
A Hybrid Tool for Linking HOL Theorem Provingwith MDG Model Che
king
Rabeb MizouniA ThesisinThe DepartmentofEle
tri
al and Computer Engineering

Presented in Partial Ful�llment of the Requirementsfor the Degree of Master of Applied S
ien
e atCon
ordia UniversityMontr�eal, Qu�ebe
, Canada
April 2003

 Rabeb Mizouni, 2003

CONCORDIA UNIVERSITYDivision of Graduate StudiesThis is to
ertify that the thesis preparedBy: Rabeb MizouniEntitled: A Hybrid Tool for Linking HOL Theorem Proving withMDG Model Che
kingand submitted in partial ful�lment of the requirements for the degree ofMaster of Applied S
ien
e
omplies with the regulations of this University and meets the a

epted standardswith respe
t to originality and quality.Signed by the �nal examining
ommittee: Dr. M. Reza SoleymaniDr. Otmane Ait MohamedDr. Patri
e ChalinDr. So��ene TaharApproved by Chair of the ECE Department2003 Dean of Engineering

ABSTRACT
A Hybrid Tool for Linking HOL Theorem Proving withMDG Model Che
kingRabeb Mizouni

Nowadays, the formal veri�
ation of hardware is gaining a lot of importan
e in thedesign
ow of mi
ro-ele
troni
s systems. There exists several formal hardware veri-�
ation approa
hes ea
h with its own advantages and drawba
ks. Hen
e, the idea oflinking di�erent approa
hes to bene�t from their advantages has emerged as a poten-tial ultimate solution. In this thesis, we des
ribe a hybrid tool for formal hardwareveri�
ation that links the HOL (Higher-Order Logi
) theorem prover and the MDG(Multiway De
ision Graphs) model
he
ker. Our tool supports abstra
t datatypesand uninterpreted fun
tion symbols available in MDG, allowing the veri�
ation ofhigh level spe
i�
ations. For this purpose, we embedded in HOL the grammar of thehardware des
ription language, MDG-HDL, used to represent models to be veri�ed.Furthermore, we provided an embedding of the �rst-order temporal logi
 Lmdg usedto express properties for the MDG model
he
ker. Furhtermore, we have developedan interfa
e whi
h reads a HOL goal, generates the required MDG �les,
alls theMDG model
he
ker, and generates the HOL theorem on su

essful veri�
ation.iii

Our tool also handles design hierar
hies by redu
ing the model to its subsystema

ording to the property to be veri�ed. Veri�
ation with the hybrid tool is fasterand more tra
table than using either tool separately. This has been illustrated via anumber of simple hardware ben
hmark examples as well as a more elaborated design
ase study.

iv

A mes Parents qui me manquent tellement ...A mon
her mari Anis...

v

ACKNOWLEDGEMENTS
I would like to express my gratitude to all those who gave me the ability to
omplete this thesis.I am deeply indebted to my supervisor Dr. Tahar for his pre
ious instru
tion.His dynami
 thinks, and his broad and profound knowledge have given me a greathelp. I would like to express my spe
ial gratitude to Dr. Curzon from MiddlesexUniversity for his guidan
e and stimulating suggestions during my resear
h work.I am also obliged to Dr. Ait-Mohamed for his valuable dis
ussions and hints.The HVG group
olleagues provided a ni
e atmosphere for dis
ussions andresear
h, I thank them all, espe
ially, Amr Talaat for his great help and valuablefeedba
k on the �rst draft of this thesis.Last but not least, I would like to give my gratitude to Dr. Ben Ayed, whointrodu
ed me to the formal methods subje
t and made me really enjoy it.

vi

TABLE OF CONTENTSLIST OF TABLES . xLIST OF FIGURES . xiLIST OF ACRONYMS . xii1 Introdu
tion 11.1 Formal Veri�
ation . 21.1.1 De
ision Diagram Based Methods 51.1.2 Theorem Proving . 71.2 Motivation . 81.2.1 Verilog-HOL-MDG Proje
t . 81.2.2 Linking HOL and MDG Equivalen
e Che
ker 81.2.3 Linking HOL and MDG Model Che
king 101.3 Related Work . 121.4 S
ope of the Thesis . 162 HOL and MDG 182.1 The HOL Theorem Prover . 182.2 The MDG System . 203 The Formalisation of the MDG Input Languages in HOL 283.1 Formalising MDG-HDL Grammar in HOL 28vii

3.1.1 Formalising the MDG Library in HOL 293.1.2 Embedding the MDG-HDL Grammar in HOL 323.1.3 Example of an Abstra
t-Counter 373.2 Formalising Lmdg into HOL Syntax 413.2.1 The Lmdg Syntax . 413.2.2 Embedding Lmdg in HOL . 434 MDG-HOL Linking (The Hybrid Tool) 474.1 The Hybrid Tool Behavior . 474.1.1 Overview . 474.1.2 Use of Hierar
hy . 494.1.3 The Input Files . 504.1.4 The Generated Files . 514.2 The Hybrid Tool Stru
ture . 534.3 Appli
ation: The Timing Blo
k . 564.3.1 Timing Blo
k Stru
ture . 564.3.2 Timing Blo
k Behavior . 584.3.3 Timing Blo
k Veri�
ation . 605 Case Study: Island Tunnel Controller 635.1 Island Tunnel Controller Des
ription 635.2 Spe
i�
ation and Properties De�nitions 66viii

5.3 Experimental Results . 696 Con
lusion and Future Work 71A Lmdg HOL Theory 75A.1 CTL* like Properties . 75A.2 LTL like Properties . 76B MDG-HDL HOL Theory 78Bibliography 86

ix

LIST OF TABLES
2.1 Mux MDG table . 263.1 Abstra
t Counter Behavior . 394.1 Model Che
king Results of the Timing Blo
k 625.1 Model Che
king Results with Blo
k Extra
tion 695.2 Model Che
king Results without Blo
k Extra
tion 70

x

LIST OF FIGURES
1.1 Formal Veri�
ation Approa
h . 31.2 Intended Verilog-HOL-MDG Proje
t Skeleton 91.3 Hybrid HOL-MDG Tool for Equivalen
e Che
king[20℄ 101.4 HOL and MDG Model Che
ker Interfa
e 112.1 Multiplexer Example . 222.2 The MDG Tool . 233.1 Abstra
t Counter Implementation . 404.1 Veri�
ation Pro
edure with the Hybrid Tool 484.2 Blo
k Extra
tion . 494.3 Hybrid Tool Stru
ture . 544.4 Property Module Stru
ture . 554.5 Timing Blo
k Implementation . 574.6 Timing Blo
k State Ma
hine . 585.1 Island Tunnel Controller Stru
ture 645.2 The Island Controller . 655.3 The Mainland Controller . 65

xi

LIST OF ACRONYMS
ASM Abstra
t State Ma
hinesATM Asyn
hronous Transfer ModeCTL Computational Tree Logi
FSM Finite State Ma
hineHDL Hardware Des
ription LanguageHOL Higher-Order Logi
ILC Island Light ControllerITC Island Tunnel ControllerLTL Linear Temporal Logi
ML Meta LanguageMLC Main Land ControllerPVS Prototype Veri�
ation SystemROBDD Redu
ed Ordered Binary De
ision DiagramRTL Register Transfer LeverSMV Symboli
 Model Veri�erTC Tunnel ControllerVIS Veri�
ation Intera
ting with SynthesisVLSI Very Large S
ale Integration

xii

Chapter 1
Introdu
tion
With the ever in
reasing growth in the design of digital systems, and the size ofmi
roele
troni
s
ir
uits, the role of design veri�
ation has gained a lot of impor-tan
e. Nowadays, simulation is
onsidered the main testing approa
h. Nevertheless,serious design errors often remain undete
ted despite the major e�orts to improvesimulation te
hniques. To over
ome these limitations, formal veri�
ation has beenintrodu
ed [34℄. Formal veri�
ation relies on a strong mathemati
al ba
kground.It tries to mathemati
ally prove that an implementation of a system fully satis�esits spe
i�
ation. There exist today several formal veri�
ation approa
hes like the-orem proving, model
he
king, equivalen
e
he
king, et
. Ea
h has advantages anddrawba
ks. In this thesis, we present our e�orts in formalising and implementinga way for allowing the HOL (Higher-Order Logi
) theorem prover to support theproof pro
edure of the Multiway De
ision Graphs (MDG) model
he
ker.1

The MDG [5℄ system is a de
ision diagram based veri�
ation tool, primarilydesigned for hardware veri�
ation. It supports both equivalen
e
he
king and model
he
king. It is based on multiway de
ision graphs whi
h extend Redu
ed-OrderedBinary De
ision Diagrams (ROBDD) [3℄ with abstra
t sorts and uninterpreted fun
-tion symbols.HOL [25℄ is an intera
tive theorem prover based on higher-order logi
. It
an handle very large
ir
uits for veri�
ation, without any restri
tion on the size.However, sin
e it implements a white box veri�
ation approa
h (user intera
tivity),it is time-
onsuming and needs a high expertise of the user. Therefore, it does not�t the
urrent VLSI industry needs, whi
h is more time-to-market oriented, wherefast, eÆ
ient, and trusted te
hniques are adopted for testing produ
ts. The ideaof developing hybrid approa
hes, integrating an intera
tive theorem prover and anautomated tool to redu
e the veri�
ation e�orts, emerges. Su
h hybrid approa
hesbene�t from the high expressiveness and s
alability of the theorem prover, and theautomation of the model
he
ker.
1.1 Formal Veri�
ationFormal Hardware Veri�
ation is the proof that a
ir
uit or a system (the imple-mentation) behaves a

ording to a given set of requirements (the spe
i�
ation) [34℄.Any formal veri�
ation approa
h requires three
omponents:2

� The
ir
uit (system) under investigation (
alled the implementation)� The set of requirements this
ir
uit should obey to (
alled the spe
i�
ation);� The formal veri�
ation tool whi
h is responsible of the veri�
ation pro
ess(Figure 1.1).
Formal Verification Tool

Implementation Specification

Correct

Not Correct

Figure 1.1: Formal Veri�
ation Approa
hIn pra
ti
e, one needs to model both the implementation and the spe
i�
ationin the tool, and then uses one of the formal veri�
ation algorithms of the tool to
he
k the
orre
tness of the system or in some
ases also to give a kind of tra
e(
alled
ounter-example) to where the error is. Formal methods have long beendeveloped and advo
ated within the
omputing s
ien
e resear
h
ommunity as theyprovide sound mathemati
al foundation for the spe
i�
ation, implementation andveri�
ation of
omputer systems. These methods exploit representations with for-mally de�ned semanti
s in order to des
ribe abstra
tly (independent of details of3

implementation) the desired fun
tional behavior of a system [34℄. Su
h formalisa-tion methods provide pre
ise and unambiguous system spe
i�
ations whi
h
an be
he
ked for
ompleteness and internal logi
al
onsisten
y. The mathemati
al natureof these spe
i�
ations enable reasoning about
onsisten
y (i.e., whether the systemdynami
s are
onsistent with system's stati
 properties) and the dedu
tion of
on-sequen
es of the spe
i�
ation. Simulation, although widely used as a way of testing,
ould never give the veri�
ation
overage needed. Dire
tive test ben
hes, and ran-dom test ben
hes are the ways adopted by simulation to get over this problem, butit is be
oming
lear that the quality of the validation a
hieved by traditional simu-lation is rapidly deteriorating mi
roele
troni
 te
hnology progresses. Thus, formalveri�
ation is proposed as a method to help
ertify hardware and software, and
on-sequently, to in
rease
on�den
e in new designs. Formally verifying designs may be
ost e�e
tive in safety
riti
al appli
ations, for systems in high volume or remotelypla
ed systems, and for systems that will go through frequent redesign be
ause of
hanges in te
hnology. Formal Veri�
ation however, is not the golden solution for
ir
uit testing be
ause of some limitations [26℄. A
orre
tness proof
annot guar-antee that the real devi
e will never malfun
tion; the design of the devi
e may beproved
orre
t, but the hardware a
tually built
an still behave in a way unintendedby the designer (this is the
ase for simulation too). Wrong spe
i�
ations
an playa major role in this, be
ause it has been veri�ed that the system will fun
tion asspe
i�ed, but it has not been veri�ed that it will work
orre
tly. Defe
ts in physi
al4

fabri
ation
an
ause this problem too. In formal veri�
ation a model of the designis veri�ed, not the real physi
al implementation. Therefore, a fault in the modelingpro
ess
an give false negatives (errors in the design whi
h do not exist). Althoughsometimes, the fault
overs some real errors.Formal veri�
ation approa
hes
an generally be divided into two main
ate-gories: rea
hability analysis, and dedu
tive methods. Model
he
kers and equiva-len
e
he
kers are examples of the �rst approa
h. Many di�erent theorem provers(su
h as HOL) have been used for dedu
tive veri�
ation.1.1.1 De
ision Diagram Based MethodsRea
hability analysis approa
hes are internally
ategorised into two main
ows:model
he
king and equivalen
e
he
king.Model
he
king: In this approa
h, a
ir
uit is des
ribed as a state ma
hine withtransitions to des
ribe the
ir
uit behavior. The spe
i�
ations are des
ribed as prop-erties that the ma
hine should or should not satisfy. Traditionally, model
he
kersused expli
it representations of the state transition graph, for all but the smalleststate ma
hines. To over
ome this
apa
ity limitation, di�erent representations ofBDDs (Binary De
ision Diagrams) are used to represent the state transition graphsand this allows model
he
kers (su
h as SMV [24℄, and VIS [30℄) to verify mu
hlarger systems. Still, these model
he
kers fa
e the state spa
e explosion problemswhile verifying large
ir
uits [34℄. 5

