Department of Computer Science,Brigham Young University, August

1994.

R. Bryant. Symbolic Boolean Manipulation with Ordered Binary Decision Dia-
grams. In International Conference on Computer-Aided Design, pages 236 243,

1995.

E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou. Automated
Verification with Abstract State Machines Using Multiway Decision Graphs,
volume 1287. Formal Hardware Verification: Methods and Systems in Com-

parison. Lecture Notes in Computer Science, State-of-the-Art Survey, Springer

86

[10]

Verlag, 1997.

F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny. Multiway decision
graphs for automated hardware verification. Formal Methods in System Design,

10(1):7-46, 1997.

J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A tutorial introduction

to PVS, sri international. April 1995.

P. Curzon. The Formal Verification of the Fairisle ATM Switching Element:
an Overview. Technical Report 328, University of Cambridge, Computer Lab-

oratory, March 1994.

P. Curzon, S. Tahar, and O. Ait-Mohamed. Verification of the MDG Compo-
nents Library in HOL. Supplementary Proc. International Conference on The-

orem Proving in Higher-Order Logics, Canberra, Australia, September 1998.

L. A. Dennis, G. Collins, M. Norrish, R. Boulton, K. Slind, G. Robinson,
M. Gordon, and T. Melham. The PROSPER Toolkit. In in Proccendings of the

Sizth International Conference on Tools and Algorithms for the Construction

and Analysis of Systems, LNCS 1785, Springer Verlag, 2000.

M. Gordon. Combining Deductive Theorem Proving with Symbolic State Enu-

meration. 21 Years of Hardware Formal Verification, December 1998.

87

[11]

[12]

[13]

[14]

[17]

18]

M. Gordon. Using hol to study sugar 2.0 semantics. to be published as NASA

Conference Proceedings CP-2002-211736, 2002.

M. Gordon. Reachability Programming in HOL98 Using BDDs. Theorem Prov-

ing and Higher Order Logics, LNCS 1125, Springer Verlag,2000.

K. Havelund and N. Shankar. Experiments in Thoerem Proving and Model
Checking for Protocol Verification. Formal Methods Furope, LNCS 1051:662

682, Springer Verlag, 1996.

R. Hum, H. Yip, H. Li, R. Mizouni, and S. Tahar. A GUI for linking HOL to

MDG. Technical report, ECE Dept., Concordia University, June 2002.

J. Hurd. Integrating Gandalf and HOL. In Theorem Proving in Higher Order,

LNCS 1690:311 321, Springer Verlag, 1999.

I. Beer, S. Ben David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh.
The temporal logic sugar. In Computer Aided Verification, volume LNCS 2102,

pages 363-367, Springer Verlag, 2001.

Synopsys Inc. Static Timing and Formal Verification: Online Manual. Synopsis

Corporation, 2000.

J. Joyce and C. Seger. Linking BDD-based Symbolic Evaluation to Interactive
Theorem Proving. In In proceedings of the 30th Design Automation Conference,

Dallas, Texas, United States, pages 469-474, June, 1993.

88

[19]

[20]

[21]

[24]

[25]

[26]

J. Joyce and C. Seger. The HOL-Voss System: Model-Checking inside a Gen-
eral Purpose Theorem-Prover. Higher Order Logic Theorem Proving and Its

Applications, LNCS 780:185 198., Springer Verlag, 1994.

I. Kort, S. Tahar, and P. Curzon. Hierarchical Verification Using an MDG—
HOL Hybrid Tool. Correct Hardware Design and Verification Methods, LNCS

2144:244-258, Springer Verlag, 2001.

R. Kumar, K. Schneider, and T. Kropf. Structuring and Automating Hardware
Proofs in a Higher-Order Theorem-Proving Environment. Formal Methods in

System Design, 2(2):165 223, 1993.

I. M. Leslie and D. R. McAuley. Fairisle: an atm network for the local area. In

ACM Communication Review, volume 19(4), pages 327-336, 1991.

M. Gordon, R. Milner, and C. Wadworth. Edinburgh lcf: A mechanized logic

of computation. volume LNCS 78. Springer Verlag, 1979.

K. L. McMillan. Symbolic Model Checking. Kluwer, 1993.

T. Melham and M. Gordon. Introduction to Higher Order Logic, Theorem
Proving Environment for Higher Order Logic. Cambridge University Press,

1993.

T. Melhem. Higher Order Logic and Hardware Verification. Cambridge Uni-

versity Press, 1993.

89

[27]

28]

[29]

[30]

[31]

32]

L. Paulson. ML for the Working Programmer. Cambridge University Press,

1996.

V. Pisini, S. Tahar, O. Ait-Mohamed, P. Curzon, and X. Song. Formal Hard-
ware Verification by Integrating HOL and MDG, March 2000, ACM Publica-

tions.

S. Rajan, N. Shankar, and M. Srivas. An Integration of Model-Checking with
Automated Proof Checking. Computer Aided Verification, LNCS 939:84-97,

Springer Verlag, 1995.

R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz,
S.-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K.
Ranjan, S. Sarwary, T. R. Shiple, G. Swamy, and T. Villa. VIS: a system for
verification and synthesis. In Computer Aided Verification, volume LNCS 1102,

pages 428 432, New Brunswick, NJ, USA, Springer Verlag,1996.

K. Schneider and D. Hoffmann. A HOL Conversion for Translating Linear
Time Temporal Logic to w-automata. Theorem Proving in Higher Order Logics,

LNCS 1690:255 272, Springer Verlag, 1999.

K. Schneider and T. Kropf. Verifying Hardware Correctness By Combining
Theorem Proving and Model Checking. Technical report, University of Karl-

sruhe, Karlsruhe, Germany, December 1995.

90

33]

[34]

[35]

[36]

37]

[39]

[40]

IEEE standard 1364-1995. leee standard description language based on the

verilog hardware description language, 1995.

T. Kropf. Introduction to Formal Hardware Verification. Springer Verlag, 1999.

H. Xiong, P. Curzon, and S. Tahar. Importing MDG Verification results into
HOL. Theorem Proving in Higher Order Logics, LNCS 1690:293-310, Springer

Verlag, 1999.

Y. Xu. MDG Model Checker User’s Manual. Dept. of Information and Opera-

tional Reaserch, University of Montreal, Montreal, Canada, October 1999.

Y. Xu. Model Checking for a First-Order Temporal Logic Using Multiway

Decision Graphs. PhD Thesis, University of Montreal, Canada, April 1999.

Z. Zhou, X. Song, S. Tahar, E. Cerny, F. Corella, and M. Langevin. Formal
verification of the island tunnel controller using multiway decision graphs. In
Formal Methods in Computer-Aided Design, volume LNCS 1166, pages 233

247, 1996.

Z. Zhou. MDG Tools (V1.0) Developer’s Manual, 1996.

Z. Zhou and N. Boulerice. MDG Tools(V1.0) User’s Manual. University of

Montreal, Dept. D’IRO, 1996.

91

[41] 7. Zhu, J. Joyce, and C. Seger. Verification of the Tamarack-3 Microprocessor
in a Hybrid Verification Environment. In Higher-Order Logic Thoerem Proving

and Its Applications, LNCS 780, pages 252 266., Springer Verlag, 1994.

92

