
Performance Analysis of Dynamic Web Page GenerationTechnologies �Bhupesh Kothari and Mark ClaypoolDepartment of Computer ScienceWorcester Polytechnic Institute, Worcester, MA 01609, USAfbhupesh|claypoolg@cs.wpi.eduAbstractThe World-Wide Web has experienced phenomenal growth over the past few years, placing heavy load on Webservers. Today's Web servers also process an increasing number of requests for dynamic pages, making server loadeven more critical. The performance of Web servers delivering static pages is well-studied and well-understood.However, there has been little analytic or empirical study of the performance of Web servers delivering dynamicpages. This paper focuses on experimentally measuring and analyzing the performance of the three dynamic Webpage generation technologies: CGI, FastCGI and Servlets. In this paper, we present experimental results for Webserver performance under CGI, Fast CGI and Servlets. Then, we develop a multivariate linear regression modeland predict Web server performance under some typical dynamic requests. We �nd that CGI and FastCGI performe�ectively the same under most low-level benchmarks, while Servlets perform noticeably worse. Our regression modelshows the same de�ciency in Servlets' performance under typical dynamic Web page requests.KeywordsWorld Wide Web, Web server, dynamic Web pages, benchmark, performance evaluation1 IntroductionDynamic Web pages are an important tool in the exchange of information in today's business community. Electroniccommerce servers rely heavily on dynamic applications to access and present content to users distributed across theInternet. The need for dynamic Web pages is fueled by the requirements for interactive business transactions as wellas Web sites that are personalized on an individual basis. The need for Web servers to create dynamic Web pageshas resulted in the emergence of new dynamic page generation technologies. As a consequence of the increasing widespread use dynamic Web page generation with the ever increasing growth of Web, Web servers are becoming morestressed then ever [8]. Performance of Web servers has become a critical issue.The important movement away from static Web content to dynamic content is pushing the limits of the CommonGateway Interface (CGI), the de facto standard for dynamic Web page creation. CGI has bene�ts like ease ofunderstanding, language independence and server architecture independence but with some signi�cant drawbacks,including creation of a new process for each request. Two promising approaches to move beyond CGI are:� FastCGI: FastCGI removes the inherent CGI performance problem by making the CGI processes persistent;after �nishing a request, the FastCGI processes waits for a new request instead of exiting [19].� Servlets: Servlets are Java objects that are invoked by the Web server and run in a resident Java VirtualMachine as threads [22]. They are loaded only once instead of being spawned at every request.�This paper appears in Proceedings of the International Network Conference (INC), Plymouth, United Kingdom, July 3-6, 2000.1

Web servers can easily be con�gured to deliver static pages to high numbers of concurrent users without substantialperformance degradation [5] . Moreover, performance analysis of Web servers for static requests has been wellstudied [4] [23] [3] and modeled [23] [2]. However, to the best of our knowledge, Web server performance for dynamicdocuments has neither been experimentally measured nor thoroughly analyzed. Moreover, benchmark tools formeasuring dynamic page generation technologies exist only for CGI.This paper presents the performance of three dynamic Web page generation technologies: Servlets, CGI andFastCGI. We develop Web server benchmarks for measuring Servlets, FastCGI and CGI performance and presentexperimentally based results of the performance of each technology. Lastly, we develop a multivariate linear regressionmodel based on our experimental results that predicts the performance of Web servers for di�erent workloads. Weshow that, contrary to popular belief, performance of CGI is comparable or better when compared to other dynamicpage generation technologies. Our analysis will help in comparing bottlenecks in the performance of dynamic pagegeneration technologies to other bottlenecks in Web server performance.The contributions of this work are:� Experimentally based measurements of the fundamental parameters of three dynamic Web page generationtechnologies: CGI, FastCGI and Servlets.� A exible multivariate linear regression model for predicting dynamic Web page generation performance undervarying request sizes.� Performance predictions for typical requests as request size increases.� A methodology for conducting future Web server performance measurements.The remainder of this paper is organized as follows: Section 2 details our experiment design to measure theparameters of dynamic Web page requests and presents performance results obtained from running our experiments;Section 3 introduces our regression model for predicting dynamic Web page generation performance; and Section 4summarizes our conclusions and lists possible future work.2 Experiments2.1 DesignIn this section, we describe experiments designed to measure the parameters of dynamic Web page requests andpresent performance results obtained from running our experiments. In order to compare the performance of CGI,FastCGI and Servlets, we designed experiments to carefully measure the fundamental parameters of dynamic Webpage generation technologies:� Input Size: Amount of data the client sends to the server.� Output Size: Amount of data that the server generates and sends back to the client.� Disk Write: Amount of data the server writes to the disk on receiving a request from a client.� Disk Read: Amount of data the server reads from the disk.� Computation: The CPU load required by the server to service the client's request.For the experiments, we measured the individual e�ects of each of these parameters on the performance of CGI,Servlets and FastCGI. The results presented in this paper represent the average of 10 experiment runs, where eachrun executes requests repeatedly for approximately 180 seconds.We developed benchmarks to measure the above parameters and carried out a series of experiments to measureCGI, Servlets and FastCGI performance. The experiments consisted of running benchmarks on the client machinewith speci�ed request parameters and workload characteristics. Details on our benchmark are described in [13]. Weperformed the experiments on machines in single user mode on a dedicated network. In single user mode, the CPUruns a bare minimum of system processes and no other user processes.Our server hardware platform was an Intel Pentium II 300 MHz system with 64 Megabytes of RAM. It had astandard 10 Megabits/second Ethernet card. The operating system was Linux version 2.0.35.The server software was Apache, version 1.3.2, a public domain Web server. We ran the Apache Web server instand-alone mode. There are pre-de�ned limits to the number of idle processes. The lower and upper bounds for ourexperiment were 5 and 10. The number of Keep Alive requests per connection was set to 0 (only one HTTP requestwas serviced per connection). 2

