
A Hybrid Tool for Linking HOL Theorem Provingwith MDG Model Cheking
Rabeb MizouniA ThesisinThe DepartmentofEletrial and Computer Engineering

Presented in Partial Ful�llment of the Requirementsfor the Degree of Master of Applied Siene atConordia UniversityMontr�eal, Qu�ebe, Canada
April 2003 Rabeb Mizouni, 2003

CONCORDIA UNIVERSITYDivision of Graduate StudiesThis is to ertify that the thesis preparedBy: Rabeb MizouniEntitled: A Hybrid Tool for Linking HOL Theorem Proving withMDG Model Chekingand submitted in partial ful�lment of the requirements for the degree ofMaster of Applied Sieneomplies with the regulations of this University and meets the aepted standardswith respet to originality and quality.Signed by the �nal examining ommittee: Dr. M. Reza SoleymaniDr. Otmane Ait MohamedDr. Patrie ChalinDr. So��ene TaharApproved by Chair of the ECE Department2003 Dean of Engineering

ABSTRACT
A Hybrid Tool for Linking HOL Theorem Proving withMDG Model ChekingRabeb Mizouni

Nowadays, the formal veri�ation of hardware is gaining a lot of importane in thedesign ow of miro-eletronis systems. There exists several formal hardware veri-�ation approahes eah with its own advantages and drawbaks. Hene, the idea oflinking di�erent approahes to bene�t from their advantages has emerged as a poten-tial ultimate solution. In this thesis, we desribe a hybrid tool for formal hardwareveri�ation that links the HOL (Higher-Order Logi) theorem prover and the MDG(Multiway Deision Graphs) model heker. Our tool supports abstrat datatypesand uninterpreted funtion symbols available in MDG, allowing the veri�ation ofhigh level spei�ations. For this purpose, we embedded in HOL the grammar of thehardware desription language, MDG-HDL, used to represent models to be veri�ed.Furthermore, we provided an embedding of the �rst-order temporal logi Lmdg usedto express properties for the MDG model heker. Furhtermore, we have developedan interfae whih reads a HOL goal, generates the required MDG �les, alls theMDG model heker, and generates the HOL theorem on suessful veri�ation.iii

Our tool also handles design hierarhies by reduing the model to its subsystemaording to the property to be veri�ed. Veri�ation with the hybrid tool is fasterand more tratable than using either tool separately. This has been illustrated via anumber of simple hardware benhmark examples as well as a more elaborated designase study.

iv

A mes Parents qui me manquent tellement ...A mon her mari Anis...

v

ACKNOWLEDGEMENTS
I would like to express my gratitude to all those who gave me the ability toomplete this thesis.I am deeply indebted to my supervisor Dr. Tahar for his preious instrution.His dynami thinks, and his broad and profound knowledge have given me a greathelp. I would like to express my speial gratitude to Dr. Curzon from MiddlesexUniversity for his guidane and stimulating suggestions during my researh work.I am also obliged to Dr. Ait-Mohamed for his valuable disussions and hints.The HVG group olleagues provided a nie atmosphere for disussions andresearh, I thank them all, espeially, Amr Talaat for his great help and valuablefeedbak on the �rst draft of this thesis.Last but not least, I would like to give my gratitude to Dr. Ben Ayed, whointrodued me to the formal methods subjet and made me really enjoy it.

vi

TABLE OF CONTENTSLIST OF TABLES . xLIST OF FIGURES . xiLIST OF ACRONYMS . xii1 Introdution 11.1 Formal Veri�ation . 21.1.1 Deision Diagram Based Methods 51.1.2 Theorem Proving . 71.2 Motivation . 81.2.1 Verilog-HOL-MDG Projet . 81.2.2 Linking HOL and MDG Equivalene Cheker 81.2.3 Linking HOL and MDG Model Cheking 101.3 Related Work . 121.4 Sope of the Thesis . 162 HOL and MDG 182.1 The HOL Theorem Prover . 182.2 The MDG System . 203 The Formalisation of the MDG Input Languages in HOL 283.1 Formalising MDG-HDL Grammar in HOL 28vii

3.1.1 Formalising the MDG Library in HOL 293.1.2 Embedding the MDG-HDL Grammar in HOL 323.1.3 Example of an Abstrat-Counter 373.2 Formalising Lmdg into HOL Syntax 413.2.1 The Lmdg Syntax . 413.2.2 Embedding Lmdg in HOL . 434 MDG-HOL Linking (The Hybrid Tool) 474.1 The Hybrid Tool Behavior . 474.1.1 Overview . 474.1.2 Use of Hierarhy . 494.1.3 The Input Files . 504.1.4 The Generated Files . 514.2 The Hybrid Tool Struture . 534.3 Appliation: The Timing Blok . 564.3.1 Timing Blok Struture . 564.3.2 Timing Blok Behavior . 584.3.3 Timing Blok Veri�ation . 605 Case Study: Island Tunnel Controller 635.1 Island Tunnel Controller Desription 635.2 Spei�ation and Properties De�nitions 66viii

5.3 Experimental Results . 696 Conlusion and Future Work 71A Lmdg HOL Theory 75A.1 CTL* like Properties . 75A.2 LTL like Properties . 76B MDG-HDL HOL Theory 78Bibliography 86

ix

LIST OF TABLES
2.1 Mux MDG table . 263.1 Abstrat Counter Behavior . 394.1 Model Cheking Results of the Timing Blok 625.1 Model Cheking Results with Blok Extration 695.2 Model Cheking Results without Blok Extration 70

x

LIST OF FIGURES
1.1 Formal Veri�ation Approah . 31.2 Intended Verilog-HOL-MDG Projet Skeleton 91.3 Hybrid HOL-MDG Tool for Equivalene Cheking[20℄ 101.4 HOL and MDG Model Cheker Interfae 112.1 Multiplexer Example . 222.2 The MDG Tool . 233.1 Abstrat Counter Implementation . 404.1 Veri�ation Proedure with the Hybrid Tool 484.2 Blok Extration . 494.3 Hybrid Tool Struture . 544.4 Property Module Struture . 554.5 Timing Blok Implementation . 574.6 Timing Blok State Mahine . 585.1 Island Tunnel Controller Struture 645.2 The Island Controller . 655.3 The Mainland Controller . 65

xi

LIST OF ACRONYMS
ASM Abstrat State MahinesATM Asynhronous Transfer ModeCTL Computational Tree LogiFSM Finite State MahineHDL Hardware Desription LanguageHOL Higher-Order LogiILC Island Light ControllerITC Island Tunnel ControllerLTL Linear Temporal LogiML Meta LanguageMLC Main Land ControllerPVS Prototype Veri�ation SystemROBDD Redued Ordered Binary Deision DiagramRTL Register Transfer LeverSMV Symboli Model Veri�erTC Tunnel ControllerVIS Veri�ation Interating with SynthesisVLSI Very Large Sale Integration

xii

Chapter 1
Introdution
With the ever inreasing growth in the design of digital systems, and the size ofmiroeletronis iruits, the role of design veri�ation has gained a lot of impor-tane. Nowadays, simulation is onsidered the main testing approah. Nevertheless,serious design errors often remain undeteted despite the major e�orts to improvesimulation tehniques. To overome these limitations, formal veri�ation has beenintrodued [34℄. Formal veri�ation relies on a strong mathematial bakground.It tries to mathematially prove that an implementation of a system fully satis�esits spei�ation. There exist today several formal veri�ation approahes like the-orem proving, model heking, equivalene heking, et. Eah has advantages anddrawbaks. In this thesis, we present our e�orts in formalising and implementinga way for allowing the HOL (Higher-Order Logi) theorem prover to support theproof proedure of the Multiway Deision Graphs (MDG) model heker.1

The MDG [5℄ system is a deision diagram based veri�ation tool, primarilydesigned for hardware veri�ation. It supports both equivalene heking and modelheking. It is based on multiway deision graphs whih extend Redued-OrderedBinary Deision Diagrams (ROBDD) [3℄ with abstrat sorts and uninterpreted fun-tion symbols.HOL [25℄ is an interative theorem prover based on higher-order logi. Itan handle very large iruits for veri�ation, without any restrition on the size.However, sine it implements a white box veri�ation approah (user interativity),it is time-onsuming and needs a high expertise of the user. Therefore, it does not�t the urrent VLSI industry needs, whih is more time-to-market oriented, wherefast, eÆient, and trusted tehniques are adopted for testing produts. The ideaof developing hybrid approahes, integrating an interative theorem prover and anautomated tool to redue the veri�ation e�orts, emerges. Suh hybrid approahesbene�t from the high expressiveness and salability of the theorem prover, and theautomation of the model heker.
1.1 Formal Veri�ationFormal Hardware Veri�ation is the proof that a iruit or a system (the imple-mentation) behaves aording to a given set of requirements (the spei�ation) [34℄.Any formal veri�ation approah requires three omponents:2

� The iruit (system) under investigation (alled the implementation)� The set of requirements this iruit should obey to (alled the spei�ation);� The formal veri�ation tool whih is responsible of the veri�ation proess(Figure 1.1).
Formal Verification Tool

Implementation Specification

Correct

Not Correct

Figure 1.1: Formal Veri�ation ApproahIn pratie, one needs to model both the implementation and the spei�ationin the tool, and then uses one of the formal veri�ation algorithms of the tool tohek the orretness of the system or in some ases also to give a kind of trae(alled ounter-example) to where the error is. Formal methods have long beendeveloped and advoated within the omputing siene researh ommunity as theyprovide sound mathematial foundation for the spei�ation, implementation andveri�ation of omputer systems. These methods exploit representations with for-mally de�ned semantis in order to desribe abstratly (independent of details of3

implementation) the desired funtional behavior of a system [34℄. Suh formalisa-tion methods provide preise and unambiguous system spei�ations whih an beheked for ompleteness and internal logial onsisteny. The mathematial natureof these spei�ations enable reasoning about onsisteny (i.e., whether the systemdynamis are onsistent with system's stati properties) and the dedution of on-sequenes of the spei�ation. Simulation, although widely used as a way of testing,ould never give the veri�ation overage needed. Diretive test benhes, and ran-dom test benhes are the ways adopted by simulation to get over this problem, butit is beoming lear that the quality of the validation ahieved by traditional simu-lation is rapidly deteriorating miroeletroni tehnology progresses. Thus, formalveri�ation is proposed as a method to help ertify hardware and software, and on-sequently, to inrease on�dene in new designs. Formally verifying designs may beost e�etive in safety ritial appliations, for systems in high volume or remotelyplaed systems, and for systems that will go through frequent redesign beause ofhanges in tehnology. Formal Veri�ation however, is not the golden solution foriruit testing beause of some limitations [26℄. A orretness proof annot guar-antee that the real devie will never malfuntion; the design of the devie may beproved orret, but the hardware atually built an still behave in a way unintendedby the designer (this is the ase for simulation too). Wrong spei�ations an playa major role in this, beause it has been veri�ed that the system will funtion asspei�ed, but it has not been veri�ed that it will work orretly. Defets in physial4

fabriation an ause this problem too. In formal veri�ation a model of the designis veri�ed, not the real physial implementation. Therefore, a fault in the modelingproess an give false negatives (errors in the design whih do not exist). Althoughsometimes, the fault overs some real errors.Formal veri�ation approahes an generally be divided into two main ate-gories: reahability analysis, and dedutive methods. Model hekers and equiva-lene hekers are examples of the �rst approah. Many di�erent theorem provers(suh as HOL) have been used for dedutive veri�ation.1.1.1 Deision Diagram Based MethodsReahability analysis approahes are internally ategorised into two main ows:model heking and equivalene heking.Model heking: In this approah, a iruit is desribed as a state mahine withtransitions to desribe the iruit behavior. The spei�ations are desribed as prop-erties that the mahine should or should not satisfy. Traditionally, model hekersused expliit representations of the state transition graph, for all but the smalleststate mahines. To overome this apaity limitation, di�erent representations ofBDDs (Binary Deision Diagrams) are used to represent the state transition graphsand this allows model hekers (suh as SMV [24℄, and VIS [30℄) to verify muhlarger systems. Still, these model hekers fae the state spae explosion problemswhile verifying large iruits [34℄. 5

Equivalene heking: In reent years, many CAD vendors o�er equivaleneheking tools for design veri�ation. For example, Formality from Synopsys [17℄performs logi equivalene heking of two iruits based on strutural analysis.The ommon assumption used in the equivalene heking is that two iruits haveidential state enoding (lathes). With this assumption, only the equivalene of theombinational portions of two iruits must be heked. However, these tools annothandle the equivalene of designs with no struture similarity. Another drawbak ofequivalene hekers is that they all need golden iruits, used as the referene to beompared with during the veri�ation proess. However, the orretness of goldeniruits is still questionable.The major advantage of the reahability analysis veri�ation approahes isautomation. The mahine (tool) is usually responsible for building the whole modeland automatially verifying either the equivalene or a property. But reahabilityanalysis veri�ation has two main drawbaks, namely, �rst the state explorationproblem, where large designs (or deep datapaths) saturate the tool, stopping itfrom ontinuing the veri�ation proess, and seond, is the problemati desriptionof spei�ations as properties, speially in model heking, this desription needsexperiene and sometimes may not give full system overage.
6