Equivalen
e
he
king: In re
ent years, many CAD vendors o�er equivalen
e
he
king tools for design veri�
ation. For example, Formality from Synopsys [17℄performs logi
 equivalen
e
he
king of two
ir
uits based on stru
tural analysis.The
ommon assumption used in the equivalen
e
he
king is that two
ir
uits haveidenti
al state en
oding (lat
hes). With this assumption, only the equivalen
e of the
ombinational portions of two
ir
uits must be
he
ked. However, these tools
annothandle the equivalen
e of designs with no stru
ture similarity. Another drawba
k ofequivalen
e
he
kers is that they all need golden
ir
uits, used as the referen
e to be
ompared with during the veri�
ation pro
ess. However, the
orre
tness of golden
ir
uits is still questionable.The major advantage of the rea
hability analysis veri�
ation approa
hes isautomation. The ma
hine (tool) is usually responsible for building the whole modeland automati
ally verifying either the equivalen
e or a property. But rea
habilityanalysis veri�
ation has two main drawba
ks, namely, �rst the state explorationproblem, where large designs (or deep datapaths) saturate the tool, stopping itfrom
ontinuing the veri�
ation pro
ess, and se
ond, is the problemati
 des
riptionof spe
i�
ations as properties, spe
ially in model
he
king, this des
ription needsexperien
e and sometimes may not give full system
overage.
6

1.1.2 Theorem ProvingWith theorem proving, an implementation and its spe
i�
ation are usually expressedas �rst-order or higher-order logi
 formulae. Their relationship, stated as equivalen
eor impli
ation, is regarded as a theorem to be proven within the logi
 system, usingaxioms and inferen
e rules. Thus, theorem proving is a powerful veri�
ation te
h-nique. It
an provide a unifying framework for various veri�
ation tasks at di�erenthierar
hi
al levels. However, the task of proving
omplex theorems needs expertise.A theorem prover or proof
he
ker is a tool developed to partially automate the proofpro
ess or to
he
k a manual proof. Theorem proving systems are being widely usedon an industrial s
ale for hardware and software veri�
ation. Some of the well-knownones are HOL (Higher-Order Logi
) [25℄, and PVS (Prototype Veri�
ation System)[6℄. Theorem proving is
onsidered a very strong veri�
ation tool be
ause mathe-mati
al formulae
an express nearly all design levels. The proof pro
edures are veryeÆ
ient if they are
onstru
ted by experts. Also, hierar
hi
al modeling is used togive theorem provers nearly unlimited power; espe
ially in handling deep datapathdesigns, whi
h
an be modeled eÆ
iently. The main problem with theorem provingte
hniques is the la
k of expertise and do
umentation. It takes a
onsiderably longtime to learn and use theorem proving. Besides, there is a strong need for librariesof spe
i�
ations to be established, and more automated tools and approa
hes.
7

1.2 Motivation1.2.1 Verilog-HOL-MDG Proje
tAs des
ribed before, ea
h of the veri�
ation te
hniques has advantages and draw-ba
ks. Hen
e, the
ombination of them in hybrid tools is expe
ted to de
rease theveri�
ation
omplexity. The work des
ribed in this thesis is part of a larger proje
tto link Verilog [33℄, HOL and MDG as shown in Figure 1.2. Here, a Verilog modelis passed through a HOL generator to get an equivalent model in HOL. The MDGtool provides four kind of veri�
ation approa
hes: the
ombinational equivalen
e
he
king, the sequential equivalen
e
he
king, the invariant
he
king, and the model
he
king. Within HOL, we use HOL ta
ti
s (proof s
ripts),
alled MDG EQ TACand MDG MC TAC, to generate the required MDG �les 1 and
omplete either theveri�
ation of
ombinational/sequential equivalen
e or model
he
king of the sys-tem. Sin
e both Verilog and HOL provide the hierar
hy, the des
ription model willbe written in a hierar
hi
al way.1.2.2 Linking HOL and MDG Equivalen
e Che
kerIn [28℄, and later [20℄ a hybrid tool and a methodology tailored to perform hierar
hi-
al hardware veri�
ation have been developed by the Hardware Veri�
ation Group of1The
ontents and fun
tions of these �les will be explained in Chapter 2
8

HOL Property
L_MDG

MDG

Equivalence

Model

Checking
Invariant

Checking

HOL

L_MDG to HOL

Generator
Verilog to HOL

Checking

Model (MDG-HDL)

Property (L_MDG)

Property(L_MDG)
Order (MDG-HDL)

Alg (MDG-HDL)

Model(HOL)

Model(Verilog)

Invaraint (MDG)

Fairness (L_MDG)
MDG_EQ_TAC

MDG_MC_TACFigure 1.2: Intended Verilog-HOL-MDG Proje
t SkeletonCon
ordia University. They integrate the HOL theorem prover to the MDG equiv-alen
e
he
ker. Similar to the proje
t we are presenting, the work is done withinthe proof system but using the spe
i�
ation style of the automated veri�
ation tool.The HOL-MDG tool is used to verify that stru
tural spe
i�
ation of hardware im-plementation implies its behavioral spe
i�
ation, rather than
he
king properties ora partial spe
i�
ation. In fa
t, they use MDG to prove
ombinational or sequentialequivalen
e. The hybrid tool integrates automated hardware veri�
ation with inter-a
tive hierar
hi
al hardware veri�
ation. Veri�
ation using the hybrid tool pro
eedsas shown in Figure 1.3 [20℄. An initial HOL goal is set to prove that the model imple-mentation implies its behavioral spe
i�
ation. First, they try to do the equivalen
e
he
king within the MDG tool by applying a HOL ta
ti
 MDG EQ TAC. This lattermainly generates the MDG required �les and ensures the intera
tion with the MDG9

equivalen
e
he
ker. If the design is large enough to
ause state explosion, and sin
ethe des
ription model are written in a hierar
hi
al way, a ta
ti
 HIER VERIF TACis
alled to break the design in sub-blo
ks. The same pro
edure is re
ursively appliedif ne
essary. At any point, the goal proof
an be done in HOL.
HOL Goal

MDG Verification
Succeeded

Make HOL theorem Hierarchical
block

State Explosion

Analyze MDG
counter_example

Correct design HOL Proof Apply MDG_Hier_Verif

yes

yes

no

no

no

yes

Apply MDG_EQ_TAC

Figure 1.3: Hybrid HOL-MDG Tool for Equivalen
e Che
king[20℄
1.2.3 Linking HOL and MDG Model Che
kingThe earlier work presented above implements a tool linking the equivalen
e
he
kingpart of the MDG tool with HOL. Although this
an be a step for the automation ofHOL theorem prover, equivalen
e
he
king, as a te
hnique, su�ers from some draw-ba
ks. Furthermore, it is sometimes useful to have the possibility to
he
k propertieswithin the theorem prover rather than the whole behavior. Usually to redu
e the10

MDG−HDL(MDG)

Lmdg(MDG)

MDG

MDGHOL

Result

H
O
L

M
D
G

−

Theorem

Lmdg(HOL)

HOL

MDG−HDL(HOL)

Figure 1.4: HOL and MDG Model Che
ker Interfa
everi�
ation
omplexity, abstra
tion te
hniques and hierar
hi
al veri�
ation are used.However, the tool in [20℄, although eÆ
ient in many ways, remains limited espe
iallywhen it
omes to abstra
t types.The main
ontribution of MDGs is that they make the integration of impli
itstate enumeration and the use of abstra
t datatype and uninterpreted fun
tionspossible [5℄. In order to bene�t from the abstra
tion of MDG, we need to formalisethe full input language for model des
ription, MDG-HDL [40℄. This formalisationis introdu
ed in HOL as a new theory. Besides, we have to able to express MDG-like properties in the theorem prover. Sin
e the input language of properties inMDG is the Lmdg language, we have to embed it in HOL as well. Finally, we needto implement the interfa
e ensuring the
ommuni
ation between the two tools (
f.Figure 1.4).
11

1.3 Related WorkSin
e higher-order logi
 based theorem provers su�er from la
k of automation, manyproje
ts were undertaken with the aim of linking theorem provers with model
he
k-ers or by embedding model
he
king pa
kages into theorem provers. In our work, we
hoose the �rst alternative, as we proppose an interfa
e linking the HOL theoremprover with the MDG model
he
ker, allowing the de�nition and the veri�
ation ofproperties in HOL.An impressive earlier hybrid system was the pioneering work of Joy
e and Seger[18, 19℄
ombined the theorem prover HOL with the symboli
 traje
tory evaluationtool VOSS. Symboli
 traje
tory evaluation provides a rigorous te
hnique for verify-ing temporal relationship between node values, in addition of treating node valuessymboli
ally. In their system, several predi
ates were de�ned in the HOL system.HOL-VOSS presents a mathemati
al link between the spe
i�
ation language of theVOSS system and the spe
i�
ation language of HOL. A ta
ti
, VOSS TAC, was im-plemented in SML as a remote fun
tion. It
alls the VOSS system that is then run asa
hild pro
ess of the HOL system. A VOSS assertion
an be expressed as a term ofhigher-order logi
. Symboli
 traje
tory evaluation is used to de
ide whether or notthe assertion is true. If it is the
ase, the assertion will be turned to a HOL theoremwhi
h
an be used to pro
eed with further veri�
ation pro
edures. Zhu et al. [41℄su

essfully applied HOL-VOSS for the veri�
ation of the Tamara
k-3 mi
ropro
es-sor. As a
ontinuation of HOL-VOSS, Aagarad et al. developed the Voss-ThmTa
12

system
ombining ThmTa
 with the VOSS System. Its power
omes from the verytight integration of the two provers, using a single language,
, as both the theoremprover's meta-language and its obje
t language. The Voss-ThmTa
 system has beenused to verify su

essfully an IA-32 Instru
tion length de
oder.Rajan et al. [29℄ proposed an approa
h for the integration of propositional �-
al
ulus model
he
king, based on BDDs, within an automated proof system PVS [6℄.They used �-
al
ulus as a medium for
ommuni
ating between PVS and the model
he
ker. It was formalised by using the higher-order logi
 of PVS. The temporaloperators that apply to arbitrary state spa
es are given the
ustomary �xed-pointde�nitions using the �-
al
ulus. These expressions were translated to the formrequired by the model
he
ker. This later was then used to verify the subgoalsgenerated within PVS. In [13℄, a
ompli
ated
ommuni
ation proto
ol was veri�edby means of abstra
tion, used to extra
t a �nite-state abstra
tion of the proto
olthat preserves the property of interest.The MEPHISTO system [21℄ was developed to manage the higher levels ofa veri�
ation, produ
ing a �rst-order subgoals to be proved by the FAUST �rstorder theorem prover. MEPHISTO is a hardware-spe
i�
 tool that
onverts theoriginal goal into a set of simpler subgoals, whi
h are then automati
ally solved bya general-purpose theorem prover. MEPHISTO gives some support for hierar
hi
alproof pro
edures providing a library of pre-proved modules.In a later work, S
hneider and Kropf [32℄ presented a veri�
ation method13

whi
h
ombines the advantages of dedu
tion style proof systems like HOL withthose of traditional model
he
king approa
hes. Datapath oriented veri�
ation goalsinvolving abstra
t datatypes are expressed by a
lass of higher-order logi
, whi
hallows a uni�ed des
ription of hardware stru
ture and behavior at di�erent levels ofabstra
tion.Hurd [15℄ used PROSPER 2 [9℄ to
ombine the Gandalf, a �rst-order theoremprover, with HOL. A HOL ta
ti
, GANDALF TAC, is used to enable �rst-order HOLgoals to be proved by Gandalf and mirror the resulting proofs in HOL. Gandalf is aPROPSPER plug-in that
an be
alled over a network, and a Gandalf server maybe set up servi
ing multiple HOL
lients. GANDALF TAC takes the original goal,
onverts it to a normal form, writes it in the appropriate format, and sends it toGandalf. Gandalf then parses the proof, translates it to a HOL proof and provesthe original goal in HOL.S
heinder and Ho�mann [31℄ linked the SMV model
he
ker [24℄ to HOL usingPROSPER. They embedded the linear time temporal logi
 (LTL) in HOL and trans-lated LTL formulae into equivalent !-Automata, a form that
an be reasoned aboutwithin SMV. The translation is
ompletely implemented by means of HOL rules.HOL terms are exported to SMV through the PROSPER plug-in interfa
e. Onsu

essful model
he
king, the results are returned to HOL and turned to theorems.This hybrid tool allows SMV to be used as a HOL de
ision pro
edure. The deep2Prosper provides an open proof ar
hite
ture for the integration of di�erent veri�
ation toolsin a uniform higher-order logi
 environment 14

embedding of the SMV spe
i�
ation language in HOL allows LTL spe
i�
ations tobe manipulated in HOL.Gordon [10℄ integrated HOL with the BuDDy BDD pa
kage. His aim was toprovide a platform for implementing intimate
ombinations of dedu
tion and algo-rithmi
 veri�
ation, like model
he
king. HOL was used to formalise the Quanti�edBoolean Formulae of BDDs. By using a higher-order rewriting tool, the formulae
an be intera
tively simpli�ed to get a smaller BDDs. The mapping of simpli�edformulae to BDDs was done using a table. The BDD algorithm
an also strengthenits dedu
tive ability in this system. In a later work [12℄, Gordon des
ribes someexperiments in adding simple model
he
king infrastru
ture to the HOL98. Themain di�eren
e between this approa
h and other tools mentioned above is that thetool provides a se
ure and general programming infrastru
ture to allow users to im-plement their own BDD-based veri�
ation algorithms and then to integrate themwith existing HOL98 system.Similar to [15, 19, 29℄, we integrate a theorem prover (HOL) to an existinghardware veri�
ation tool (MDG) rather than embedding an external pa
kage withinthe system as done in [10℄ and [31℄. We work within the proof system but using thespe
i�
ation style of the automated tool. This is done by embedding the languages ofthe automated veri�
ation tool within the proof system. An additional novel aspe
tin our work is the expli
it support of model redu
tion based on the natural designhierar
hy and the spe
i�
ation to verify. The use of MDG as the automated tool15

ompared to related BDD tools is to our opinion a big asset that opens up interestingpossibilities of making use of MDG features for data abstra
tion. Thus pushing upthe abstra
tion level of what
an be passed to the automated tool from the theoremprover and ultimately allowing larger datapaths to be dealt with automati
ally.More re
ently, Gordon [11℄ presented an embedding of the semanti
s of theproperties spe
i�
ation language Sugar2.0 [16℄ in higher-order logi
 supported byHOL. The motivation of this work is mainly proving meta-theorems with a theoremprover to provide a deeper kind of sanity
he
king, and developing ma
hine read-able semanti
s. Another advantage is the fa
t that Sugar provides ways to spe
ifyproperties in both simulation and formal veri�
ation, providing the users with aninterfa
e to
ombine formal veri�
ation te
hniques, both theorem proving and model
he
king, with simulation te
hniques. Similar to our proje
t, this embedding givesa way to spe
ify properties in HOL, the Lmdg language in our
ase. While [11℄fo
uses on the formalisation of Sugar in HOL, in our proje
t we further enable theveri�
ation of the property outside HOL, using the MDG model
he
ker.
1.4 S
ope of the ThesisThe remainder of this thesis is organised as follow. In Chapter 2, we overview theMDG and HOL veri�
ation systems, emphasising the di�eren
e between theoremproving and model
he
king approa
hes, the advantages as well as the veri�
ation

16

pro
ess of ea
h. In Chapter 3, we des
ribe our HOL-MDG linkage approa
h ex-plaining the way we embedded MDG input languages into the logi
 of the HOLintera
tive theorem prover. Chapter 4 presents the implementation of the tool, itsstru
ture and its fun
tionality. Chapter 5 illustrates the advantages of our hybridapproa
h through a
ase study on an Island Tunnel Controller (ITC). And �nally,
on
lusions and future work will be dis
ussed in Chapter 6.