For adding Servlet support to Apache, we used JRun, version 2.2.1 [15]. For adding FastCGI support to Apache,we used the FastCGI Developer's Kit, version 2.0b2.Our client hardware platform was an Intel Pentium 400 MHz system with 128 Megabytes of RAM. The operatingsystem was Linux version 2.0.35. The workload was generated by our benchmark. The client was connected to theserver by a dedicated 10 Mbps Ethernet network.The CGI and FastCGI applications were written in C, compiled by gcc, version 2.7.2.1. All Servlets applicationswere written in Java and compiled with JDK version 1.1.6.In the following sub-sections we present the results of each parameter on CGI, Servlet and FastCGI performance.

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(in
 m

ill
is

ec
on

ds
)

Data Size (in Kbytes)

Servlet
CGI

FastCGI

Figure 1: Response Time vs Input Data Size. Thehorizontal axis is the size of the data sent from theclient to the server. The vertical axis is the responsetime. The data points are the average time for a singlerequest.
0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(in
 m

ill
is

ec
on

ds
)

Data Size (in Kbytes)

Servlet
CGI

FastCGI

Figure 2: Response Time vs Output Data Size. Thehorizontal axis is the size of the data sent back fromthe server to the client. The vertical axis is the re-sponse time. The data points are the average time fora single request2.2 Input Data SizeOne of the main reasons for dynamic Web pages is to allow servers to process input data from a client. For example,a server application might be responsible for taking data �lled in an HTML order entry form and applying businesslogic. We measured the a�ect of input data size on all the three technologies by having the client send POST requeststo the server. Figure 1 depicts the performance of each of the server technologies obtained from the measurements forthe input data size. The results show that CGI performs as well as FastCGI. For large data sizes, Servlets performsigni�cantly worse than either CGI or FastCGI.2.3 Output Data SizeNo matter how much data the server application receives, it always has to send data back to the client. For example,typical search engines have server applications which dynamically generate Web pages and send these back to theclient. We measured the a�ect of output data size by having the clients send GET requests to the Web server.The results in Figure 2 show that again FastCGI performance is the best, with CGI performing almost as good asFastCGI, even for small data sizes. The results clearly show that the cost of running Servlets is much more than3

the total cost of loading CGI programs into the memory of the server for each request and the cost to run the CGIprograms.

