
1

A block-free TGDH key agreement protocol for
secure group communications

Xukai Zou
Department of Computer and Information Sciences

Indiana University - Purdue University Indianapolis, USA
Email: xkzou@cs.iupui.edu

Byrav Ramamurthy
Department of Computer Science and Engineering

University of Nebraska-Lincoln, USA
Email: byrav@csce.unl.edu

Abstract: Secure group communication (SGC) has
been an active research area because several applications
require it. In this paper, we propose a Block-Free Group
Tree-based Diffie-Hellman (BF-TGDH) key agreement
protocol, based on a recently proposed Group Tree-
based Diffie-Hellman (TGDH) key agreement protocol,
for secure group communication. The new protocol has
the following specific properties: (1) no blocking during
the rekeying process and seamless group communication
without any interruption; (2) resistance to the Man-in-
the-Middle attack; (3) authentication of message senders
using inherent (ElGamal) signature protocol.

Keywords: System design, Network measurements,
Experimentation with networks, Secure group communi-
cation, key management, Diffie-Hellman key exchange,
contributory key agreement.

I. INTRODUCTION

Secure group communications (SGC) refers to a set-
ting in which a group of participants can send and receive
messages to group members in a way that outsiders are
unable to glean any information even when they are able
to intercept the messages. SGC is becoming an extremely
important research area because many applications re-
quire it including teleconferencing, tele-medicine, real-
time information services, distributed interactive simu-
lations, collaborative work, interactive games and the
deployment of VPN (Virtual Private Networks).

Secure group communication can be typically clas-
sified as one-to-many (broadcast) communication, few-
to-many communication and many-to-many (peer) com-
munication [1]. In peer group communication, all group
members can send and receive messages destined to the
group. The primary problem in secure group communi-
cation is group key management. There are two typical
categories of key management protocols for peer group

communication. One is centralized key distribution and
the other is distributed (contributory) key agreement.
Among all key management protocols, the key tree
scheme [2], [3], [4], [5] is a very powerful approach
which can be used for both one-to-many communication
as well as many-to-many communication. The key tree
scheme can be used for centralized key distribution as
well as for distributed (contributory) key agreement.
In general, the contributory key agreement protocols
are primarily different variations of the � -party Diffie-
Hellman key exchange [6], [7], [8], [9], [10], [11].

Tree-based Group Diffie-Hellman (TGDH) contribu-
tory key agreement protocol [8] is robust and efficient
in the sense that it can deal with network partition and
that the number of rounds for rekeying is limited by���������
	 ��� where � is the number of members currently
in the group. However, with this protocol (also in other
protocols), during the period of rekeying (which occurs
whenever member(s) join or leave the group), all group
members stop data communication and wait until the
new group key is formed (in a distributed manner).
This will cause frequent interruptions of group commu-
nication. In case a rekeying packet is delayed or lost,
the intervals (latency) and frequencies of interruptions
may become annoying. The latency problem during
initial key establishment and rekeying has been noticed
by researchers. In paper [12], the authors considered
the situation where the group members have different
communication delays and computation capabilities and
proposed an approach which tries to set the members
with similar delays and capabilities in the neighboring
positions (on the virtual key tree), thus reducing the
latency of group key management.

Based on TGDH, we propose a new protocol which is
called Block-Free Tree-based Group Diffie-Hellman key
agreement protocol (BF-TGDH). By introducing dummy

2

members, the protocol deals with the key management
(rekeying process) as a background operation and group
communication can continue seamlessly during the entire
period of group communication regardless of joining and
leaving of members, even when multiple members join
and/or leave at the same time. Moreover, the scheme
resists the Man-in-the-Middle attack, which exists in
TGDH and provides authentication of message senders
using inherent (ElGamal) signature instead of an external
RSA signature as in TGDH.

The paper is organized as follows. In the next section,
we briefly describe the TGDH protocol. Then we present
our new Block-Free TGDH protocol in section III. The
issues of performance and security are discussed in
section IV. We conclude the paper in section V.

II. TREE-BASED GROUP DIFFIE-HELLMAN (TGDH)
KEY AGREEMENT PROTOCOL

In this section, we briefly describe the TGDH proto-
col [8] since our new protocol is based on it. First, we
summarize the Discrete Logarithmic Problem (DLP) and
Diffie-Hellman key exchange principle since they form
the basis of TGDH.