17

Chapter 2
HOL and MDG
In this
hapter, we give an overview of the linked tools: the HOL theorem proverand the MDG system.
2.1 The HOL Theorem ProverThe HOL theorem prover, developed by Gordon [25℄, is an intera
tive proof assistantthat has been under development sin
e mid-1980's, and is based on ideas from theEdinburgh LCF proje
t [23℄. The LFC approa
h implements a logi
 in a stronglytyped programming Meta Language (ML) [27℄. The HOL system is based on higher-order logi
 and was originally intended for hardware veri�
ation. Thanks to itsgenerality, HOL is being
urrently used in a variety of appli
ation areas. The basi
interfa
e to the system is ML [27℄.HOL o�ers two proof styles: forward and goal-dire
ted ba
kward proofs in a18

natural-dedu
tion-style
al
ulus by
reating theorems and applying inferen
e rules tothe already
reated theorems. In the forward proof style, inferen
e rules are appliedin sequen
e to previously proved theorems until the desired theorem is obtained[25℄. This approa
h has some problems sin
e it is hard to know where to state theproof and, for large proofs, to determine whi
h sequen
e of rules to apply [26℄. Inba
kwards proofs, the user sets the desired theorem as a goal, applies ta
ti
s to splitit in subgoals in su
h a way that if a
orresponding inferen
e rule was applied tothe subgoals, the theorem of the goal will be obtained. A ta
ti
 is an ML fun
tionthat when applied to a goal redu
es it to a list of subgoals, along with a justi�
ationfun
tion mapping a list of theorems to a theorem [25℄. In pra
ti
e, a mixture ofthese two proof styles is used, with forwards proof interspersed within ba
kwardsproofs.Our tool links HOL98 to MDG model
he
ker. HOL98 is the third version ofHOL system. Its key idea is that theorems are represented as an abstra
t ML typeswhose only pre-de�ned values are axioms, and whose only operations are inferen
erules. Theorems in HOL are built either by setting axioms or by applying rules ofinferen
e to axioms or to existing theorems; also a proved goal is set to theorem;hen
e the
onsisten
y of the logi
 is preserved [2℄. The HOL98 system provides arange of pre-proved theorems and a set of pre-de�ned tools, whi
h represents a ri
hinitial environment. In addition, users
an enri
h it by building their own theories.A theory de�nes a set of types, operators, axioms, and rules to deal with them.19

Usually, a theory is not independent as it needs to intera
t with other theories.HOL allows hierar
hi
al veri�
ation wherein design modules are divided intosubmodules and the submodules are divided too until the lowest implementationlevel is rea
hed. To prove that the implementation of a module implies its spe
i�
a-tion, the user should prove the impli
ation of the implementation and the spe
i�
a-tion of ea
h submodule. The main advantage of hierar
hi
al theorem proving is theability to deal with large s
ale design. Despite of the expressiveness power of higher-order logi
 and the feature HOL system is o�ering, the veri�
ation pro
ess is stilla
umbersome task sin
e it needs very deep understanding of the design stru
tureand a googd mastering of higher-oder logi
 and HOL, whi
h make the veri�
ationtime-
onsuming.
2.2 The MDG SystemThe MDG system is a de
ision diagram based veri�
ation tool, primarily designedfor hardware veri�
ation. It is based on Multiway de
ision Graphs [5℄, whi
h are anextension of ROBDD (Redu
ed Ordered Binary De
ision Diagrams) [3℄ by abstra
tsorts and uninterpreted fun
tions. The MDG tool is written in the logi
 program-ming language Prolog. Also, it runs under Quintus Prolog V3.2. The advantage ofthis tool is the fa
t of implementing a bla
k box veri�
ation te
hnique.

20

Multiway de
ision graphs [?℄ represent a new
lass of de
ision diagrams, pro-posed to over
ome the limitation of the ROBDD-based methods. These latter re-quire a binary representation of the
ir
uits. The idea behind MDGs is to introdu
eabstra
t sorts and uninterpreted fun
tions su
h that the model
he
king
an be doneon larger state spa
es.The MDG language is based on an ordinary many-sorted �rst order logi
.The vo
abulary
onsists of sorts,
onstants, variables and fun
tion symbols. The
onjun
tion, disjun
tion or
omposition of the latter are de�ned as terms. Sin
e thelogi
 is typed, for ea
h de�ned term, a type is assigned. For ROBDDs, the formulaeare of propositional logi
 and the leaf nodes of their asso
iated diagrams labelled by0 or 1. The extension to MDGs is done in su
h a way that the leaf nodes are labelledby formulae, allowing the nodes to range over abstra
t sorts. An MDG is a �nitea
y
li
 dire
ted graph G where leaf nodes are labelled by formulae, the internal onesare labelled by terms, and the edges issuing from an internal node N are labelledby terms of the some sorts as the label node N. Ea
h formula P is represented by agraph G. So, when from as node there is a multiple edge B1, B2... issuing from it
orresponding and leading to the subgraphs G1, G1..., whi
h represent respe
tivelyto the formulae P1, P2 ..., then the whole graph G is obtained by the
onjun
tionof all the subgraphs.As an example, we show the MDG of a multiplexer (Figure 2.1). We de
larethe input signals and the output to be of the same abstra
t sort, then we de�ne21

abstra
t
onstant for ea
h input and �nally we set the order of variables to take intoa

ount in
onstru
ting the MDG.
x

y

z

s

(a) MUX

1

v

vu

T

x

S

(b) MDG

y

zz

u

0

Figure 2.1: Multiplexer ExampleThis MDG is suitable for any signals of type wordn we de�ne.The MDG tools a

ept hardware des
ription in Prolog-style Hardware Des
rip-tion Language,
alled MDG-HDL [37℄, whi
h allows the use of abstra
t variables forrepresenting data signals. This MDG-HDL des
ription is then
ompiled into theASM (Abstra
t State Ma
hine) [4℄ model represented by internal MDG data stru
-tures. An ASM is de�ned as a tuple D= (X, Y, Z, FI , FT , FO) where X representsthe set of input variables, Y represents the set of state variables, Z represents theset of output variables, FI denotes the set of initial variables, FT represents thetransition relation, and �nally FO denotes the output relation.MDG-HDL supports stru
tural des
riptions, behavioral ASM des
riptions, ora mixture of both. The MDG tool
ontains mainly a
ombinational veri�
ation22

module, sequential veri�
ation module, rea
hability analysis module and an MDGpa
kage. The latter implements manipulation algorithms for MDGs. The rea
ha-bility analysis algorithm
he
ks that an invariant holds in all the rea
hable states ofan ASM using the abstra
t impli
it enumeration te
hnique.
Specification

Invariant

Combinational
Verification

Comb.Check
Seq.Checking
Model Checking

Inv.Checking

Verification

MDG Package

Property

Specification

Variable

Order

Sequential
Implementation

Design
Design

Specification

Analysis
Reachablilty

Specification
Algebraic

YES/NO (Counter Example)Figure 2.2: The MDG ToolIntera
ting together, these modules provide four appli
ations:
ombinational/sequentialequivalen
e
he
king, invariant
he
king, and model
he
king. For the two �rst op-erations, the user should provide the tool with :� A behavioral model: it is given by a tabular representation of the transi-tion/output relation or a truth table.� A variables ordering �le: it
ontains a total order of all variables, fun
tions tofollow in the
onstru
tion of the MDGs.23

� An algebrai
 �le: it
ontains the di�erent sorts, fun
tions and terms spe
i�edin the des
ription model.� An implementation �le: it is usually a netlist of
omponents (prede�ned inMDG-HDL)
onne
ted by signals.� An invariant �le: Sin
e from the two models to verify, we build a produ
tma
hine, we impose that a given output should be equal to its
orresponden
ein the se
ond
ir
uit.In addition, both behavioral and stru
tural des
ription �les
ontain the signals andtheir sorts, the output partition and the next partition in the
ase of sequential
ir
uit. However, the veri�
ation algorithms are di�erent. For the
ombinationalveri�
ation, an MDG of ea
h model is
omputed. Thanks to the
anoni
ity of theMDGs, the equivalen
e
he
king holds if the obtained MDGs are the same. If it isnot the
ase, the equivalen
e
he
king is failed. However, for sequential
he
king,the veri�
ation is a
hieved by forming a
ir
uit out of two
ir
uits, feeding the sameinputs to them and verifying an invariant asserting the equality of the
orrespondingoutputs in all rea
hable states.Invariant
he
king is a
hieved by using the symboli
 rea
hability analysis [39℄te
hnique. The algorithm makes sure that a given invariant holds over all the rea
h-able states. Using this operation, the veri�
ation of safety properties be
ome possi-ble. 24

Finally, MDG en
apsulates a model
he
ker for safety and liveness properties.It is based on impli
it enumeration te
hnique of the abstra
t state ma
hine. Theinput �les are either the implementation or the spe
i�
ation of the
ir
uit, thealgebrai
 des
ription, the order variables and the property to be veri�ed. In MDGmodel
he
ker, the design is represented by ASMs and the properties to be veri�edare expressed by formulae in the �rst order ACTL-like [37℄ temporal logi
,
alledLmdg[36℄. The ASM model of Lmdg is
omposed of the original design model alongwith a simpli�ed invariant. This model is
onstru
ted before intera
ting with theMDG. Furthermore, additional information is required to verify the property: theuser should provide the tool with the type of the property as well as the fairness
onstraints imposed. Finally, the simpli�ed invariant is
he
ked on the
ompositema
hine using the impli
it abstra
t enumeration of ASMs. More information arerequired by the model
he
ker to verify the property. When a veri�
ation fails, theMDG tool returns a
ounterexample,
onsisting of the state tra
e from the initialstate to the faulty one. However, this feature is still not provided in the tool for themodel
he
king operation.As part of the MDG software pa
kage, the user is provided with a large setof pre-de�ned modules su
h as logi
 gates, multiplexers, registers, bus drivers, et
.Besides the logi
 gates whi
h only use Boolean signals, all the other
omponentsallow signals with
on
rete as well as abstra
t types. Moreover, a spe
ial stru
tureis de�ned
alled tables. Tables
an be used to des
ribe fun
tional blo
ks in both25

implementations and spe
i�
ations. A table is similar to the truth table, it has asentry values �rst order terms in the rows. It is
omposed of a list of rows. Ea
hrow is a list of inputs values and their
orresponding output. A default value of theoutput is de�ned if the inputs sequen
e we have doesn't �t the de�ned rows. Some
onstraints are imposed in the table inputs. The �rst list
ontains variables and
ross-terms (where the output of a given fun
tion is
on
rete while its inputs
ontainat least is o abstra
t sort). The last element of the list must be a variable (either
on
rete or abstra
t). The other variables in the list must be
on
rete variables.The remaining lists
onsist of the sets of values that the
orresponding variables or
ross-terms
an take. The last element in the list of values
ould be a �rst-orderterm. This represents an assignment to the output variable. The other values mustbe either `don't
are' (represented by `*') or individual
onstants in the enumerationof their
orresponding variable sort. The last element in a table is the default value.To illustrate this, we present in table 2.1 the table representation of the multiplexerdes
ribed above. The table is des
ribing the behaviour of an abstra
t multiplexer.
IsEqual(x,u) IsEqual(y,v) sele
t z1 * 0 u* 1 1 vTable 2.1: Mux MDG tableDue to the
onstraints explained before, the entry of the table
ouldn't be an26

abstra
t term. To over
ome this, we de�ne
ross-term fun
tion IsEqual that takesas input x and its generi

onstant u and returns a boolean type. The same thingis done for the input y. So, the table stru
ture be
omes:
table([[sele
t, IsEqual(x,u), IsEqual(y,v),z℄,[0,1,*,u℄,[1,*,1,v℄|u℄)We
hoose u to be the default value. This table des
ription is further inter-nally translated into an MDG (de
ision diagram) with the variable ordering s, x, yand z. However, we have no restri
tion on the inputs and outputs in de�nition of
omponents. The MDG
omponent de�nition is :
omponent(mux1, mux(sel(s), inputs([(0,x),(1,y)℄), output(y)))

