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Efficient Bulk Operations on Dynamic R-Trees1

L. Arge,2 K. H. Hinrichs,3 J. Vahrenhold,3 and J. S. Vitter2

Abstract. In recent years there has been an upsurge of interest in spatial databases. A major issue is how
to manipulate efficiently massive amounts of spatial data stored on disk in multidimensionalspatial indexes
(data structures). Construction of spatial indexes (bulk loading) has been studied intensively in the database
community. The continuous arrival of massive amounts of new data makes it important to update existing
indexes (bulk updating) efficiently.

In this paper we present a simple, yet efficient, technique for performing bulk update and query operations
on multidimensional indexes. We present our technique in terms of the so-called R-tree and its variants, as
they have emerged as practically efficient indexing methods for spatial data. Our method uses ideas from the
buffer treelazy buffering technique and fully utilizes the available internal memory and the page size of the
operating system. We give a theoretical analysis of our technique, showing that it is efficient both in terms of
I/O communication, disk storage, and internal computation time. We also present the results of an extensive
set of experiments showing that in practice our approach performs better than the previously best known bulk
update methods with respect to update time, and that it produces a better quality index in terms of query
performance. One important novel feature of our technique is that in most cases it allows us to perform a batch
of updates and queries simultaneously. To be able to do so is essential in environments where queries have to
be answered even while the index is being updated and reorganized.
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1. Introduction. In recent years there has been an upsurge of interest in spatial
databases in the commercial and research database communities. Spatial databases are
systems designed to store, manage, and manipulate spatial data-like points, polylines,
polygons, and surfaces. Geographic information systems (GIS) are a popular incarnation.
Spatial database applications often involve massive data sets, such as, for example, EOS
satellite data [12]. Thus the need for efficient handling of massive spatial data sets has
become a major issue, and a large number of disk-based multidimensional index struc-
tures (data structures) have been proposed in the database literature (see, e.g., [5], [14],
[23], and [33] for recent surveys). Typically, multidimensional index structures support
insertions, deletions, and updates, as well as a number of proximity queries like window
or nearest-neighbor queries. Recent research in the database community has focused on
supportingbulk operations, in which a large number of operations are performed on
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the index at the same time. The increased interest in bulk operations is a result of the
ever-increasing size of the manipulated spatial data sets and the fact that performing a
large number of single operations one at a time is simply too inefficient to be of practical
use. The most common bulk operation is to create an index for a given data set from
scratch—often calledbulk loading[13].

In this paper we present a simple lazy buffering technique for performing bulk op-
erations on multidimensional indexes and show that it is efficient in theory as well as
in practice. We present our results in terms of the R-tree and its variants [9], [16], [17],
[19], [28], which have emerged as especially practically efficient indexing methods for
spatial data. However, our technique applies not only to R-trees but also to a large
class of hierarchically structured multidimensional indexes, namely the so-called class
of grow-and-post trees[22].

1.1. Model of Computation and Previous Results on I/O-Efficient Algorithms. Since
objects stored in a spatial database can be rather complex they are often approximated
by simpler objects, and spatial indexes are then built on these approximations. The most
commonly used approximation is theminimal bounding box: the smallestd-dimensional
rectangle that includes the object. Thus an important indexing problem is to maintain a
dynamically changing set ofd-dimensional rectangles on disk such that, for example, all
rectangles containing a query point can be found efficiently. For simplicity we restrict our
attention to the two-dimensional case; the boxes are calledminimal bounding rectangles.
For convenience we refer to these rectangles as being input data; we assume that each
bounding rectangle contains a pointer to the place on disk where the real data object is
stored.

For our theoretical considerations we use the standard two-level I/O model [1] and
define the following parameters:

N = number of rectangles,

M = number of rectangles fitting in internal memory,

B = number of rectangles per disk block,

whereN À M and 1≤ B ≤ M/2. An input/output operation(or simplyI/O) consists
of reading a block of contiguous elements from disk into internal memory or writing a
block from internal memory to disk. Computations can only be performed on rectangles
in internal memory. We measure the efficiency of an algorithm by the number of I/Os
it performs, the amount of disk space it uses (in units of disk blocks), and the internal
memory computation time.4 More sophisticated measures of disk performance involve
analysis of seek and rotational latencies and caching issues [27]; however, the simpler
standard model has proven quite useful in identifying first-order effects [32].

I/O efficiency has always been a key issue in database design but has only recently
become a central area of investigation in the algorithms community. Aggarwal and
Vitter [1] developed matching upper and lower I/O bounds for a variety of fundamental

4 For simplicity we concentrate on the first two measures in this paper. It can be shown that the asymptotic
internal memory computation time of our new R-tree algorithms is the same as for the traditional algorithms.
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problems such as sorting and permuting. For example, they showed that sortingN items
in external memory requires2((N/B) logM/B(N/B)) I/Os. Subsequently, I/O-efficient
algorithms have been developed for several problem domains, including computational
geometry, graph theory, and string processing. The practical merits of the developed
algorithms have been explored by a number of authors. Recent surveys can be found
in [4], [5], and [33]. Much of this work uses theTransparent Parallel I/O Environment
(TPIE) [6], [31], a set of templated C++ functions and classes that allow for simple,
efficient, and portable implementation of I/O algorithms.

1.2. Previous Results on Bulk Operations on R-Trees. The R-tree, originally proposed
by Guttman [17], is a height-balanced multiway tree similar to a B-tree [7], [11]. The
leaf nodes contain2(B) data rectangles each, while internal nodes contain2(B) entries
of the form (Ptr, R), wherePtr is a pointer to a child node andR is the minimal bounding
rectangle covering all rectangles in the subtree rooted in that child. An example of an
R-tree is depicted in Figure 1.

An R-tree occupiesO(N/B) disk blocks and has heightO(logB N); insertions can be
performed inO(logB N) I/Os. There is no unique R-tree for a given set of data rectangles
and minimal bounding rectangles stored within an R-tree node can overlap. In order to
query an R-tree to find all rectangles containing a given pointp, all internal nodes whose
minimal bounding rectangle containsp have to be visited. Intuitively, we thus want the
minimal bounding rectangles stored in a node to overlap as little as possible. An insertion
of a new rectangle can increase the overlap and several heuristics for choosing which
leaf to insert a new rectangle into, as well as for splitting nodes during rebalancing, have
been proposed [9], [16], [19], [28].

