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Abstract. Optimal design methods involving the solution of an adjoint system of equations are an
active area of research in computational fluid dynamics, particularly for aeronautical applications.
This paper presents an introduction to the subject, emphasising the simplicity of the ideas when
viewed in the context of linear algebra. Detailed discussions also include the extension to p.d.e.’s,
the construction of the adjoint p.d.e. and its boundary conditions, and the physical significance of the
adjoint solution. The paper concludes with examples of the use of adjoint methods for optimising the
design of business jets.
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1. Introduction

There is a long history of the use of adjoint equations in optimal control theory [31].
In fluid dynamics, the first use of adjoint equations for design was by Pironneau
[37], but within the field of aeronautical computational fluid dynamics, the use
of adjoint equations has been pioneered by Jameson, who used his knowledge
of optimal control theory to develop what he calls optimal design methods. The
term ‘optimal’ refers to the fact that one is trying to find the geometry which
minimises some objective function subject to a set of constraints. In a sequence
of papers by himself [24–26] and with Reuther and other co-authors [28, 39, 40]
Jameson developed the adjoint approach for potential flow, the Euler equations
and the Navier–Stokes equations. The complexity of the applications within these
papers also progressed from 2D airfoil optimisation, to 3D wing design and finally
to complete aircraft configurations [27, 41, 42],

A number of other research groups have developed adjoint CFD codes for de-
sign optimisation [3, 4, 6, 8, 22, 29, 30, 44]. An overview of recent developments
in adjoint design methods is provided elsewhere [23]. Of particular interest is the
work of Elliott [9, 11] and Anderson [2, 34] on unstructured grids using the ‘dis-
crete’ adjoint approach, and the work of Mohammadi [32, 33] in using automatic
differentiation software to create the adjoint code from an original CFD code; both
of these approaches will be discussed further in this paper.

Considering the importance of design to aeronautical engineering, and indeed
to all of engineering, it is perhaps surprising that the development of adjoint CFD
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codes has not been more rapid in the decade since Jameson’s first papers appeared.
In part, this may be due to some of the limitations of the adjoint approach, which
will be discussed later in this paper. However, it seems likely that part of the reason
is its complexity, both in the mathematical formulation of the adjoint p.d.e. and
boundary conditions in the ‘continuous’ approach favoured by Jameson, and in the
creation of the adjoint CFD code in the ‘discrete’ approach.

In this paper we aim to address some of these difficulties. The adjoint theory is
presented firstly in the context of linear algebra, in which it is most easily under-
stood. This is the basis for the discrete adjoint CFD approach in which one works
with the algebraic equations that come from the discretisation of the original fluid
dynamic equations.

The paper then treats the extension to p.d.e.’s as used in Jameson’s continuous
adjoint approach in which the adjoint p.d.e. is formulated and then discretised.
The emphasis in the present review is on the construction of the adjoint p.d.e. and
its boundary conditions, the physical significance of the adjoint solution, and the
manner in which geometric perturbations are introduced.

The paper concludes with a discussion of the pros and cons of the two ap-
proaches, the discrete and the continuous, and examples of the use of adjoint
methods to optimise business jet designs.

2. Discrete Adjoint Approach

2.1. LINEARISED OBJECTIVE FUNCTION

The goal of aerodynamic design optimisation is the minimisation (or maximisa-
tion) of an objective function that is a nonlinear function of a set of discrete flow
variables. For example, the lift may be expressed as L(U) where U is the set of
all flow variables at discrete grid points arising from an approximate solution of
the Euler equations, and L is a scalar function which approximates the appropriate
weighted integral of pressure over the surface of an aircraft.

In design optimisation, the question of interest is: what is the perturbation in
L due to a perturbation in the geometry, and hence the flow field? If u is the
perturbation in the flow field, then the linearised perturbation in the lift is

gT u ≡ ∂L

∂U
u.

Therefore, the goal is to evaluate the quantity gT u where u satisfies the appropriate
linearised flow equations.

2.2. DUALITY AND ADJOINT VARIABLES

Suppose one wishes to evaluate the quantity gT u given that u satisfies the linear
system of equations

Au = f,
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for some given matrix A and vector f . The dual form is to evaluate vT f where the
adjoint solution v satisfies the linear system of equations

AT v = g.
Note the use of the transposed matrix AT , and the interchange in the roles of f and
g.