Discrete Logarithmic Problem (DLP) can be stated as
follows: suppose � is a large prime and

�
is a generator

for ���� . Given �������� , it is difficult to find 	 such that
��
 ���� ��� � . Two party Diffie-Hellman key exchange
can be stated as follows: two members such as ���
(with a private component 	�� and a public component
����
 ������ ��� �) and � 	

(with a private component
	 	 and a public component � 	
 ������ ��� �) can
compute a shared key �! "
 � � � � �#� ��� � independently
(called Diffie-Hellman key) without exposing private
components 	 � and 	 	 . But any individual other than
�$� or � 	

cannot compute �! even if he/she knows
the public components �%� and � 	 . It is well-known that
the main problem with Diffie-Hellman key exchange
is the Man-in-the-Middle attack. In TGDH (other � -
party Diffie-Hellman key agreement protocols as well),
both � and

�
are publicly known. Moreover, we call

	&� (similarly) the (private) share of �'� (similarly
� 	

) and, correspondingly, ��� (similarly �) is called the
disguised public share of � � (similarly � 	

).
In TGDH, all members maintain an identical virtual

binary key tree which may be balanced or not. The
nodes in the key tree are denoted by (�*),+.-

where�
is the level in the tree and

+
indicates which node in

level
�

(/10 + 032�46587 since level
�

hosts at most 294
nodes). The root node is labeled as (:/) / - and the
two children of a (parent) node (�*),+;-

are labeled
as (�=< 7) 2 +>- and (�6< 7) 2 +?< 7 - . Every node

<0,0>

<1,0> <1,1>

<2,0> <2,1> <2,2> <2,3>

<3,0> <3,1> <3,6> <3,7>

a1 a2

a3 a4

a5 a6

g a1a2
->g

g a1a2
g ->g

g a5a6a5a6

g
g a1a2

a3
->g

g
g
a1a2

a3
g

a5a6

->g
g

g g g
a1a2

a3 g
a5a6a4 g

a4 ga4 g a5a6

M1: a1->g

M3: a3->g M4: a4->g

M5: a5->g M6: a6->g
M2: a2->g

Fig. 1. Tree-based Group Diffie-Hellman key agreement. The
notation @BADC%E means that members compute the secret key @ ,
then compute the blinded key FHG>I�C E and broadcast FJG .

(�*),+K-
except the root node is associated with a

secret key ML 4ON PRQ and a blinded (bkey) key ST �L 4UN PRQ
V � WL 4ON PRQ � where
V �YX �
 �Z[� ��� � . The key ML 4UN P�Q

of a (parent) node is the Diffie-Hellman key of its
two children, i.e., �L 4ON PRQ =

�]\J^%_a`��cb �Ydfe\J^%_a`��gb �hdi`��gej� ��� �
(=
V � ML 4lk � N

	
PRQ ML 4lk � N

	
P�k � Q �), that is to say that the

secret key ML 4ON PRQ of a node is formed from the secret
key of one of its two children and the blinded key of the
other child by using Diffie-Hellman key exchange pro-
tocol. Every blinded key ST �L 4UN PRQ is publicly broadcast
by some member(s) to the group. All group members
are hosted on leaf nodes respectively. Every member
��m will select its own Diffie-Hellman private share 	nm
and compute the corresponding Diffie-Hellman disguised
public share � m . Suppose a leaf node (�i),+3-

hosts
a member � m , then the secret key �L 4UN PRQ of the leaf
node is 	m and the blinded key ST ML 4ON PRQ (=

�]\J^%_lb dfe
) is

� m . Member � m can compute all secret keys from its leaf
node (�*),+B-

to the root node (o/) / - (and of course,
� m will receive all blinded keys in the key tree). The
root node has the secret key Lqp N p Q (there is no need
for ST Lqp N p Q). The group data encryption key rjst is
obtained by passing Lqp N p Q through a one-way function.