Bulk loading an R-tree withN rectangles using the naive method of repeated insertion
takesO(N logB N) I/Os, which has been recognized to be abysmally slow. Several bulk
loading algorithms usingO((N/B) logM/B(N/B)) I/Os have been proposed [10], [13],
[18], [21], [26], [30]. These algorithms are more than a factor ofB faster than the
repeated insertion algorithm. Most of the proposed algorithms [13], [18], [21], [26]
work in the same basic way; the input rectangles are sorted according to some global
one-dimensional criterion (such asx-coordinate [26], the Hilbert value of the center of
the rectangle [13], [18], or using an order obtained from a rectangular tiling of the space
[21]) and placed in the leaves in that order. The rest of the index is then built recursively

Fig. 1.R-tree constructed on rectanglesA, B,C, . . . , I (Blocksize 3).
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in a bottom-up, level-by-level manner. The algorithm developed in [30] also builds the
index recursively bottom-up but utilizes a lazy buffering strategy. The method proposed
in [10] works recursively in a top-down way by repeatedly trying to find a good partition
of the data. This algorithm is designed for point data instead of rectangle data but by
transforming rectangles to points in higher-dimensional space it can still be used for
rectangle data.

Even though a major motivation for designing bulk loading algorithms is the slowness
of the repeated insertion algorithm, another and sometimes even more important mo-
tivation is the possibility of obtaining better space utilization and query performance.5

Most of the bulk loading algorithms mentioned above are capable of obtaining almost
95% space utilization (meaning that only(1/0.95)dN/Be disk blocks are used), while
empirical results show that average utilization of the repeated insertion algorithm is
between 50% and 70% [9]. However, empirical results also indicate that packing an
R-tree too much can lead to poor query performance, especially when the data is not
uniformly distributed [13]. Bulk loading algorithms typically produce R-trees with better
query performance than the repeated insertion algorithm. However, no one algorithm is
best for all cases (all data distributions) [10], [21]: On mildly skewed low-dimensional
data the algorithm in [21] outperforms the algorithm in [18], while the opposite is the
case on highly skewed low-dimensional data [21]. Both algorithms perform poorly on
higher-dimensional point data [10], where the algorithm developed in [10] achieves the
best query performance. Interestingly, in terms of I/O the repeated insertion algorithm
produces an index with a similar query performance as that of the algorithm in [10].
In terms of total running time repeated insertion performs worse, probably because the
algorithm in [10] produces an index where blocks containing neighboring nodes in the
tree are stored close to each other on disk. van den Bercken et al. [30] have indepen-
dently developed a bulk loading method that uses a lazy buffer technique similar to the
one we use in this paper. We describe their algorithm in more detail in Section 2.3. A
common misperception (see, for example, [10]) is that the algorithm produces an R-tree
index identical to the index obtained using repeated insertion. In reality the two R-tree
indexes can be quite different; van den Bercken et al. [30] report empirical results only
on the performance of the construction of multiversion B-trees [8], where the order of
elements in the leaves is unique and thus the buffer algorithm will always construct the
same order as the repeated insertion algorithm. This equivalence does not hold for R-tree
construction and the quality of an R-tree index produced using the method has not been
studied.

All algorithms mentioned above are inherently “static” in the sense that they can
only be used to bulk load an index with a given static data set. None of them efficiently
supports bulk updates. To perform a batch of updates we would have to run the bulk
loading algorithm on the combined datasets or perform the insertions one by one using

5 A simple approach for building an R-tree using onlyO(N/B) I/Os is to form the leaves by grouping the
input rectanglesB at a time and then build the tree in a bottom-up level-by-level manner. However, if the
grouping of rectangles is done in an arbitrary manner, the resulting R-tree will likely have an extremely bad
query performance, since the minimal bounding rectangles in the nodes of the index will have significant
overlaps. Such R-tree algorithms are therefore of no interest. At a minimum, constructing good R-trees is at
least as hard as sorting and therefore we refer to algorithms that useO((N/B) logM/B(N/B)) I/Os asoptimal.



108 L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S. Vitter

the normal insertion algorithm. In many applications these solutions are not viable,
and, in fact, bulk updating is mentioned in [10] as an important open problem. The most
successful attempt to process a batch of updates seems to be an algorithm by Kamel et al.
[20]. In this algorithm the rectangles to be inserted are first sorted according to their spatial
proximity (Hilbert value of the center) and then packed into blocks ofB rectangles. These
blocks are then inserted one at a time using standard insertion algorithms. Intuitively,
the algorithm should give an insertion speed-up ofB (as blocks ofB rectangles are
inserted together), but it is likely to increase overlap and thus produces a worse index in
terms of query performance. Empirical results presented in [20] support this intuition.
Bulk loading R-trees is also used in the context of the cubetree [25], a representation for
thedata cube[15], using a collection of packed point data R-trees [26]. Bulk updates
to the data cube are handled by repeatedly bulk loading separate R-trees with the new
items and merging a set of (original and new) R-trees together. This algorithm implies
a method for updating R-trees, namely to sort-merge the data in the old tree with the
data points corresponding to the updates and then to bulk load a new R-tree with this
sorted sequence. The merging takes advantage of sequential blocked access, however,
the entire data set must be processed, including the original data. If the number of updates
is relatively small, the amortized cost per update can therefore be high.

1.3. Our Results. In this paper we present a simple lazy buffering technique for per-
forming bulk operations on multidimensional indexes. As mentioned, we describe the
technique in terms of the R-tree family.

In the first part of the paper (Section 2), we present our technique and analyze its
theoretical performance. Unlike previous methods our algorithm does not need to know in
advance all the operations to be performed, something which is important in applications
where updates and queries arrive continuously, e.g., in pipelined database operations.
Furthermore, our method is general enough to handle a wide variety of bulk operations:

• Our algorithm canbulk insert N′ rectangles into an R-tree containingN rectangles
usingO((N ′/B) logM/B((N + N ′)/B)+ N/B) I/Os in the worst case.
• Using the bulk insertion algorithm an R-tree can bebulk loadedin the optimal number

of I/O operationsO((N/B) logM/B(N/B)).
• Given N ′ queries that requireO(Q logB(N/B)) I/Os (for someQ) using the normal

(one by one) query algorithm, our algorithm answers the queries inO((Q/B) logM/B
(N/B)+ N/B) I/Os.
• A set of N ′ rectangles can bebulk deletedfrom an R-tree containingN rectangles

usingO((N ′/B) logM/B(N/B)+ N/B+ Q(N ′)) I/Os, whereQ(N ′) is the number
of I/Os needed to locate the leaves containing theN ′ rectangles to be deleted.

In most cases, our algorithms represent an improvement of more than a factor ofB
over known methods, and our technique can even handle a batch of intermixed inserts,
deletes, and queries. As discussed in [25], being able to do so is extremely important in
many environments where queries have to be answered while the index is being updated.