The equivalence of the two forms is easily proved as follows:

vT f = vT Au = (AT v)T u = gT u.
Given a single f and a single g, nothing would be gained (or lost) by using the

dual form. Exactly the same value for the linear objective function would be ob-
tained with exactly the same computational effort. However, suppose now that we
want the value of the objective function for p different values of f , and m different
values of g. The choice would be to do either p different primal calculations or
m different dual calculations. When the dimension of the system is very large, the
cost of the vector dot products is negligible compared to solving the linear systems
of equations, and therefore the dual (or adjoint) approach is much cheaper when
m� p.

2.3. PHYSICAL INTERPRETATION

It is possible to work with adjoint variables and regard them as a purely mathemat-
ical construct, but they do have physical significance.

One way of looking at them is that they give the influence of an arbitrary source
term f on the functional of interest,

Au = f −→ vT f

source term functional perturbation

Another is that they are the value of the objective function corresponding to
the appropriate Green’s function. To see this, we define f (i) to be a vector whose
elements are zero apart from the ith which is unity. The corresponding solution u(i)

given by

Au(i) = f (i)
is the discrete equivalent of a Green’s function and

vT f (i) = vi = gT u(i).
Thus, the ith component of the adjoint variables is equal to the value of the objec-
tive function when the solution is equal to the ith Green’s function.
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2.4. DUALITY FORMULATION FOR ADJOINT DESIGN

Given a set of design variables, α, which control the geometry of the airfoil, wing
or aircraft being designed, and a set of flow variables at discrete grid points, U ,
the aim is to minimise a scalar objective function J (U, α). This minimisation is
subject to the constraint that the discrete flow equations and boundary conditions
are all satisfied. These may be expressed collectively as

N(U, α) ≡ N(U,X(α)) = 0,

where X is the vector of grid point coordinates which depends on α. Using tech-
niques such as the ‘method of springs’ [38] or variants on transfinite interpolation
[45, 40], the grid deforms smoothly as changes in the design variables modify the
surface geometry. Hence, ∂X/∂α is usually non-zero at both interior and surface
grid points.

For a single design variable, we can linearise about a base solution U0 to get

dJ

dα
= ∂J

∂U

dU

dα
+ ∂J

∂α
,

subject to the constraint that the flow sensitivity dU/dα satisfies the linearised flow
equations

∂N

∂U

dU

dα
+ ∂N

∂α
= 0.

By defining

u = dU

dα
, A = ∂N

∂U
,

gT = ∂J

∂U
, f = −∂N

∂α
,

we can convert this into the standard form

dJ

dα
= gT u+ ∂J

∂α
,

subject to

Au = f.
The direct sensitivity of the objective function to perturbations in the design vari-
ables is easy to evaluate. The term gT u ≡ vT f can be computed either by the direct
approach, solving Au = f , or by the adjoint approach, solving AT v = g. For a
single design variable there would be no benefit in using the adjoint approach, but
for multiple design variables, each has a different f , but the same g, so the adjoint
approach is computationally much more efficient.
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2.5. ALTERNATIVE LAGRANGE VIEWPOINT

In the presentation above, we have used the terminology of duality, coming from
the mathematics of vector spaces, linear algebra and linear programming. An alter-
native description arises using the terminology of Lagrange multipliers associated
with constrained minimisation. In this framework, the adjoint variables are La-
grange multipliers, usually written as λ, and are introduced into an augmented
objective function

I (U, α) = J (U, α)− λTN(U, α),
to enforce the satisfaction of the discrete flow equations. Considering general per-
turbations dU and dα gives

dI =
(
∂J

∂U
− λT ∂N

∂U

)
dU +

(
∂J

∂α
− λT ∂N

∂α

)
dα.

If λT is chosen to satisfy the adjoint equation

∂J

∂U
− λT ∂N

∂U
= 0 �⇒

(
∂N

∂U

)T
λ =

(
∂J

∂U

)T
,

then

dI =
(
∂J

∂α
− λT ∂N

∂α

)
dα,

and thus dI/dα is obtained.
The final equations are exactly the same as those derived by considering duality;

it is really only the description of the mathematics which differs. In aeronautical
CFD, most people follow Jameson in adopting the Lagrange multiplier viewpoint
for design optimisation because of its connection to constrained optimisation and
optimal control theory. On the other hand, we prefer the duality viewpoint because
it seems more natural for other uses of adjoint variables, such as error analysis
[17, 35, 36, 46], which do not involve constrained optimisation.

2.6. NONLINEAR OPTIMISATION

Returning to the design problem, the aim is to find the set of design variables α
which minimise the nonlinear objective function J (U, α), where U is an implicit
function of a through the flow equations

N(U, α) = 0.