Figure 1 illustrates a key tree with six members.
As shown in the figure, Node (vu) / -

hosts mem-
ber � 	

and is associated with � 	
’s private share 	 	

and disguised public share � 	
 � � �
. � 	

can com-
pute L 	 N p Q
 � \ ^xwyb z{e \ ^xw{b �ce
 � � � � �|� ��� � af-
ter receiving � �
 ����

and compute and broadcast
ST L 	 N p Q

�~}�� � � �
. � 	

can continue to compute L � N p Q
=
�]\J^x�{b zye~\J^x�{b �ceB� ��� � =

�~} � � � � ��w�� ��� � when receiving
ST L 	 N � Q

� � wH� ��� � from ��� and then compute and
broadcast ST L � N p Q =

�]\J^��gb zye�� ��� � . =
�}�� � � � � � w � ��� � .

Finally � 	
computes Lqp N p Q

� }�� � � � � � w }��y�f� �{�*�i� � ��� �
after receiving ST L � N � Q . It can be seen that the root
key Lqp N p Q contains Diffie-Hellman private shares of all
members; that is to say that the group key is obtained
by the uniform contribution of all group members.

3

The join and leave operations are summarized below.
A sponsor is a member and is defined as follows:
the sponsor of a subtree is the member hosted on the
rightmost leaf in the subtree and the sponsor of a leaf
node is the member hosted on the rightmost leaf node
(other than itself) of the lowest subtree this leaf node
belongs to.

As indicated in the above example (for � 	
), the

initial computation of the root key is performed in
multiple rounds by all members: every member selects its
private share as the secret key and broadcasts the blinded
key. Then along path from its leaf node to the root,
every member computes the secret key of a node while
receiving the blinded key from its sibling and computes
the blinded key and broadcasts the blinded key.

When a member requests to join (the member will
broadcast his/her disguised public share), every member
can decide the insertion location for the joining member
and determine the sponsor for the joining member. Every
member updates the key tree by adding a new member
node and a new internal node, and removes all secret
keys and blinded keys from the leaf node related to
the sponsor and the root node. The sponsor generates
his/her new private share and computes all secret keys
and blinded keys from his/her leaf node to the root node,
and then broadcasts all new blinded keys. Every member
computes the new root key after receiving the new
blinded keys. It can be seen that the root key is computed
in one round. Similarly the root key is computed in one
round for single leave.

As for multiple leaves (a network partition can be
treated as multiple leaves from the point of view of
any subgroup resulting from the partition), there will
generally be multiple sponsors. The sponsors need to
collaborate to compute secret keys and blinded keys
in multiple rounds (limited by

��������� 	 ���) in a way
similar to the initial setting up phase. After all sponsors
compute and broadcast all blinded keys, every member
will compute the root key. Similarly, multiple joins (and
merging) can be performed in multiple rounds.

III. BLOCK-FREE TREE-BASED GROUP

DIFFIE-HELLMAN (BF-TGDH) KEY AGREEMENT

PROTOCOL

A. BF-TGDH principle

As pointed out by the authors [8] of TGDH, dur-
ing the process of TGDH rekeying, all members stop
communication (i.e., block) until the new root key is
formed. We present a new protocol called Block-Free
Tree-based Group Diffie-Hellman key agreement (BF-
TGDH) in this section. The BF-TGDH protocol will

allow the group members to continue their seamless
communication without interruption during rekeying pro-
cess regardless of join, leave, multiple joins (merging)
and multiple leaves (partition).

The basic idea behind BF-TGDH is as follows: (1)
there are two kinds of keys: front-end key and back-
end keys. The front-end key can be computed by all
group members whereas for back-end keys, each mem-
ber will have one key he/she can not compute. (2)
whenever a member leaves1, the remaining members
will switch to the back-end key the leaving member
does not have immediately. (3) the re-computation of
all keys is performed in background. There are two
meanings regarding background here. One is that the
computation of keys are performed during the interval
between sending out packets and waiting for receiving
packets, thus utilizing the idle time of a computer
to compute new keys. The other is that the rekeying
materials are appended to out-going data packets, thus,
reducing communication cost. The idea looks simple but
the difficulty comes from determining how to design and
implement back-end keys so that back-end keys are both
able to exclude members and their computation remains
efficient? Figure 2 illustrates the operation of BF-TGDH.