0

50

100

150

200

250

0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(in
 m

ill
is

ec
on

ds
)

Data Size (in Kbytes)

Servlet
FastCGI

CGI

Figure 3: Response Time vs Disk Read. The horizon-tal axis is the size of the data read by the server. Thevertical axis is the response time. The data points arethe average time for a single request. 0

50

100

150

200

250

0 100 200 300 400 500

R
es

po
ns

e
T

im
e

(in
 m

ill
is

ec
on

ds
)

Data Size (in Kbytes)

Servlet
CGI

FastCGI

Figure 4: Response Time vs Disk Write. The horizon-tal axis is the size of the data written on disk by theserver. The vertical axis is the response time. Thedata points are the average time for a single request.2.4 Disk ReadThe amount of data to be read from the disk depends on the role of the server application. For example, a serverapplication might be responsible for retrieving chapters or sections of a book from the disk in response to a request ona typical virtual bookstore. Figure 3 shows the line equations for the performance of each of the server technologiesobtained from the measurements for the data size read from the disk. Surprisingly, the results show that Servletsare able to do disk reads much more e�ciently than CGI and FastCGI applications. For an increase of data size of500 Kbytes, the increase in the response for Servlets is just around 40 milliseconds whereas for CGI, it is around 170milliseconds. FastCGI in this test performs the worst out of the three.2.5 Disk WriteIt is quite common in business applications to record data to the disk. For example, a server application might beresponsible for writing the data from a transaction entry form to the disk. In measuring the a�ect of disk-write, theclients sent GET requests to the Web server, with the amount of data to be written speci�ed in the query parameters.Unlike the disk read results in subsection 2.4, Servlets take much longer time to do disk write than CGI and FastCGIapplication, as shown in Figure 4. Performance of FastCGI is better than CGI up to 250 Kbytes of data size andafter that CGI does equally well as FastCGI.2.6 ComputationThe cost of computation is important to applications that do CPU intensive work. For example, on-line imageprocessing servers might be required to run server applications to perform various graphic algorithms or di�erent�ltering techniques, which are CPU intensive. To measuring the a�ect of this parameter, the clients sent GET requeststo the Web server, with the count for the computation speci�ed in the query parameters. The server application4

0

50

100

150

200

250

300

350

400

450

500

550

500 1000 1500 2000 2500 3000

R
es

po
ns

e
T

im
e

(in
 m

ill
is

ec
on

ds
)

Number of Iterations (in thousands)

Servlet
CGI

FastCGI

Figure 5: Response Time vs Computation Time. Thehorizontal axis is the computation work by the server.The vertical axis is the response time. The data pointsare the average time for a single request. 0

500

1000

1500

2000

2500

3000

3500

1x 2x 3x 4x

R
es

po
ns

e
T

im
e

(
in

 m
ill

is
ec

on
ds

)
Typical Request Data Size

Typical Request
Input Size

Output Size
Computation

Disk-read
Disk-write

Figure 6: Response Time vs Request Size. Weights,in terms of response time, as measured by our multi-variate linear regression model for individual param-eters for a typical large CGI request.incremented an int variable in a tight loop, counting up until the parameter speci�ed. As soon as it completed theloop, the Web server is noti�ed of the request completion and the Web server in turn, sends an acknowledgementback to the client. The Figure 5 shows the results obtained from the computation measurements. Servlets are muchslower than CGI and Fast CGI.3 Performance ModelThis section describes how we use the results obtained and analyzed in the previous section in developing a multi-variate linear regression model with categorical predictors for dynamic Web page generation technologies. Our modelis extremely exible for predicting the performance of the Web server for di�erent applications. For example, anelectronic commerce Web server would have a tra�c pattern di�erent than from a Search Engine site. By studyingthe pattern of the tra�c and formalizing the data sizes of each of the variables used in our model, our model canpredict the performance. Moreover, by varying the size of the individual parameters we are able to predict thebottlenecks in dynamic Web page generation performance.Parameter SizeInput Size 500 bytesOutput Size 2 KbytesDisk Read 4 KbytesDisk Write 1 KbytesCompute 1000 incrementsTable 1: A typical small request
Parameter SizeInput Size 50 KbytesOutput Size 50 KbytesDisk Read 100 KbytesDisk Write 100 KbytesCompute 1 million incrementsTable 2: A typical large requestOur analysis consisted of modeling request sizes of two types: typical large requests and typical small requests,based on the study done in [1]. Table 1 shows a typical small request.5