These nonlinear flow equations and the corresponding linear adjoint equations are
both large systems which are usually solved by an iterative procedure.
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There are two principal schools of thought as to the best method for marching
the design variables to a local minimum. In the first approach, a simple steepest
descent algorithm is employed,

�α = −εdJ

dα
,

where ε controls the step size. The advantage of this method is that partially-
converged flow and adjoint solutions may be used to evaluate the gradients as long
as these gradients are properly smoothed (preconditioned) prior to updating α [26].
As a result, the cost per design cycle is relatively low.

In the second approach, approximations to the Hessian matrix of second deriv-
atives

d2J

dαi dαj
,

are used to speed convergence via a quasi-Newton procedure such as BFGS [18].
This method therefore requires more accurate flow and adjoint solutions, which
must generally be converged fully during each design iteration. As a result, the
cost of each design cycle is significantly increased.

The relative efficiency and robustness of the partially and fully-converged ap-
proaches is still subject to debate. We have been unable to find any reference
which presents a clear quantitative comparison of the two approaches, but the
anecdotal evidence is that the partially-converged approach yields the lowest total
computational time.

2.7. LIMITATIONS OF THE ADJOINT APPROACH

2.7.1. Constraints

Engineering design applications often have a set of constraints which must be sat-
isfied, in addition to the discrete flow equations. Some of these may be geometric,
such as airfoil design in which the length of the chord and the area of the airfoil are
fixed. Others may depend on the flow variables, such as wing design in which one
wishes to minimise the drag but keep the lift fixed.

Geometric constraints are easily incorporated by modifying the search direction
for the design variables to ensure that the geometric constraints are satisfied. It is
the constraints which depend on the flow which pose a problem. If the constraint
is taken to be ‘hard’ and so must be satisfied at all stages of the optimisation
procedure, then we need to know both the value of the constraint function, which
we shall label J2(U(α), α), and its linear sensitivity to the design variables. The
latter requires a second adjoint calculation; the addition of more flow-based hard
constraints would require even more adjoint calculations. This type of constraint
therefore undermines the computational cost benefits of the adjoint approach. If
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the number of hard constraints is almost as large as the number of design variables,
then the benefit is entirely lost.

To avoid this, the alternative is to use ‘soft’ constraints via the addition of
penalty terms in the objective function, e.g. J (U)+λ(J2(U))

2. The value of λ con-
trols the extent to which the optimal solution violates the constraint J2(U, α) = 0.
The larger the value of λ, the smaller the violation, but it also worsens the con-
ditioning of the optimisation problem and hence increases the number of steps to
reach the optimum.

2.7.2. Least-Squares Problems

In the direct linear perturbation approach one evaluates each of the linear flow
sensitivities dU/dαi , one by one, by solving the linearised flow equations corre-
sponding to a unit perturbation in a single design variable. From these one can
then calculate the linear sensitivity of the objective function to each of the design
variables, but the total cost is proportional to the number of the design variables,
making the adjoint approach much cheaper.

However, if the objective function is of a least-squares type,

J (U) = 1

2

∑
n

(pn(U)− Pn)2,

then

dJ

dαi
=

∑
n

∂p

∂U

dU

dαi
(pn(U)− Pn),

and so

d2J

dαidαj
≈

∑
n

(
∂p

∂U

dU

dαi

) (
∂p

∂U

dU

dαj

)
,

assuming that pn(U) − Pn, is small. Thus, the direct linear perturbation approach
also gives the approximate Hessian matrix, leading to very rapid convergence for
the optimisation iteration. By contrast, the adjoint approach provides no informa-
tion on the Hessian, so optimisation methods such as BFGS which build up an
approximation to the Hessian take more steps to converge than the direct linear
perturbation approach for least-squares applications. It is important to keep in
mind, however, that for large numbers of design variables, the adjoint approach
may still be more efficient, since the cost of each step is significantly higher when
the sensitivities are evaluated directly.

2.7.3. Limitations of Gradient-Based Optimisation

The adjoint approach is only helpful in the context of gradient-based optimisation
and such optimisation has its own limitations. Firstly, it is only appropriate when
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the design variables are continuous. For design variables which can take only in-
teger values (e.g. the number of engines on an aircraft) stochastic procedures such
as simulated annealing and genetic algorithms are more suitable. Secondly, if the
objective function contains multiple minima, then the gradient approach will gen-
erally converge to the nearest local minimum without searching for lower minima
elsewhere in the design space. If the objective function is known to have multiple
local minima, and possibly discontinuities, then again a stochastic search method
may be more appropriate.

2.8. IMPLEMENTATION ISSUES

In concept, the discrete adjoint approach is relatively straightforward. The linear
algebra derivation is easy to grasp, and there is the attractive feature that the gra-
dient of the objective function with respect to the design variables is exactly the
same as would be obtained by the direct linear perturbation method.