27

Chapter 3The Formalisation of the MDGInput Languages in HOL
The aim of our work is linking the HOL theorem proving with the MDG model
he
king. Both the model des
ription and the property are given to HOL system.For pro
essing a model
he
king operation, the theorem prover has to intera
t withMDG model
he
ker and pass the required �les to the latter. So, in a
ertain way,we are restri
ted by the input languages of the MDG tool. To express an MDG likespe
i�
ation and properties in HOL, we have to embed two languages:� MDG-HDL(for model des
ription).� Lmdg (for properties spe
i�
ation).13.1 Formalising MDG-HDL Grammar in HOLAs presented in Chapter 2, a spe
ial module
alled table is used to spe
ify behavioraldes
ription in MDG. In [8℄, the table stru
ture as well as the MDG-HDL
omponents1Subset of the embedded Hol theories is presented in the Appendix A and B28

library has been embedded in HOL, allowing the spe
i�
ation of
on
rete
ir
uitsdes
riptions. Sin
e there is no embedding of the MDG grammar, we were unable tode�ne des
riptions, where abstra
t sorts, uninterpreted fun
tions, and
ross-termsare de
lared. In the following se
tion, we present the subset MDG-HDL libraryformalisation previously embedded, then we expose the HOL theory we embeddedto
over the full MDG-HDL grammar.3.1.1 Formalising the MDG Library in HOLMDG-Tables De�nition in HOLThe proposed embedding of MDG table in HOL
onsists of
onsidering the MDG-table spe
i�ed by �ve arguments. The �rst argument is a list of the inputs, these
ond is the single output, the third is a list of table rows. Ea
h row is a list itself,giving one allo
ation of values to the inputs. The entries in the list
an be eithera
tual values or a spe
ial don't-
are marker. The latter mat
hes any value the input
ould hold. The fourth argument is a list of output values. Ea
h is the value onthe output when the inputs have the values in the
orresponding row. The �nalargument is the default value, taken by the output if the input values do not mat
hany row. The �rst step in formalising this de�nition is to de�ne the mat
hing ofinput values. These
an be either a normal value of arbitrary type or a don't-
arevalue. This latter expresses the fa
t then the output is independent from the valueof this input in the
urrent inputs row. The values taken by a table are de�ned as29

a new HOL type, with asso
iated destru
tor fun
tion to a

ess the value.`def Table_Val = TABLE_VAL of 0a | DONT_CARE`def TableVal_to_Val(TABLE_VAL(v:0a))= vThe �rst HOL expression de�ne a new HOL datatype \Table Val", whi
h has two
onstru
tors : TABLE VAL and DONT CARE. The former
an take any type.Curzon et al. [8℄ de�ned the mat
hing of input values to table values. A mat
ho

urs if either the table value is don't-
are, or the value on the input is identi
alto the table value. This property must hold for ea
h table entry. It is de�nedre
ursively by the fun
tion table mat
h.`def (Table_mat
h inputs [℄ (t:num) = T)^ (Table_mat
h inputs (CONS v vs) t) =(((HD(inputs) t) = TableVal_to_Val (v:0a Table_Val))_ (v = DONT_CARE))^ (Table_mat
h (TL inputs) vs t)HD and TL are two prede�ned HOL fun
tions whi
h return respe
tively the headand the tail of a list. The test is �rst done on the �rst element in the input list. It isrepeated after that on the rest of the list, until rea
hing the empty list. Moreover, ifthere is a mat
h on a given row, the output has the
orresponding value. Otherwise,it must
he
k the next row. If there is no mat
h, the output equals the default value.This is de�ned in a re
ursive manner on the input list as the relation table:
30

`def (table inps (out:num �> 0b) ([℄:(0a Table_Val list) list)V_out default t = (out t = default t))^ (table inps out (CONS v vs) V_out default t =((Table_mat
h inps v t) ! (out t = (HD V_out)t)))|(table inps out vs (TL V_out) default t)))A given table will relate a given input to a given output, if the table relation is trueat all the times:`def TABLE inps (out:num �> 0b) (V_outs:(0a Table_Val list) list)V_out default = 8t. table inps out V_outs V_out default tThe given de�nition is less
exible than the MDG tables one sin
e, here, all theinput variables must be of the same type, while they
an be from di�erent sortsin the MDG system. This is why Curzon et al. [8℄
hoose to reserve a list for theoutput instead of spe
ifying the input like in the MDG tool: the last element in therow
orrespond to the output value of the
orresponding inputs.The MDG Components De�nition in HOLThe MDG library
omes with a prede�ned set of
omponents. Sin
e the abstra
tsort is not handled in the tool developed by Kort et al. [20℄, only
omponents,where their inputs and outputs are of
on
rete sorts, are de�ned. All the inputs andoutputs are de
lared as signal from type number to Boolean, dependent from thevariable t (time). For example, the fork
omponent [8℄ was de�ned in a
on
reteway:mdg_fork x y = 8t. (x:num�>bool) t = y t31

Besides, the behavior of ea
h
omponent is de�ned in term of tables. As an example,the
orresponding table of the fork
omponent is:FORK_TABLE x y = TABLE x:num�>bool℄ (y:num�>bool)[[TABLE_VAL F℄;[TABLE_VAL T℄℄[FSIG;TSIG℄ FSIGWith the above exposed formalisation of the MDG-HOL library, there is nopossibility to express MDG terms
ontaining abstra
t fun
tions, generi

onstants,or abstra
t variables. Therefore, we propose an embedding of the MDG grammarsyntax in HOL. This required major modi�
ations to the pre-introdu
ed theory. Innext se
tion, we �rst des
ribe the grammar of the MDG-HDL and then we exposeits
orresponding embedding in HOL.3.1.2 Embedding the MDG-HDL Grammar in HOLMDG-HDL GrammarMDGs in
orporate variables of abstra
t types to denote data values and uninter-preted fun
tion symbols to denote data operations. MDG terms are well formed�rst-order term.The wellformedness
ondition pres
ribes that MDG formulas shouldbe in the form of dire
ted formulas [5℄. Let F be a set of fun
tion symbol and �a set of variables. We denote the set of terms freely generated from F and � by�(F ,�). 32

The syntax of a dire
ted formula is then given by the grammar below [1℄:Sort S ::= S j SAbstra
t Sort S ::= � j � j
 j :::Con
rete Sort underlineS ::= � j � j
 j :::Generi
 Constant C ::= a j b j b j :::Con
rete Constant underlineC ::= a j b j
 j :::V ariable math
alX ::= V j VAbstra
t V ariable V ::= x j y j z j :::Con
rete V ariable underlineV ::= x j y j z j :::Dire
ted Formula ::= Disj ::= Conj _DisjConj ::= Eq ^ Conj j EqEq ::= A = C(A 2 �(F ; �))j V = Cj V = A(A 2 �(F ; �))j >j ?As in ordinary many-sorted �rst-order logi
, the vo
abulary
onsists of ageneri

onstants,
on
rete
onstants, abstra
t variables,
on
rete variables andfun
tion symbols. Dire
ted formulae are always disjun
tions of disjun
tions or
on-jun
tions of equations. The
onjun
tion Conj is de�ned as be
onjun
tion of at leasttwo equations Eq. Atomi
 formulae are the equations, generated by the
lause Eq,33

plus > (truth) and ? (false). The equation
an be the equality of
on
rete term anda
on
rete
onstant, the equality of a
on
rete variable and a
on
rete
onstant,orthe equality of an abstra
t variable and an abstra
t term.Embedding in HOLIn HOL, we de�ne an abstra
t sort to be of type � to string. The se
ond parameterin this de�nition is spe
i�ed mainly to permit the user to impose a spe
i�
 MDGsort. A
on
rete sort (Boolean sort in
luded) is de�ned by the list of its enumeratedvalues.`def MDG_sort = ABSTRACT of 0a �>string|CONCRETE of string ->string listNext, predi
ates are de�ned to spe
ify the type of the sort we are dealing with.`def (IsCon
reteSort (ABSTRACT Abs MDG_name) = F)^(IsCon
reteSort (CONCRETE Con
 val_list) = T)IsCon
reteSort returns true if the type is of
on
rete sort. Similary, we de�ne apredi
ate to determine abstra
t sorts.`def (IsAbstra
tSort (ABSTRACT Abs MDG_name) = T)^(IsAbstra
tSort (CONCRETE Con
 val_list)= F)A variable is de�ned a

ording to its type,
on
rete or abstra
t. It is de�nedas a new Hol datatype:`def MDG_var = MDG_VAR of string ! MDG_sortTo test the sort of the variable, we should �x its MDG sort:34

`def IsCon
reteVariable (MDG_VAR name sort)= IsCon
reteSort sortA fun
tion is de�ned by its domain whi
h is a list of
on
rete variables, abstra
tvariables or a mixture of both, and its range, whi
h is a unique output. The typeof the fun
tion is determined a

ording to its domain and range. If the output isfrom an abstra
t sort, so the fun
tion is de�ned to be an abstra
t fun
tion. If allthe inputs and the output are from
on
rete sort, so the fun
tion is de�ned to be
on
rete. And �nally, if the output of the fun
tion is
on
rete, and at least one ofits inputs is abstra
t, the fun
tion is de�ned to be
ross fun
tion.`def MDG_Fun = MDG_FUN of string ! MDG_VAR list ! MDG_VARSome predi
ates are set to determine the kind of the fun
tion we de�ne: abstra
t,
on
rete or a
ross fun
tion. Sin
e the domain of the fun
tion is a list of variables,to test if the fun
tion is
on
rete, we should test if the inputs and the outputs areof
on
rete sort. So, we de�ne a predi
ate to determine re
ursively if the list is of
on
rete variables. The test is �rst done on h, the head of the list, and is repeatedre
ursively on tl, the tail of the list, until rea
hing the empty list.`def Con
reteVarList(h::tl) = ((IsCon
reteVar h) ^(Con
reteVarList tl))^(Con
reteVarList [℄ = T)Hen
e, a fun
tion is
on
rete if both its domain and its range are
on
rete:`def
on
reteFun
 (MDG_FUN name InputVarList OutputVar) =(Con
reteVarList InputVarList) ^(IsCon
reteVariable OutputVar)35

After de�ning one by one the di�erent elements of the MDG vo
abulary, it is possibleto de�ne the di�erent kinds of MDG terms. An MDG term is either:� a
on
rete
onstant, CONC Const, one of the
on
rete sort enumeration,� a generi

onstant, GEN Const,
onstant de�ned for an abstra
t sort,� a variable, VAR Term, either from
on
rete sort or abstra
t sort, or� a fun
tion, FN Term, from the MDG Fun HOL datatype de�ned above.The latter is done using the
onstru
tor TERM. It takes as argument a de�nedMDG Term and returns an MDG Term.The HOL de�nition is:`def MDG_term = GEN_Const of 0a| CONC_Const of string| VAR_Term of MDG_VAR| FN_Term of MDG_Fun| TERM of MDG_term => MDG_termThe overall stru
ture of the table de�ned in Se
tion 3.1.1 will not be
hanged.However, we impose that the entry of the table should be either a don't
are or anMDG term.`def Table_Val = TABLE_VAL of 0a MDG_term | DONT_CAREWith the above embedding of the MDG-HDL grammar, it is now possible to de�ne
omponents of MDG library that
ontain abstra
t variables and fun
tionsymbols.36

For instan
e, we added the
omponents multiplexer, register, and transform. Forexample, the multiplexer
omponent is de�ned as follow:`def mdg_mux x1 x2 (y:num�>bool) z =8 t . z(t) = if (y t) then (x2 t)else x1(t)In the following se
tion, we present an illustrative example of an abstra
t
ounter using the above embedded theory. We proved, using HOL, the equivalen
eof the spe
i�
ation and the implementation of the
ounter.3.1.3 Example of an Abstra
t-CounterWe Consider a syn
hronous
ir
uit whi
h
onsists of a data register
ount, twomultiplexers mux1 and mux2, and three fun
tional blo
ks symbols in
, de
, and eqz.The uninterpreted fun
tions in
 and de
 take as input
ount of abstra
t sort andprodu
e an abstra
t output in
(
ount) and de
(
ount), respe
tively. The
ross-termeqz takes as input
ount and produ
es a
on
rete output of sort bool. y, the sele
tsignal of the multiplexer, is the input of the
ounter. We
onsider
ount the outputof the
ounter. The transition relation of this ma
hine is as follow:R � [((y = 0) ^
ount 0 = in
(
ount)) _[((y = 1) ^ eqz (
ount) = 0 ^
ount 0 = de
(
ount)) _[((y = 1) ^ eqz (
ount) = 1 ^
ount 0 =
ount)Our obje
tive is to verify in HOL that the implementation of the
ounterimplies its spe
i�
ation. 37

Counter spe
i�
ationThe HOL spe
i�
ation of the abstra
t
ounter
ontains an abstra
t sort, two abstra
tfun
tions, and a
ross fun
tion. The behavior of the abstra
t
ounter is summarisedin Table 3.1, where state and n state represent the
ount and
ount' respe
tively,p
 val, in
 p
 val, and de
 p
 val are generi

onstant of the same abstra
t sort PC.eqz represents eqz(
ount).In HOL, the output of the tables should be de�ned as signals. Hen
e, we de�nethem as fun
tion of time 2 :`def p
SIG = �(t:num).p
_val`def de
SIG = �(t:num).de
_p
_val`def in
SIG = �(t:num).in
_p
_val`def de
_in
SIG = �(t:num).p
_valBefore writing the table, we have to homogenise its inputs. Therefore, we de�nefun
tions to map from the initial type to the desired type. As an example, we givehere the de�nition the bool to MDGTerm fun
tion, whi
h maps the boolean type toa
on
rete MDG type.`def bool_to_MDGTerm:(bool�> string MDG_term) b =if (b = T) then (CONC_Const "T")else(CONC_Const "F")The table of the
ounter spe
i�
ation is shown below:2� t. x means that x is fun
tion of t.
38

`def COUNTER_TABLE (state) (v:(num�>bool)) (y:(num�>bool))(n_state) =TABLE ; bool_to_MDGTerm o v ;bool_to_MDGTerm o y ℄(n_state o SUC)[[TABLE_VAL (p
_val); DONT_CARE;TABLE_VAL (CONC_Const "F") ℄;[TABLE_VAL (in
_p
_val);TABLE_VAL (CONC_Const"F");TABLE_VAL (CONC_Const"T") ℄;[TABLE_VAL (p
_val);TABLE_VAL (CONC_Const"F");TABLE_VAL(CONC_Const"T") ℄ ;[TABLE_VAL (p
_val);TABLE_VAL (CONC_Const"T");TABLE_VAL(CONC_Const"T") ℄ ℄[in
SIG;de
_in
SIG;de
SIG;p
SIG ℄ p
SIGThe �rst tree rows represent the possible inputs
ombination. The fourth listrepresents the output for ea
h row respe
tively. And �nally, the p
 val is the defaultvalue of the output if the input sequen
e is di�erent from what is spe
i�ed. In termsof truth table, the
ounter table spe
i�
ation is equivalent to the Table 3.1.state eqz y n statep
 val * F in
 p
 valin
 p
 val F T p
 valp
 val T T p
 valp
 val F T de
 p
 valTable 3.1: Abstra
t Counter Behavior
Counter ImplementationThe implementation is
omposed of two multiplexers, one register for the n state,two (bla
k-box) uninterpreted fun
tions De
 and In
, and �nally one transformfun
tion for the
ross operator Eqz. In addition, we need to initialise the state valueso, we add an Initial predi
ate that sets the variable state at p
 val (
.f Figure 3.1).39

y

Dec

n_stateRegMux1
Inc

Eqz

Mux2

Init

Figure 3.1: Abstra
t Counter Implementation`def Counter_IMP (v) (y:num �> bool) (n_state) =9x z w (state:num�>string MDG_term) state1.(Reg state1 n_state) ^(Mux1 x z (y:num �> bool) state1) ^(In
 n_state x) ^(Mux2 n_state w (v) z) ^(De
 (n_state) (w)) ^(Eqz (n_state) (v)) ^(Initial state)Counter Veri�
ationThe goal to be proven in HOL is stated as the folowing impli
ation:!state v y n_state p
_val .(Counter_IMP v y n_state) ==> (COUNTER_TABLE state v y n_state)The proof should be done for any generi

onstant our
ounter takes. The proof was
ondu
t su
h that all de�nitions are �rst rewritten, and then using a
ombination oftwo prede�ned HOL ta
ti
s: the ARITH TAC ta
ti
 and PROVE TAC. The Firstone is used to split the goal to several subgoals. After that ea
h subgoal is provenindividually. The original goal is proven when all the subgoals are proven.40