In the second part of the paper (Section 3), we present the results of a detailed set of
experiments on real-life data. The data sets we use are the standard benchmark data set
for spatial indexes, namely, the TIGER/Line data [29]. Our experiments were designed



Efficient Bulk Operations on Dynamic R-Trees 109

to test our theoretical predictions and to compare the performance of our algorithms with
previously known bulk update algorithms:

• To investigate the general effects of our technique we used it in conjunction with the
standard R-tree heuristics to bulk load an R-tree. We compared its performance with
that of the repeated insertion algorithm. Our experiments show that we obtain a huge
speed-up in construction time, and at the same time the query performance remains
good. Even though bulk loading using our technique does not yield the same index as
would be obtained using repeated insertion (contrary to popular belief [10], [30]), the
quality of the index remains about the same.
• As discussed, special-purpose bulk loading algorithms often produce significantly bet-

ter indexes than the one obtained using repeated insertion, especially in terms of space
utilization. We are able to capitalize on a certain laziness in our algorithm, via a simple
modification, and achieve dramatically improved space utilization. The modification
uses a heuristic along the lines of [13] and [18]. Our bulk loading experiments with
the modified algorithm show that we can obtain around 90% space utilization while
maintaining or even improving the good query performance. As an added benefit the
modification also improves construction time by up to 30%.
• Finally, in order to investigate the practical efficiency of our technique when perform-

ing more general bulk operations, we performed experiments with bulk insertion of
a large set of rectangles in an already existing large R-tree. We compared the perfor-
mance of our algorithm with that of the previously best known bulk update algorithm
[20]. Our algorithm performs better than the algorithm in [20], in terms of both the
number of I/Os used to do the insertions and the query performance of the resulting
R-tree index. We also performed bulk query experiments that resulted in speed-ups
similar to the ones obtained in our bulk loading experiments.

One especially nice feature of our algorithms is that—from a high level point of
view—the set of bulk operations are performed precisely as in the standard on-line
algorithms. For example, our bulk insertion algorithm is conceptually identical to the
repeated insertion algorithm (except of course that the insertions are done lazily). From
an implementation point of view, our algorithms admit a nice modular design because
they access the underlying index (in our case, the R-tree) only via standard routing and
balancing routines. Having implemented our algorithms we can thus combine them with
most existing indexes very easily.

2. Performing Bulk Operations on R-Trees Using Buffers. In this section we present
our technique for performing bulk operations on R-trees and analyze it theoretically. In
Section 2.1 we review the standard R-tree insertion and query algorithms and present
the general idea in our buffer technique. In Section 2.2 we discuss the details in how
an R-tree index can be bulk loaded, and in Section 2.3 how a bulk of insertions or
queries can be performed on an existing index using the technique. In Section 2.4 we
discuss how to perform a bulk of deletions. Final remarks (including a discussion of
how our method compares with a previously proposed buffer technique [30]) are given
in Section 2.5.
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2.1. R-Tree Basics and Sketch of Our Technique. Before presenting the main idea in
our buffering technique, we first review the algorithms for inserting a new rectangle into
an R-tree and for querying an R-tree with a rectangle. (Other queries can be handled
with similar algorithms.) Deletes are discussed in Section 2.4.

As mentioned, the R-tree is a height-balanced tree similar to a B-tree; all leaf nodes
are on the same level of the tree and a leaf contains2(B) rectangles. Each internal node
v (except maybe for the root) has2(B) children. For each of its children,v contains a
rectangle that covers all the rectangles in the child. We assume that each leaf and each
internal node fits in one disk block. An R-tree has heightO(logB(N/B)) and occu-
piesO(N/B) blocks. Guttman [17] introduced the R-tree and several researchers have
subsequently proposed different update heuristics designed to minimize the overlap of
rectangles stored in a node [9], [16], [19], [28]. All variants of R-tree insertion algo-
rithms (heuristics) [9], [16], [17], [19], [28] conceptually work in the same way (similar
to B-tree algorithms) and utilize two basic functions:

• Route(r, v), which given an R-tree nodev and a rectangler to be inserted, returns the
best (according to some heuristic) subtreevs to insertr into. If necessary, the function
also updates (extends) the rectangle stored inv that corresponds tovs.
• Split(v), which given a nodev, splitsv into two new nodesv′ andv′′. The function

also updates the entry forv in parent(v) to correspond tov′, as well as inserts a new
entry corresponding tov′′. (If v is the root, a new root with two children is created.)

Queries are handled in the same way in all R-tree variants using the following basic
function:

• Search(r, v), which given a rectangler and a nodev, returns a set of subtreesVs whose
associated rectangles inv intersectr .

The abstract algorithms for inserting a new rectangle into an R-tree and for querying
an R-tree with a rectangle are given in Figure 2. When performing a query many subtrees
may need to be visited. Thus it is not possible to give a better than linear I/O bound on
the worst-case complexity of a query. An insertion can be performed inO(logB(N/B))
I/Os since only nodes on a single root-to-leaf path are visited by the (routing as well as
the rebalancing) algorithm.

Our technique for efficiently performing bulk operations on R-trees is a variant of the
generalbuffer tree techniqueintroduced by Arge [2], [3]. Here we modify the general

Fig. 2.Abstract algorithms for inserting and querying in an R-tree rooted at nodev.
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Fig. 3.Buffered R-tree: normal R-tree with buffers on everyblogB(M/4B)cth level.

technique in a novel way, since a straightforward application of the technique would
result in an R-tree with an (impractically large) fan-out ofm [30]. The main idea is the
following: We attachbuffersto all R-tree nodes on everyblogB(M/4B)cth level of the
tree. More precisely, we define the leaves to be on level 0 and assign buffers of size
M/2B blocks to nodes on leveli · blogB(M/4B)c, for i = 1, 2 ,. . . . (See Figure 3.)
We call a node with an associated buffer abuffer node. Operations on the structure are
now done in a “lazy” manner. Consider for example performing a batch of insertions. In
order to insert a rectangler , we do not immediately useRoute(r, v) to search down the
tree to find a leaf to insertr into. Instead, we wait untilB rectangles to be inserted have
been collected and then we store them in a block in the buffer of the root (which is stored
on disk). When a buffer “runs full” (containsM/4 or more rectangles) we perform what
we call abuffer emptying process: For each rectangler in the buffer, we repeatedly use
Route(r, v) to router down to the next buffer nodev′. Then we insertr into the buffer
of v′, which in turn is emptied when it eventually runs full. When a rectangle reaches
a leaf it is inserted there and if necessary the index is restructured usingSplit. In order
to avoid “cascading” effects we only route the firstM/4 rectangles from the buffer in a
buffer emptying process. Since all buffers these rectangles are routed to are nonfull (i.e.,
they contain less thanM/4 rectangles), this means that no buffer overflow (> M/2
rectangles) can occur even if all rectangles are routed to the same buffer. The abstract
buffer emptying process is sketched in Figure 4.