Nonetheless, the practical implementation of this approach can be challenging.
The nonlinear flow solver often solves the steady-state equations, R(U) = 0, by a
time-marching iterative solution of

dU

dt
+ R(U) = 0.

Linearising the steady-state equations gives Lu = f , where

L ≡ ∂R

∂U
, u ≡ ∂U

∂α
, f ≡ −∂R

∂α
.

Following a direct approach, the linear perturbation equations could also be solved
by marching to steady-state the equations

du

dt
+ Lu = f.

Similarly, the adjoint equations LT v = g, can be solved by time-marching

dv

dt
+ LT v = g.

The fact that L and LT have the same eigenvalues means that the asymptotic con-
vergence of the time-marching iteration in both cases will be identical, and will be
equal to the asymptotic convergence rate of the nonlinear flow solver.

Let us turn now to the construction of the product LT v. When approximating the
Euler equations on an unstructured grid, the residual vector R(U) can be expressed
as a sum of contributions from each edge of the grid, with each edge contributing
only to the residuals at the nodes at either end of the edge. Symbolically, we can
write this as

R ≡
∑
e

Re(U).
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Linearisation gives

Lu =
∑
e

Leu, Le ≡ ∂Re

∂U
,

where Le is a sparse matrix whose only non-zero elements have row and column
numbers both matching one or other of the two nodes at either end of the edge.
Therefore,

LT v =
∑
e

LTe v.

At the programming level, this product involves exactly the same loop over all of
the edges as for the original nonlinear flow discretisation. In principle, one could
compute the non-zero elements of the matrix Le and then form the product LTe v.
However, it is more efficient to calculate the product directly without explicitly
constructing the matrix. A common objection to the discrete approach is the mem-
ory overhead that is incurred if the linearised matrix is pre-computed and stored
to reduce the total number of operations. By forming the product directly, this
memory overhead can be avoided while maintaining an operation count that is not
substantially greater than that of the original nonlinear solver.

When approximating the Navier–Stokes equations on an unstructured grid, the
residual vector can sometimes be expressed symbolically as

R ≡
∑
e

Re(U,DU),

where the vector DU represents the numerical approximation to the flow solution
gradient at the grid nodes at either end of the edge. When linearised, this becomes

Lu ≡ Au+ VDu,
in which the matrices A, V ,D can each be expressed as a sum of extremely sparse
elemental matrices as described above for the Euler equations. The discrete adjoint
operator for the Navier–Stokes equations is then

LT v ≡ AT v +DTV T v,
indicating that the adjoint gradient subroutine responsible for DT must be ap-
plied after the viscous subroutine responsible for V T . At first this seems counter-
intuitive, but the mathematics is quite clear.

Working out the mathematical expressions for LTe v and determining the best
method for implementing the product is relatively easy for the inviscid fluxes of
the Euler equations. This process is far more arduous for the viscous fluxes in
the Navier–Stokes equations and for characteristic smoothing fluxes for the Euler
equations. An alternative is to use AD (Automatic Differentiation) software such
as Odyssée [12, 13] or ADIFOR and ADJIFOR [5, 7] to generate the Fortran code
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to compute the product LTe v. In forward mode, AD software takes the original code
which computed Re(U) and then uses the basic rules of linearisation to construct
the code to evaluate Leu. In reverse mode, it produces the code to calculate LTe v;
it may seem that this is a much harder task but in fact it is not. Furthermore, there
are theoretical results which guarantee that the number of floating point operations
is no more than three times that of the original nonlinear code [20].

A final point concerns the evaluation of the term f , which is the source term
for the direct perturbation equations and is in the objective function in the adjoint
approach. Again, forward mode AD software could be used, but a very much sim-
pler alternative is to use the ‘complex variable method’ [43] used by Anderson and
co-workers [1]. The essence of the idea is that

lim
ε→0

I {R(U, α + iε)}
ε

= ∂R

∂α
.

In this equation, R(U, α) has been taken to be a complex analytic function, and
the notation I {. . .} denotes the imaginary part of a complex quantity. The equation
itself is an immediate consequence of a Taylor series expansion. The key is that this
can be evaluated numerically using ε = 10−20. Unlike the usual finite difference
approximation of a linear sensitivity, there is no subtraction of two quantities which
are almost equal; therefore there is no unacceptable loss of accuracy due to machine
rounding error. Applying this technique to a FORTRAN code requires little more
than replacing all REAL*8 declarations by COMPLEX*16, and defining appropriate
complex analytic versions of certain intrinsic functions.