3.2 Formalising Lmdg into HOL Syntax3.2.1 The Lmdg SyntaxCTL (Computation Tree Logi
), is a propositional bran
hing time temporal logi
,widely used as a property spe
i�
ation language for model
he
king. In CTL, ea
hlinear time operator (F, G, X, or U) must appear after a path quanti�er A (forall paths), and E (there exists a path). CTL* extends CTL by allowing temporaloperator in whi
h a path quanti�er is followed by an arbitrary linear time formula.Thereafter, properties su
h A(p ^ Xq) are allowed in CTL* while, not allowed inCTL. Xu [37℄ de�ned an Abstra
t CTL* logi
,
alled Lmdg. This logi
 extends CTL*by using the �rst-order logi
 rather than the propositional logi
. Lmdg, however,isa subset of the �rst order Abstra
t CTL* [36℄. Lmdg is the properties spe
i�
ationlanguage using for the MDG model
he
ker. The properties allowed in Lmdg
anhave the following templates:Property :A(Next let formula)j AG(Next let formula)j AF(Next let formula)j A(Next let formula)U(Next let formula)j AG((Next let formula)) (F(Next let formula)))j AG((Next let formula))((Next let formula))[(Next let formula)))41

Only the universal path quanti�
ation is possible with the
urrent version of MDGmodel
he
ker. The syntax of the existential path is still not de�ned. The Next Let Formulais de�ned to be a nesting formula, or a basi
 formula.Next let formula:X(Next let formula)j LET (Let equation) IN (Let equation)j Next let formula (with
on
rete variables only)) Next let formulaj Next let formula Next let formulaj Next let formula (with
on
rete variables only)j Basi
 formulaBasi
 formula:Lterm = Rtermj Truej FalseLterm : ASM variable NameRterm : ASM variable Namej OrdVar Namej IntegeConstant 42

j Symboli
Constantj Fun
tionLet Equation ::=Let equation Let equationj(Let equation)j OrdVar Name = ASM variable NameFun
tion ::= Fun
tion Name (parameter list)The parameters of the fun
tion
an be either ordinary variables or fun
tions.The Let equation
an be the disjun
tion of Let equations or an equality of an ordinaryvariable and an ASM variable. The Basi
 formula is true, false or the equality ofLTerm and RTerm. An Rterm
an be a variable ,
onstant or a fun
tion. However,the LTerm is an ASM Variable. ASM variables,
onstant variables and the symboli

onstants represent both the set of variables (
on
rete and abstra
t) and the set of
onstants (
on
rete and abstra
t).3.2.2 Embedding Lmdg in HOLIn order to embed the Lmdg in HOL, it is important to respe
t the semanti
s of theoriginal language [37℄. All properties are de�ned a

ording to two notions: path and43

state. A path is a sequen
e of states. The latter is an assignment to the set of state,input and output variables. A full path starting from a state si is denoted by:�i = (si; si+1; si+2; :::)All formulas in Lmdg are path formulas. Hen
e, given a property in Lmdg on an ASMunder a given interpretation , the property holds on the ASM if and only if theproperty is true for all paths starting from ea
h initial state. The semanti
s of theAG operator will be :(�; �) j= Gp iff (�j; �) j= p for all j � iSin
e Lmdg is a CTL* like language [37℄, we divide the properties in two
lasses: the�rst is the CTL like properties and the se
ond is the LTL (Linear Time TemporalLogi
) like properties. For the latter ones, we de�ne a property a

ording to thepredi
ate we want to verify:Ea
h logi
al proposition is a fun
tion of the path, expressed here by s whi
h
an be formulated as a history fun
tion keeping tra
e of the states among the path,and the
urrent state.`def LMDG_G p s = 8t. p s tThe linear temporal operator F, is de�ned to be a fun
tion of p and s su
hthat exists t, where the property holds`def LMDG_F p s = 9t. p s tIn addition, the
onjun
tion, the impli
ation, and the disjun
tion of predi
atesare de�ned as fun
tion of the proposition44

`def LMDG_IMP p1 p2 s t = :(p1 s t) _ p2 s tThe se
ond
lass of properties is the CTL like ones. Here, we de�ne theproperty a

ording to the predi
ate we want to de�ne as well as its
ir
uit.`def LMDG_AG R p = 8s. ((R s) ^ (8t. (p s t)))Our obje
tive is to pre
ise that ea
h path,
onsidered in the property, belongsto the
ir
uit des
ription we have. The
omposition of the di�erent kind of templatesis done manually by the user. Therefore, the embedding we have is more expressivethan the original Lmdg.When verifying liveness properties, one is usually interested only on the so-
alled fair in�nite
omputation paths. A fair
omputation path is a path along whi
hthe states satisfy the fairness
ondition in�nitely often. In MDG, if we
onsiderH as a fairness
onstraint, the formula representing the ex
eption
ondition H is
alled H formula. Its syntax is de�ned by the equality of two ASM variables oran ASM variable and a
onstant, the
onjun
tion, disjun
tion, impli
ation of twoH formulas, the negation or the nesting of H formulas. However, only
on
reteASM variables may appear in the H formula. All fairness
onstraints imposed arestored in a �le, whi
h is interpreted before the model
he
king pro
edure is invoked.In HOL we represent fairness
onstraints by a predi
ate mentioning that the
ondition should holds in ea
h state. When fairness
onditions are imposed, we addit as a
onjun
tion to the property as we will present in the next se
tion.45

`def LMDG_FAIR p s = 8t. p s t

46

Chapter 4MDG-HOL Linking (The HybridTool)
In this
hapter, we will fo
us on the implementation part of the link between HOLand the MDG model
he
ker. The implemented tool inputs are the model des
rip-tion, the property and the HOL goal. It generates automati
ally all the requiredMDG �les, whi
h are then
ommuni
ated to the MDG tool where the veri�
ation isdone. The obtained result is transmitted to HOL. Therefore, either a HOL theoremis set or hand is given to the user to do the proof intera
tively.
4.1 The Hybrid Tool Behavior4.1.1 OverviewThe tool developed is an interfa
e between the HOL theorem prover and the MDGmodel
he
ker. During the veri�
ation pro
edure, the user deals mainly with HOL.As shown in Figure 4.1, the user starts by giving the HOL design (spe
i�
ation or47

implementation), the HOL property and the goal to be proven. If this goal �ts therequired pattern (our tool a

epts only impli
ation goals), the respe
tive MDG �lesare generated. The latter are sent to the MDG tool for model
he
king.

Yes

Make Theorem Regular HOL proof

No

No

 Hol goal

Yes

Fair(MDG)

Input files Output files

Call MDG and
do Verification

Accepted

Design(HOL)

Prop(HOL) Prop(MDG)

Design(MDG)

Order(MDG)

Alg(MDG)

Verified

Figure 4.1: Veri�
ation Pro
edure with the Hybrid ToolIf the property holds, a HOL theorem is
reated. However, if the veri�
ationwithin the MDG tool fails, we have to perform the proof intera
tively using HOL.The tool does not a

ept any arbitrary HOL spe
i�
ation. It a

epts only MDG-styles spe
i�
ations and properties. We use the embedded HOL theories to expressboth the model and the properties des
riptions. In the next se
tions, we detail thefeature of the input �les to the generated �les by our tool.48

4.1.2 Use of Hierar
hyUsually, hardware systems under veri�
ation are des
ribed (in HOL) in a hierar
hi
alfashion. The main modules of the spe
i�
ation are divided into submodules. Thesubmodules are repeatedly subdivided until eventually the logi
 gate level is rea
hed.This is a
hieved by de�ning the stru
ture \blo
k" in a re
ursive manner.

subblock subblock subblock

...subblock subblocksubblock

..
.

block

subblock subblock subblock

subblock

New Model

Block

Extraction

Figure 4.2: Blo
k Extra
tionThe advantage of having su
h hierar
hy is the ability to extra
t the blo
k aboutwhi
h we want to
he
k a property (see Figure 4.2). Hen
e, the model
he
ker dealswith the spe
i�
ation of the
onsidered blo
k only, not the whole design. As a result,we save on model size without
onstraining the user to write another spe
i�
ationfor the appropriate blo
k.
49

4.1.3 The Input FilesDesign Spe
i�
ation File (HOL)Design models are provided as a normal �le of HOL de�nitions. They are writtenin a hierar
hi
al stru
ture. Sin
e the model de�nition must be analyzed by the tooland ultimately
onverted into MDG, it should follow a spe
i�
 form : it
onsists ofa
onjun
tion of tables, whi
h input and output arguments must be expli
itly typedand de
lared as MDG terms. This implies that all sorts (abstra
t and
on
rete),variables,
onstants and fun
tions must be spe
i�ed. Stru
tural models are writtenin a subset of the HOL logi
 similar to that for behavioral spe
i�
ations. However,they are not limited to tables but
an in
lude any
omponent of the MDG
omponentlibrary.Property Spe
i�
ation File (HOL)Properties are provided as normal HOL de�nitions. They are written a

ordingto the Lmdg theory we embedded in HOL. The fairness
onstraints are added as a
onjun
tion to the main property formula. The hybrid tool will extra
t the fairness
onstraints and put them in a �le before pro
eeding with the adequate treatment.

50

Proof Goal Spe
i�
ation (HOL)There are di�erent ways to spe
ify a goal in HOL. However, when using our tool,the goal should be an impli
ation a

ording to this form :` Design � Propertylooking to proof that the design veri�es the property. Sin
e the veri�
ation is donein MDG, we need to formalise the (MDG) result in HOL. Therefore, we
onvert theMDG results into a form that
an be used [35℄:` FormalisedMDGresult �Model � PropertyThe general
onversion theorem into HOL has been proved [35℄. The result givenby MDG tool
an be interpreted and a HOL theorem
an be instantiated for anydesign and any property under
onsideration.4.1.4 The Generated FilesDesign Spe
i�
ation File (MDG-HDL)It
ontains:� The signals appearing in the design model and their sorts assignments.� The output partition spe
ifying the design output signals.� A network of tables and/or MDG-HDL
omponents.51

� We also give the set of initial states and transition/output relation partitionstrategy.Order File (MDG-HDL)The order �le
ontains the order of the variables with whi
h the multiway de
i-sion graph is built. In our
ase, the order is generated stati
ally. However, somerestri
tions are imposed for abstra
t variables and fun
tions name.Algebrai
 File (MDG-HDL)In the algebrai
 �le, all
on
rete sorts used in the design spe
i�
ation are listed.It also in
ludes the de
laration of all used fun
tions (
on
rete,
ross-fun
tion andabstra
t). In addition, any generi

onstants (of abstra
t type) de�ned in the designmodel should be mentioned here.Property File (Lmdg)It has the form of a property a

eptable by MDG. It follows the syntax des
ribedin Se
tion 3.3.The MDG Fairness Files (Lmdg)In the HOL given property, the fairness
onstraints are part of the property, thehybrid tool takes
are of separating them from the property
ore before pro
essingthem for the adequate treatment. This will be explained in the next se
tion.52

4.2 The Hybrid Tool Stru
tureOur hybrid tool is written in SML. It is
omposed of �ve main modules: the HybridTool Interfa
e, the Property Module, the Des
ription File Module, the HOL GoalParser Module and the MDG Intera
tion Module (
f. Figure 4.3). The user's in-terfa
e to the hybrid tool is a Java GUI, responsible for getting the HOL goal, theproperty �le and the model des
ription �le, passing them to HOL, loading the Lmdgand MDG-HDL theories and at the end of the veri�
ation pro
ess,
ommuni
atingthe result to the user [14℄. In the se
ond module, the Property Parser generates asoutput a data stru
ture from whi
h the MDG File Generator produ
es the MDGproperty �le, and the Property Type Generator provides the property type. On theother side, in the Des
ription File Module, the spe
i�
ation is �rst
attened.When parsing the goal, we get the name of the property and the blo
k wewant to
he
k. The latter
an be either the main module in the spe
i�
ation orone of its submodules. Sin
e the spe
i�
ation is written in a hierar
hi
al way, it ispossible to extra
t the target module, and its submodules, and to dis
ard the others.The Blo
k Extra
tion Module a
hieves this task. In the next step, the
orrespondingMDG �les are generated (Algebrai
, Order and Spe
i�
ation/Implementation). Inorder to pro
eed with the model
he
king operation, these �les should be used forgenerating ASMs before intera
ting with MDG. Sin
e the
ommuni
ation betweenthe linked tools is done automati
ally, we implemented a spe
ial module to take
areof the ASM generation task : ASM Generation Interfa
e53

MDG-HDL
Generator

Design (HOL) Goal (HOL)Property (HOL)

Alg(MDG-HDL)

Y/N (HOL)

Correctness
Theorem generator

Y/N (MDG)

Goal ParserDesign Parser

BlockSpecID
BlockImp
PropID

Bloc Extractor

MDG_Term
MDG_Fun
MDG_Type

Hybrid Tool Interface

Property Parser

Generator Type

BlockImp
BlockSpec/

Property
Order(MDG-HDL)
Design(MDG-HDL)

MDG Code

Correctness theorem (HOL)

type

Fair (L_MDG)
Prop(L_MDG)

Generation InterfaceASM

MDG Interaction

Generator

MDG Result Interpreter

Figure 4.3: Hybrid Tool Stru
tureASM Generation Interfa
e Before intera
ting with MDG, two steps need to beexe
uted. The �rst one is to automati
ally build additional ASMs that representthe Lmdg property (
f. Figure 4.4).The Next Manager is an implemented module in the MDG tool that takes
are ofa
hieving this treatment. The New prop represents the new property �le generatedwhere ASMs representing the property are added to the spe
i�
ation. The se
ond54

Next Manager

No

new_Prop

Order(MDGD-HDL)

Design(MDGD-HDL)

Constraints?