Because of the lazy insertion, some insertions do not cost any I/Os at all while others
may be very expensive (by causing many buffer emptying processes). However, the
introduction of buffers allows us to take advantage of the big block and internal memory
sizes and perform the whole batch of insertions with fewer I/Os than we would use if we
performed the insertions in the normal way. The key to this improvement is that when we
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Fig. 4.Sketch of main idea in buffer emptying process on nodev depending on the level ofv.

empty a buffer we route many rectangles through a relatively small set of R-tree nodes to
the next level of buffer nodes. In fact, the set of nodes is small enough to fit in half of the
internal memory; the number of different buffer nodes the rectangles can be routed to is
bounded byBblogB(M/4B)c ≤ M/4B, since the fan-out of the nodes is bounded byB. Thus
the maximal number of nodes that needs to be loaded is bounded by 2·M/4B = M/2B.
This means that we can route the rectangles from the bufferin main memory: Before
we perform the buffer emptying process sketched in Figure 4, we simply load all the
relevant nodes, as well as the firstM/4 rectangles from the buffer, into main memory
usingO(M/B) I/Os. Then we can perform the routing without using any I/Os at all,
before usingO(M/B) I/Os to write the R-tree nodes back to disk andO(M/B) I/Os to
write the rectangles to the new buffers. (Since the number of buffers we write rectangles
to is < M/4B, we only useO(M/B) I/Os to write nonfull blocks.) In total we use
O(M/B) I/Os to pushM/4 rectanglesblogB(M/4B)c levels down, which amounts to
O(1/B) I/Os per rectangle. To route all the way down theO(logB(N/B)) levels of the
tree, we thus useO((1/(B · blogB(M/4B)c)) · logB(N/B)) = O((1/B) logM/B(N/B))
I/Os per rectangle. In contrast, the normal insertion algorithm usesO(logB(N/B)) I/Os
per rectangle.

The above is just a sketch of the main idea of the buffer technique. There are still
many issues to consider. In the next three subsections we discuss the details of how the
buffer technique can be used to bulk load an R-tree, as well as to perform more general
bulk operations.

2.2. Bulk Loading an R-Tree. Our bulk loading algorithm is basically the standard re-
peated insertion algorithm, where we use buffers as described in the previous subsection.
A number of issues still have to be resolved in order to make the algorithm I/O efficient.
For example, since a buffer emptying process can trigger other such processes, we use an
external memory stack to hold all buffer nodes with full buffers (i.e., buffers containing
more thanM/4 rectangles). We push a reference to a node on this stack as soon as its
buffer runs full and after performing a buffer emptying on the root we repeatedly pop a
reference from the stack and empty the relevant buffer. Special care needs to be taken
when the root is not a buffer node, that is, when it is not on levelj · blogB(M/4B)c, for
somej . In such a situation we simply store the top portion of the tree without buffers in
internal memory instead of on the disk. Note that since an R-tree—being (like a B-tree)
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Fig. 5.Buffer emptying process on buffer nodesv on levelblogB(M/4B)c.

a grow-and-post tree[22]—only grows (shrinks) at the top, a node stays at the level of
the tree it is on when it is created. This means that if a node is a buffer node when it is
created it stays a buffer node throughout its lifetime.

We also need to fill in the details of how restructuring is performed, that is, how
precisely the buffer of a nodev on levelblogB(M/4B)c is emptied. The index is restruc-
tured using theSplit function and we need to be a little careful when splitting buffer
nodes. The detailed algorithm for emptying the buffer of a node on levelblogB(M/4B)c
is given in Figure 5: We first load the R-tree rooted atv (including the leaves containing
the data rectangles) into internal memory. Then all rectangles in the buffer are loaded
(blockwise) and each of them is routed (usingroute) to a leaf and inserted. If an insertion
causes a leafl to overflow,Split is used to splitl as well as all the relevant nodes on the
path froml to v (these nodes are all in internal memory). If the split propagates all the
way up tov we need to propagate it further up the part of the tree that is not in internal
memory. In order to do so, we stop the buffer emptying process; we first write the trees
rooted in the two (buffer) nodesv′ andv′′, produced by splittingv, back to disk. In order
to distribute the remaining rectangles in the buffer ofv, we then load all of them into
internal memory. For each rectangler , we useRouteto decide which buffer to insertr
into and finally we write each rectangle back to the relevant buffer on disk. It is easy
to realize that we useO(M/B) I/Os on the above process, regardless of whether we
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stop the emptying process or not. Finally, the restructuring is propagated recursively up
the index usingSplit, with the minor modification of the normal R-tree restructuring
algorithm that rectangles in the buffer of a buffer node being split are distributed using
Routeas above.

LEMMA 1. A set of N rectangles can be inserted into an initially empty buffered R-tree
using O((N/B) logM/B(N/B)) I/O operations.

PROOF. By the argument in Section 2.1 we useO((1/B) logM/B(N/B)) I/Os per
rectangle, that is,O((N/B) logM/B(N/B)) I/Os in total,not counting I/Os used on
emptying buffers on levelblogB(M/4B)c, which in turn may result in splitting of R-
tree nodes (restructuring). When emptying a buffer on levelblogB(M/4B)c we either
push M/2 rectangles down to the leaves and the argument used in Section 2.1 ap-
plies, or we suspend the emptying process in order to rebalance the tree. In the lat-
ter case we may spend a constant number of I/Os to split R-tree nodes on each of
the O(logB(N/B)) levels andO(M/B) I/Os to distribute rectangles on each of the
O((logB(N/B))/ logB(M/4B)) = O(logM/B(N/B)) levels with buffers, including the
O(M/B) I/Os we used on the suspended buffer emptying. However, we only spend
these I/Os when new nodes are created. During the insertion of allN rectangles, a
total of O((N/B)/B) R-tree nodes and a total ofO((N/B)/(M/B)) = O(N/M)
buffer nodes are created. Thus the overall restructuring cost adds up to at mostO(N/B)
I/Os.

The only remaining issue is that after all the insertions have been performed it is very
likely that we still have many nonempty buffers that need to be emptied in order to obtain
the final R-tree. To do so we simply perform a buffer emptying process on all buffer
nodes in a breadth first manner, starting with the root.

LEMMA 2. All buffers in a buffered R-tree on N rectangles can be emptied in O((N/B)
logM/B(N/B)) I/O operations.

PROOF. The cost of emptying full buffers can be accounted for by the same argument as
the one used in the proof of Lemma 1, and thusO((N/B) logM/B(N/B)) I/O operations
are needed. The number of I/Os used on emptying nonfull buffers is bounded byO(M/B)
times the number of buffer nodes. As there areO((N/B)/(M/B)) buffer nodes in a tree
on N rectangles, the bound follows.

The above two lemmas immediately imply the following.

THEOREM1. An R-tree can be bulk loaded with N rectangles in O((N/B) logM/B
(N/B)) I/O operations.