Based on TGDH, we propose the following mecha-
nism: (1) the front-end key is the root key in TDGH
and (2) the back-end keys are computed in an iden-
tical way to the root key as follows. Suppose the
root key is denoted as � � 	 ��������	 m ������	�� � where
	q�) �����) 	 m) �����) 	�� (correspondingly �%�j
 �]����) �����) � m
� ���) �����) ���
 � �	�

) are private shares (correspond-
ingly disguised public shares) of �'�) �����) � m) �����) �
�
respectively. Imagine there are � dummy members
r��) �����) r m) �����) r�� and corresponding � dummy private
shares

� �) �����) � m) �����) � � . The members can compute a
back-end key, called dummy root key and denoted as
r�� m � 	 � ����� � m������	 � � (��
 7) �����) �), in parallel with
the computation of the root key � � 	���������	 m ������	�� � .
In r�� m , the private share 	 m is replaced by dummy
private share

� m . Therefore, r�� m can be computed by
all members except � m .

As indicated in the previous sections, the typical
problem with the Diffie-Hellman key exchange is the
Man-in-the-Middle attack and the same problem exists
in TGDH. One possible solution is to require that the
quantities (�) �x�
 � � �

),(�) � 	
 � � �
) in the Diffie-

Hellman key exchange be made permanent. Once � � , � 	
are publicly known in a permanent manner, the Man-
in-the-Middle attack will become unsuccessful [13].

1The join operation is generally much easier and more efficient to
perform than the leave operation and is not described here.

4

Therefore in BF-TGDH, we assume that every member
possesses a permanent pair (private share, disguised
public share). As a result, BF-TGDH will resist the Man-
in-the-Middle attack. We believe that the idea that every
individual will have a permanent pair of Diffie-Hellman
shares is reasonable and useful. Just like in the RSA
system where every individual has a private key and
public key (in a permanent manner) which will allow
any individual to communicate with any other individual
securely whenever both of them want to, the permanent
Diffie-Hellman private share and disguised public share
will allow any number of individuals to communicate
securely whenever they want to. Moreover authentication
is more crucial in group communication than in two-
party communication. Since ElGamal public cryptosys-
tem is based on the DLP problem and the setting of BF-
TGDH is DLP, the BF-TGDH protocol utilizes ElGamal
signature for the authentication of senders instead of a
separate RSA signature, which is used in TGDH. In the
following paragraphs, we describe BF-TGDH in greater
detail.

Suppose that every member � m has a permanent
Diffie-Hellman private share 	 m and disguised public
share � m . Moreover suppose that there is an off-line
Diffie-Hellman shares generator. The shares generator
generates � (the maximum possible number of members
in the group) Diffie-Hellman private shares

� �) �����) � �
and their corresponding disguised public shares �~��
�����t� ��� �) �����) � �
 ��� � � ��� � . ���) �����) ��� are made
public. These components are called dummy compo-
nents.

� �) �����) � � are called dummy private shares and
���) �����) � � are called dummy disguised public shares.
We also imagine that there are � dummy members
r��) �����) r�� who possess these dummy components
(
� �) ���), ����� , (

� �) � �) respectively. Assume there is a pub-
lic one-way function

� ���
.

As in TGDH, each leaf node (�*),+$-
is associated

with a member � m . Moreover, (�i),+ -
is imagined

to be associated with a dummy member r m (See Fig-
ure 2). As in TGDH, the group members compute the
root key � � 	q��������	�� � , where 	 �) �����) 	�� are permanent
private shares of group members �'�) �����) � � . More-
over, every member � m can compute dummy root keys
r � �� � 	&������� � � ������	�� � , ��
 7) �����) � -1, � < 7) �����) � in
parallel with the computation of the root key � with a
little computation cost but no extra communication cost.
For secure group communication, all group members
pass the root key � through the public one-way
function

� �	�
to get the Data Encryption Key (rjst),

i.e., rjst
 � �	� � � � 	q��������	�� � � and then encrypt
the message with r�s . Moreover, when a member
broadcasts a message, it will sign the message using