We have found this complex variable method to be extremely effective. We
have also used it to verify the correctness of our handcoded adjoint calculations by
checking the identity uT (LT v) = vT (Lu), with the product LT v being computed
using the adjoint code, and the product

Lu = lim
ε→0

I {R(U + iεu, α)}
ε

,

being computed using the complex variable method.

3. Continuous Adjoint Approach

3.1. DUALITY AND THE ADJOINT P.D.E.

Duality in the case of p.d.e.’s is a natural extension of duality in the linear algebra
formulation. Using the notation (V ,U) to denote an integral inner product over
some domain ",

(V ,U) ≡
∫
"

V TU dx,

suppose that one wants to evaluate the functional (g, u), where u is the solution of
the p.d.e.

Lu = f,
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on the domain " subject to homogeneous boundary conditions on the boundary
∂".

Using the adjoint formulation, the identical functional takes the form (v, f )

where v is the solution of the adjoint p.d.e.

L∗v = g,
plus appropriate homogeneous adjoint b.c.’s. The adjoint operator L∗ is defined by
the identity

(V ,LU) = (L∗V,U),

which must hold for all functions V,U satisfying the respective homogeneous
boundary conditions. Given the definitions, the proof of the equivalence of the two
forms of the problem is trivial

(v, f ) = (v, Lu) = (L∗v, u) = (g, u).

3.2. EXAMPLES

To illustrate the construction of the adjoint operator and boundary conditions, let
us consider the one-dimensional convection-diffusion equation

Lu ≡ du

dx
− εd2u

dx2
, 0 < x < 1,

subject to the homogeneous boundary conditions u(0) = u(1) = 0.
Using integration by parts, for any twice-differentiable function v we have

(v, Lu) =
1∫

0

v

(
du

dx
− εd2u

dx2

)
dx

=
1∫

0

u

(
−dv

dx
− ε d2v

dx2

)
dx +

[
vu− εv du

dx
+ εudv

dx

]1

0

=
1∫

0

u

(
−dv

dx
− ε d2v

dx2

)
dx +

[
−εv du

dx

]1

0

.

For the integral term to equal the inner product (g, u) in the adjoint identity, we
need to define the adjoint operator to be

L∗v = −dv

dx
− ε d2v

dx2
,
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Table I. Various operators and their
adjoints.

Operator Adjoint

du

dx
− ε d2u

dx2
−dv

dx
− ε d2v

dx2

∇ · (k∇u) ∇ · (k∇v)
∂u

∂t
− ∂2u

∂x2
−∂v
∂t

− ∂2v

∂x2

∂u

∂t
+ ∂u

∂x
−∂v
∂t

− ∂v

∂x

and to eliminate the boundary term the adjoint b.c.’s must be

v(0) = v(1) = 0.

Note the reversal in sign of the first derivative in the adjoint operator; this implies
a reversal in the convection direction.

Table I lists a number of other differential operators and their adjoints. Note
the changes of sign which occur due to the integration by parts. This produces
a reversal of causality in time-varying problems so that, for example, the adjoint
parabolic operator is well-posed only if one starts with ‘initial data’ at the final
time and then integrates backwards in time towards the initial time of the original
problem.

3.3. PHYSICAL INTERPRETATION

The physical significance of adjoint variables can again be understood by consid-
ering Green’s functions and their effect on the inner product of interest.

The solution of the p.d.e. Lu = f is

u(x) =
∫
"

G(x, x′)f (x′) dx′,

where G(x, x′) is the Green’s function. Therefore,∫
"

gT (x)u(x) dx =
∫
"

∫
"

gT (x)G(x, x′)f (x′) dx dx′

=
∫
"

vT (x′)f (x′) dx′,

where

vT (x′) =
∫
"

gT (x)G(x, x′) dx.
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Thus, the adjoint variables at a particular point correspond to the functional evalu-
ated using the Green’s function for the same point.

3.4. BOUNDARY TERMS

So far, we have assumed that the original problem has homogeneous b.c.’s and the
objective function consists only of an inner product over the whole domain and not
a boundary integral. More generally, boundary integral terms in the primal objec-
tive function lead to inhomogeneous b.c.’s for the adjoint, while inhomogeneous
b.c.’s for the primal problem lead to boundary terms in the adjoint functional [15].
The general form of the adjoint identity is

(V ,LU)" + (C∗V,BU)∂" = (L∗V,U)" + (B∗V,CU)∂"
for all functions U , V , with the notation (., .)∂" denoting an inner product over
the boundary. B and C are both boundary operators (possibly involving normal
derivatives) given in the definition of the original problem. B∗ and C∗ are the
corresponding adjoint boundary operators which can be found by integration by
parts.