2.3. Performing Bulk Insertions and Queries. After having discussed our bulk loading
algorithm, it is easy to describe how bulk inserts can be performed efficiently on an
already existing R-tree: we simply attach buffers to the tree, insert the rectangles lazily
one by one, and perform a final emptying of all buffers. Using the same arguments as in
the proofs of Theorem 1, we obtain the following.
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THEOREM2. A set of N′ rectangles can be bulk inserted into an existing R-tree con-
taining N rectangles in O((N ′/B) logM/B((N + N ′)/B)+ N/B) I/O operations.

In order to answer a large set of queries on an existing R-tree (such a situation often
arises when performing a so-called spatial join [24]), we simply attach buffers to the
R-tree and perform the queries in a lazy manner in the same way as when we perform
insertions: to perform one query, we insert the query rectangle in the buffer of the root.
When a buffer is emptied and a query needs to be recursively performed in several
subtrees we simply route a copy of the query to each of the relevant buffers. When a
query rectangle reaches a leaf the relevant data rectangles are reported.

THEOREM3. A set of N′ queries can be performed on an existing R-tree containing N
rectangles in O((Q/B) logM/B(N/B)+ N/B) I/O operations, where QlogB N is the
number of nodes in the tree the normal R-tree query algorithm would visit.

2.4. Performing Bulk Deletions. Conceptually, bulk deletions can be handled as in-
sertions and queries: to delete rectangler , we first perform a query forr using buffers
lazily as before and whenr (or, rather, one of the several copies ofr generated during
the querying) reaches the relevant leaf the deletion is performed. The deletion of a rect-
angle may result in a leaf containing less thanB/6 rectangles (normally called “node
underflow”) and requires the need for restructuring of the index. Restructuring is done by
merging nodes and can propagate up the tree similar to the way splits can propagate. This
corresponds to the way deletions are handled in B-trees. Many R-tree variants instead
delete a node when it underflows and reinsert its children into the tree (often referred to
as “forced reinsertions”). The idea behind this method is to try to obtain a better index
by forcing a global reorganization of the structure instead of the local reorganization a
node merge constitutes. Because of the laziness in our algorithms, we are not able to
support forced reinsertion.

A couple of issues make deletes slightly more complicated to handle than insertions.
First, in contrast to insertions where bounding rectangles in the internal nodes are adjusted
while rectangles are pushed down the tree, such adjustments for deletions can only be
done after a rectangle to be deleted has been located. Thus, after emptying the buffer of
a node on levelblogB(M/4B)c, we might need to travel all the way up the tree while
adjusting bounding rectangles in the internal nodes. Second, recall that when splitting
a buffer node in the insertion algorithm we redistributed the rectangles in the buffer
between the two newly generated nodes. This cannot result in a full buffer. However,
when merging buffer nodes the buffer of the resulting node might need to be emptied. In
order to ensure that the size of a buffer does not grow in an uncontrolled way, and that
different restructuring operations do not interfere with each other, we therefore change
the order in which we empty full buffers; we do not empty buffers of nodes on level
blogB(M/4B)c (possibly leading to the need for restructuring) before a buffer emptying
process has been performed on all internal buffer nodes with full buffers. Similarly,
emptying the buffer of a node on levelblogB(M/4B)c may lead to rebalancing and the
creation of new internal nodes with full buffers. These buffers are emptied before another
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rebalancing operation is initiated. These modifications mean that the buffer of a node on
level blogB(M/4B)c can temporarily grow bigger thanM/2 rectangles.6

The detailed algorithm for emptying a nodev on levelblogB(M/4B)c is given in
Figure 6: First the buffer and the rectangles in the subtree rooted inv are loaded into
internal memory and the relevant rectangles are deleted (Step 1). The resulting set of
rectangles is then inserted into a subtree rooted in one of the siblings ofv; the best
siblingv′ to insert the rectangles into are determined using theRoutefunction and then
the rectangles are inserted while the tree is restructured usingSplit (Steps 2–4). Ifv′

splits, the process is stopped and the remaining rectangles, as well as the rectangles in
the buffer ofv′, are distributed between the two new buffers as normally when splitting
a buffer node (Step 5). If this results in a buffer running full, it is emptied as usual.
After the deletion ofv, parent(v)may contain too few rectangles and the tree may need
to be restructured. (This cannot be the case ifv′ was split.) As mentioned, this case is
handled by merging nodes and may propagate up the tree (Step 6); we repeatedly use
Routeto find the best sibling to merge with and merge the two nodes, remembering
to merge the buffers if the nodes are buffer nodes. If this produces a full buffer it is
emptied. We do not empty other leaf buffers before all relevant internal nodes have
had their buffers emptied and the current restructuring operation is finished. Thus we
are sure that the buffer emptying cannot result in another restructuring operation on
the same node. If the merge results in a node with too many rectangles, we split the
node, and if it is a buffer node, we also redistribute the rectangles in the buffer. In the
latter case, the restructuring is finished. Finally, if the restructuring stops before reaching
the root, we traverse the path to the root and update rectangles (Step 7) as discussed
above.

LEMMA 3. A buffer emptying process on a node on levelblogB(M/4B)c (including
I/Os used on rebalancing but not counting I/Os used on emptying full buffers) can be
performed in O(logB(N/B)+ (M/B)(1+ X)) I/O operations, where X is the number
of removed buffer nodes.

PROOF. Steps 1–5 can be performed inO(M/B) I/Os. In Steps 6 and 7O(1) I/Os are
spent on merging or updating each of theO(logB(N/B)) nodes on a path to the root and
O(M/B) extra I/Os are spent every time two buffer nodes are merged.

Using this lemma we can then prove the following.

LEMMA 4. A set of N′ rectangles can be bulk deleted from an R-tree containing N
rectangles using O((N ′/B) logM/B(N/B) + N/B + Q(N ′)) I/O operations, where
Q(N ′) is the number of I/O operations needed to locate the rectangles in the tree using
batched query operations.

6 The leaves below a node on levelblogB(M/4B)c can contain at mostM/4 rectangles and thus only that
many of the delete rectangles in the buffer can be “relevant.” Thus, if the buffer grows to the maximal size
M/2 we can remove at leastM/4 of the rectangles in it, simply by removing rectangles that are not present in
the leaves. This can easily be performed inO(M/B) I/Os, that is, inO(1/B) I/Os per removed rectangle.
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Fig. 6.Buffer emptying process on buffer nodev on levelblogB(M/4B)c.
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PROOF. All buffer emptying processes performed on other than levelblogB(M/4B)c
buffer nodes during insertion of the deletes into the root buffer, as well as during the
final emptying of all buffers, can be accounted for as in the proof of Theorem 3.