1.1.2 Theorem ProvingWith theorem proving, an implementation and its spei�ation are usually expressedas �rst-order or higher-order logi formulae. Their relationship, stated as equivaleneor impliation, is regarded as a theorem to be proven within the logi system, usingaxioms and inferene rules. Thus, theorem proving is a powerful veri�ation teh-nique. It an provide a unifying framework for various veri�ation tasks at di�erenthierarhial levels. However, the task of proving omplex theorems needs expertise.A theorem prover or proof heker is a tool developed to partially automate the proofproess or to hek a manual proof. Theorem proving systems are being widely usedon an industrial sale for hardware and software veri�ation. Some of the well-knownones are HOL (Higher-Order Logi) [25℄, and PVS (Prototype Veri�ation System)[6℄. Theorem proving is onsidered a very strong veri�ation tool beause mathe-matial formulae an express nearly all design levels. The proof proedures are veryeÆient if they are onstruted by experts. Also, hierarhial modeling is used togive theorem provers nearly unlimited power; espeially in handling deep datapathdesigns, whih an be modeled eÆiently. The main problem with theorem provingtehniques is the lak of expertise and doumentation. It takes a onsiderably longtime to learn and use theorem proving. Besides, there is a strong need for librariesof spei�ations to be established, and more automated tools and approahes.
7

1.2 Motivation1.2.1 Verilog-HOL-MDG ProjetAs desribed before, eah of the veri�ation tehniques has advantages and draw-baks. Hene, the ombination of them in hybrid tools is expeted to derease theveri�ation omplexity. The work desribed in this thesis is part of a larger projetto link Verilog [33℄, HOL and MDG as shown in Figure 1.2. Here, a Verilog modelis passed through a HOL generator to get an equivalent model in HOL. The MDGtool provides four kind of veri�ation approahes: the ombinational equivaleneheking, the sequential equivalene heking, the invariant heking, and the modelheking. Within HOL, we use HOL tatis (proof sripts), alled MDG EQ TACand MDG MC TAC, to generate the required MDG �les 1 and omplete either theveri�ation of ombinational/sequential equivalene or model heking of the sys-tem. Sine both Verilog and HOL provide the hierarhy, the desription model willbe written in a hierarhial way.1.2.2 Linking HOL and MDG Equivalene ChekerIn [28℄, and later [20℄ a hybrid tool and a methodology tailored to perform hierarhi-al hardware veri�ation have been developed by the Hardware Veri�ation Group of1The ontents and funtions of these �les will be explained in Chapter 2
8

HOL Property
L_MDG

MDG

Equivalence

Model

Checking
Invariant

Checking

HOL

L_MDG to HOL

Generator
Verilog to HOL

Checking

Model (MDG-HDL)

Property (L_MDG)

Property(L_MDG)
Order (MDG-HDL)

Alg (MDG-HDL)

Model(HOL)

Model(Verilog)

Invaraint (MDG)

Fairness (L_MDG)
MDG_EQ_TAC

MDG_MC_TACFigure 1.2: Intended Verilog-HOL-MDG Projet SkeletonConordia University. They integrate the HOL theorem prover to the MDG equiv-alene heker. Similar to the projet we are presenting, the work is done withinthe proof system but using the spei�ation style of the automated veri�ation tool.The HOL-MDG tool is used to verify that strutural spei�ation of hardware im-plementation implies its behavioral spei�ation, rather than heking properties ora partial spei�ation. In fat, they use MDG to prove ombinational or sequentialequivalene. The hybrid tool integrates automated hardware veri�ation with inter-ative hierarhial hardware veri�ation. Veri�ation using the hybrid tool proeedsas shown in Figure 1.3 [20℄. An initial HOL goal is set to prove that the model imple-mentation implies its behavioral spei�ation. First, they try to do the equivaleneheking within the MDG tool by applying a HOL tati MDG EQ TAC. This lattermainly generates the MDG required �les and ensures the interation with the MDG9

equivalene heker. If the design is large enough to ause state explosion, and sinethe desription model are written in a hierarhial way, a tati HIER VERIF TACis alled to break the design in sub-bloks. The same proedure is reursively appliedif neessary. At any point, the goal proof an be done in HOL.
HOL Goal

MDG Verification
Succeeded

Make HOL theorem Hierarchical
block

State Explosion

Analyze MDG
counter_example

Correct design HOL Proof Apply MDG_Hier_Verif

yes

yes

no

no

no

yes

Apply MDG_EQ_TAC

Figure 1.3: Hybrid HOL-MDG Tool for Equivalene Cheking[20℄
1.2.3 Linking HOL and MDG Model ChekingThe earlier work presented above implements a tool linking the equivalene hekingpart of the MDG tool with HOL. Although this an be a step for the automation ofHOL theorem prover, equivalene heking, as a tehnique, su�ers from some draw-baks. Furthermore, it is sometimes useful to have the possibility to hek propertieswithin the theorem prover rather than the whole behavior. Usually to redue the10

MDG−HDL(MDG)

Lmdg(MDG)

MDG

MDGHOL

Result

H
O
L

M
D
G

−

Theorem

Lmdg(HOL)

HOL

MDG−HDL(HOL)

Figure 1.4: HOL and MDG Model Cheker Interfaeveri�ation omplexity, abstration tehniques and hierarhial veri�ation are used.However, the tool in [20℄, although eÆient in many ways, remains limited espeiallywhen it omes to abstrat types.The main ontribution of MDGs is that they make the integration of impliitstate enumeration and the use of abstrat datatype and uninterpreted funtionspossible [5℄. In order to bene�t from the abstration of MDG, we need to formalisethe full input language for model desription, MDG-HDL [40℄. This formalisationis introdued in HOL as a new theory. Besides, we have to able to express MDG-like properties in the theorem prover. Sine the input language of properties inMDG is the Lmdg language, we have to embed it in HOL as well. Finally, we needto implement the interfae ensuring the ommuniation between the two tools (f.Figure 1.4).
11

1.3 Related WorkSine higher-order logi based theorem provers su�er from lak of automation, manyprojets were undertaken with the aim of linking theorem provers with model hek-ers or by embedding model heking pakages into theorem provers. In our work, wehoose the �rst alternative, as we proppose an interfae linking the HOL theoremprover with the MDG model heker, allowing the de�nition and the veri�ation ofproperties in HOL.An impressive earlier hybrid system was the pioneering work of Joye and Seger[18, 19℄ ombined the theorem prover HOL with the symboli trajetory evaluationtool VOSS. Symboli trajetory evaluation provides a rigorous tehnique for verify-ing temporal relationship between node values, in addition of treating node valuessymbolially. In their system, several prediates were de�ned in the HOL system.HOL-VOSS presents a mathematial link between the spei�ation language of theVOSS system and the spei�ation language of HOL. A tati, VOSS TAC, was im-plemented in SML as a remote funtion. It alls the VOSS system that is then run asa hild proess of the HOL system. A VOSS assertion an be expressed as a term ofhigher-order logi. Symboli trajetory evaluation is used to deide whether or notthe assertion is true. If it is the ase, the assertion will be turned to a HOL theoremwhih an be used to proeed with further veri�ation proedures. Zhu et al. [41℄suessfully applied HOL-VOSS for the veri�ation of the Tamarak-3 miroproes-sor. As a ontinuation of HOL-VOSS, Aagarad et al. developed the Voss-ThmTa12

system ombining ThmTa with the VOSS System. Its power omes from the verytight integration of the two provers, using a single language, , as both the theoremprover's meta-language and its objet language. The Voss-ThmTa system has beenused to verify suessfully an IA-32 Instrution length deoder.Rajan et al. [29℄ proposed an approah for the integration of propositional �-alulus model heking, based on BDDs, within an automated proof system PVS [6℄.They used �-alulus as a medium for ommuniating between PVS and the modelheker. It was formalised by using the higher-order logi of PVS. The temporaloperators that apply to arbitrary state spaes are given the ustomary �xed-pointde�nitions using the �-alulus. These expressions were translated to the formrequired by the model heker. This later was then used to verify the subgoalsgenerated within PVS. In [13℄, a ompliated ommuniation protool was veri�edby means of abstration, used to extrat a �nite-state abstration of the protoolthat preserves the property of interest.The MEPHISTO system [21℄ was developed to manage the higher levels ofa veri�ation, produing a �rst-order subgoals to be proved by the FAUST �rstorder theorem prover. MEPHISTO is a hardware-spei� tool that onverts theoriginal goal into a set of simpler subgoals, whih are then automatially solved bya general-purpose theorem prover. MEPHISTO gives some support for hierarhialproof proedures providing a library of pre-proved modules.In a later work, Shneider and Kropf [32℄ presented a veri�ation method13

whih ombines the advantages of dedution style proof systems like HOL withthose of traditional model heking approahes. Datapath oriented veri�ation goalsinvolving abstrat datatypes are expressed by a lass of higher-order logi, whihallows a uni�ed desription of hardware struture and behavior at di�erent levels ofabstration.Hurd [15℄ used PROSPER 2 [9℄ to ombine the Gandalf, a �rst-order theoremprover, with HOL. A HOL tati, GANDALF TAC, is used to enable �rst-order HOLgoals to be proved by Gandalf and mirror the resulting proofs in HOL. Gandalf is aPROPSPER plug-in that an be alled over a network, and a Gandalf server maybe set up serviing multiple HOL lients. GANDALF TAC takes the original goal,onverts it to a normal form, writes it in the appropriate format, and sends it toGandalf. Gandalf then parses the proof, translates it to a HOL proof and provesthe original goal in HOL.Sheinder and Ho�mann [31℄ linked the SMV model heker [24℄ to HOL usingPROSPER. They embedded the linear time temporal logi (LTL) in HOL and trans-lated LTL formulae into equivalent !-Automata, a form that an be reasoned aboutwithin SMV. The translation is ompletely implemented by means of HOL rules.HOL terms are exported to SMV through the PROSPER plug-in interfae. Onsuessful model heking, the results are returned to HOL and turned to theorems.This hybrid tool allows SMV to be used as a HOL deision proedure. The deep2Prosper provides an open proof arhiteture for the integration of di�erent veri�ation toolsin a uniform higher-order logi environment 14

embedding of the SMV spei�ation language in HOL allows LTL spei�ations tobe manipulated in HOL.Gordon [10℄ integrated HOL with the BuDDy BDD pakage. His aim was toprovide a platform for implementing intimate ombinations of dedution and algo-rithmi veri�ation, like model heking. HOL was used to formalise the Quanti�edBoolean Formulae of BDDs. By using a higher-order rewriting tool, the formulaean be interatively simpli�ed to get a smaller BDDs. The mapping of simpli�edformulae to BDDs was done using a table. The BDD algorithm an also strengthenits dedutive ability in this system. In a later work [12℄, Gordon desribes someexperiments in adding simple model heking infrastruture to the HOL98. Themain di�erene between this approah and other tools mentioned above is that thetool provides a seure and general programming infrastruture to allow users to im-plement their own BDD-based veri�ation algorithms and then to integrate themwith existing HOL98 system.Similar to [15, 19, 29℄, we integrate a theorem prover (HOL) to an existinghardware veri�ation tool (MDG) rather than embedding an external pakage withinthe system as done in [10℄ and [31℄. We work within the proof system but using thespei�ation style of the automated tool. This is done by embedding the languages ofthe automated veri�ation tool within the proof system. An additional novel aspetin our work is the expliit support of model redution based on the natural designhierarhy and the spei�ation to verify. The use of MDG as the automated tool15

ompared to related BDD tools is to our opinion a big asset that opens up interestingpossibilities of making use of MDG features for data abstration. Thus pushing upthe abstration level of what an be passed to the automated tool from the theoremprover and ultimately allowing larger datapaths to be dealt with automatially.More reently, Gordon [11℄ presented an embedding of the semantis of theproperties spei�ation language Sugar2.0 [16℄ in higher-order logi supported byHOL. The motivation of this work is mainly proving meta-theorems with a theoremprover to provide a deeper kind of sanity heking, and developing mahine read-able semantis. Another advantage is the fat that Sugar provides ways to speifyproperties in both simulation and formal veri�ation, providing the users with aninterfae to ombine formal veri�ation tehniques, both theorem proving and modelheking, with simulation tehniques. Similar to our projet, this embedding givesa way to speify properties in HOL, the Lmdg language in our ase. While [11℄fouses on the formalisation of Sugar in HOL, in our projet we further enable theveri�ation of the property outside HOL, using the MDG model heker.
1.4 Sope of the ThesisThe remainder of this thesis is organised as follow. In Chapter 2, we overview theMDG and HOL veri�ation systems, emphasising the di�erene between theoremproving and model heking approahes, the advantages as well as the veri�ation

16

proess of eah. In Chapter 3, we desribe our HOL-MDG linkage approah ex-plaining the way we embedded MDG input languages into the logi of the HOLinterative theorem prover. Chapter 4 presents the implementation of the tool, itsstruture and its funtionality. Chapter 5 illustrates the advantages of our hybridapproah through a ase study on an Island Tunnel Controller (ITC). And �nally,onlusions and future work will be disussed in Chapter 6.