M2,M3,M4,M5

are similar to M1 and M6

<0,0>

<1,0> <1,1>

<2,0> <2,1> <2,2> <2,3>

<3,0>
<3,6><3,1>

<3,7>

a2

a3 a4

a5 a6

g a1a2
->g

g a1a2
g ->g

g a5a6a5a6

g g g
a1a2

a3 g
a5a6a4 g

M3: a3->g M4: a4->g

M5: a5->g M6: a6->g
M1: a1->g

D1: d1->g d1

M2: a2->g

D2: d2->g d2

D3: d3->g d3 D4: d4->g d4

D5: d5->g d5 D6: d6->g d6

g
g a1a2

a3
->g

g
g
a1a2

a3
g

a5a6

->g
g a4 ga4 g a5a6

M1: (a1d2) M2:(d1a2)

(a1a2d3) M2:(d1a2a3)
 (a1a2d3)

M3:(d1a2a3)
(a1d2a3)

M4:(a4d5a6)
(a4a5d6)

M5:(d4a5a6)
(a4a5d6)

M5:(a5d6) M6:(d5a6)

M6:(d4a5a6)
(a4d5a6)

M1:(a1d2a3a4a5a6)
(a1a2d3a4a5a6) M6:(d1a2a3a4a5a6)

(a1d2a3a4a5a6)
(a1a2d3a4a5a6)

(a1a2a3d4a5a6)
(a1a2a3a4d5a6)
(a1a2a3a4a5d6) (a1a2a3d4a5a6)

(a1a2a3a4d5a6)

a1

M1:(a1d2a3)

Fig. 2. Block-Free Tree-based Group Diffie-Hellman key agree-
ment for seamless SGC. The notation
������������������������� represents@�
������������������������� A;C E! #" ��$ $ $ % � $ $ $ "�&(' where @�
������������������������� is a
dummy secret key and FHG)
���*��������������������� I C E! #" �+$ $ $ % � $ $ $ " & ' is a
dummy blinded key. ,-� ’s are dummy members and ��� ’s (.!�nIBC % �)
are dummy private shares (dummy disguised public shares) which
are generated by an off-line shares generator. For example, let us
consider / . / can compute (� ��0) (i.e., C " �1%*� A C�2 � ��3g�) and
broadcast FHG)
��4�� 0 � I C 2 � � 3 � . Then /5 computes (�4�� 0 ��6) (i.e.,

C 2 � ��3g� " w A C 2 � �
� 3 � � w

after receiving C�" w from / 6) and (� �70�� 6)
from C %*w which is generated by the off-line shares generator. Fi-
nally, /5 computes (���� 0 ��6+��8���9+��:) (when receiving C 2 � � � �<;*�{�),
(� ��0+� 6 � 8 � 9 � :) (when receiving C 2 � � � ��;f�y�), (� �70<� 6 � 8 � 9 � :) (when

receiving C 2 3 �*� �<;*�{�), (� �70<� 6 � 8 � 9 � :) (when receiving C 2 �g�f�
3 ;i�{�

),

and (� ��0+� 6 � 8 � 9 � :) (when receiving C 2 �g�*� �<;
3 �

).

ElGamal signature protocol. All other members can
authenticate the sender.

B. BF-TGDH rekeying operations

When a member joins the group, the member will
broadcast a join request. After receiving the join re-
quest, every group member will pass the current rjst
through the one-way function to get the new rjst
(=
� �	� � r�s �), and use the new rjst to encrypt

and decrypt the messages without any interruption. The
sponsor of the joining member is responsible for sending
the new r�s to the joining member. Before sending
the new DEK, the sponsor encrypts it with the Diffie-
Hellman key between him/her and the joining mem-
ber. As a result, the joining member can participate
in the group communication immediately. During the
data communication, the sponsor of the joining member
will compute, in the background, the secret keys/dummy
secret keys and blinded keys/dummy blinded keys on
the path from his/her leaf node to the root node, and
broadcast the blinded keys/dummy blinded keys to the
group by appending the blinded keys/dummy blinded
keys to out-going messages or a separate packet if there
are no out-going messages. All the group members will
compute the new root key and new dummy root keys

5

after they receive the blinded keys/dummy blinded keys
from the sponsor. The sponsor also sends blinded keys
and dummy blinded keys, specifically, those keys corre-
sponding to the nodes along the path from the joining
member to the root, to the joining member so that the
joining member can compute the new root key and new
dummy root keys. Once a group member computes the
new root key (and new dummy root keys), it computes
the new r�s
 � �	� � � � 	 � ������	 � � � and uses the
new r�s for communication (it is possible for him/her
to use the old r�s to decrypt some messages encrypted
with the old r�s for a while2).