MDG-HDL Generator

new_Order

Yes

Propety Type Generator

MDG InteractionModule

Prop

Fairness

new_Design
new_Prop
new_Order

Prop Type

Parsed Property
Parser

Property file

Fair filesGenerator

fair constraints
fair_new_Order
fair_new_Prop
fair_new_Design

Parsed Property

Parsed Property

new_Design

Figure 4.4: Property Module Stru
turestep is to test if fairness
onstraints are imposed. We
he
k this on the parsedproperty. If so extra ASMs are
onstru
ted and
onne
ted to the original ones,fair new Model.The MDG Intera
tion Module ensures the
ommuni
ation with MDG. it takesall the generated MDG �les, the property type and the fairness number. The latteris provided by the property parser module. All these �les are supplied to the MDGtool whi
h applies the veri�
ation pro
ess and passes the result to HOL throughtheMDG Result Interpreter Module. If the property holds, a theorem is generatedin HOL. 55

4.3 Appli
ation: The Timing Blo
kThe timing blo
k is one of the blo
ks
omposing the Fairisle ATM (Asyn
hronousTransfer Mode) swit
h fabri
 [22℄. The Fairisle swit
h fabri
 is a real swit
h fabri
designed and used at the University of Cambridge for multimedia appli
ations. Cur-zon [7℄ formally veri�ed this ATM swit
hing element hierar
hi
ally using the HOLsystem. Kort et al. [20℄ presented the veri�
ation of the ATM swit
hing using theHOL-MDG Hybrid tool where the submodules were veri�ed using the MDG tool.Also, Pisini et al. [28℄ presented the equivalen
e
he
king of the timing blo
k moduleusing the hybrid tool . We present the formalisation of the state transition diagramof the timing blo
k in terms of MDG tables a

ording to our new theory, as well asthe experimental result of some properties
he
ked within our tool.4.3.1 Timing Blo
k Stru
tureThe timing blo
k
ontrols the timing of the arbitration de
ision based on the framestart signal and the time the routing bytes arrive. The implementation of the timingblo
k is shows in Figure 4.5. Its HOL spe
i�
ation is given as follow:

56

act[0..3]

4
OR anyActive

AND

dx
DFFd x

INV

xBar yterm
dy DFFd

yINV

frameStartBar

OR

x=routeEnable

frameStart

AND

Figure 4.5: Timing Blo
k Implementation`def 8a
t0 a
t1 a
t2 a
t3 fs routeEnable_i.TIMING_IMP (a
t0,a
t1,a
t2,a
t3,fs) routeEnable =9anyA
tive_i fsBar qxBar yterm dx dy qx qy.mdg_or4 (a
t0,a
t1,a
t2,a
t3) anyA
tive^ mdg_not fs fsBar^ mdg_not qx qxBar^ mdg_and (qy,qxBar) yterm^ mdg_and4 (anyA
tive_i,qy,fsBar,qxBar) dx^ mdg_or (fs,yterm) dy^ mdg_reg dx qx^ mdg_reg dy qy^ mdg_fork qx routeEnable
57

4.3.2 Timing Blo
k BehaviorFigure 4.6 shows the �nite state ma
hine of the behavior of the timing blo
k, whi
h
onsists of three symboli
 states (Run, Wait, Route), and has two inputs (frameStartand anyA
tive) and one output (routeEnable).
else

WAIT

else

RUN

else

ROUTE

framestart=0/routeEnable=0

fra
mest

art
=0 &

 an
yact

ive=
1/ro

uteE
nable=

1

framestart=1/routeEnable=0

Figure 4.6: Timing Blo
k State Ma
hineWhile the input and the output are all of Boolean sort, the state and nextstate variables are of
on
rete sort with the enumeration : Run, Wait, and Route.We hen
e
reate a
on
rete MDG type :`def state_Type = CONCRETE "state_Type" "run";"wait"; "route"℄The
on
rete
onstants generated from this types are:`def run = CONC_Const "state_Type"`def
wait = CONC_Const "state_Type"`def route = CONC_Const "state_Type"Sin
e the inputs of MDG table should be of the same sort, we use the same fun
tionbool to MDGTerm to homogenise the input types of the tables. The former
onverts58

the Boolean type t to the MDG term type we de�ned. The HOL de�ned table forthe transition relation of the timing blo
k is de�ned in HOL as follows :`def transition ((anyA
tive:num�>bool),(fs:num�>bool),(state:num�>stringMDG_term)) (n_state:num�>string MDG_term) =TABLE bool_to_MDGTerm o anyA
tive; bool_to_MDGTerm o fs; state℄(n_state o SUC)[[DONT_CARE; TABLE_VAL(CONC_Const"F"); TABLE_VAL(run)℄;[TABLE_VAL(CONC_Const"T"); TABLE_VAL(CONC_Const"F"); TABLE_VAL(wait)℄;[DONT_CARE; TABLE_VAL(CONC_Const"F"); TABLE_VAL(route)℄℄[runSIG; routeSIG; runSIG℄ waitSIGThe outputs are de�ned as signals: fun
tion of time t as mentioned before for thetrue signal and the false signal.The MDG generated Table is:`def
omponent(tab_s1,table([[anyA
tive,fs,state,n_state℄,[*,0,run,run℄,[1,0,wait,route℄,[*,0,route,run℄wait℄)).To spe
ify the Timing Blo
k behavior, we de�ned three tables: a
tive, transi-tion and output. The HOL spe
i�
ation is represented by the
onjun
tion of thosetables:`def Timing (a
t0 ,a
t1, a
t2, a
t3, fs) routeEnable =9 anyA
tive state n_state.(a
tive (a
t0,a
t1,a
t2,a
t3) anyA
tive) ^(transition (anyA
tive,fs,state) n_state)^(output state routeEnable) 59

4.3.3 Timing Blo
k Veri�
ationThe model
he
king is done within the MDG tool. We provide the tool with theMDG-HDL like spe
i�
ation and the Lmdg properties. By
alling the HOL ta
ti
for model
he
king, the MDG �les are generated, and the property treatment ispro
essed. Finally, the model
he
king is run in MDG and the result is returnedba
k to HOL. The following properties were veri�ed.� The �rst property is a liveness one showing that the system will be in the stateRun in some of the
omputation paths. The initial state is Wait. The HOLproperty is de�ned as :`def Timing_property1 (state) =LMDG_AF (CONVERT timing state) (LMDG_X((� state t. state t = run)))The �rst part of the property makes referen
e to the
ir
uit we want to
he
k.CONVERT is a fun
tion of the
ir
uit and the state whi
h express the fa
tthat ea
h path
onsidered during the veri�
ation pro
ess belongs to the
om-putatoin tree of the
onsidered model. The MDG property derived is :AF(X (state = run))� The se
ond property is a safety one. We
he
ked that if the system is on staterun and the FrameStart signal is set then in the next state, the state will beWait and the output of the timing is set to 0:60

A((state =
run & fs= 1) -> (X(state =
wait & routeEnable = 0))� In the third property, we verify fairness
onstraint. In HOL, the
onstraint isadded as a
onjun
tion to the property:Timing_property1_fair (state) =(timing_property1)/\ (LMDG_FAIR (\ fs (t:num) . ~(fs t = 1)))However, in MDG, fairness are expressed separately in a di�erent �le, e.g.,! (fs = 1)� In the fourth property, we did the model
he
king on the implementation ofthe time blo
k
ir
uit.A((anyA
tive_i_1= 0) -> (X(routeEnable_o = 1)))The property mentions that if the signal anyA
tive i 1 is equal to 0, then in thenext state the output will be set to 1. MDG
he
ked the property and returnsthat the model does not verify this property (when the anyA
tive i 1 is set to0, the output in the next state is always equal to 0). So, the HOL goal is notproved. Unfortunately, the model
he
ker does not provide a
ounter-example.The model
he
king of these properties su

eeded, and we summarise the resultsgiven by MDG in the table bellow: 61

Property CPUs MemoryByte Nodes Components SignalsProperty1 0.15 66908 123 9 17Property2 0.18 72212 145 11 20Property3 0.19 68812 116 10 17Property4 0.20 98644 226 16 23Table 4.1: Model Che
king Results of the Timing Blo
kTo be more a

urate, the user should allow for an extra two to three minutes,required time for the tool to load the HOL theories and the input �les, generate theMDG ones and �nally intera
t with MDG system. The model
he
king within thetool is de�nitely faster than proving dire
tly with HOL. Yet, the dire
t proof shouldbe feasible in the theorem prover. For the failed property, the HOL goal is notproved. However, it is still possible to set the negation of the theorem. While theTiming BLo
k is a small illustrative example, in the next Chapter, we will presenta signi�
antly larger
ase study.

62

Chapter 5Case Study: Island TunnelController
In this
hapter, we illustrate our methodology using the Island Tunnel Controller(ITC) [40℄ as a
ase study. It is ideal for illustrating purposes sin
e its spe
i�
ation
ontains abstra
t sorts and uninterpreted fun
tions. Some properties are veri�edusing our hybrid tool HOL-MDG.
5.1 Island Tunnel Controller Des
riptionThe Island Tunnel Controller is depi
ted in Figure 5.1. It
ontrols the traÆ
 lightsat both ends of a tunnel
onne
ting the mainland and the island. Four sensorsare installed at both ends of the tunnel to dete
t the vehi
les presen
e: one at thetunnel entran
e (ie) and one at the tunnel exit (ix) in the island side, and one at thetunnel entran
e (me) and one at the tunnel exit (mx) on the mainland side. It isassumed that all
ars are �nite in length, that no
ars gets stu
k in the tunnel, thatno
ars do not exit the tunnel before entering the tunnel, that
ars do not leave the63

tunnel entran
e without travelling through the tunnel, and that there is suÆ
ientdistan
e between two
ars su
h that the sensors
an distinguish the
ars. The

ba Figure 5.1: Island Tunnel Controller Stru
tureisland tunnel
ontroller is
omposed of �ve modules: The Island Light Controller,the Tunnel Controller, the Mainland Light Controller, the Island Counter and theTunnel Counter (refer to [37℄ for the state transition diagrams of ea
h
omponent).The Island light Controller (ILC) has four states: green, entering, red and exiting.The outputs igl and irl
ontrol the green and red lights on the island side respe
tively;iu indi
ates that the
ars from the island side are
urrently o

upying the tunnel,and ir indi
ates that ILC is requesting the tunnel. The input iy requests the ILC torelease
ontrol of the tunnel, and ig grants
ontrol of the tunnel from the island side(
f. Figure 5.2). A similar set of signals is de�ned for the Mainland Light Controller64

ie=1green entering

iy_A=0 /\ ie=1

exitingred ix=1

ix=0

ix=1

ie=0

ig_A=1 /\ ix=0iy_A=1

ix=0 /\ ig_A=0

iy_A=0 /\ ie=0

Figure 5.2: The Island Controller(MLC). However, in this module, the behaviour depends on a
ross-fun
tion lessnwhi
h takes as input an abstra
t sort and generates as output a Boolean type (
f.Figure 5.3).
green

mx=1

(my_A=0) /\ (me=0)

(lessn=1) /\

(lessn=1)/\
(me=1)/\(my=0)

(mg_A=1)/\(mx=0)

lessn=0 \/ [my_A=1)/\ (lessn=1)]

me=1

(me=0)/\(mx=1) mx=1mx=0

red

entering exiting

(mg_A=0) /\ (mx=0)

Figure 5.3: The Mainland ControllerThe Tunnel Controller (TC) pro
esses the requests for a

ess issued by theILC and MLC. The Island Counter and the Tunnel Counter keep tra
k of the
ar'snumber
urrently on the island and in the tunnel, respe
tively. For the tunnel65

ontroller, the
ounter t
 is in
reased by 1 depending on t
+ or de
remented by 1depending on t
- unless it is already 0. The Island Counter operates in a similar way,ex
ept that the in
rementation and to de
rement depend on i
+ and i
-, respe
tively.
5.2 Spe
i�
ation and Properties De�nitionsFor the two modules ILC and MLC, we need to de�ne an enumerated type :state type whi
h takes one of the di�erent possible sates of the system. Here, thesuÆx
 is added to the names.state Type = CONCRETE "state Type" ["
 green";"
 red"; "
 entering";"
 exiting"℄
 green = CONC Const "state Type"In our spe
i�
ation, all the types are
on
rete ex
ept one abstra
t sort oftype wordn used to des
ribe the tunnel
ontroller and the tunnel
ounter. The twouninterpreted fun
tion in
 and de
 are spe
i�ed as well. We also de�ne two
ross-fun
tions lessn and equz. The design spe
i�
ation is written hierar
hi
ally, whereblo
ks are represented by the
onjun
tion of their respe
tive tables. The wholesystem is the
onjun
tion of the �ve blo
ks mentioned above.Next, we have spe
i�ed and veri�ed a number of properties on the Island Tun-nel Controller. In the following, we des
ribe four samples for illustration purposes,where the symbols \&", \!" and \->" mean logi
al and, negation, and impli
ationrespe
tively (using Lmdg syntax). Experimental results of a larger set of propertiesare displayed in Table 5.1. 66

� Property1: Let is be the state variable of the ILC, and igl its the greenlight variable. The green light of the ILC module must be o� if there is a
arexiting the tunnel.LMDG_AG ((CONVERT ILC_
omp is)(LMDG_IMP(LMDG_AND (is (t:num).(ix = true)) (is (t:num). (is t =
 red)))(is (t:num).(igl t = true))))The derived MDG property is:
AG ((is =
 red & ix = 1) -> (igl = 0))� Property2: Let mgl be the green light variable of the MLC and ms its statevariable. The green light of the MLC module should be on in a future stateduring the
omputation. This property veri�es the liveness of the
omponent.
LMDG_AG (MLC_
omp mgl) (ms (t:num). (mgl t= true))The derived MDG property is:
AF (mgl = 1) 67