17

Chapter 2
HOL and MDG
In this hapter, we give an overview of the linked tools: the HOL theorem proverand the MDG system.
2.1 The HOL Theorem ProverThe HOL theorem prover, developed by Gordon [25℄, is an interative proof assistantthat has been under development sine mid-1980's, and is based on ideas from theEdinburgh LCF projet [23℄. The LFC approah implements a logi in a stronglytyped programming Meta Language (ML) [27℄. The HOL system is based on higher-order logi and was originally intended for hardware veri�ation. Thanks to itsgenerality, HOL is being urrently used in a variety of appliation areas. The basiinterfae to the system is ML [27℄.HOL o�ers two proof styles: forward and goal-direted bakward proofs in a18

natural-dedution-style alulus by reating theorems and applying inferene rules tothe already reated theorems. In the forward proof style, inferene rules are appliedin sequene to previously proved theorems until the desired theorem is obtained[25℄. This approah has some problems sine it is hard to know where to state theproof and, for large proofs, to determine whih sequene of rules to apply [26℄. Inbakwards proofs, the user sets the desired theorem as a goal, applies tatis to splitit in subgoals in suh a way that if a orresponding inferene rule was applied tothe subgoals, the theorem of the goal will be obtained. A tati is an ML funtionthat when applied to a goal redues it to a list of subgoals, along with a justi�ationfuntion mapping a list of theorems to a theorem [25℄. In pratie, a mixture ofthese two proof styles is used, with forwards proof interspersed within bakwardsproofs.Our tool links HOL98 to MDG model heker. HOL98 is the third version ofHOL system. Its key idea is that theorems are represented as an abstrat ML typeswhose only pre-de�ned values are axioms, and whose only operations are inferenerules. Theorems in HOL are built either by setting axioms or by applying rules ofinferene to axioms or to existing theorems; also a proved goal is set to theorem;hene the onsisteny of the logi is preserved [2℄. The HOL98 system provides arange of pre-proved theorems and a set of pre-de�ned tools, whih represents a rihinitial environment. In addition, users an enrih it by building their own theories.A theory de�nes a set of types, operators, axioms, and rules to deal with them.19

Usually, a theory is not independent as it needs to interat with other theories.HOL allows hierarhial veri�ation wherein design modules are divided intosubmodules and the submodules are divided too until the lowest implementationlevel is reahed. To prove that the implementation of a module implies its spei�a-tion, the user should prove the impliation of the implementation and the spei�a-tion of eah submodule. The main advantage of hierarhial theorem proving is theability to deal with large sale design. Despite of the expressiveness power of higher-order logi and the feature HOL system is o�ering, the veri�ation proess is stilla umbersome task sine it needs very deep understanding of the design strutureand a googd mastering of higher-oder logi and HOL, whih make the veri�ationtime-onsuming.
2.2 The MDG SystemThe MDG system is a deision diagram based veri�ation tool, primarily designedfor hardware veri�ation. It is based on Multiway deision Graphs [5℄, whih are anextension of ROBDD (Redued Ordered Binary Deision Diagrams) [3℄ by abstratsorts and uninterpreted funtions. The MDG tool is written in the logi program-ming language Prolog. Also, it runs under Quintus Prolog V3.2. The advantage ofthis tool is the fat of implementing a blak box veri�ation tehnique.

20

Multiway deision graphs [?℄ represent a new lass of deision diagrams, pro-posed to overome the limitation of the ROBDD-based methods. These latter re-quire a binary representation of the iruits. The idea behind MDGs is to introdueabstrat sorts and uninterpreted funtions suh that the model heking an be doneon larger state spaes.The MDG language is based on an ordinary many-sorted �rst order logi.The voabulary onsists of sorts, onstants, variables and funtion symbols. Theonjuntion, disjuntion or omposition of the latter are de�ned as terms. Sine thelogi is typed, for eah de�ned term, a type is assigned. For ROBDDs, the formulaeare of propositional logi and the leaf nodes of their assoiated diagrams labelled by0 or 1. The extension to MDGs is done in suh a way that the leaf nodes are labelledby formulae, allowing the nodes to range over abstrat sorts. An MDG is a �niteayli direted graph G where leaf nodes are labelled by formulae, the internal onesare labelled by terms, and the edges issuing from an internal node N are labelledby terms of the some sorts as the label node N. Eah formula P is represented by agraph G. So, when from as node there is a multiple edge B1, B2... issuing from itorresponding and leading to the subgraphs G1, G1..., whih represent respetivelyto the formulae P1, P2 ..., then the whole graph G is obtained by the onjuntionof all the subgraphs.As an example, we show the MDG of a multiplexer (Figure 2.1). We delarethe input signals and the output to be of the same abstrat sort, then we de�ne21

abstrat onstant for eah input and �nally we set the order of variables to take intoaount in onstruting the MDG.
x

y

z

s

(a) MUX

1

v

vu

T

x

S

(b) MDG

y

zz

u

0

Figure 2.1: Multiplexer ExampleThis MDG is suitable for any signals of type wordn we de�ne.The MDG tools aept hardware desription in Prolog-style Hardware Desrip-tion Language, alled MDG-HDL [37℄, whih allows the use of abstrat variables forrepresenting data signals. This MDG-HDL desription is then ompiled into theASM (Abstrat State Mahine) [4℄ model represented by internal MDG data stru-tures. An ASM is de�ned as a tuple D= (X, Y, Z, FI , FT , FO) where X representsthe set of input variables, Y represents the set of state variables, Z represents theset of output variables, FI denotes the set of initial variables, FT represents thetransition relation, and �nally FO denotes the output relation.MDG-HDL supports strutural desriptions, behavioral ASM desriptions, ora mixture of both. The MDG tool ontains mainly a ombinational veri�ation22

module, sequential veri�ation module, reahability analysis module and an MDGpakage. The latter implements manipulation algorithms for MDGs. The reaha-bility analysis algorithm heks that an invariant holds in all the reahable states ofan ASM using the abstrat impliit enumeration tehnique.
Specification

Invariant

Combinational
Verification

Comb.Check
Seq.Checking
Model Checking

Inv.Checking

Verification

MDG Package

Property

Specification

Variable

Order

Sequential
Implementation

Design
Design

Specification

Analysis
Reachablilty

Specification
Algebraic

YES/NO (Counter Example)Figure 2.2: The MDG ToolInterating together, these modules provide four appliations: ombinational/sequentialequivalene heking, invariant heking, and model heking. For the two �rst op-erations, the user should provide the tool with :� A behavioral model: it is given by a tabular representation of the transi-tion/output relation or a truth table.� A variables ordering �le: it ontains a total order of all variables, funtions tofollow in the onstrution of the MDGs.23

� An algebrai �le: it ontains the di�erent sorts, funtions and terms spei�edin the desription model.� An implementation �le: it is usually a netlist of omponents (prede�ned inMDG-HDL) onneted by signals.� An invariant �le: Sine from the two models to verify, we build a produtmahine, we impose that a given output should be equal to its orrespondenein the seond iruit.In addition, both behavioral and strutural desription �les ontain the signals andtheir sorts, the output partition and the next partition in the ase of sequentialiruit. However, the veri�ation algorithms are di�erent. For the ombinationalveri�ation, an MDG of eah model is omputed. Thanks to the anoniity of theMDGs, the equivalene heking holds if the obtained MDGs are the same. If it isnot the ase, the equivalene heking is failed. However, for sequential heking,the veri�ation is ahieved by forming a iruit out of two iruits, feeding the sameinputs to them and verifying an invariant asserting the equality of the orrespondingoutputs in all reahable states.Invariant heking is ahieved by using the symboli reahability analysis [39℄tehnique. The algorithm makes sure that a given invariant holds over all the reah-able states. Using this operation, the veri�ation of safety properties beome possi-ble. 24

Finally, MDG enapsulates a model heker for safety and liveness properties.It is based on impliit enumeration tehnique of the abstrat state mahine. Theinput �les are either the implementation or the spei�ation of the iruit, thealgebrai desription, the order variables and the property to be veri�ed. In MDGmodel heker, the design is represented by ASMs and the properties to be veri�edare expressed by formulae in the �rst order ACTL-like [37℄ temporal logi, alledLmdg[36℄. The ASM model of Lmdg is omposed of the original design model alongwith a simpli�ed invariant. This model is onstruted before interating with theMDG. Furthermore, additional information is required to verify the property: theuser should provide the tool with the type of the property as well as the fairnessonstraints imposed. Finally, the simpli�ed invariant is heked on the ompositemahine using the impliit abstrat enumeration of ASMs. More information arerequired by the model heker to verify the property. When a veri�ation fails, theMDG tool returns a ounterexample, onsisting of the state trae from the initialstate to the faulty one. However, this feature is still not provided in the tool for themodel heking operation.As part of the MDG software pakage, the user is provided with a large setof pre-de�ned modules suh as logi gates, multiplexers, registers, bus drivers, et.Besides the logi gates whih only use Boolean signals, all the other omponentsallow signals with onrete as well as abstrat types. Moreover, a speial strutureis de�ned alled tables. Tables an be used to desribe funtional bloks in both25

implementations and spei�ations. A table is similar to the truth table, it has asentry values �rst order terms in the rows. It is omposed of a list of rows. Eahrow is a list of inputs values and their orresponding output. A default value of theoutput is de�ned if the inputs sequene we have doesn't �t the de�ned rows. Someonstraints are imposed in the table inputs. The �rst list ontains variables andross-terms (where the output of a given funtion is onrete while its inputs ontainat least is o abstrat sort). The last element of the list must be a variable (eitheronrete or abstrat). The other variables in the list must be onrete variables.The remaining lists onsist of the sets of values that the orresponding variables orross-terms an take. The last element in the list of values ould be a �rst-orderterm. This represents an assignment to the output variable. The other values mustbe either `don't are' (represented by `*') or individual onstants in the enumerationof their orresponding variable sort. The last element in a table is the default value.To illustrate this, we present in table 2.1 the table representation of the multiplexerdesribed above. The table is desribing the behaviour of an abstrat multiplexer.
IsEqual(x,u) IsEqual(y,v) selet z1 * 0 u* 1 1 vTable 2.1: Mux MDG tableDue to the onstraints explained before, the entry of the table ouldn't be an26

abstrat term. To overome this, we de�ne ross-term funtion IsEqual that takesas input x and its generi onstant u and returns a boolean type. The same thingis done for the input y. So, the table struture beomes:
table([[selet, IsEqual(x,u), IsEqual(y,v),z℄,[0,1,*,u℄,[1,*,1,v℄|u℄)We hoose u to be the default value. This table desription is further inter-nally translated into an MDG (deision diagram) with the variable ordering s, x, yand z. However, we have no restrition on the inputs and outputs in de�nition ofomponents. The MDG omponent de�nition is :omponent(mux1, mux(sel(s), inputs([(0,x),(1,y)℄), output(y)))

27

Chapter 3The Formalisation of the MDGInput Languages in HOL
The aim of our work is linking the HOL theorem proving with the MDG modelheking. Both the model desription and the property are given to HOL system.For proessing a model heking operation, the theorem prover has to interat withMDG model heker and pass the required �les to the latter. So, in a ertain way,we are restrited by the input languages of the MDG tool. To express an MDG likespei�ation and properties in HOL, we have to embed two languages:� MDG-HDL(for model desription).� Lmdg (for properties spei�ation).13.1 Formalising MDG-HDL Grammar in HOLAs presented in Chapter 2, a speial module alled table is used to speify behavioraldesription in MDG. In [8℄, the table struture as well as the MDG-HDL omponents1Subset of the embedded Hol theories is presented in the Appendix A and B28

library has been embedded in HOL, allowing the spei�ation of onrete iruitsdesriptions. Sine there is no embedding of the MDG grammar, we were unable tode�ne desriptions, where abstrat sorts, uninterpreted funtions, and ross-termsare delared. In the following setion, we present the subset MDG-HDL libraryformalisation previously embedded, then we expose the HOL theory we embeddedto over the full MDG-HDL grammar.3.1.1 Formalising the MDG Library in HOLMDG-Tables De�nition in HOLThe proposed embedding of MDG table in HOL onsists of onsidering the MDG-table spei�ed by �ve arguments. The �rst argument is a list of the inputs, theseond is the single output, the third is a list of table rows. Eah row is a list itself,giving one alloation of values to the inputs. The entries in the list an be eitheratual values or a speial don't-are marker. The latter mathes any value the inputould hold. The fourth argument is a list of output values. Eah is the value onthe output when the inputs have the values in the orresponding row. The �nalargument is the default value, taken by the output if the input values do not mathany row. The �rst step in formalising this de�nition is to de�ne the mathing ofinput values. These an be either a normal value of arbitrary type or a don't-arevalue. This latter expresses the fat then the output is independent from the valueof this input in the urrent inputs row. The values taken by a table are de�ned as29

a new HOL type, with assoiated destrutor funtion to aess the value.`def Table_Val = TABLE_VAL of 0a | DONT_CARE`def TableVal_to_Val(TABLE_VAL(v:0a))= vThe �rst HOL expression de�ne a new HOL datatype \Table Val", whih has twoonstrutors : TABLE VAL and DONT CARE. The former an take any type.Curzon et al. [8℄ de�ned the mathing of input values to table values. A mathours if either the table value is don't-are, or the value on the input is identialto the table value. This property must hold for eah table entry. It is de�nedreursively by the funtion table math.`def (Table_math inputs [℄ (t:num) = T)^ (Table_math inputs (CONS v vs) t) =(((HD(inputs) t) = TableVal_to_Val (v:0a Table_Val))_ (v = DONT_CARE))^ (Table_math (TL inputs) vs t)HD and TL are two prede�ned HOL funtions whih return respetively the headand the tail of a list. The test is �rst done on the �rst element in the input list. It isrepeated after that on the rest of the list, until reahing the empty list. Moreover, ifthere is a math on a given row, the output has the orresponding value. Otherwise,it must hek the next row. If there is no math, the output equals the default value.This is de�ned in a reursive manner on the input list as the relation table:
30