When a member � m leaves, after receiving the depar-
ture request, all remaining members will use the dummy
root key r � m to get the new r�s (i.e., r�s
� �	� � r�� m �) and use the new r�s to continue the
communication without interruption. However, the leav-
ing member � m cannot decrypt these messages because
its share is not in r�� ?m . During the communication,
the sponsor of the leaving member will recompute the
secret keys/dummy secret keys and blinded keys/dummy
blinded keys along the path from him/her to the root
and broadcast all blinded keys/dummy blinded keys by
appending them to out-going messages.

When multiple members join at the same time, all
members will pass the current rjst through the one-
way function to get the new r�s and use the new
rjst to communicate. There will be multiple sponsors
in general and a member may be the sponsor for several
joining members. Each sponsor will encrypt the new
rjst using the Diffie-Hellman key between him/herself
and one of his/her joining members and send the r�s
to the joining member. The joining members can partic-
ipate in the communication immediately. During com-
munication, the new root key and dummy root keys will
be reestablished.

When multiple members (say, three) leave at the
same time (suppose the members are � � , ��� , ���), all
remaining members will get the new r�s as follows:
multiply the three dummy root keys to get the product� r �
 r � M���$r�� � �$r � � and then pass
the product

� r�� through the one-way function to
get the new r�s . Since any leaving member will have
one dummy root key missing, he/she cannot compute the
new r�s . After the new r�s is computed, the group
communication continues and the leaving members are
excluded. During the process of communication, the
sponsors will reestablish the new root key and dummy
root keys. Note that if two leaving members collude,

2The version number of the ,��#G used in the encryption may be
included in the messages.

they have all dummy root keys for computing the new
DEK, so BF-TGDH is not resistant to the collusion of
leaving members who leave at the same time. However,
this success due to collusion will persist just for a
short time. Once the new root key and dummy root
keys are reestablished, the leaving members are excluded
completely.

When multiple members join and leave at the same
time, the new rjst will be the one computed similar to
the case of multiple leaves. This new rjst will be sent
to joining members immediately. Therefore, the group
communication can continue without interruption.

It is worth pointing out that when member(s) join or
leave, the (virtual) key tree may need to be adjusted
(expanded or compressed) which will be done simul-
taneously by all members in an identical way.

IV. DISCUSSIONS

We discuss the performance and security issues of
BF-TGDH in this section, specifically, in comparison to
TGDH.

The number of rounds for rekeying in BF-TGDH
is exactly the same as in TGDH. However all the
rounds in BF-TGDH are hidden behind data commu-
nication. Therefore there is no interruption, no latency,
and more robustness against network congestion and link
failure. When computational efficiency is considered,
every member will compute � root keys (one root key
and � -1 dummy root keys) instead of one root key. It
seems that the computational efficiency reduces a lot.
However for network based group communication, the
communication efficiency through a network is the main
concern rather than computational efficiency within a
computer, especially since modern computers have huge
storage and very high CPU speed. As for dummy blinded
keys, since there are a total of � dummy root keys,
every member needs to be responsible for computing and
broadcasting only one dummy blinded key at each level.
This is a very small amount of extra cost compared to
the computation of just one blinded key. As for commu-
nication cost, since the keys are broadcast by appending
them to the out-going messages, there is very little extra
cost for communication. In summary, the performance
of BF-TGDH is comparable to that of TGDH, with the
added benefit of blocking-free communication.

Regarding the security issues, we have pointed out that
when two leaving members collude, they can compute
the product

� r�� of dummy root keys, thus getting the
new r�s . However, the success for their collusion lasts
just for a short time. Once the new root key is formed
the leaving member(s) are excluded completely. One
problem with BF-TGDH is its loss of the perfect forward

6

security (PFS) because of the permanent property of
Diffie-Hellman shares. It can be argued that PFS may
not be a requirement for some group communication
applications. In case PFS is required, the protocol could
use temporary Diffie-Hellman shares, instead of perma-
nent values, which, however, similar to TGDH, will be
vulnerable to the Man-in-the-Middle attack. So there is a
trade-off between PFS and the Man-in-the-Middle attack.
Another solution to thwart the Man-in-the-Middle attack
is to use public authentication when exchanging Diffie-
Hellman disguised public shares [13].