Using this general adjoint identity, it follows immediately that

(v, f )" + (C∗v, f2)∂" = (g, u)" + (g2, Cu)∂"

when

Lu = f in ", and Bu = f2 on ∂",

L∗v = g in ", and B∗v = g2 on ∂".

There are some restrictions on what can be imposed as b.c.’s and objective
functions. The analysis is complicated (see [15, 28] for details) but it reveals that
on a solid surface, the boundary integral term in the objective function must be a
weighted integral of the linear perturbation in the pressure when using the Euler
equations. Similarly, for the Navier–Stokes equations it must be a weighted integral
of the linear perturbation in the normal and tangential forces on the surface, and
either the heat flux or the surface temperature (depending whether one is specifying
the surface temperature or adiabatic conditions, respectively).

3.5. GEOMETRIC EFFECTS

Perhaps the most complicated part of the continuous approach to design is the
manner in which design variable perturbations produce the source term f for the
linearised p.d.e. and the inhomogeneous term f2 for the linearised b.c.’s.

We will outline two approaches, both of which use curvilinear coordinates (ξ, η)
in two dimensions. Writing the Euler equations in their usual vector form as

∂F

∂x
+ ∂G

∂y
= 0,
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when transformed to the curvilinear coordinates they become

∂

∂ξ

(
F
∂y

∂η
−G∂x

∂η

)
+ ∂

∂η

(
−F ∂y

∂ξ
+G∂x

∂ξ

)
= 0.

In the approach used by Jameson, the curvilinear coordinates correspond to grid
lines of a structured grid, with the airfoil surface being defined as η = 0 [26]. A
small perturbation α̃ to a design parameter produces changes such as

F −→ F + ∂F

∂U

dU

dα
α̃,

∂x

∂η
−→ ∂x

∂η
+ ∂2x

∂η∂α
α̃.

Terms not depending on α̃ all cancel, and terms depending on α̃2 are neglected.
Hence, we get the linearised equations

∂

∂ξ

((
A
∂y

∂η
− B ∂x

∂η

)
u

)
+ ∂

∂η

((
−A∂y

∂ξ
+ B ∂x

∂ξ

)
u

)

= − ∂

∂ξ

(
F
∂2y

∂η∂α
−G ∂2x

∂η∂α

)
− ∂

∂η

(
−F ∂2y

∂ξ∂α
+G ∂2x

∂ξ∂α

)
,

where

A = ∂F

∂U
, B = ∂G

∂U
, u = dU

dα
.

The boundary condition on an inviscid wall is that there is no flow normal to the
surface η = 0. This remains true as α changes but one needs to consider the
linearised perturbation to the unit normal, which eventually leads to the inhomoge-
neous boundary term f2.

For complex geometries, it is often not possible to generate structured grids in
which the surface corresponds to η = const. Instead, one can generalise the above
approach by defining

x(ξ, η) = ξ + α̃X(ξ, η),
y(ξ, η) = η + α̃Y (ξ, η),

so that (x, y) ≡ (ξ, η) when α̃ = 0, and X(ξ, η), Y (ξ, η) are smooth func-
tions matching the surface deformation so that the surface remains fixed in (ξ, η)
coordinates as α changes. This leads to the linearised equation

∂

∂ξ
(Au)+ ∂

∂η
(Bu) = −α̃ ∂

∂ξ

(
F
∂Y

∂η
−G∂X

∂η

)
− α̃ ∂

∂η

(
−F ∂Y

∂ξ
+G∂X

∂ξ

)
.

This equation can then be approximated using an unstructured grid in the (ξ, η)
domain, which is the same as the (x, y) domain for the unperturbed geometry.
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Boundary conditions are handled in the same way as in Jameson’s treatment, taking
account of the perturbation to the unit normal as the surface geometry changes.

3.6. OTHER ISSUES

With the continuous adjoint approach, after linearising the original flow equations
and integrating by parts to obtain the adjoint formulation of the problem, there
is then total freedom as to how one discretises the adjoint p.d.e. Indeed, without
making recourse to the discrete approach, where the adjoint implementation is
fixed by the primal discretisation, there is even some ambiguity as to how one
should implement the inviscid adjoint fluxes for the Euler equations. In principle,
the adjoint discretisation may be developed without regard for the discretisation of
the nonlinear flow problem. Of course the standard issues or accuracy, stability and
convergence remain critical to the success of the iterative solution process.