`def (table inps (out:num �> 0b) ([℄:(0a Table_Val list) list)V_out default t = (out t = default t))^ (table inps out (CONS v vs) V_out default t =((Table_math inps v t) ! (out t = (HD V_out)t)))|(table inps out vs (TL V_out) default t)))A given table will relate a given input to a given output, if the table relation is trueat all the times:`def TABLE inps (out:num �> 0b) (V_outs:(0a Table_Val list) list)V_out default = 8t. table inps out V_outs V_out default tThe given de�nition is less exible than the MDG tables one sine, here, all theinput variables must be of the same type, while they an be from di�erent sortsin the MDG system. This is why Curzon et al. [8℄ hoose to reserve a list for theoutput instead of speifying the input like in the MDG tool: the last element in therow orrespond to the output value of the orresponding inputs.The MDG Components De�nition in HOLThe MDG library omes with a prede�ned set of omponents. Sine the abstratsort is not handled in the tool developed by Kort et al. [20℄, only omponents,where their inputs and outputs are of onrete sorts, are de�ned. All the inputs andoutputs are delared as signal from type number to Boolean, dependent from thevariable t (time). For example, the fork omponent [8℄ was de�ned in a onreteway:mdg_fork x y = 8t. (x:num�>bool) t = y t31

Besides, the behavior of eah omponent is de�ned in term of tables. As an example,the orresponding table of the fork omponent is:FORK_TABLE x y = TABLE x:num�>bool℄ (y:num�>bool)[[TABLE_VAL F℄;[TABLE_VAL T℄℄[FSIG;TSIG℄ FSIGWith the above exposed formalisation of the MDG-HOL library, there is nopossibility to express MDG terms ontaining abstrat funtions, generi onstants,or abstrat variables. Therefore, we propose an embedding of the MDG grammarsyntax in HOL. This required major modi�ations to the pre-introdued theory. Innext setion, we �rst desribe the grammar of the MDG-HDL and then we exposeits orresponding embedding in HOL.3.1.2 Embedding the MDG-HDL Grammar in HOLMDG-HDL GrammarMDGs inorporate variables of abstrat types to denote data values and uninter-preted funtion symbols to denote data operations. MDG terms are well formed�rst-order term.The wellformedness ondition presribes that MDG formulas shouldbe in the form of direted formulas [5℄. Let F be a set of funtion symbol and �a set of variables. We denote the set of terms freely generated from F and � by�(F ,�). 32

The syntax of a direted formula is then given by the grammar below [1℄:Sort S ::= S j SAbstrat Sort S ::= � j � j j :::Conrete Sort underlineS ::= � j � j j :::Generi Constant C ::= a j b j b j :::Conrete Constant underlineC ::= a j b j j :::V ariable mathalX ::= V j VAbstrat V ariable V ::= x j y j z j :::Conrete V ariable underlineV ::= x j y j z j :::Direted Formula ::= Disj ::= Conj _DisjConj ::= Eq ^ Conj j EqEq ::= A = C(A 2 �(F ; �))j V = Cj V = A(A 2 �(F ; �))j >j ?As in ordinary many-sorted �rst-order logi, the voabulary onsists of ageneri onstants, onrete onstants, abstrat variables, onrete variables andfuntion symbols. Direted formulae are always disjuntions of disjuntions or on-juntions of equations. The onjuntion Conj is de�ned as be onjuntion of at leasttwo equations Eq. Atomi formulae are the equations, generated by the lause Eq,33

plus > (truth) and ? (false). The equation an be the equality of onrete term anda onrete onstant, the equality of a onrete variable and a onrete onstant,orthe equality of an abstrat variable and an abstrat term.Embedding in HOLIn HOL, we de�ne an abstrat sort to be of type � to string. The seond parameterin this de�nition is spei�ed mainly to permit the user to impose a spei� MDGsort. A onrete sort (Boolean sort inluded) is de�ned by the list of its enumeratedvalues.`def MDG_sort = ABSTRACT of 0a �>string|CONCRETE of string ->string listNext, prediates are de�ned to speify the type of the sort we are dealing with.`def (IsConreteSort (ABSTRACT Abs MDG_name) = F)^(IsConreteSort (CONCRETE Con val_list) = T)IsConreteSort returns true if the type is of onrete sort. Similary, we de�ne aprediate to determine abstrat sorts.`def (IsAbstratSort (ABSTRACT Abs MDG_name) = T)^(IsAbstratSort (CONCRETE Con val_list)= F)A variable is de�ned aording to its type, onrete or abstrat. It is de�nedas a new Hol datatype:`def MDG_var = MDG_VAR of string ! MDG_sortTo test the sort of the variable, we should �x its MDG sort:34

`def IsConreteVariable (MDG_VAR name sort)= IsConreteSort sortA funtion is de�ned by its domain whih is a list of onrete variables, abstratvariables or a mixture of both, and its range, whih is a unique output. The typeof the funtion is determined aording to its domain and range. If the output isfrom an abstrat sort, so the funtion is de�ned to be an abstrat funtion. If allthe inputs and the output are from onrete sort, so the funtion is de�ned to beonrete. And �nally, if the output of the funtion is onrete, and at least one ofits inputs is abstrat, the funtion is de�ned to be ross funtion.`def MDG_Fun = MDG_FUN of string ! MDG_VAR list ! MDG_VARSome prediates are set to determine the kind of the funtion we de�ne: abstrat,onrete or a ross funtion. Sine the domain of the funtion is a list of variables,to test if the funtion is onrete, we should test if the inputs and the outputs areof onrete sort. So, we de�ne a prediate to determine reursively if the list is ofonrete variables. The test is �rst done on h, the head of the list, and is repeatedreursively on tl, the tail of the list, until reahing the empty list.`def ConreteVarList(h::tl) = ((IsConreteVar h) ^(ConreteVarList tl))^(ConreteVarList [℄ = T)Hene, a funtion is onrete if both its domain and its range are onrete:`def onreteFun (MDG_FUN name InputVarList OutputVar) =(ConreteVarList InputVarList) ^(IsConreteVariable OutputVar)35

After de�ning one by one the di�erent elements of the MDG voabulary, it is possibleto de�ne the di�erent kinds of MDG terms. An MDG term is either:� a onrete onstant, CONC Const, one of the onrete sort enumeration,� a generi onstant, GEN Const, onstant de�ned for an abstrat sort,� a variable, VAR Term, either from onrete sort or abstrat sort, or� a funtion, FN Term, from the MDG Fun HOL datatype de�ned above.The latter is done using the onstrutor TERM. It takes as argument a de�nedMDG Term and returns an MDG Term.The HOL de�nition is:`def MDG_term = GEN_Const of 0a| CONC_Const of string| VAR_Term of MDG_VAR| FN_Term of MDG_Fun| TERM of MDG_term => MDG_termThe overall struture of the table de�ned in Setion 3.1.1 will not be hanged.However, we impose that the entry of the table should be either a don't are or anMDG term.`def Table_Val = TABLE_VAL of 0a MDG_term | DONT_CAREWith the above embedding of the MDG-HDL grammar, it is now possible to de�neomponents of MDG library that ontain abstrat variables and funtionsymbols.36

For instane, we added the omponents multiplexer, register, and transform. Forexample, the multiplexer omponent is de�ned as follow:`def mdg_mux x1 x2 (y:num�>bool) z =8 t . z(t) = if (y t) then (x2 t)else x1(t)In the following setion, we present an illustrative example of an abstratounter using the above embedded theory. We proved, using HOL, the equivaleneof the spei�ation and the implementation of the ounter.3.1.3 Example of an Abstrat-CounterWe Consider a synhronous iruit whih onsists of a data register ount, twomultiplexers mux1 and mux2, and three funtional bloks symbols in, de, and eqz.The uninterpreted funtions in and de take as input ount of abstrat sort andprodue an abstrat output in(ount) and de(ount), respetively. The ross-termeqz takes as input ount and produes a onrete output of sort bool. y, the seletsignal of the multiplexer, is the input of the ounter. We onsider ount the outputof the ounter. The transition relation of this mahine is as follow:R � [((y = 0) ^ount 0 = in(ount)) _[((y = 1) ^ eqz (ount) = 0 ^ount 0 = de(ount)) _[((y = 1) ^ eqz (ount) = 1 ^ount 0 = ount)Our objetive is to verify in HOL that the implementation of the ounterimplies its spei�ation. 37

Counter spei�ationThe HOL spei�ation of the abstrat ounter ontains an abstrat sort, two abstratfuntions, and a ross funtion. The behavior of the abstrat ounter is summarisedin Table 3.1, where state and n state represent the ount and ount' respetively,p val, in p val, and de p val are generi onstant of the same abstrat sort PC.eqz represents eqz(ount).In HOL, the output of the tables should be de�ned as signals. Hene, we de�nethem as funtion of time 2 :`def pSIG = �(t:num).p_val`def deSIG = �(t:num).de_p_val`def inSIG = �(t:num).in_p_val`def de_inSIG = �(t:num).p_valBefore writing the table, we have to homogenise its inputs. Therefore, we de�nefuntions to map from the initial type to the desired type. As an example, we givehere the de�nition the bool to MDGTerm funtion, whih maps the boolean type toa onrete MDG type.`def bool_to_MDGTerm:(bool�> string MDG_term) b =if (b = T) then (CONC_Const "T")else(CONC_Const "F")The table of the ounter spei�ation is shown below:2� t. x means that x is funtion of t.
38

`def COUNTER_TABLE (state) (v:(num�>bool)) (y:(num�>bool))(n_state) =TABLE ; bool_to_MDGTerm o v ;bool_to_MDGTerm o y ℄(n_state o SUC)[[TABLE_VAL (p_val); DONT_CARE;TABLE_VAL (CONC_Const "F") ℄;[TABLE_VAL (in_p_val);TABLE_VAL (CONC_Const"F");TABLE_VAL (CONC_Const"T") ℄;[TABLE_VAL (p_val);TABLE_VAL (CONC_Const"F");TABLE_VAL(CONC_Const"T") ℄ ;[TABLE_VAL (p_val);TABLE_VAL (CONC_Const"T");TABLE_VAL(CONC_Const"T") ℄ ℄[inSIG;de_inSIG;deSIG;pSIG ℄ pSIGThe �rst tree rows represent the possible inputs ombination. The fourth listrepresents the output for eah row respetively. And �nally, the p val is the defaultvalue of the output if the input sequene is di�erent from what is spei�ed. In termsof truth table, the ounter table spei�ation is equivalent to the Table 3.1.state eqz y n statep val * F in p valin p val F T p valp val T T p valp val F T de p valTable 3.1: Abstrat Counter Behavior
Counter ImplementationThe implementation is omposed of two multiplexers, one register for the n state,two (blak-box) uninterpreted funtions De and In, and �nally one transformfuntion for the ross operator Eqz. In addition, we need to initialise the state valueso, we add an Initial prediate that sets the variable state at p val (.f Figure 3.1).39

y

Dec

n_stateRegMux1
Inc

Eqz

Mux2

Init

Figure 3.1: Abstrat Counter Implementation`def Counter_IMP (v) (y:num �> bool) (n_state) =9x z w (state:num�>string MDG_term) state1.(Reg state1 n_state) ^(Mux1 x z (y:num �> bool) state1) ^(In n_state x) ^(Mux2 n_state w (v) z) ^(De (n_state) (w)) ^(Eqz (n_state) (v)) ^(Initial state)Counter Veri�ationThe goal to be proven in HOL is stated as the folowing impliation:!state v y n_state p_val .(Counter_IMP v y n_state) ==> (COUNTER_TABLE state v y n_state)The proof should be done for any generi onstant our ounter takes. The proof wasondut suh that all de�nitions are �rst rewritten, and then using a ombination oftwo prede�ned HOL tatis: the ARITH TAC tati and PROVE TAC. The Firstone is used to split the goal to several subgoals. After that eah subgoal is provenindividually. The original goal is proven when all the subgoals are proven.40