According to Lemma 3, we spendO(logB(N/B)+M/B) I/Os, plusO(M/B) I/Os
per deleted buffer node, when emptying a buffer node on levelblogB(M/4B)c. The
number of buffer nodes is bounded byO((N/B)/(M/B)) by the start of the algorithm
so the last term contributes a total ofO(N/B). The rest of the I/O cost can be amortized
over theM rectangles in the buffer, so that each rectangle is charged

O

(
1

M

(
logB

N

B
+ M

B

))
= O

((
logB

N

B

)/
B

M

B
+ 1

B

)
= O

((
logB

N

B

)/
B logB

M

B

)
= O

(
1

B
logM/B

N

B

)
I/Os and the lemma follows.

The only nonstandard R-tree operation used by our delete algorithm (and the only
new operation compared with those used by the insertion algorithm) is the merging of
two nodes. This operation can be easily implemented using an operation for inserting a
whole subtree at a given level (and in a given node) of the tree. This operation is one
of the standard R-tree operations used in forced reinsertion. Thus, as mentioned in the
Introduction, our algorithm possesses the nice property that it only accesses the index
through the standard routines.

2.5. Further Remarks. In the previous sections we have discussed how to perform
insertions, deletions, and queries using buffers. Our technique can be easily modified
such that a batch ofintermixedupdates and queries can be performed efficiently (even if
they are not all present at the beginning of the algorithm, but arrive in an on-line manner).
Being able to do so is extremely important in many on-line environments, where queries
have to be answered while the index is being updated [25]. Buffers are attached and the
operations are performed by inserting them block-by-block into the buffer of the root.
Buffer emptying is basically performed as discussed in the previous sections. Only the
buffer emptying process for nodes on levelblogB(M/4B)c has to be modified slightly.
Since the modifications are similar to the ones used in the basic buffer tree we refer the
interested reader to [2] for details.

As mentioned in the Introduction, there exists a variety of approaches for bulk loading
multidimensional indexes. Most of these algorithms are optimized for a specific applica-
tion area, e.g., geographic information systems, VLSI design, or multimedia databases,
where the data to be processed has specific distributions and/or dimensionality. The
goal of the present work was to design a general technique for bulk update operations on
multidimensional indexes, and we do not regard our proposed technique as a competitor
to specialized bulk loading algorithms. Instead, we can build upon these algorithms in
the following way: when bulk loading a multidimensional R-tree from scratch, we can
choose the best bulk loading algorithm (heuristic) for the problem at hand, build the
index using this technique, and finally (re-)attach buffers in order to perform subsequent
bulk operations efficiently. Apart from our new technique, the only known methods for
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Table 1.Comparison of different bulk processing techniques.

Bulk operation

Technique Loading Insertions Deletions Queries Intermixed

Berchtold et al. [10]∗
√

— — — —
Kamel and Faloutsos [19]

√
— — — —

Kamel et al. [20]
√ √

— — —
Leutenegger et al. [21]

√
— — — —

van den Bercken et al. [30]
√

— — — —

Roussopoulos et al. [25]
√ √† √† —

√†

This paper
√ √ √ √ √

∗Does not work directly with rectangular data, see Section 1.2.
†Method can be derived from the original algorithm [25] but involves bulk loading a new data structure.

performing bulk operations other than bulk loading are the algorithms by Kamel et al.
[20] and the method that can be derived from the algorithm by Roussopoulos et al. [25].
As discussed in the Introduction, the amortized update cost of the latter method can be
very high. The algorithm in [20] on the other hand has a good amortized performance
and we therefore include a practical comparison of the bulk insertion performance of
this algorithm and our proposed technique in Section 3.4. Table 1 contains a comparison
of the capabilities of the different bulk techniques.

As mentioned, a buffering method similar to our approach has previously been pre-
sented by van den Bercken et al. [30]. However, while our approach supports all kinds of
bulk operations, the approach in [30] only supports bulk loading. To bulk load an R-tree,
the algorithm in [30] first constructs an R-tree with fanoutM/B by attaching buffers to
all nodes and performing insertions in a way similar to the one used in our algorithm. The
leaves in this R-tree are then used as leaves in the R-tree with fanoutB that will eventually
be constructed. The rest of this tree is produced in a bottom-up manner by successively
applying the buffer algorithm to the set of rectangles obtained when replacing the rect-
angles in each node on the just constructed level with their minimal bounding rectangle.
The number of I/Os used on performing the bulk loading is dominated by the construc-
tion of the leaf level, which asymptotically is the same as the algorithm we develop. In
practice, however, the additional passes over the data, even though they involve data of
geometrically decreasing size, represent a significant percentage of the total time. Bulk
loading using our method corresponds to the leaf level phase of the algorithm in [30] and
will therefore be more efficient in practice. Furthermore, the bottom-up construction is
inherently off-line, since all data needs to be known by the start of the algorithm, and the
algorithm is therefore unsuitable for bulk operations other than bulk loading. Another
advantage of our bulk loading technique being on-line can be illustrated by considering
pipelining: Consider four relationsA, B, C, and D, each of which is indexed by an
R-tree. In order to process the multiway joinA 1 B 1 C 1 D, one can perform two
two-way joins, e.g.,A 1 B andC 1 D, and then join the resulting data sets. If the join
operator requires the input relations to be indexed, two indexes have to be constructed for
the intermediate results ofA 1 B andC 1 D. Using our technique this construction can
be started while the first two joins are processed, whereas all off-line algorithms need to
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wait for the first two joins to be computed. In summary, both the method proposed in [30]
and our method utilize a lazy buffering approach, but our technique is more efficient,
on-line, and it allows for much more general bulk operations.

3. Empirical Results. In this section we discuss our implementation of the algorithms
presented in the last section and give empirical evidence for their efficiency when com-
pared with existing methods. In Section 3.1 we describe our implementation and the
experimental setup. Section 3.2 is dedicated to an empirical analysis of the effects of
buffering, and in Section 3.3 we discuss how to improve our algorithms using heuristics
similar to the ones used in [13] and [18]. Finally, in Section 3.4, we compare the I/O
cost and query performance of our bulk insertion algorithm with that of the one proposed
in [20].

3.1. Our Implementation. In order to evaluate the practical significance of our buffer
algorithm, we implemented the original repeated insertion algorithm for R-tree construc-
tion [17], the bulk insertion algorithm developed in [20], and our proposed buffered bulk
insertion algorithm. We also implemented the standard query algorithm [17]. Our imple-
mentations were done in C++ using TPIE [31], [6]. TPIE supports both astream-oriented
and ablock-orientedstyle of accessing secondary storage. A TPIE stream represents a
homogeneous list of objects of an arbitrary type, and the system provides I/O-efficient
algorithms for scanning, merging, distributing, and sorting streams. The block-oriented
part of TPIE supports random accesses to specific blocks. TPIE supports several methods
for actually performing the I/Os. All these methods work on standard UNIX files. For
example, one method uses the standard I/O system callsfread and fwrite , while
another relies on memory mapping (themmapandmunmapcalls). In our experiments
we used the method based on memory mapping and when we refer to the number of I/Os
performed by an algorithm we refer to TPIE’s count of how manymmapoperations were
performed (both reads and writes involve mapping a block). The actual physical number
of I/Os performed is very likely to be less than this count, as the operating system can
choose to keep a block in internal memory even after it is unmapped.