� Property3: Let mt
 min be the signal to de
rement the
ounter of the MLCmodule, and mgl its green light variable. These two signals
an never be setto 1 at the same moment, be
ause when exiting the tunnel, the
ounter isde
remented; hen
e, the red light must be on.LMDG_AG((CONVERT (MLC_
omp mgl))(LMDG_NOT(LMDG_AND (ms (t:num). mt
_min =true)(ms (t:num). mgl = true))))The derived MDG property is:
AG (! ((mt
_min = 1) & (mgl = 1)))� Property4: Let my and iy be the signals to in
rement the mainland, and theisland
ounters, respe
tively. The TC should never in
rement both
ounters.LMDG_AG (CONVERT ILC_
omp(igl) MLC_
omp (mgl))(LMDG_NOT (LMDG_AND((is (t:num). (igl = true)))(ms (t:num). (mgl = true))))The derived MDG property is:
AG(!((my = 1) & (iy = 1))) 68

5.3 Experimental ResultsWe set up HOL goals, whi
h denotes that the properties we proposed imply thedesign spe
i�
ation. Table 5.1 des
ribes the model
he
king results of these andother properties, in
luding CPU time, memory usage and number of MDG nodesgenerated. We also report the number of
omponents and signals of the redu
ed(extra
ted) design model e�e
tively used for model
he
king in MDG.Property CPUs MemoryByte MDG Nodes Components SignalsProperty1 0.32 0.66 318 18 32Property2 0.36 0.77 313 13 31Property3 0.41 0.73 401 16 34Property4 1.12 1.91 1266 13 29Property5 0.91 1.26 1027 10 26Property6 0.93 1.77 1166 13 29Property7 1.15 1.39 11002 16 33Property8 1.15 1.39 11002 16 33Table 5.1: Model Che
king Results with Blo
k Extra
tionIt is
lear here that the veri�
ation is mu
h faster than doing the proof in-tera
tively with HOL. Moreover, sin
e the user has just to give the tool the HOLgoal, spe
i�
ation and property, the HOL-MDG
ommuni
ation and veri�
ation aredone automati
ally. All properties were su

essfully veri�ed. After interpreting theMDG result, respe
tive HOL theorems were
reated.In addition, sin
e our spe
i�
ation is written in a hierar
hi
al way, during ea
hproperty veri�
ation, our hybrid tool extra
ts the module to be proved. To see theadvantage of su
h blo
k extra
tion, we
he
ked the �rst two properties on the whole69

ITC design (See Table 5.2).Property CPUs MemoryByte MDG Nodes Components SignalsProperty1 0.74 1384668 830 26 62Property2 0.87 1467908 1027 24 60Table 5.2: Model Che
king Results without Blo
k Extra
tionThe obtained results demonstrate that the blo
k extra
tion performs savingsin memory usage and CPU run time by more than 50 %.In summary, our hybrid tool has a better veri�
ation performan
e than theMDG model
he
ker and the HOL theorem prover individually. However, the en-han
ement a
hieved with the blo
k extra
tion in the MDG side is not guarantiedwhen a global property on the whole design is veri�ed.

70

Chapter 6
Con
lusion and Future Work
Formal veri�
ation approa
hes are more and more used in the veri�
ation pro
ess ofdigital systems. Despite of their eÆ
ien
y, existing tools still have some drawba
ks.Theorem proving, for instan
e, su�ers from intera
tivity and the need of
ontinuousguidan
e, while model
he
king, though full automati
, su�ers from state spa
e ex-plosion. To improve the veri�
ation pro
ess, many hybrid approa
hes were proposedas a way to take advantage of di�erent formal veri�
ation te
hniques.In this thesis, we proposed a tool for linking HOL theorem proving and MDGmodel
he
king. HOL, a theorem prover based on high-order logi
, allows the useof hierar
hi
al veri�
ation and abstra
tion. MDG, a de
ision diagram based tool,provides features for model
he
king and the use of a relatively limited abstra
tion.The hybrid tool we proposed generates the required MDG �les and
ommuni
atesthem to the MDG tool, where the property is
he
ked. Thereafter, the veri�
ation71

result is returned ba
k to HOL. The veri�
ation of the properties within the MDGtool introdu
es automation to HOL sin
e the proof is not
ondu
ted intera
tively.Moreover, our tool allows a blo
k extra
tion feature, whi
h in
reases the performan
eof the model
he
ker by redu
ing the memory usage and the CPU time.An interfa
e between the two tools is implemented using Mos
owML. Theinput languages of the model
he
ker were �rst embedded into HOL allowing thede�nition of MDG like spe
i�
ation and properties. The user
ommuni
ates mainlywith the theorem prover. Se
ond, the tool des
ribed in [20℄ has been extended tohandle abstra
t datatypes. Our purpose from this expansion is to have the possibilityto do equivalen
e
he
king of
omplex
ir
uits whi
h might
ause problems in themodel
he
ker.The embedding of the Lmdg language provides a way to write properties inHOL. The embedding of the MDG-HDL grammar provides the tool with abstra
ttypes needed, bene�ting from the abstra
tion allowed in HOL as well as the abstra
tsorts, the uninterpreted fun
tions, featured by the MDGs.We presented the Timing Blo
k of an ATM swit
h fabri
 as an example, thenthe Island Tunnel Controller as a
ase study illustrating the veri�
ation within thebuilt tool. The obtained results shows that the veri�
ation is more tra
table thanusing ea
h tool individually.Our hybrid tool
an help in resolving the problem of non-termination in MDG.This problem has been dis
ussed in [5, 38℄. In [1℄, Ait et al. proposed an approa
h for72

solving the non-termination problem by using the s
hematization method, namely-terms. As, we are using a hierar
hi
al approa
h, when
onsidering a model, somemodules are veri�ed in the MDG tool, and for the other modules that will generatean in�nite set of states, HOL theorem prover will be used. Here, for ea
h module,rather than the spe
i�
ation of its behavioral, we should spe
ify the environmentof the module. The abstra
t
ounter we presented is an example illustrating thefeasibility of this approa
h. Sin
e it is spe
i�ed with abstra
t terms in table inputs,its veri�
ation with MDG leads to the non-termination problem, while we prove inHOL its equivalen
e. Future examples
an be ta
kled to ensure the usability of thetool for su
h problems.Another future issue of our proje
t is the integration of rea
hability analysisin HOL. In fa
t, we are de�ning a property in HOL a

ording to the model we wantto
he
k. HOL should be able to
ompute the di�erent design paths and verifythe property a

ording to the input MDG tables we have as input language for thespe
i�
ation. A
tually, if the MDG tool does not give a result for a property be
auseof state explosion, the user will have hard time to prove su
h module within HOL.Sin
e, there is no way to
ompute paths from the table stru
tures.Developing HOL ta
ti
s to treat the
onjun
tion and the disjun
tion of prop-erties
an be a good extension of the
urrent tool. This means, rather than sendingonly one property to be veri�ed, the user would have the possibility to spe
ifymany properties in HOL. Then, the ta
ti
 will split the property resulting from73

onjun
tion (or disjun
tion) to separated properties and treat ea
h property inde-pendently. The veri�
ation of ea
h property will be done within MDG. The obtainedresults(theorems) are later on
onjun
ted (or the disjun
ted). Finally the result isreturned ba
k to HOL.

74

Appendix A
Lmdg HOL Theory
As explained in Chapter 3, we proposed an embedding in HOL of the MDG propertyinput language : Lmdg. It represents a subset of the Abstra
t CTL* [37℄.Sin
e Lmdg is a ACTL* [37℄ like language, we divide the properties in two
lasses: the �rst is the CTL* like properties and the se
ond is the LTL like properties.
A.1 CTL* like Properties`def val LMDG_AG = Define `LMDG_AG R p = 8s. ((R s) ^ (8t. (p s t)))`;`def val LMDG_AF = Define `LMDG_AF R p = 8s. ((R s) ^ (9t. (p s t)))`;`def val LMDG_A = Define `LMDG_A R p t= 8s. ((R s) ^ (p s t))`;Only the univesal path quanti�er is allowed in MDG, however, we embedded75

in HOL the existantial path quanti�er too.`def val LMDG_EG = Define `LMDG_EG R p = 9s. ((R s) ^ (8t. (p s t)))`;`def val LMDG_EF = Define `LMDG_EF R p = 9s. ((R s) ^ (9t. (p s t)))`;A.2 LTL like Properties`def val LMDG_G = Define `LMDG_G p s = 8t. p s t `;`def val LMDG_F = Define `LMDG_F p s t = 9t1. p s t1 `;`def val LMDG_U = Define `LMDG_U p1 p2 s = 9t. (p2 s t ^ (8t1. t1 < t =) p1 s t1))`;

76

`def val LMDG_X = Define `LMDG_X p s t = p s (t+1)`;`def val LMDG_NOT = Define `LMDG_NOT p s t = : p s t `;`def val LMDG_IMP = Define `LMDG_IMP p1 p2 s t = :(p1 s t) _ p2 s t `;`def val LMDG_AND = Define `LMDG_AND p1 p2 s t = (p1 s t) ^ p2 s t `;`def val LMDG_OR = Define `LMDG_OR p1 p2 s t = p1 s t _ p2 s t `;`def val LMDG_FAIR = Define `LMDG_FAIR p = 8s t. (p s t) `;`def val LMDG_VAL = Define `LMDG_VAL v s t = v `;`def val LMDG_VAR = Define `LMDG_VAR x s t = s x t `;`def val LMDG_IS = Define `LMDG_IS q1 q2 s t = (q1 s t = q2 s t) `;`def val LMDG_TRUE = Define `LMDG_TRUE s t = T `;`def val LMDG_FALSE = Define `LMDG_FALSE s t = F `;`def val LMDG_START = Define `LMDG_START p s = 8s. p s 0 `;
77

Appendix B
MDG-HDL HOL Theory
We present bellow a subst of the embedded MDG-HDL grammar and the tablestru
ture in HOL. MDG sorts`def Hol_datatype `MDG_sort = ABSTRACT of 0a ! stringCONCRETE of string ! string list` ;Predi
ates to determine the type of a given sort`def Define `(IsCon
reteSort (ABSTRACT Abs nme) = F)^(IsCon
reteSort (CONCRETE Con
 z) = T)` ;`def Define `(IsAbstra
tSort (ABSTRACT Abs nme) = T)^(IsAbstra
tSort (CONCRETE Con
 z)= F)` ;`def Define `bool_type = CONCRETE "bool_type" ["true";"false"℄`;

78

MDG Variables`def Hol_datatype `MDG_VAR = MDG_VAR of string ! MDG_sort`;MDG fun
tions`def Hol_datatype `MDG_Fun = MDG_FUN of string ! MDG_VAR list ! MDG_VAR `;MDG Terms`def MDG_term = GE_Const of 0a| CONC_Const of string| VAR_Term of MDG_VAR| FN_Term of MDG_Fun| TERM of MDG_term => MDG_term`def Define `(IsGeneri
Constant (GE_Const Abs) = T)^ (IsGeneri
Constant (CONC_Const z)= F)^ (IsGeneri
Constant (VART var) = F)^ (IsGeneri
Constant (FN fun) = F)^ (IsGeneri
Constant (TERM term1 term) = F)`;`def Define `(IsCon
reteConstant (GE_Const Abs) = T)^ (IsCon
reteConstant (CONC_Const z)= F)^ (IsCon
reteConstant (VART var) = F)^ (IsCon
reteConstant (FN fun) = F)^ (IsCon
reteConstant (TERM term1 term) = F)`;
79

`def Define `(IsFun
tion (GE_Const Abs) = F)^ (IsFun
tion (CONC_Const z)= F)^ (IsFun
tion (VART var) = F)^ (IsFun
tion (FN fun) = T)^ (IsFun
tion (TERM term1 term) = F)`;`def Define `(IsVariable (GE_Const Abs) = F)^ (IsVariable (CONC_Const z)= F)^ (IsVariable (VART var) = T)^ (IsVariable (FN fun) = F)^ (IsVariable (TERM term1 term) = F)`;MDG Table Stru
ture`def val TABLE_VAL_AX =Hol_datatype `Table_Val = TABLE_VAL of 0a MDG_term DONT_CARE`;`def val TableVal_to_Val = Define`(TableVal_to_Val (TABLE_VAL (v:0a MDG_term)) = v)` ;`def val Table_mat
h = Define ` (Table_mat
h inputs [℄ (t:num) = T)^ (Table_mat
h inputs (CONS v vs) t =(((HD(inputs) t) = TableVal_to_Val (v:0a Table_Val))_ (v = DONT_CARE)) ^ (Table_mat
h (TL inputs) vs t))`;`def (table inps (out:num �> 0b) ([℄:(0a Table_Val list) list)V_out default t = (out t = default t))^ (table inps out (CONS v vs) V_out default t =((Table_mat
h inps v t) ! (out t = (HD V_out)t)))|(table inps out vs (TL V_out) default t)))`def TABLE inps (out:num �> 0b) (V_outs:(0a Table_Val list) list)V_out default = 8t. table inps out V_outs V_out default t80

De�nition of some MDG Tables`def bool_to_MDGTerm1:bool�> string MDG_term) b =if (b = T) then (CONC_Const "T") else (CONC_Const "F"));`def FSIG =�(t:num) . (CONC_Const "F");`def TSIG =�(t:num) . (CONC_Const "T");`def NOT_TABLE (x:num�>bool) (y:num�>bool) =TABLE [bool_to_MDGTerm1 o x℄ (bool_to_MDGTerm1 o y)[[TABLE_VAL(CONC_Const "T")℄℄[FSIG℄ TSIG ;`def NOT_TABLE2 (x:num�>bool) (y:num�>bool) =TABLE [bool_to_MDGTerm1 o x℄ (bool_to_MDGTerm1 o y)[[TABLE_VAL (CONC_Const "F")℄;[TABLE_VAL (CONC_Const "T")℄℄ [TSIG;FSIG℄ (ARB);`def val AND_TABLE = new_definition("AND_TABLE",��`AND_TABLE (x1:num�>bool) (x2:num�>bool) (y:num�>bool) =TABLE [bool_to_MDGTerm1 o x1;bool_to_MDGTerm1 o x2℄ (bool_to_MDGTerm1 o y)[[TABLE_VAL(CONC_Const "F");TABLE_VAL(CONC_Const "F")℄;[TABLE_VAL(CONC_Const "F"); TABLE_VAL(CONC_Const "T")℄[TABLE_VAL(CONC_Const "T"); TABLE_VAL(CONC_Const "F")℄;[TABLE_VAL(CONC_Const "T"); TABLE_VAL(CONC_Const "T")℄℄[FSIG;FSIG;FSIG;TSIG℄ TSIG `��);