3.2 Formalising Lmdg into HOL Syntax3.2.1 The Lmdg SyntaxCTL (Computation Tree Logi), is a propositional branhing time temporal logi,widely used as a property spei�ation language for model heking. In CTL, eahlinear time operator (F, G, X, or U) must appear after a path quanti�er A (forall paths), and E (there exists a path). CTL* extends CTL by allowing temporaloperator in whih a path quanti�er is followed by an arbitrary linear time formula.Thereafter, properties suh A(p ^ Xq) are allowed in CTL* while, not allowed inCTL. Xu [37℄ de�ned an Abstrat CTL* logi, alled Lmdg. This logi extends CTL*by using the �rst-order logi rather than the propositional logi. Lmdg, however,isa subset of the �rst order Abstrat CTL* [36℄. Lmdg is the properties spei�ationlanguage using for the MDG model heker. The properties allowed in Lmdg anhave the following templates:Property :A(Next let formula)j AG(Next let formula)j AF(Next let formula)j A(Next let formula)U(Next let formula)j AG((Next let formula)) (F(Next let formula)))j AG((Next let formula))((Next let formula))[(Next let formula)))41

Only the universal path quanti�ation is possible with the urrent version of MDGmodel heker. The syntax of the existential path is still not de�ned. The Next Let Formulais de�ned to be a nesting formula, or a basi formula.Next let formula:X(Next let formula)j LET (Let equation) IN (Let equation)j Next let formula (with onrete variables only)) Next let formulaj Next let formula Next let formulaj Next let formula (with onrete variables only)j Basi formulaBasi formula:Lterm = Rtermj Truej FalseLterm : ASM variable NameRterm : ASM variable Namej OrdVar Namej IntegeConstant 42

j SymboliConstantj FuntionLet Equation ::=Let equation Let equationj(Let equation)j OrdVar Name = ASM variable NameFuntion ::= Funtion Name (parameter list)The parameters of the funtion an be either ordinary variables or funtions.The Let equation an be the disjuntion of Let equations or an equality of an ordinaryvariable and an ASM variable. The Basi formula is true, false or the equality ofLTerm and RTerm. An Rterm an be a variable , onstant or a funtion. However,the LTerm is an ASM Variable. ASM variables, onstant variables and the symbolionstants represent both the set of variables (onrete and abstrat) and the set ofonstants (onrete and abstrat).3.2.2 Embedding Lmdg in HOLIn order to embed the Lmdg in HOL, it is important to respet the semantis of theoriginal language [37℄. All properties are de�ned aording to two notions: path and43

state. A path is a sequene of states. The latter is an assignment to the set of state,input and output variables. A full path starting from a state si is denoted by:�i = (si; si+1; si+2; :::)All formulas in Lmdg are path formulas. Hene, given a property in Lmdg on an ASMunder a given interpretation , the property holds on the ASM if and only if theproperty is true for all paths starting from eah initial state. The semantis of theAG operator will be :(�; �) j= Gp iff (�j; �) j= p for all j � iSine Lmdg is a CTL* like language [37℄, we divide the properties in two lasses: the�rst is the CTL like properties and the seond is the LTL (Linear Time TemporalLogi) like properties. For the latter ones, we de�ne a property aording to theprediate we want to verify:Eah logial proposition is a funtion of the path, expressed here by s whihan be formulated as a history funtion keeping trae of the states among the path,and the urrent state.`def LMDG_G p s = 8t. p s tThe linear temporal operator F, is de�ned to be a funtion of p and s suhthat exists t, where the property holds`def LMDG_F p s = 9t. p s tIn addition, the onjuntion, the impliation, and the disjuntion of prediatesare de�ned as funtion of the proposition44

`def LMDG_IMP p1 p2 s t = :(p1 s t) _ p2 s tThe seond lass of properties is the CTL like ones. Here, we de�ne theproperty aording to the prediate we want to de�ne as well as its iruit.`def LMDG_AG R p = 8s. ((R s) ^ (8t. (p s t)))Our objetive is to preise that eah path, onsidered in the property, belongsto the iruit desription we have. The omposition of the di�erent kind of templatesis done manually by the user. Therefore, the embedding we have is more expressivethan the original Lmdg.When verifying liveness properties, one is usually interested only on the so-alled fair in�nite omputation paths. A fair omputation path is a path along whihthe states satisfy the fairness ondition in�nitely often. In MDG, if we onsiderH as a fairness onstraint, the formula representing the exeption ondition H isalled H formula. Its syntax is de�ned by the equality of two ASM variables oran ASM variable and a onstant, the onjuntion, disjuntion, impliation of twoH formulas, the negation or the nesting of H formulas. However, only onreteASM variables may appear in the H formula. All fairness onstraints imposed arestored in a �le, whih is interpreted before the model heking proedure is invoked.In HOL we represent fairness onstraints by a prediate mentioning that theondition should holds in eah state. When fairness onditions are imposed, we addit as a onjuntion to the property as we will present in the next setion.45

`def LMDG_FAIR p s = 8t. p s t

46

Chapter 4MDG-HOL Linking (The HybridTool)
In this hapter, we will fous on the implementation part of the link between HOLand the MDG model heker. The implemented tool inputs are the model desrip-tion, the property and the HOL goal. It generates automatially all the requiredMDG �les, whih are then ommuniated to the MDG tool where the veri�ation isdone. The obtained result is transmitted to HOL. Therefore, either a HOL theoremis set or hand is given to the user to do the proof interatively.
4.1 The Hybrid Tool Behavior4.1.1 OverviewThe tool developed is an interfae between the HOL theorem prover and the MDGmodel heker. During the veri�ation proedure, the user deals mainly with HOL.As shown in Figure 4.1, the user starts by giving the HOL design (spei�ation or47

implementation), the HOL property and the goal to be proven. If this goal �ts therequired pattern (our tool aepts only impliation goals), the respetive MDG �lesare generated. The latter are sent to the MDG tool for model heking.

Yes

Make Theorem Regular HOL proof

No

No

 Hol goal

Yes

Fair(MDG)

Input files Output files

Call MDG and
do Verification

Accepted

Design(HOL)

Prop(HOL) Prop(MDG)

Design(MDG)

Order(MDG)

Alg(MDG)

Verified

Figure 4.1: Veri�ation Proedure with the Hybrid ToolIf the property holds, a HOL theorem is reated. However, if the veri�ationwithin the MDG tool fails, we have to perform the proof interatively using HOL.The tool does not aept any arbitrary HOL spei�ation. It aepts only MDG-styles spei�ations and properties. We use the embedded HOL theories to expressboth the model and the properties desriptions. In the next setions, we detail thefeature of the input �les to the generated �les by our tool.48

4.1.2 Use of HierarhyUsually, hardware systems under veri�ation are desribed (in HOL) in a hierarhialfashion. The main modules of the spei�ation are divided into submodules. Thesubmodules are repeatedly subdivided until eventually the logi gate level is reahed.This is ahieved by de�ning the struture \blok" in a reursive manner.

subblock subblock subblock

...subblock subblocksubblock

..
.

block

subblock subblock subblock

subblock

New Model

Block

Extraction

Figure 4.2: Blok ExtrationThe advantage of having suh hierarhy is the ability to extrat the blok aboutwhih we want to hek a property (see Figure 4.2). Hene, the model heker dealswith the spei�ation of the onsidered blok only, not the whole design. As a result,we save on model size without onstraining the user to write another spei�ationfor the appropriate blok.
49

4.1.3 The Input FilesDesign Spei�ation File (HOL)Design models are provided as a normal �le of HOL de�nitions. They are writtenin a hierarhial struture. Sine the model de�nition must be analyzed by the tooland ultimately onverted into MDG, it should follow a spei� form : it onsists ofa onjuntion of tables, whih input and output arguments must be expliitly typedand delared as MDG terms. This implies that all sorts (abstrat and onrete),variables, onstants and funtions must be spei�ed. Strutural models are writtenin a subset of the HOL logi similar to that for behavioral spei�ations. However,they are not limited to tables but an inlude any omponent of the MDG omponentlibrary.Property Spei�ation File (HOL)Properties are provided as normal HOL de�nitions. They are written aordingto the Lmdg theory we embedded in HOL. The fairness onstraints are added as aonjuntion to the main property formula. The hybrid tool will extrat the fairnessonstraints and put them in a �le before proeeding with the adequate treatment.

50

Proof Goal Spei�ation (HOL)There are di�erent ways to speify a goal in HOL. However, when using our tool,the goal should be an impliation aording to this form :` Design � Propertylooking to proof that the design veri�es the property. Sine the veri�ation is donein MDG, we need to formalise the (MDG) result in HOL. Therefore, we onvert theMDG results into a form that an be used [35℄:` FormalisedMDGresult �Model � PropertyThe general onversion theorem into HOL has been proved [35℄. The result givenby MDG tool an be interpreted and a HOL theorem an be instantiated for anydesign and any property under onsideration.4.1.4 The Generated FilesDesign Spei�ation File (MDG-HDL)It ontains:� The signals appearing in the design model and their sorts assignments.� The output partition speifying the design output signals.� A network of tables and/or MDG-HDL omponents.51

� We also give the set of initial states and transition/output relation partitionstrategy.Order File (MDG-HDL)The order �le ontains the order of the variables with whih the multiway dei-sion graph is built. In our ase, the order is generated statially. However, somerestritions are imposed for abstrat variables and funtions name.Algebrai File (MDG-HDL)In the algebrai �le, all onrete sorts used in the design spei�ation are listed.It also inludes the delaration of all used funtions (onrete, ross-funtion andabstrat). In addition, any generi onstants (of abstrat type) de�ned in the designmodel should be mentioned here.Property File (Lmdg)It has the form of a property aeptable by MDG. It follows the syntax desribedin Setion 3.3.The MDG Fairness Files (Lmdg)In the HOL given property, the fairness onstraints are part of the property, thehybrid tool takes are of separating them from the property ore before proessingthem for the adequate treatment. This will be explained in the next setion.52

4.2 The Hybrid Tool StrutureOur hybrid tool is written in SML. It is omposed of �ve main modules: the HybridTool Interfae, the Property Module, the Desription File Module, the HOL GoalParser Module and the MDG Interation Module (f. Figure 4.3). The user's in-terfae to the hybrid tool is a Java GUI, responsible for getting the HOL goal, theproperty �le and the model desription �le, passing them to HOL, loading the Lmdgand MDG-HDL theories and at the end of the veri�ation proess, ommuniatingthe result to the user [14℄. In the seond module, the Property Parser generates asoutput a data struture from whih the MDG File Generator produes the MDGproperty �le, and the Property Type Generator provides the property type. On theother side, in the Desription File Module, the spei�ation is �rst attened.When parsing the goal, we get the name of the property and the blok wewant to hek. The latter an be either the main module in the spei�ation orone of its submodules. Sine the spei�ation is written in a hierarhial way, it ispossible to extrat the target module, and its submodules, and to disard the others.The Blok Extration Module ahieves this task. In the next step, the orrespondingMDG �les are generated (Algebrai, Order and Spei�ation/Implementation). Inorder to proeed with the model heking operation, these �les should be used forgenerating ASMs before interating with MDG. Sine the ommuniation betweenthe linked tools is done automatially, we implemented a speial module to take areof the ASM generation task : ASM Generation Interfae53

MDG-HDL
Generator

Design (HOL) Goal (HOL)Property (HOL)

Alg(MDG-HDL)

Y/N (HOL)

Correctness
Theorem generator

Y/N (MDG)

Goal ParserDesign Parser

BlockSpecID
BlockImp
PropID

Bloc Extractor

MDG_Term
MDG_Fun
MDG_Type

Hybrid Tool Interface

Property Parser

Generator Type

BlockImp
BlockSpec/

Property
Order(MDG-HDL)
Design(MDG-HDL)

MDG Code

Correctness theorem (HOL)

type

Fair (L_MDG)
Prop(L_MDG)

Generation InterfaceASM

MDG Interaction

Generator

MDG Result Interpreter

Figure 4.3: Hybrid Tool StrutureASM Generation Interfae Before interating with MDG, two steps need to beexeuted. The �rst one is to automatially build additional ASMs that representthe Lmdg property (f. Figure 4.4).The Next Manager is an implemented module in the MDG tool that takes are ofahieving this treatment. The New prop represents the new property �le generatedwhere ASMs representing the property are added to the spei�ation. The seond54

Next Manager

No

new_Prop

Order(MDGD-HDL)

Design(MDGD-HDL)

Constraints?