A conceptual benefit of our algorithms is that from an abstract point of view they are
similar to the normal algorithms where the operations are performed one by one. Our
algorithms admit a nice modular design because they only access the underlying R-tree
through the standard routing and restructuring procedures. We used the block-oriented
part of TPIE to implement a standard R-tree [17] that served as a base for realizing the
different update approaches. Using the stream-oriented part of TPIE we stored all the
buffers of an index in one separate stream. As a consequence of this modular design we
are able to attach buffers to any existing index, regardless of how it has been created.
After all of the bulk operations have been performed (and all buffers have been emptied)
we can even decide to detach the buffers again without affecting the updated index.
Therefore our buffer algorithm can be regarded as a generic “black box” that takes an
arbitrary index and returns an updated version while only accessing the public interface
of the index.

Our experiments were performed on a machine with a block size of 4 Kbytes (Sun
SparcStation20 running Solaris 2.5) which allowed for an R-tree fanout of 100. However,
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Table 2.Characteristics of test data.

State Category Size (MB) Objects Category Queries Results

Rhode Island (RI) Roads 4.3 68,278 Hydrography 701 1,887
Connecticut (CT) Roads 12.0 188,643 Hydrography 2,877 8,603
New Jersey (NJ) Roads 26.5 414,443 Hydrography 5,085 12,597
New York (NY) Roads 55.7 870,413 Hydrography 15,568 42,489

following recommendations of previous empirical studies [9], [17], we only used a
maximal fanout of 50. Similarly, we used a minimal fanout of 50/6 which has previously
been found to give the best query performance. For simplicity, we added buffers in our
implementation to all nodes instead of only to nodes on everyblogB(M/4B)cth level.
Theoretically, by using a buffer size of onlyB blocks we obtain a bulk loading I/O
bound ofO((N/B) logB(N/B)). In practice, this is not significantly different from the
theoreticalO((N/B) logM/B(N/B)) bound obtained in Section 2.

As test data we used the standard benchmark data used in spatial databases, namely
rectangles obtained from the TIGER/Line data set [29] for the states of Rhode Island,
Connecticut, New Jersey, and New York. In all our bulk loading and updating experiments
we used rectangles obtained from the road data of these states. Our query experiments
consisted of overlap queries with rectangles obtained from hydrographic data for the
same states. The queries reflect typical queries in a spatial join operation. In order to
work with a reasonably small but still characteristic set of queries, we used every tenth
object from the hydrographic data sets. In the construction and updating experiments,
we used the entire road data sets. The sizes of the data sets are given in Table 2. The
third column shows the size of the road data setafter the bounding rectangles have been
computed, that is, it is the actual size of the data we worked with.

For simplicity, in the following we only present the results of query experiments
performed without buffers. When buffers were used, we observe speed-ups similar to
the speed-ups observed in the bulk loading experiments presented in the next section. For
example, when querying an R-tree built upon the RI (CT) road data set with all rectangles
obtained from the corresponding hydrography data set without using buffers, the overall
number of I/O operations was around 60,000 (310,000). In contrast, performing the
queries with buffers reduced the I/O count to less than 4,000 (16,000)—an improvement
by at least a factor of 15!

3.2. Effects of Adding Buffers to Multidimensional Indexes. In order to examine the
general effects of adding buffers to a multidimensional index, we first performed a set of
bulk loading experiments where we compared the performance of our algorithm (in the
following referred to as BR for buffer R-tree) with that of the standard repeated insertion
algorithm. (Since the repeated insertion algorithm takes unsorted data and inserts it, we
use UI when referring to it.) We performed experiments with buffers of sizebB/4c,
bB/2c, andb2Bc blocks. With our choice ofB = 50 this corresponds to buffers capable
of storing 600, 1250, and 5000 rectangles, respectively.

Figure 7(a) shows that our algorithm (BR) dramatically outperforms the repeated
insertion algorithm (UI) as expected. Depending on the buffer size, we reduce the number
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Fig. 7.Effects of buffering on build and query performance (I/O in thousands).

of I/O operations by a factor of 16–24. Our experiments on query performance given
in Figure 7(b) show that the introduction of buffers affects the structure of the resulting
index. More specifically, too large a buffer size decreases query performance for the
following reason: When inserting objects one-by-one the routing rectangles in the tree
are updated after each operation and thus rectangles are always routed the best possible
way (according to the chosen heuristics). When using buffers on the other hand, the
inserted rectangles have to be routed through the buffers to the leaves before they affect
the routing rectangles. The larger the buffers, the later the rectangles reach the leaves and
the later the routing rectangles are updated. Thus some later rectangles may be routed to
nonoptimal subtrees. However, our experiments also show that by carefully tuning the
buffer size we are able to produce an index of the same quality as the index produced
by UI.

Our conclusion from this first set of experiments is that buffers can indeed be used
to speed up spatial index algorithms without sacrificing query performance. Since our
main objective was to design and test algorithms capable of performing more general
bulk operations than just bulk loading, we did not empirically compare our bulk loading
algorithm with other such algorithms (for a conceptual comparison see Section 2.5). The
purpose of this first set of experiments was just to examine the effects of buffering on
the behavior of index structures where the query performance is sensitive to the order in
which data elements are inserted. Specialized bottom-up R-tree bulk loading algorithms
are likely to outperform our algorithm because of the smaller number of random I/Os
(as opposed to sequential I/Os) performed in such algorithms. For this reason, a wise
choice for bulk loading—as discussed in Section 2.5—would be to construct the index
using the best bulk loading heuristic for the specific problem at hand and then attach
buffers to speed up bulk insertions, bulk queries, and bulk deletes.

3.3. Improving the Space Utilization. As discussed in the Introduction, special-purpose
bulk loading algorithms often produce significantly better indexes than the ones obtained
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using repeated insertion, especially in terms of space utilization. There exist several
heuristics for improving the space utilization of two-dimensional R-trees from less than
70% [9] to almost 95% [13], [18], [21]. One key question is therefore whether we can
take advantage of some of these heuristics in our buffer algorithm in order to improve
space utilization, and without sacrificing the conceptual advantage of not having to know
all updates by the start of the algorithm.