When considering shocked Euler flows, then in the analytic formulation, the
shocks need to be treated as discontinuities across which the Rankine–Hugoniot
shock jump relations are enforced [16]. This treatment leads to the result that the
adjoint variables are continuous across the shock and that an additional adjoint
boundary condition must be imposed along the length of the shock. Imposing such
a b.c. would be complicated, as it would require the automatic identification of
the shock location in the nonlinear flow calculation. Quasi-1D results have demon-
strated that the continuous implementation naturally leads to satisfaction of the
adjoint boundary condition at the shock [16]. In practice, researchers using the
continuous adjoint approach do not enforce this b.c., and their results indicate no
difficulties as a consequence.

The observations about the limitations of the discrete adjoint approach apply
equally to the continuous adjoint approach. There is one additional point that needs
to be made regarding the optimisation process. The continuous adjoint approach
yields a discrete approximation to the gradient of the analytic objective function
with respect to each of the design variables. This will not be exactly equal to the
gradient of the discrete approximation to the objective function. Therefore, there
is a slight inconsistency between the discrete objective function and the computed
gradient. As a result, the optimisation process will fail to converge further once the
solution is near a local minimum.

4. Relative Advantages of Two Approaches

In the previous two sections we have gone through, in some detail, the formulation
of the discrete and continuous adjoint approaches currently in use by different
researchers. The difference between the two approaches is shown schematically
in Figure 1. In both cases one ends up with a set of discrete adjoint equations.
In the fully-discrete approach one starts by discretising the nonlinear p.d.e.; these
equations are then linearised and transposed. In the continuous adjoint approach,
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Figure 1. Alternative approaches to forming discrete adjoint equations.

the discretisation is the final step, after first linearising and forming the adjoint
problem. One could even follow an intermediate path, linearising the original equa-
tions, discretising them and then taking the transpose. In principle, if each of the
steps is performed correctly, and all of the solutions are sufficiently smooth (e.g.
no shocks) then in the limit of infinite grid resolution all three approaches should
be consistent and converge to the correct analytic value for the gradient of the
objective function.

However, there are important conceptual differences between the different ap-
proaches, and for finite resolution grids there will be differences in the computed
results. Here we attempt to summarise what we see as being the advantages and
disadvantages of the two approaches. This assessment is based on our joint experi-
ence in developing an adjoint Navier–Stokes code using the discrete approach, and
the experience of the second author in working with Jameson to develop an adjoint
Navier–Stokes code by the continuous approach [28].

The advantages of the fully-discrete approach are:

− The exact gradient of the discrete objective function is obtained.
This ensures that the optimisation process can converge fully. It also provides
a convenient check on the correctness of the programming implementation;
with the continuous approach one does not know whether a slight disagree-
ment is a consequence of the inexact gradient or a possible programming
error.

− Creation of the adjoint program is conceptually straightforward.
In the future this should enable the almost automatic creation of adjoint pro-
grams using AD software. This benefit includes the iterative solution process
since the transposed matrix has the same eigenvalues as the original linear
matrix and so the same iterative solution method is guaranteed to converge.
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On the other hand, the advantages of the continuous approach are:

− The physical significance of adjoint variables and the role of adjoint b.c.’s is
much clearer.
Only by constructing the adjoint flow equations can one develop a good un-
derstanding of the nature of adjoint solutions, such as the continuity at shocks,
the logarithmic singularity at a sonic point in quasi-1D flows but not in 2D or
3D (in general) and the inverse square-root singularity along the stagnation
streamline upstream of an airfoil in 2D [15].

− The adjoint program is simpler and requires less memory.
Because one is free to discretise the adjoint p.d.e. in any consistent way, the
adjoint code can be much simpler. However, our experience has been that
even when following a continuous approach, it is advantageous to consult the
discrete formulation so as to choose an appropriate discretisation for the con-
tinuous adjoint equations. It is also generally the case that continuous adjoint
solvers require less memory than the fully-discrete codes, but this difference
is not substantial if pre-computation and storage of the linearised matrix is
avoided when implementing the discrete method.

It remains an open question as to which approach is better when there are non-
linear discontinuities such as shocks. For quasi-1D Euler calculations, for which we
have derived the analytic solution of the adjoint equations [16], both approaches
give numerical results which converge to the analytic solution. For the discrete
approach, this follows because the integrated pressure can be proved to be predicted
with second-order accuracy [14]. The linearised discretisation should therefore
yield perturbations to the integral of pressure that are at least first-order accurate.
The discrete adjoint formulation, which is constructed using this linearised opera-
tor, must therefore behave correctly to first order at the shock. For the continuous
approach, in the absence of explicit enforcement of the correct adjoint b.c. at the
shock, the correct asymptotic behaviour can be explained as the effect of numerical
smoothing, given that the correct analytic solution is the only smooth solution at
the shock [16].