MDG-HDL Generator

new_Order

Yes

Propety Type Generator

MDG InteractionModule

Prop

Fairness

new_Design
new_Prop
new_Order

Prop Type

Parsed Property
Parser

Property file

Fair filesGenerator

fair constraints
fair_new_Order
fair_new_Prop
fair_new_Design

Parsed Property

Parsed Property

new_Design

Figure 4.4: Property Module Struturestep is to test if fairness onstraints are imposed. We hek this on the parsedproperty. If so extra ASMs are onstruted and onneted to the original ones,fair new Model.The MDG Interation Module ensures the ommuniation with MDG. it takesall the generated MDG �les, the property type and the fairness number. The latteris provided by the property parser module. All these �les are supplied to the MDGtool whih applies the veri�ation proess and passes the result to HOL throughtheMDG Result Interpreter Module. If the property holds, a theorem is generatedin HOL. 55

4.3 Appliation: The Timing BlokThe timing blok is one of the bloks omposing the Fairisle ATM (AsynhronousTransfer Mode) swith fabri [22℄. The Fairisle swith fabri is a real swith fabridesigned and used at the University of Cambridge for multimedia appliations. Cur-zon [7℄ formally veri�ed this ATM swithing element hierarhially using the HOLsystem. Kort et al. [20℄ presented the veri�ation of the ATM swithing using theHOL-MDG Hybrid tool where the submodules were veri�ed using the MDG tool.Also, Pisini et al. [28℄ presented the equivalene heking of the timing blok moduleusing the hybrid tool . We present the formalisation of the state transition diagramof the timing blok in terms of MDG tables aording to our new theory, as well asthe experimental result of some properties heked within our tool.4.3.1 Timing Blok StrutureThe timing blok ontrols the timing of the arbitration deision based on the framestart signal and the time the routing bytes arrive. The implementation of the timingblok is shows in Figure 4.5. Its HOL spei�ation is given as follow:

56

act[0..3]

4
OR anyActive

AND

dx
DFFd x

INV

xBar yterm
dy DFFd

yINV

frameStartBar

OR

x=routeEnable

frameStart

AND

Figure 4.5: Timing Blok Implementation`def 8at0 at1 at2 at3 fs routeEnable_i.TIMING_IMP (at0,at1,at2,at3,fs) routeEnable =9anyAtive_i fsBar qxBar yterm dx dy qx qy.mdg_or4 (at0,at1,at2,at3) anyAtive^ mdg_not fs fsBar^ mdg_not qx qxBar^ mdg_and (qy,qxBar) yterm^ mdg_and4 (anyAtive_i,qy,fsBar,qxBar) dx^ mdg_or (fs,yterm) dy^ mdg_reg dx qx^ mdg_reg dy qy^ mdg_fork qx routeEnable
57

4.3.2 Timing Blok BehaviorFigure 4.6 shows the �nite state mahine of the behavior of the timing blok, whihonsists of three symboli states (Run, Wait, Route), and has two inputs (frameStartand anyAtive) and one output (routeEnable).
else

WAIT

else

RUN

else

ROUTE

framestart=0/routeEnable=0

fra
mest

art
=0 &

 an
yact

ive=
1/ro

uteE
nable=

1

framestart=1/routeEnable=0

Figure 4.6: Timing Blok State MahineWhile the input and the output are all of Boolean sort, the state and nextstate variables are of onrete sort with the enumeration : Run, Wait, and Route.We hene reate a onrete MDG type :`def state_Type = CONCRETE "state_Type" "run";"wait"; "route"℄The onrete onstants generated from this types are:`def run = CONC_Const "state_Type"`def wait = CONC_Const "state_Type"`def route = CONC_Const "state_Type"Sine the inputs of MDG table should be of the same sort, we use the same funtionbool to MDGTerm to homogenise the input types of the tables. The former onverts58

the Boolean type t to the MDG term type we de�ned. The HOL de�ned table forthe transition relation of the timing blok is de�ned in HOL as follows :`def transition ((anyAtive:num�>bool),(fs:num�>bool),(state:num�>stringMDG_term)) (n_state:num�>string MDG_term) =TABLE bool_to_MDGTerm o anyAtive; bool_to_MDGTerm o fs; state℄(n_state o SUC)[[DONT_CARE; TABLE_VAL(CONC_Const"F"); TABLE_VAL(run)℄;[TABLE_VAL(CONC_Const"T"); TABLE_VAL(CONC_Const"F"); TABLE_VAL(wait)℄;[DONT_CARE; TABLE_VAL(CONC_Const"F"); TABLE_VAL(route)℄℄[runSIG; routeSIG; runSIG℄ waitSIGThe outputs are de�ned as signals: funtion of time t as mentioned before for thetrue signal and the false signal.The MDG generated Table is:`def omponent(tab_s1,table([[anyAtive,fs,state,n_state℄,[*,0,run,run℄,[1,0,wait,route℄,[*,0,route,run℄wait℄)).To speify the Timing Blok behavior, we de�ned three tables: ative, transi-tion and output. The HOL spei�ation is represented by the onjuntion of thosetables:`def Timing (at0 ,at1, at2, at3, fs) routeEnable =9 anyAtive state n_state.(ative (at0,at1,at2,at3) anyAtive) ^(transition (anyAtive,fs,state) n_state)^(output state routeEnable) 59

4.3.3 Timing Blok Veri�ationThe model heking is done within the MDG tool. We provide the tool with theMDG-HDL like spei�ation and the Lmdg properties. By alling the HOL tatifor model heking, the MDG �les are generated, and the property treatment isproessed. Finally, the model heking is run in MDG and the result is returnedbak to HOL. The following properties were veri�ed.� The �rst property is a liveness one showing that the system will be in the stateRun in some of the omputation paths. The initial state is Wait. The HOLproperty is de�ned as :`def Timing_property1 (state) =LMDG_AF (CONVERT timing state) (LMDG_X((� state t. state t = run)))The �rst part of the property makes referene to the iruit we want to hek.CONVERT is a funtion of the iruit and the state whih express the fatthat eah path onsidered during the veri�ation proess belongs to the om-putatoin tree of the onsidered model. The MDG property derived is :AF(X (state = run))� The seond property is a safety one. We heked that if the system is on staterun and the FrameStart signal is set then in the next state, the state will beWait and the output of the timing is set to 0:60

A((state = run & fs= 1) -> (X(state = wait & routeEnable = 0))� In the third property, we verify fairness onstraint. In HOL, the onstraint isadded as a onjuntion to the property:Timing_property1_fair (state) =(timing_property1)/\ (LMDG_FAIR (\ fs (t:num) . ~(fs t = 1)))However, in MDG, fairness are expressed separately in a di�erent �le, e.g.,! (fs = 1)� In the fourth property, we did the model heking on the implementation ofthe time blok iruit.A((anyAtive_i_1= 0) -> (X(routeEnable_o = 1)))The property mentions that if the signal anyAtive i 1 is equal to 0, then in thenext state the output will be set to 1. MDG heked the property and returnsthat the model does not verify this property (when the anyAtive i 1 is set to0, the output in the next state is always equal to 0). So, the HOL goal is notproved. Unfortunately, the model heker does not provide a ounter-example.The model heking of these properties sueeded, and we summarise the resultsgiven by MDG in the table bellow: 61

Property CPUs MemoryByte Nodes Components SignalsProperty1 0.15 66908 123 9 17Property2 0.18 72212 145 11 20Property3 0.19 68812 116 10 17Property4 0.20 98644 226 16 23Table 4.1: Model Cheking Results of the Timing BlokTo be more aurate, the user should allow for an extra two to three minutes,required time for the tool to load the HOL theories and the input �les, generate theMDG ones and �nally interat with MDG system. The model heking within thetool is de�nitely faster than proving diretly with HOL. Yet, the diret proof shouldbe feasible in the theorem prover. For the failed property, the HOL goal is notproved. However, it is still possible to set the negation of the theorem. While theTiming BLok is a small illustrative example, in the next Chapter, we will presenta signi�antly larger ase study.

62

Chapter 5Case Study: Island TunnelController
In this hapter, we illustrate our methodology using the Island Tunnel Controller(ITC) [40℄ as a ase study. It is ideal for illustrating purposes sine its spei�ationontains abstrat sorts and uninterpreted funtions. Some properties are veri�edusing our hybrid tool HOL-MDG.
5.1 Island Tunnel Controller DesriptionThe Island Tunnel Controller is depited in Figure 5.1. It ontrols the traÆ lightsat both ends of a tunnel onneting the mainland and the island. Four sensorsare installed at both ends of the tunnel to detet the vehiles presene: one at thetunnel entrane (ie) and one at the tunnel exit (ix) in the island side, and one at thetunnel entrane (me) and one at the tunnel exit (mx) on the mainland side. It isassumed that all ars are �nite in length, that no ars gets stuk in the tunnel, thatno ars do not exit the tunnel before entering the tunnel, that ars do not leave the63

tunnel entrane without travelling through the tunnel, and that there is suÆientdistane between two ars suh that the sensors an distinguish the ars. The

ba Figure 5.1: Island Tunnel Controller Strutureisland tunnel ontroller is omposed of �ve modules: The Island Light Controller,the Tunnel Controller, the Mainland Light Controller, the Island Counter and theTunnel Counter (refer to [37℄ for the state transition diagrams of eah omponent).The Island light Controller (ILC) has four states: green, entering, red and exiting.The outputs igl and irl ontrol the green and red lights on the island side respetively;iu indiates that the ars from the island side are urrently oupying the tunnel,and ir indiates that ILC is requesting the tunnel. The input iy requests the ILC torelease ontrol of the tunnel, and ig grants ontrol of the tunnel from the island side(f. Figure 5.2). A similar set of signals is de�ned for the Mainland Light Controller64

ie=1green entering

iy_A=0 /\ ie=1

exitingred ix=1

ix=0

ix=1

ie=0

ig_A=1 /\ ix=0iy_A=1

ix=0 /\ ig_A=0

iy_A=0 /\ ie=0

Figure 5.2: The Island Controller(MLC). However, in this module, the behaviour depends on a ross-funtion lessnwhih takes as input an abstrat sort and generates as output a Boolean type (f.Figure 5.3).
green

mx=1

(my_A=0) /\ (me=0)

(lessn=1) /\

(lessn=1)/\
(me=1)/\(my=0)

(mg_A=1)/\(mx=0)

lessn=0 \/ [my_A=1)/\ (lessn=1)]

me=1

(me=0)/\(mx=1) mx=1mx=0

red

entering exiting

(mg_A=0) /\ (mx=0)

Figure 5.3: The Mainland ControllerThe Tunnel Controller (TC) proesses the requests for aess issued by theILC and MLC. The Island Counter and the Tunnel Counter keep trak of the ar'snumber urrently on the island and in the tunnel, respetively. For the tunnel65

ontroller, the ounter t is inreased by 1 depending on t+ or deremented by 1depending on t- unless it is already 0. The Island Counter operates in a similar way,exept that the inrementation and to derement depend on i+ and i-, respetively.
5.2 Spei�ation and Properties De�nitionsFor the two modules ILC and MLC, we need to de�ne an enumerated type :state type whih takes one of the di�erent possible sates of the system. Here, thesuÆx is added to the names.state Type = CONCRETE "state Type" [" green";" red"; " entering";" exiting"℄ green = CONC Const "state Type"In our spei�ation, all the types are onrete exept one abstrat sort oftype wordn used to desribe the tunnel ontroller and the tunnel ounter. The twouninterpreted funtion in and de are spei�ed as well. We also de�ne two ross-funtions lessn and equz. The design spei�ation is written hierarhially, wherebloks are represented by the onjuntion of their respetive tables. The wholesystem is the onjuntion of the �ve bloks mentioned above.Next, we have spei�ed and veri�ed a number of properties on the Island Tun-nel Controller. In the following, we desribe four samples for illustration purposes,where the symbols \&", \!" and \->" mean logial and, negation, and impliationrespetively (using Lmdg syntax). Experimental results of a larger set of propertiesare displayed in Table 5.1. 66

� Property1: Let is be the state variable of the ILC, and igl its the greenlight variable. The green light of the ILC module must be o� if there is a arexiting the tunnel.LMDG_AG ((CONVERT ILC_omp is)(LMDG_IMP(LMDG_AND (is (t:num).(ix = true)) (is (t:num). (is t = red)))(is (t:num).(igl t = true))))The derived MDG property is:
AG ((is = red & ix = 1) -> (igl = 0))� Property2: Let mgl be the green light variable of the MLC and ms its statevariable. The green light of the MLC module should be on in a future stateduring the omputation. This property veri�es the liveness of the omponent.
LMDG_AG (MLC_omp mgl) (ms (t:num). (mgl t= true))The derived MDG property is:
AF (mgl = 1) 67

� Property3: Let mt min be the signal to derement the ounter of the MLCmodule, and mgl its green light variable. These two signals an never be setto 1 at the same moment, beause when exiting the tunnel, the ounter isderemented; hene, the red light must be on.LMDG_AG((CONVERT (MLC_omp mgl))(LMDG_NOT(LMDG_AND (ms (t:num). mt_min =true)(ms (t:num). mgl = true))))The derived MDG property is:
AG (! ((mt_min = 1) & (mgl = 1)))� Property4: Let my and iy be the signals to inrement the mainland, and theisland ounters, respetively. The TC should never inrement both ounters.LMDG_AG (CONVERT ILC_omp(igl) MLC_omp (mgl))(LMDG_NOT (LMDG_AND((is (t:num). (igl = true)))(ms (t:num). (mgl = true))))The derived MDG property is:
AG(!((my = 1) & (iy = 1))) 68

5.3 Experimental ResultsWe set up HOL goals, whih denotes that the properties we proposed imply thedesign spei�ation. Table 5.1 desribes the model heking results of these andother properties, inluding CPU time, memory usage and number of MDG nodesgenerated. We also report the number of omponents and signals of the redued(extrated) design model e�etively used for model heking in MDG.Property CPUs MemoryByte MDG Nodes Components SignalsProperty1 0.32 0.66 318 18 32Property2 0.36 0.77 313 13 31Property3 0.41 0.73 401 16 34Property4 1.12 1.91 1266 13 29Property5 0.91 1.26 1027 10 26Property6 0.93 1.77 1166 13 29Property7 1.15 1.39 11002 16 33Property8 1.15 1.39 11002 16 33Table 5.1: Model Cheking Results with Blok ExtrationIt is lear here that the veri�ation is muh faster than doing the proof in-teratively with HOL. Moreover, sine the user has just to give the tool the HOLgoal, spei�ation and property, the HOL-MDG ommuniation and veri�ation aredone automatially. All properties were suessfully veri�ed. After interpreting theMDG result, respetive HOL theorems were reated.In addition, sine our spei�ation is written in a hierarhial way, during eahproperty veri�ation, our hybrid tool extrats the module to be proved. To see theadvantage of suh blok extration, we heked the �rst two properties on the whole69

ITC design (See Table 5.2).Property CPUs MemoryByte MDG Nodes Components SignalsProperty1 0.74 1384668 830 26 62Property2 0.87 1467908 1027 24 60Table 5.2: Model Cheking Results without Blok ExtrationThe obtained results demonstrate that the blok extration performs savingsin memory usage and CPU run time by more than 50 %.In summary, our hybrid tool has a better veri�ation performane than theMDG model heker and the HOL theorem prover individually. However, the en-hanement ahieved with the blok extration in the MDG side is not guarantiedwhen a global property on the whole design is veri�ed.