81

`def AND4_TABLE(x1:num�>bool)(x2:num�>bool)(x3:num�>bool)(x4:num�>bool)(y)=TABLE[bool_to_MDGTerm1 o x1;bool_to_MDGTerm1 o x2;bool_to_MDGTerm1 o x3;bool_to_MDGTerm1 o x4℄(bool_to_MDGTerm1 o y)[[TABLE_VAL (CONC_Const"T"); TABLE_VAL(CONC_Const "T");TABLE_VAL(CONC_Const"T"); TABLE_VAL(CONC_Const"T")℄℄ [TSIG℄ FSIG`def OR_TABLE (x1:num�>bool) (x2:num�>bool) (y:num�>bool) =TABLE [bool_to_MDGTerm1 o x1;bool_to_MDGTerm1 o x2℄ (bool_to_MDGTerm1 o y)[[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "F")℄;[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "T")℄;[TABLE_VAL (CONC_Const "T"); DONT_CARE℄℄[FSIG;TSIG;TSIG℄ (ARB);`def OR4_TABLE (x1:num�>bool) (x2:num�>bool) (x3:num�>bool)(x4:num�>bool) (y:num�>bool) =TABLE [bool_to_MDGTerm1 o x1;bool_to_MDGTerm1 o x2;bool_to_MDGTerm1 o x3;bool_to_MDGTerm1 o x4℄ (bool_to_MDGTerm1 o y)[[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "F");TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "F")℄℄[FSIG℄ TSIG ;`def NAND_TABLE (x1:num�>bool) (x2:num�>bool) (y:num�>bool)=TABLE [bool_to_MDGTerm1 o x1;bool_to_MDGTerm1 o x2℄(bool_to_MDGTerm1 o y)[[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "F")℄;[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "T")℄;[TABLE_VAL (CONC_Const "T"); TABLE_VAL (CONC_Const "F")℄;[TABLE_VAL (CONC_Const "T");TABLE_VAL (CONC_Const "T")℄℄[TSIG;TSIG;TSIG;FSIG℄ (ARB);82

`def NOR_TABLE (x1:num�>bool) (x2:num�>bool) (y:num�>bool) =TABLE [bool_to_MDGTerm1 o x1;bool_to_MDGTerm1 o x2℄ (bool_to_MDGTerm1 o y)[[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "F")℄;[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "T")℄;[TABLE_VAL (CONC_Const "T"); TABLE_VAL (CONC_Const "F")℄;[TABLE_VAL (CONC_Const "T");TABLE_VAL (CONC_Const "T")[TSIG;FSIG;FSIG;FSIG℄ (ARB);`def XOR_TABLE (x1:num�>bool) (x2:num�>bool) (y:num�>bool)=TABLE [bool_to_MDGTerm1 o x1;bool_to_MDGTerm1 o x2℄ (bool_to_MDGTerm1 o y)[[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "F")℄;[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "T") ℄;[TABLE_VAL (CONC_Const "T"); TABLE_VAL (CONC_Const "F")℄;[TABLE_VAL (CONC_Const "T");TABLE_VAL (CONC_Const "T")℄℄[FSIG;TSIG;TSIG;FSIG℄ (ARB);`def FORK_TABLE (x:num�>bool) (y:num�>bool)=TABLE [bool_to_MDGTerm1 o x℄ (bool_to_MDGTerm1 o y)[[TABLE_VAL (CONC_Const "F")℄;[TABLE_VAL (CONC_Const "T")℄℄[FSIG;TSIG℄ FSIG;

83

De�nition of MDG pre-de�ned
omponents`def val mdg_not = new_definition("mdg_not",��`mdg_not x y = 8(t:num) . y t = :(x t) `��);`def val mdg_and = new_definition("mdg_and",��`mdg_and (x1,x2) y = 8(t:num) . y t = (x1 t) ^ (x2 t) `��);`def val mdg_and3 = new_definition("mdg_and3",��`mdg_and3 (x1,x2,x3) y = 8(t:num) . y t = (x1 t) ^ (x2 t) ^(x3 t)`��);`def val mdg_and4 = new_definition("mdg_and4",��`mdg_and4 (x1,x2,x3,x4) y = 8(t:num) . y t = (x1 t) ^ (x2 t) ^ (x3 t) ^(x4 t)`��);`def val mdg_or = new_definition("mdg_or",��`mdg_or (x1,x2) y = 8(t:num) . y t = (x1 t) _ (x2 t) `��);`def val mdg_or4 = new_definition("mdg_or4",��`mdg_or4 (x1, x2, x3, x4) y = 8(t:num) . y t = (x1 t) _ (x2 t) _(x3 t) _ (x4 t)`��);`def val mdg_nand = new_definition("mdg_nand",��`mdg_nand (x1, x2) y = 8(t:num) . y t = :(x1 t) _ :(x2 t) `��);`def val mdg_nor = new_definition("mdg_nor",��`mdg_nor (x1, x2) y = 8(t:num). y t = :(x1 t) ^ :(x2 t) `��);`def val mdg_nor3 = new_definition("mdg_nor3",��`mdg_nor3 (x1, x2, x3) y = 8(t:num). y t = :(x1 t) ^ :(x2 t) ^:(x3 t)`��);
84

`def val mdg_xor = new_definition("mdg_xor",��`mdg_xor (x1, x2) y = 8(t:num). y t = ((x1 t) ^:(x2 t)) _ :(x1 t) ^ (x2 t)) `��);`def val mdg_reg = new_definition("mdg_reg",��`mdg_reg x y = 8t. (y)(t+1) = x t`��);`def val mdg_fork = new_definition("mdg_fork",��`mdg_fork x y = 8t. (x) t = y t`��);`def val mdg_transform = new_definition ("mdg_transform",��`mdg_transform x1 x2 = 8 t .9y. x2(t) = y (x1 t) `��);

85

Bibliography
[1℄ O. Ait Mohamed, X. Song, and E. Cerny. On the non-termination of MDG-Based Abstra
t State Enumeration. Theoreti
al Computer S
ien
e Journal, Toappear.[2℄ G. Birtwistle, B. Graham, and S. K. Chin. new theory'HOL'; An Introdu
tion toHardware Formal Veri�
ation in Higher Order Logi
. Laboratory for AppliedLogi
, Department of Computer S
ien
e,Brigham Young University, August1994.[3℄ R. Bryant. Symboli
 Boolean Manipulation with Ordered Binary De
ision Dia-grams. In International Conferen
e on Computer-Aided Design, pages 236{243,1995.[4℄ E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou. AutomatedVeri�
ation with Abstra
t State Ma
hines Using Multiway De
ision Graphs,volume 1287. Formal Hardware Veri�
ation: Methods and Systems in Com-parison. Le
ture Notes in Computer S
ien
e, State-of-the-Art Survey, Springer86

Verlag, 1997.[5℄ F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny. Multiway de
isiongraphs for automated hardware veri�
ation. Formal Methods in System Design,10(1):7{46, 1997.[6℄ J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A tutorial introdu
tionto PVS, sri international. April 1995.[7℄ P. Curzon. The Formal Veri�
ation of the Fairisle ATM Swit
hing Element:an Overview. Te
hni
al Report 328, University of Cambridge, Computer Lab-oratory, Mar
h 1994.[8℄ P. Curzon, S. Tahar, and O. Ait-Mohamed. Veri�
ation of the MDG Compo-nents Library in HOL. Supplementary Pro
. International Conferen
e on The-orem Proving in Higher-Order Logi
s, Canberra, Australia, September 1998.[9℄ L. A. Dennis, G. Collins, M. Norrish, R. Boulton, K. Slind, G. Robinson,M. Gordon, and T. Melham. The PROSPER Toolkit. In in Pro

endings of theSixth International Conferen
e on Tools and Algorithms for the Constru
tionand Analysis of Systems, LNCS 1785, Springer Verlag, 2000.[10℄ M. Gordon. Combining Dedu
tive Theorem Proving with Symboli
 State Enu-meration. 21 Years of Hardware Formal Veri�
ation, De
ember 1998.
87

[11℄ M. Gordon. Using hol to study sugar 2.0 semanti
s. to be published as NASAConferen
e Pro
eedings CP-2002-211736, 2002.[12℄ M. Gordon. Rea
hability Programming in HOL98 Using BDDs. Theorem Prov-ing and Higher Order Logi
s, LNCS 1125, Springer Verlag,2000.[13℄ K. Havelund and N. Shankar. Experiments in Thoerem Proving and ModelChe
king for Proto
ol Veri�
ation. Formal Methods Europe, LNCS 1051:662{682, Springer Verlag, 1996.[14℄ R. Hum, H. Yip, H. Li, R. Mizouni, and S. Tahar. A GUI for linking HOL toMDG. Te
hni
al report, ECE Dept., Con
ordia University, June 2002.[15℄ J. Hurd. Integrating Gandalf and HOL. In Theorem Proving in Higher Order,LNCS 1690:311{321, Springer Verlag, 1999.[16℄ I. Beer, S. Ben David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh.The temporal logi
 sugar. In Computer Aided Veri�
ation, volume LNCS 2102,pages 363{367, Springer Verlag, 2001.[17℄ Synopsys In
. Stati
 Timing and Formal Veri�
ation: Online Manual. SynopsisCorporation, 2000.[18℄ J. Joy
e and C. Seger. Linking BDD-based Symboli
 Evaluation to Intera
tiveTheorem Proving. In In pro
eedings of the 30th Design Automation Conferen
e,Dallas, Texas, United States, pages 469{474, June, 1993.88

[19℄ J. Joy
e and C. Seger. The HOL-Voss System: Model-Che
king inside a Gen-eral Purpose Theorem-Prover. Higher Order Logi
 Theorem Proving and ItsAppli
ations, LNCS 780:185{198., Springer Verlag, 1994.[20℄ I. Kort, S. Tahar, and P. Curzon. Hierar
hi
al Veri�
ation Using an MDG{HOL Hybrid Tool. Corre
t Hardware Design and Veri�
ation Methods, LNCS2144:244{258, Springer Verlag, 2001.[21℄ R. Kumar, K. S
hneider, and T. Kropf. Stru
turing and Automating HardwareProofs in a Higher-Order Theorem-Proving Environment. Formal Methods inSystem Design, 2(2):165{223, 1993.[22℄ I. M. Leslie and D. R. M
Auley. Fairisle: an atm network for the lo
al area. InACM Communi
ation Review, volume 19(4), pages 327{336, 1991.[23℄ M. Gordon, R. Milner, and C. Wadworth. Edinburgh l
f: A me
hanized logi
of
omputation. volume LNCS 78. Springer Verlag, 1979.[24℄ K. L. M
Millan. Symboli
 Model Che
king. Kluwer, 1993.[25℄ T. Melham and M. Gordon. Introdu
tion to Higher Order Logi
, TheoremProving Environment for Higher Order Logi
. Cambridge University Press,1993.[26℄ T. Melhem. Higher Order Logi
 and Hardware Veri�
ation. Cambridge Uni-versity Press, 1993. 89

[27℄ L. Paulson. ML for the Working Programmer. Cambridge University Press,1996.[28℄ V. Pisini, S. Tahar, O. Ait-Mohamed, P. Curzon, and X. Song. Formal Hard-ware Veri�
ation by Integrating HOL and MDG, Mar
h 2000, ACM Publi
a-tions.[29℄ S. Rajan, N. Shankar, and M. Srivas. An Integration of Model-Che
king withAutomated Proof Che
king. Computer Aided Veri�
ation, LNCS 939:84{97,Springer Verlag, 1995.[30℄ R.K. Brayton, G.D. Ha
htel, A. Sangiovanni-Vin
entelli, F. Somenzi, A. Aziz,S.-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K.Ranjan, S. Sarwary, T. R. Shiple, G. Swamy, and T. Villa. VIS: a system forveri�
ation and synthesis. In Computer Aided Veri�
ation, volume LNCS 1102,pages 428{432, New Brunswi
k, NJ, USA, Springer Verlag,1996.[31℄ K. S
hneider and D. Ho�mann. A HOL Conversion for Translating LinearTime Temporal Logi
 to !-automata. Theorem Proving in Higher Order Logi
s,LNCS 1690:255{272, Springer Verlag, 1999.[32℄ K. S
hneider and T. Kropf. Verifying Hardware Corre
tness By CombiningTheorem Proving and Model Che
king. Te
hni
al report, University of Karl-sruhe, Karlsruhe, Germany, De
ember 1995.90

[33℄ IEEE standard 1364-1995. Ieee standard des
ription language based on theverilog hardware des
ription language, 1995.[34℄ T. Kropf. Introdu
tion to Formal Hardware Veri�
ation. Springer Verlag, 1999.[35℄ H. Xiong, P. Curzon, and S. Tahar. Importing MDG Veri�
ation results intoHOL. Theorem Proving in Higher Order Logi
s, LNCS 1690:293{310, SpringerVerlag, 1999.[36℄ Y. Xu. MDG Model Che
ker User's Manual. Dept. of Information and Opera-tional Reaser
h, University of Montreal, Montreal, Canada, O
tober 1999.[37℄ Y. Xu. Model Che
king for a First-Order Temporal Logi
 Using MultiwayDe
ision Graphs. PhD Thesis, University of Montreal, Canada, April 1999.[38℄ Z. Zhou, X. Song, S. Tahar, E. Cerny, F. Corella, and M. Langevin. Formalveri�
ation of the island tunnel
ontroller using multiway de
ision graphs. InFormal Methods in Computer-Aided Design, volume LNCS 1166, pages 233{247, 1996.[39℄ Z. Zhou. MDG Tools (V1.0) Developer's Manual, 1996.[40℄ Z. Zhou and N. Bouleri
e. MDG Tools(V1.0) User's Manual. University ofMontreal, Dept. D'IRO, 1996.
91

[41℄ Z. Zhu, J. Joy
e, and C. Seger. Veri�
ation of the Tamara
k-3 Mi
ropro
essorin a Hybrid Veri�
ation Environment. In Higher-Order Logi
 Thoerem Provingand Its Appli
ations, LNCS 780, pages 252{266., Springer Verlag, 1994.

92