In 2D and 3D there is no proof of second-order accuracy for quantities such as
lift and drag, and there is a discontinuity in the gradient of the adjoint variables
at the location of the shock. Therefore it remains an open question as to whether
either approach will give a consistent approximation to the gradient of the objec-
tive function in the limit of infinite grid resolution. However, practical results for
applications with weak shocks suggest that any inconsistency must be small.

Although we have aimed to be objective in our assessment of the relative advan-
tages of the two approaches, it should be noted that we are advocates of the discrete
approach. An advocate of the continuous approach may place a different emphasis
on the above observations and hence reach a different conclusion. Certainly, both
methods have performed well in practice, and it remains to be seen whether either
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Figure 2. Initial surface grid for aircraft wing design [10].

approach will demonstrate compelling advantages over the other in terms of design
performance. Ultimately, the final choice may always remain, to some extent, a
matter of personal taste.

5. Applications

Results from a paper by Elliot and Peraire [10] show the use of a discrete adjoint
implementation for design optimisation on unstructured grids. The main applica-
tion considered is the wing optimisation of a business jet for which the surface grid
of the baseline configuration is shown in Figure 2.

Simple algebraic functions are used to define six design perturbation modes
for the wing surface; care was taken to ensure compatible perturbations to grid
points on the fuselage. A linearised version of the method of springs is used to
create the grid deformations in the interior. The implementation is based on the dis-
crete adjoint approach, using BFGS optimisation, and both multigrid and parallel
computing to reduce the execution time.

The objective function is the mean-square deviation from a target pressure dis-
tribution corresponding to a ‘clean wing’ in the absence of the rear-mounted engine
nacelle and pylon. Two design iterations are taken, decreasing the objective func-
tion by 75%. Figures 3 and 4 show the evolution of the wing geometry and pressure
distributions, respectively.
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Figure 3. Evolution of the wing geometry during design [10].

Figure 4. Evolution of the pressure distribution on the wing [10].

Another example of the adjoint approach to design is provided by the work of
Reuther and co-authors [42], who perform a transonic multipoint wing design for
a business jet configuration of the type shown in Figure 5. Here, the objective is to
minimize drag for several flight conditions simultaneously.

This work employs a continuous adjoint formulation on a structured multiblock
mesh using parallel multigrid flow and adjoint solvers. The wing surface is para-
meterised with 18 Hicks–Henne bump functions [21] at each of five span stations
and a total of 30 constraints are imposed on maximum thickness, spar thickness,
leading edge bluntness and trailing edge angle. The results were obtained after five
design iterations using the optimization package NPSOL [19] during which the
interior grid points were perturbed using WARP-MB [41].
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Figure 5. Business jet configuration [42].

Figure 6. Multipoint drag minimisation at fixed lift. Pressure distributions at the z = 0.475
span station for the three design points described in Table II [42].

The initial configuration was designed for cruise atM = 0.8 and CL = 0.3 and
the three new design points are summarised in Table II. The original and designed
pressure distributions are displayed at a single span station for each of the three
design points in Figure 6. The shock strength has been substantially reduced in all
cases, leading to the drag reductions described in Table II. While a single point
design would achieve lower drag at the specified cruise conditions, the multipoint
design has the advantage of maintaining better off-design performance [42].
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Table II. Multipoint drag reduction.

Mach CL Original C∗
D Design C∗

D

0.81 0.35 1.00257 0.85413

0.82 0.30 1.00000 0.77915

0.83 0.25 1.08731 0.76836

∗Drag coefficients normalised relative to origi-
nal drag at central design point [42].

6. Conclusions

The development of design environments is currently a major focus of research in
computational engineering. As part of this effort, adjoint methods offer the ability
to efficiently compute linear design sensitivities when there are a large number of
design variables.

In reviewing the fundamental theory, we began with the linear algebra perspec-
tive from which these ideas are most easily understood. For conceptual as well as
pragmatic reasons, we believe that the ‘discrete’ numerical implementations which
follow this approach have a number of advantages over those based on the alternate
‘continuous’ approach. On the other hand, a sound grasp of the adjoint p.d.e. theory
is essential to understanding the physical significance of the adjoint variables and
their behaviour at key points in the flow field, such as at shocks.

It is hoped that this overview of the theory and of a number of important im-
plementation issues will help others to develop adjoint techniques as an integral
part of engineering design systems. Although the focus of this paper has been on
aeronautical design, the ideas are equally relevant to any area of engineering design
involving large numbers of continuous design variables.
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