70

Chapter 6
Conlusion and Future Work
Formal veri�ation approahes are more and more used in the veri�ation proess ofdigital systems. Despite of their eÆieny, existing tools still have some drawbaks.Theorem proving, for instane, su�ers from interativity and the need of ontinuousguidane, while model heking, though full automati, su�ers from state spae ex-plosion. To improve the veri�ation proess, many hybrid approahes were proposedas a way to take advantage of di�erent formal veri�ation tehniques.In this thesis, we proposed a tool for linking HOL theorem proving and MDGmodel heking. HOL, a theorem prover based on high-order logi, allows the useof hierarhial veri�ation and abstration. MDG, a deision diagram based tool,provides features for model heking and the use of a relatively limited abstration.The hybrid tool we proposed generates the required MDG �les and ommuniatesthem to the MDG tool, where the property is heked. Thereafter, the veri�ation71

result is returned bak to HOL. The veri�ation of the properties within the MDGtool introdues automation to HOL sine the proof is not onduted interatively.Moreover, our tool allows a blok extration feature, whih inreases the performaneof the model heker by reduing the memory usage and the CPU time.An interfae between the two tools is implemented using MosowML. Theinput languages of the model heker were �rst embedded into HOL allowing thede�nition of MDG like spei�ation and properties. The user ommuniates mainlywith the theorem prover. Seond, the tool desribed in [20℄ has been extended tohandle abstrat datatypes. Our purpose from this expansion is to have the possibilityto do equivalene heking of omplex iruits whih might ause problems in themodel heker.The embedding of the Lmdg language provides a way to write properties inHOL. The embedding of the MDG-HDL grammar provides the tool with abstrattypes needed, bene�ting from the abstration allowed in HOL as well as the abstratsorts, the uninterpreted funtions, featured by the MDGs.We presented the Timing Blok of an ATM swith fabri as an example, thenthe Island Tunnel Controller as a ase study illustrating the veri�ation within thebuilt tool. The obtained results shows that the veri�ation is more tratable thanusing eah tool individually.Our hybrid tool an help in resolving the problem of non-termination in MDG.This problem has been disussed in [5, 38℄. In [1℄, Ait et al. proposed an approah for72

solving the non-termination problem by using the shematization method, namely-terms. As, we are using a hierarhial approah, when onsidering a model, somemodules are veri�ed in the MDG tool, and for the other modules that will generatean in�nite set of states, HOL theorem prover will be used. Here, for eah module,rather than the spei�ation of its behavioral, we should speify the environmentof the module. The abstrat ounter we presented is an example illustrating thefeasibility of this approah. Sine it is spei�ed with abstrat terms in table inputs,its veri�ation with MDG leads to the non-termination problem, while we prove inHOL its equivalene. Future examples an be takled to ensure the usability of thetool for suh problems.Another future issue of our projet is the integration of reahability analysisin HOL. In fat, we are de�ning a property in HOL aording to the model we wantto hek. HOL should be able to ompute the di�erent design paths and verifythe property aording to the input MDG tables we have as input language for thespei�ation. Atually, if the MDG tool does not give a result for a property beauseof state explosion, the user will have hard time to prove suh module within HOL.Sine, there is no way to ompute paths from the table strutures.Developing HOL tatis to treat the onjuntion and the disjuntion of prop-erties an be a good extension of the urrent tool. This means, rather than sendingonly one property to be veri�ed, the user would have the possibility to speifymany properties in HOL. Then, the tati will split the property resulting from73

onjuntion (or disjuntion) to separated properties and treat eah property inde-pendently. The veri�ation of eah property will be done within MDG. The obtainedresults(theorems) are later on onjunted (or the disjunted). Finally the result isreturned bak to HOL.

74

Appendix A
Lmdg HOL Theory
As explained in Chapter 3, we proposed an embedding in HOL of the MDG propertyinput language : Lmdg. It represents a subset of the Abstrat CTL* [37℄.Sine Lmdg is a ACTL* [37℄ like language, we divide the properties in twolasses: the �rst is the CTL* like properties and the seond is the LTL like properties.
A.1 CTL* like Properties`def val LMDG_AG = Define `LMDG_AG R p = 8s. ((R s) ^ (8t. (p s t)))`;`def val LMDG_AF = Define `LMDG_AF R p = 8s. ((R s) ^ (9t. (p s t)))`;`def val LMDG_A = Define `LMDG_A R p t= 8s. ((R s) ^ (p s t))`;Only the univesal path quanti�er is allowed in MDG, however, we embedded75

in HOL the existantial path quanti�er too.`def val LMDG_EG = Define `LMDG_EG R p = 9s. ((R s) ^ (8t. (p s t)))`;`def val LMDG_EF = Define `LMDG_EF R p = 9s. ((R s) ^ (9t. (p s t)))`;A.2 LTL like Properties`def val LMDG_G = Define `LMDG_G p s = 8t. p s t `;`def val LMDG_F = Define `LMDG_F p s t = 9t1. p s t1 `;`def val LMDG_U = Define `LMDG_U p1 p2 s = 9t. (p2 s t ^ (8t1. t1 < t =) p1 s t1))`;

76

`def val LMDG_X = Define `LMDG_X p s t = p s (t+1)`;`def val LMDG_NOT = Define `LMDG_NOT p s t = : p s t `;`def val LMDG_IMP = Define `LMDG_IMP p1 p2 s t = :(p1 s t) _ p2 s t `;`def val LMDG_AND = Define `LMDG_AND p1 p2 s t = (p1 s t) ^ p2 s t `;`def val LMDG_OR = Define `LMDG_OR p1 p2 s t = p1 s t _ p2 s t `;`def val LMDG_FAIR = Define `LMDG_FAIR p = 8s t. (p s t) `;`def val LMDG_VAL = Define `LMDG_VAL v s t = v `;`def val LMDG_VAR = Define `LMDG_VAR x s t = s x t `;`def val LMDG_IS = Define `LMDG_IS q1 q2 s t = (q1 s t = q2 s t) `;`def val LMDG_TRUE = Define `LMDG_TRUE s t = T `;`def val LMDG_FALSE = Define `LMDG_FALSE s t = F `;`def val LMDG_START = Define `LMDG_START p s = 8s. p s 0 `;
77

Appendix B
MDG-HDL HOL Theory
We present bellow a subst of the embedded MDG-HDL grammar and the tablestruture in HOL. MDG sorts`def Hol_datatype `MDG_sort = ABSTRACT of 0a ! stringCONCRETE of string ! string list` ;Prediates to determine the type of a given sort`def Define `(IsConreteSort (ABSTRACT Abs nme) = F)^(IsConreteSort (CONCRETE Con z) = T)` ;`def Define `(IsAbstratSort (ABSTRACT Abs nme) = T)^(IsAbstratSort (CONCRETE Con z)= F)` ;`def Define `bool_type = CONCRETE "bool_type" ["true";"false"℄`;

78

MDG Variables`def Hol_datatype `MDG_VAR = MDG_VAR of string ! MDG_sort`;MDG funtions`def Hol_datatype `MDG_Fun = MDG_FUN of string ! MDG_VAR list ! MDG_VAR `;MDG Terms`def MDG_term = GE_Const of 0a| CONC_Const of string| VAR_Term of MDG_VAR| FN_Term of MDG_Fun| TERM of MDG_term => MDG_term`def Define `(IsGeneriConstant (GE_Const Abs) = T)^ (IsGeneriConstant (CONC_Const z)= F)^ (IsGeneriConstant (VART var) = F)^ (IsGeneriConstant (FN fun) = F)^ (IsGeneriConstant (TERM term1 term) = F)`;`def Define `(IsConreteConstant (GE_Const Abs) = T)^ (IsConreteConstant (CONC_Const z)= F)^ (IsConreteConstant (VART var) = F)^ (IsConreteConstant (FN fun) = F)^ (IsConreteConstant (TERM term1 term) = F)`;
79

`def Define `(IsFuntion (GE_Const Abs) = F)^ (IsFuntion (CONC_Const z)= F)^ (IsFuntion (VART var) = F)^ (IsFuntion (FN fun) = T)^ (IsFuntion (TERM term1 term) = F)`;`def Define `(IsVariable (GE_Const Abs) = F)^ (IsVariable (CONC_Const z)= F)^ (IsVariable (VART var) = T)^ (IsVariable (FN fun) = F)^ (IsVariable (TERM term1 term) = F)`;MDG Table Struture`def val TABLE_VAL_AX =Hol_datatype `Table_Val = TABLE_VAL of 0a MDG_term DONT_CARE`;`def val TableVal_to_Val = Define`(TableVal_to_Val (TABLE_VAL (v:0a MDG_term)) = v)` ;`def val Table_math = Define ` (Table_math inputs [℄ (t:num) = T)^ (Table_math inputs (CONS v vs) t =(((HD(inputs) t) = TableVal_to_Val (v:0a Table_Val))_ (v = DONT_CARE)) ^ (Table_math (TL inputs) vs t))`;`def (table inps (out:num �> 0b) ([℄:(0a Table_Val list) list)V_out default t = (out t = default t))^ (table inps out (CONS v vs) V_out default t =((Table_math inps v t) ! (out t = (HD V_out)t)))|(table inps out vs (TL V_out) default t)))`def TABLE inps (out:num �> 0b) (V_outs:(0a Table_Val list) list)V_out default = 8t. table inps out V_outs V_out default t80

De�nition of some MDG Tables`def bool_to_MDGTerm1:bool�> string MDG_term) b =if (b = T) then (CONC_Const "T") else (CONC_Const "F"));`def FSIG =�(t:num) . (CONC_Const "F");`def TSIG =�(t:num) . (CONC_Const "T");`def NOT_TABLE (x:num�>bool) (y:num�>bool) =TABLE [bool_to_MDGTerm1 o x℄ (bool_to_MDGTerm1 o y)[[TABLE_VAL(CONC_Const "T")℄℄[FSIG℄ TSIG ;`def NOT_TABLE2 (x:num�>bool) (y:num�>bool) =TABLE [bool_to_MDGTerm1 o x℄ (bool_to_MDGTerm1 o y)[[TABLE_VAL (CONC_Const "F")℄;[TABLE_VAL (CONC_Const "T")℄℄ [TSIG;FSIG℄ (ARB);`def val AND_TABLE = new_definition("AND_TABLE",��`AND_TABLE (x1:num�>bool) (x2:num�>bool) (y:num�>bool) =TABLE [bool_to_MDGTerm1 o x1;bool_to_MDGTerm1 o x2℄ (bool_to_MDGTerm1 o y)[[TABLE_VAL(CONC_Const "F");TABLE_VAL(CONC_Const "F")℄;[TABLE_VAL(CONC_Const "F"); TABLE_VAL(CONC_Const "T")℄[TABLE_VAL(CONC_Const "T"); TABLE_VAL(CONC_Const "F")℄;[TABLE_VAL(CONC_Const "T"); TABLE_VAL(CONC_Const "T")℄℄[FSIG;FSIG;FSIG;TSIG℄ TSIG `��);