Apart from the theoretical issues discussed above,
there are some practical considerations which include,
but are not limited to (1) how serious is the blocking
under current SGC protocols over current network en-
vironments? (2) how frequently do members join/leave
and what are the blocking delays for some typical SGC
applications? (3) what are the performances for different
SGC protocols? (4) what is the convergence time (i.e.,
when do all group members obtain the same new keys)?
We are performing simulation experiments and testing
the performance for BF-TGDH and other protocols to
try to answer the above questions.

V. CONCLUSION

We proposed a Block-Free Group Diffie-Hellman dis-
tributed contributory key agreement protocol for seam-
less secure group communication with the capabilities
of preventing the Man-in-the-Middle attack and authen-
ticating senders. The protocol is efficient, robust and easy
to implement. Implementing the API for BF-TGDH and
testing its performance are our on-going work.

REFERENCES

[1] L. R. Dondeti, S. Mukherjee, and A. Samal, “Disec: a
distributed framework for scalable secure many-to-many com-
munication,” In Proceedings of Fifth IEEE Symposium on
Computers and Communications (ISCC 2000), pp. 693–698,
July 2000.

[2] G. Caronni, K. Waldvogel, D. Sun, and B. Plattner, “Efficient
security for large and dynamic multicast groups,” Proceedings
Seventh IEEE International Workshop on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises (WETICE
’98) (Cat. No.98TB100253). Los Alamitos, CA, USA: IEEE, pp.
376–383, 1998.

[3] G. Noubir, “Multicast security,” European Space Agency,
Project: Performance Optimization of Internet Protocol Via
Satellite, Apr. 1998.

[4] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group
communications using key groups,” SIGCOMM ’98, Also
University of Texas at Austin, Computer Science Technical
report TR 97-23, pp. 68–79, Dec. 1998.

[5] X. B. Zhang, S. S. Lam, D.-Y. Lee, and Y. R. Yang, “Protocol
design for scalable and reliable group rekeying,” Proceedings
SPIE Conference on Scalability and Traffic Control in IP
Networks, pp. 87–108, Aug. 2001.

[6] M. Burmester and Y. Desmedt, “A secure and efficient con-
ference key distribution system,” Advances in Cryptology -
EUROCRYPT’94, LNCS, Springer, Berlin, vol. 950, pp. 275–
286, May 1995.

[7] I. Ingemarsson, D. Tang, and C. Wong, “A conference key
distribution system,” IEEE Transactions on Information Theory,
vol. 28, no. 5, pp. 714–720, Sept. 1982.

[8] Y. Kim, A. Perrig, and G. Tsudik, “Simple and fault-tolerant key
agreement for dynamic collaborative groups,” In Proceedings
of the 7th ACM Conference on Computer and Communications
Security (ACM CCS 2000), pp. 235–244, Nov. 2000.

[9] Y. Kim, A. Perrig, and G. Tsudik, “Communication-efficient
group key agreement,” In Information System Security, Proceed-
ings of the 17th International Information Security Conference
IFIP SEC’01, pp. 229–244, June 2001.

[10] D. Steer, L. Strawczynski, W. Diffie, and M. Wiener, “A
secure audio teleconference system,” Advances in Cryptology-
CRYPTO’88, LNCS, Springer-Verlag, vol. 403, pp. 520–528,
Aug. 1990.

[11] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-hellman
key distribution extended to group communication,” ACM
Conference on Computer and Communications Security (ACM
CCS 1996), New Delhi, India, pp. 31–37, Mar. 1996.

[12] B. Sun, W. Trappe, Y. Sun, and K. J. R. Liu, “A time-efficient
contributory key agreement scheme for secure group commu-
nications,” Proceedings of IEEE International Conference on
Communications, vol. 2, pp. 1159–1163, Apr. 2002.

[13] C. Kaufman, R. Perlman, and M. Speciner, Network security:
private communication in a public world, Prentice Hall, Upper
Saddle River, NJ, 2002.