It turns out that by modifying our buffer emptying algorithm for nodes on the level just
above the leaves, we are indeed able to combine the advantages of our buffering method
and the so-called Hilbert heuristic [18]: As in the algorithm discussed in Section 2 we start
by loading all leaves into internal memory. Instead of repeatedly inserting the rectangles
from the buffer using the standard algorithm, we then sort all the rectangles from the
buffer and the leaves according to the Hilbert values of their center. The rectangles are
then grouped into new leaves that replace the old ones. Following the recommendations
in [13] we are careful not to fill the leaves completely. Instead we fill them up to 75%
of capacity and include the next candidate rectangle only if it increases the area of
the minimal bounding rectangle of the rectangles in the leaf by no more than 20%.
Since the space utilization of the tree is mainly determined by how much the leaves are
filled, this modification improves our space utilization significantly. The main reason for
selecting the Hilbert heuristic was that this heuristic is very well suited for the kind of
two-dimensional data we are working with [18]. The general idea in our improvement
works for other heuristics as well. For high-dimensional point data for example, we
could easily replace the Hilbert heuristic by a (variant of) the method by Berchtold
et al. [10].

In order to evaluate the modified algorithm, we repeated the bulk loading experiments
from Section 3.2. The results of these experiments were very encouraging: With all
buffer sizes we improved space utilization to approximately 90% and at the same time
we improve the construction time by around 30% compared with our original algorithm.
We also noticeably reduced the query time of the algorithm using the largest buffer size
and for each data set we were able to produce at least one index matching the query
performance obtained by the original buffer algorithm. In most cases we were even able
to produce a better index than the one produced using repeated insertions. The results
are summarized in Figure 8. The detailed I/O costs of the experiments, as well as of the
experiments from Section 3.2, are presented in Table 3.

3.4. Bulk Updating Existing R-Trees. Finally, in order to investigate the practical effi-
ciency of our technique when performing more general bulk operations, we performed
experiments with bulk insertion of a set of rectangles into an already existing R-tree. We
compared the performance of our buffer algorithm (with a buffer size of 5000 rectan-
gles) with the naive repeated insertion algorithm (UI), as well as with the bulk update
algorithm of Kamel et al. [20]. As mentioned, this algorithm sorts the rectangles to
be bulk inserted according to the Hilbert value of their centers and groups them into
blocks. These blocks are then inserted using the repeated insertion algorithm. (Since
this algorithm sorts the rectangles and groups them into nodes, we refer to it as SN.)
To allow for fair competition we used the I/O-efficient external sorting algorithm in
TPIE to sort the rectangles. We allowed the sort to use 4 Mbytes of main memory. This
should be compared with the maximal internal memory use of around 300 Kbytes of the
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Fig. 8.Building and querying with modified buffer emptying algorithm (I/O in thousands).

buffer algorithm. The 4 Mbytes represent what is typically allocated to a single process
in a database environment. Increasing the allocated memory would result in a certain
speed-up for the sorting part of the algorithm, while insertions and queries would not
be affected by the size of the available memory. Note that allocating a larger amount
of memory would mean that the algorithms would not really be on-line since a large
number of inserts would be collected before being performed.

For each state we constructed two base R-trees with 50% and 75% of the objects
from the road data set using BR and inserted the remaining objects with the three

Table 3.Summary of the I/O costs for all construction experiments.

Building Querying Packing (%)
Data Buffer
set size Standard Modified Standard Modified Standard Modified

RI 0 495,909 495,909 5,846 5,846 56 56
600 32,360 23,801 5,546 5,858 60 88

1,250 26,634 16,140 6,429 6,632 60 89
5,000 21,602 11,930 8,152 5,322 59 90

CT 0 1,489,278 1,489,278 27,699 27,699 56 56
600 94,286 74,244 28,569 28,947 59 88

1,250 76,201 50,983 32,586 27,591 59 90
5,000 62,584 38,588 40,600 32,352 60 91

NJ 0 3,376,188 3,376,188 43,156 43,156 56 56
600 211,467 167,401 53,874 56,844 59 88

1,250 168,687 117,971 50,183 50,743 59 90
5,000 142,064 92,578 57,571 61,485 59 91

NY 0 7,176,750 7,176,750 160,235 160,235 56 56
600 448,645 345,038 160,232 175,424 59 88

1,250 357,330 250,704 180,205 155,338 59 89
5,000 299,928 203,165 243,704 196,972 59 90
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Fig. 9.Bulk updating results for UI, SN, and BR (buffer 5000) (I/O in thousands).

algorithms.7 Experiments showed that the algorithms SN and BR outperform UI with
respect to updating by the same order of magnitude, and that our algorithm (BR) ad-
ditionally improves over SN. (Refer to Figure 9(a).) As far as query performance is
concerned, our experiments showed that SN results in worse indexes than the repeated
insertion algorithm (UI). On the other hand, the indexes generated by our algorithm (BR)
are up to 10% better than the indexes produced by SN, and they match or even improve
the query performance obtained by indexes updated using UI. (See Figure 9(b).) The
major problem with SN with respect to query performance is that it does not take into
consideration the objects already present in the R-tree; all new leaves are built without
looking at the index to be updated.

The detailed I/O costs of all update experiments are given in Table 4. Our experiments
show that our bulk update algorithm outperforms the previously known algorithms in
terms of update time, while producing an index of at least the same quality. The overall

Table 4.Summary of the I/O costs of all update experiments.

Update with 50% of the data Update with 25% of the data
Data Update
set method Building Querying Packing (%) Building Querying Packing (%)

RI UI 259,263 6,670 64 145,788 8,148 66
SN 15,865 7,262 92 14,490 8,042 91
BR 13,484 5,485 90 13,301 6,981 91

CT UI 805,749 40,910 66 428,163 39,016 69
SN 51,086 40,593 92 44,236 39,666 91
BR 42,774 37,798 90 42,429 35,968 90

NJ UI 1,777,570 70,830 66 943,992 66,715 71
SN 120,034 69,798 92 106,712 71,383 91
BR 101,017 65,898 91 95,823 66,030 91

NY UI 3,736,601 224,039 66 1,988,343 238,666 71
SN 246,466 230,990 92 229,923 249,908 91
BR 206,921 227,559 90 210,056 233,361 90

7 To avoid clustering effects, we did not build the R-trees using the first 50% (resp., 75%) of the data, but
instead we skipped every second object (resp., every fourth object) in the data set when building the trees.
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conclusion of our experiments is that our buffer technique is not only of theoretical
interest, but also a practically efficient method for performing bulk updates on dynamic
R-trees.

4. Conclusions. In this paper we have presented a new buffer algorithm for perform-
ing bulk operations on dynamic R-trees that is efficient both in theory and in practice.
Our algorithms allows for simultaneous updates and queries which is essential in many
on-line environments. Furthermore, all operations can be pipelined. One key feature of
our algorithm is that from a high level point of view the bulk operations are performed
precisely as if buffers were not used. For example, our bulk insertion algorithm is con-
ceptually identical to the repeated insertion algorithm. From an implementation point of
view another key feature of our algorithm is that it admits a nice modular design because
it only accesses the underlying index through the standard routing and restructuring rou-
tines. Having implemented our buffering algorithms we can thus combine them with the
most efficient existing index implementation for the problem class at hand.
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