81

`def AND4_TABLE(x1:num�>bool)(x2:num�>bool)(x3:num�>bool)(x4:num�>bool)(y)=TABLE[bool_to_MDGTerm1 o x1;bool_to_MDGTerm1 o x2;bool_to_MDGTerm1 o x3;bool_to_MDGTerm1 o x4℄(bool_to_MDGTerm1 o y)[[TABLE_VAL (CONC_Const"T"); TABLE_VAL(CONC_Const "T");TABLE_VAL(CONC_Const"T"); TABLE_VAL(CONC_Const"T")℄℄ [TSIG℄ FSIG`def OR_TABLE (x1:num�>bool) (x2:num�>bool) (y:num�>bool) =TABLE [bool_to_MDGTerm1 o x1;bool_to_MDGTerm1 o x2℄ (bool_to_MDGTerm1 o y)[[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "F")℄;[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "T")℄;[TABLE_VAL (CONC_Const "T"); DONT_CARE℄℄[FSIG;TSIG;TSIG℄ (ARB);`def OR4_TABLE (x1:num�>bool) (x2:num�>bool) (x3:num�>bool)(x4:num�>bool) (y:num�>bool) =TABLE [bool_to_MDGTerm1 o x1;bool_to_MDGTerm1 o x2;bool_to_MDGTerm1 o x3;bool_to_MDGTerm1 o x4℄ (bool_to_MDGTerm1 o y)[[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "F");TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "F")℄℄[FSIG℄ TSIG ;`def NAND_TABLE (x1:num�>bool) (x2:num�>bool) (y:num�>bool)=TABLE [bool_to_MDGTerm1 o x1;bool_to_MDGTerm1 o x2℄(bool_to_MDGTerm1 o y)[[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "F")℄;[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "T")℄;[TABLE_VAL (CONC_Const "T"); TABLE_VAL (CONC_Const "F")℄;[TABLE_VAL (CONC_Const "T");TABLE_VAL (CONC_Const "T")℄℄[TSIG;TSIG;TSIG;FSIG℄ (ARB);82

`def NOR_TABLE (x1:num�>bool) (x2:num�>bool) (y:num�>bool) =TABLE [bool_to_MDGTerm1 o x1;bool_to_MDGTerm1 o x2℄ (bool_to_MDGTerm1 o y)[[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "F")℄;[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "T")℄;[TABLE_VAL (CONC_Const "T"); TABLE_VAL (CONC_Const "F")℄;[TABLE_VAL (CONC_Const "T");TABLE_VAL (CONC_Const "T")[TSIG;FSIG;FSIG;FSIG℄ (ARB);`def XOR_TABLE (x1:num�>bool) (x2:num�>bool) (y:num�>bool)=TABLE [bool_to_MDGTerm1 o x1;bool_to_MDGTerm1 o x2℄ (bool_to_MDGTerm1 o y)[[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "F")℄;[TABLE_VAL (CONC_Const "F"); TABLE_VAL (CONC_Const "T") ℄;[TABLE_VAL (CONC_Const "T"); TABLE_VAL (CONC_Const "F")℄;[TABLE_VAL (CONC_Const "T");TABLE_VAL (CONC_Const "T")℄℄[FSIG;TSIG;TSIG;FSIG℄ (ARB);`def FORK_TABLE (x:num�>bool) (y:num�>bool)=TABLE [bool_to_MDGTerm1 o x℄ (bool_to_MDGTerm1 o y)[[TABLE_VAL (CONC_Const "F")℄;[TABLE_VAL (CONC_Const "T")℄℄[FSIG;TSIG℄ FSIG;

83

De�nition of MDG pre-de�ned omponents`def val mdg_not = new_definition("mdg_not",��`mdg_not x y = 8(t:num) . y t = :(x t) `��);`def val mdg_and = new_definition("mdg_and",��`mdg_and (x1,x2) y = 8(t:num) . y t = (x1 t) ^ (x2 t) `��);`def val mdg_and3 = new_definition("mdg_and3",��`mdg_and3 (x1,x2,x3) y = 8(t:num) . y t = (x1 t) ^ (x2 t) ^(x3 t)`��);`def val mdg_and4 = new_definition("mdg_and4",��`mdg_and4 (x1,x2,x3,x4) y = 8(t:num) . y t = (x1 t) ^ (x2 t) ^ (x3 t) ^(x4 t)`��);`def val mdg_or = new_definition("mdg_or",��`mdg_or (x1,x2) y = 8(t:num) . y t = (x1 t) _ (x2 t) `��);`def val mdg_or4 = new_definition("mdg_or4",��`mdg_or4 (x1, x2, x3, x4) y = 8(t:num) . y t = (x1 t) _ (x2 t) _(x3 t) _ (x4 t)`��);`def val mdg_nand = new_definition("mdg_nand",��`mdg_nand (x1, x2) y = 8(t:num) . y t = :(x1 t) _ :(x2 t) `��);`def val mdg_nor = new_definition("mdg_nor",��`mdg_nor (x1, x2) y = 8(t:num). y t = :(x1 t) ^ :(x2 t) `��);`def val mdg_nor3 = new_definition("mdg_nor3",��`mdg_nor3 (x1, x2, x3) y = 8(t:num). y t = :(x1 t) ^ :(x2 t) ^:(x3 t)`��);
84

`def val mdg_xor = new_definition("mdg_xor",��`mdg_xor (x1, x2) y = 8(t:num). y t = ((x1 t) ^:(x2 t)) _ :(x1 t) ^ (x2 t)) `��);`def val mdg_reg = new_definition("mdg_reg",��`mdg_reg x y = 8t. (y)(t+1) = x t`��);`def val mdg_fork = new_definition("mdg_fork",��`mdg_fork x y = 8t. (x) t = y t`��);`def val mdg_transform = new_definition ("mdg_transform",��`mdg_transform x1 x2 = 8 t .9y. x2(t) = y (x1 t) `��);

85

Bibliography
[1℄ O. Ait Mohamed, X. Song, and E. Cerny. On the non-termination of MDG-Based Abstrat State Enumeration. Theoretial Computer Siene Journal, Toappear.[2℄ G. Birtwistle, B. Graham, and S. K. Chin. new theory'HOL'; An Introdution toHardware Formal Veri�ation in Higher Order Logi. Laboratory for AppliedLogi, Department of Computer Siene,Brigham Young University, August1994.[3℄ R. Bryant. Symboli Boolean Manipulation with Ordered Binary Deision Dia-grams. In International Conferene on Computer-Aided Design, pages 236{243,1995.[4℄ E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and Z. Zhou. AutomatedVeri�ation with Abstrat State Mahines Using Multiway Deision Graphs,volume 1287. Formal Hardware Veri�ation: Methods and Systems in Com-parison. Leture Notes in Computer Siene, State-of-the-Art Survey, Springer86

Verlag, 1997.[5℄ F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny. Multiway deisiongraphs for automated hardware veri�ation. Formal Methods in System Design,10(1):7{46, 1997.[6℄ J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A tutorial introdutionto PVS, sri international. April 1995.[7℄ P. Curzon. The Formal Veri�ation of the Fairisle ATM Swithing Element:an Overview. Tehnial Report 328, University of Cambridge, Computer Lab-oratory, Marh 1994.[8℄ P. Curzon, S. Tahar, and O. Ait-Mohamed. Veri�ation of the MDG Compo-nents Library in HOL. Supplementary Pro. International Conferene on The-orem Proving in Higher-Order Logis, Canberra, Australia, September 1998.[9℄ L. A. Dennis, G. Collins, M. Norrish, R. Boulton, K. Slind, G. Robinson,M. Gordon, and T. Melham. The PROSPER Toolkit. In in Proendings of theSixth International Conferene on Tools and Algorithms for the Construtionand Analysis of Systems, LNCS 1785, Springer Verlag, 2000.[10℄ M. Gordon. Combining Dedutive Theorem Proving with Symboli State Enu-meration. 21 Years of Hardware Formal Veri�ation, Deember 1998.
87

[11℄ M. Gordon. Using hol to study sugar 2.0 semantis. to be published as NASAConferene Proeedings CP-2002-211736, 2002.[12℄ M. Gordon. Reahability Programming in HOL98 Using BDDs. Theorem Prov-ing and Higher Order Logis, LNCS 1125, Springer Verlag,2000.[13℄ K. Havelund and N. Shankar. Experiments in Thoerem Proving and ModelCheking for Protool Veri�ation. Formal Methods Europe, LNCS 1051:662{682, Springer Verlag, 1996.[14℄ R. Hum, H. Yip, H. Li, R. Mizouni, and S. Tahar. A GUI for linking HOL toMDG. Tehnial report, ECE Dept., Conordia University, June 2002.[15℄ J. Hurd. Integrating Gandalf and HOL. In Theorem Proving in Higher Order,LNCS 1690:311{321, Springer Verlag, 1999.[16℄ I. Beer, S. Ben David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh.The temporal logi sugar. In Computer Aided Veri�ation, volume LNCS 2102,pages 363{367, Springer Verlag, 2001.[17℄ Synopsys In. Stati Timing and Formal Veri�ation: Online Manual. SynopsisCorporation, 2000.[18℄ J. Joye and C. Seger. Linking BDD-based Symboli Evaluation to InterativeTheorem Proving. In In proeedings of the 30th Design Automation Conferene,Dallas, Texas, United States, pages 469{474, June, 1993.88

[19℄ J. Joye and C. Seger. The HOL-Voss System: Model-Cheking inside a Gen-eral Purpose Theorem-Prover. Higher Order Logi Theorem Proving and ItsAppliations, LNCS 780:185{198., Springer Verlag, 1994.[20℄ I. Kort, S. Tahar, and P. Curzon. Hierarhial Veri�ation Using an MDG{HOL Hybrid Tool. Corret Hardware Design and Veri�ation Methods, LNCS2144:244{258, Springer Verlag, 2001.[21℄ R. Kumar, K. Shneider, and T. Kropf. Struturing and Automating HardwareProofs in a Higher-Order Theorem-Proving Environment. Formal Methods inSystem Design, 2(2):165{223, 1993.[22℄ I. M. Leslie and D. R. MAuley. Fairisle: an atm network for the loal area. InACM Communiation Review, volume 19(4), pages 327{336, 1991.[23℄ M. Gordon, R. Milner, and C. Wadworth. Edinburgh lf: A mehanized logiof omputation. volume LNCS 78. Springer Verlag, 1979.[24℄ K. L. MMillan. Symboli Model Cheking. Kluwer, 1993.[25℄ T. Melham and M. Gordon. Introdution to Higher Order Logi, TheoremProving Environment for Higher Order Logi. Cambridge University Press,1993.[26℄ T. Melhem. Higher Order Logi and Hardware Veri�ation. Cambridge Uni-versity Press, 1993. 89

[27℄ L. Paulson. ML for the Working Programmer. Cambridge University Press,1996.[28℄ V. Pisini, S. Tahar, O. Ait-Mohamed, P. Curzon, and X. Song. Formal Hard-ware Veri�ation by Integrating HOL and MDG, Marh 2000, ACM Publia-tions.[29℄ S. Rajan, N. Shankar, and M. Srivas. An Integration of Model-Cheking withAutomated Proof Cheking. Computer Aided Veri�ation, LNCS 939:84{97,Springer Verlag, 1995.[30℄ R.K. Brayton, G.D. Hahtel, A. Sangiovanni-Vinentelli, F. Somenzi, A. Aziz,S.-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K.Ranjan, S. Sarwary, T. R. Shiple, G. Swamy, and T. Villa. VIS: a system forveri�ation and synthesis. In Computer Aided Veri�ation, volume LNCS 1102,pages 428{432, New Brunswik, NJ, USA, Springer Verlag,1996.[31℄ K. Shneider and D. Ho�mann. A HOL Conversion for Translating LinearTime Temporal Logi to !-automata. Theorem Proving in Higher Order Logis,LNCS 1690:255{272, Springer Verlag, 1999.[32℄ K. Shneider and T. Kropf. Verifying Hardware Corretness By CombiningTheorem Proving and Model Cheking. Tehnial report, University of Karl-sruhe, Karlsruhe, Germany, Deember 1995.90

[33℄ IEEE standard 1364-1995. Ieee standard desription language based on theverilog hardware desription language, 1995.[34℄ T. Kropf. Introdution to Formal Hardware Veri�ation. Springer Verlag, 1999.[35℄ H. Xiong, P. Curzon, and S. Tahar. Importing MDG Veri�ation results intoHOL. Theorem Proving in Higher Order Logis, LNCS 1690:293{310, SpringerVerlag, 1999.[36℄ Y. Xu. MDG Model Cheker User's Manual. Dept. of Information and Opera-tional Reaserh, University of Montreal, Montreal, Canada, Otober 1999.[37℄ Y. Xu. Model Cheking for a First-Order Temporal Logi Using MultiwayDeision Graphs. PhD Thesis, University of Montreal, Canada, April 1999.[38℄ Z. Zhou, X. Song, S. Tahar, E. Cerny, F. Corella, and M. Langevin. Formalveri�ation of the island tunnel ontroller using multiway deision graphs. InFormal Methods in Computer-Aided Design, volume LNCS 1166, pages 233{247, 1996.[39℄ Z. Zhou. MDG Tools (V1.0) Developer's Manual, 1996.[40℄ Z. Zhou and N. Boulerie. MDG Tools(V1.0) User's Manual. University ofMontreal, Dept. D'IRO, 1996.
91

[41℄ Z. Zhu, J. Joye, and C. Seger. Veri�ation of the Tamarak-3 Miroproessorin a Hybrid Veri�ation Environment. In Higher-Order Logi Thoerem Provingand Its Appliations, LNCS 780, pages 252{266., Springer Verlag, 1994.

92