Server applications like database transaction modules or image processing �lters performs massive processing atthe server and return more data than the smaller dynamic requests. Table 2 shows a typical large request.A multivariate regression model [9] allows one to predict a response variable y as a function of k predictorvariables x1; x2; :::; xk using a linear model of the following form: y = b0 + b1x1 + b2x2 + :::+ bkxk + eHere b0; b1x1; b2x2; :::; bkxk are k + 1 �xed parameters and e is the error term. In vector notation, the model isrepresented as: y = Xb+ e. Where: y is a column of n observed values of y; X is an n row by k + 1 column matrixwhose (i ; j +1)th element Xi;j+1 = 1 if j = 0 else xij ; b is a column vector with k + 1 elements; and e is a columnvector with n error terms.Our model is based on both quantitative and categorical predictors [9]. Our model has 8 predictor variables:input, output, disk read, disk write, computation time, operating system, Web server and dynamic page generationtechnology (ie- CGI, FastCGI and Servlets). The predictor variables: input, output, disk read, disk write andcomputation time are quantitative predictors, presented in Section 2.2 to 2.6. The three predictor variables: operatingsystem, Web server and dynamic page generation technology are categorical variables. The categorical variable fordynamic page generation technology takes three values, CGI, Servlets and FastCGI. The categorical variable foroperating system takes two values, Linux or Windows NT1. The categorical variable for Web server also takes twovalues, Apache or Netscape Enterprise.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

1x 2x 3x 4x

R
ee

sp
on

se
 T

im
e

(in
 m

ill
is

ec
on

ds
)

Typical Request Data Size

CGI Modeled
CGI Measured

Figure 7: Response Time vs Request Size. Perfor-mance, as predicted by our multivariate linear re-gression model model for a small CGI request andas measured by our benchmark.
0

20

40

60

80

100

120

140

160

180

200

220

240

1x 2x 3x 4x

R
es

po
ns

e
T

im
e

(in
 m

ill
is

ec
on

ds
)

Typical Request Data Size

LinuxServlet
LinuxCGI

Figure 8: Response Time vs Request Size. Perfor-mance, as predicted by our multivariate linear regres-sion model, for dynamic page generation technologiesfor a typical request. The horizontal axis is the datasize for a typical request which the client sends to theserver.Based on the multivariate linear regression analysis in [9], we computed the multivariate linear regression coe�-cients for our model. The coe�cient of determination for our model was 0.93. Thus the regression explains 93% ofthe variance of response time in our model.In order to validate our performance model, we ran a typical small request. In doing so, we developed a CGI1The experiments for the impact of operating system and Web server on the performance of dynamic page generation technology aredescribed in [13]. 6

application which handles and service the typical requests the benchmark generates. The benchmark sends a POSTrequest to this CGI application. The data sizes ranged from 1x to 4x, where 1x corresponds to the small request asdescribed earlier in this section.Figure 6 shows the individual weights of each of the parameters which amounts to the total weight of a typicallarge CGI request. A 1x on the x-axis for individual components corresponds to their data size in a typical largerequest size as described earlier. A 2x on the x-axis for individual components corresponds to twice the data sizesin the typical request size and so on. The result clearly shows that output parameter has a signi�cant cost in termsof the response time for a CGI request.Figure 7 shows the result of the evaluation of our model for typical request for CGI. The result shows thatour model predicts the performance of CGI within 10% of measured values. We assume that di�erences of 10% inpredictions made by our model are signi�cant.Figure 8 shows the total response time obtained on running our model for CGI and Servlets. CGI performs signif-icantly better than Servlets. This clearly suggests that threads solely are not su�cient to achieve high performance.We attribute these results to the relatively small amount of time required for process creation in a CGI request. Ourexperiments in [12] show that the process creation time is of the order of 10 milliseconds whereas the response timeshere are of the order of 100 and 1000 milliseconds.The results also show that Servlets are slower, having the drawback of being interpreted by a Java Virtual Machine.In the JDK interpreter, calling a synchronized method is typically 10 times slower than calling an unsynchronizedmethod [16] [11]. With JIT compilers, this performance gap can decrease to as little as 5 times slower but the timeto create an object does not improve at all. The time to create an object, 15 milliseconds, is high if the Java codecreates many objects. Even with using Just In Time compilers and other optimization techniques, Java code is stillanywhere from 10 to 30 times slower than compiled C or C++ code.4 ConclusionsDynamic Web page generation is becoming an increasingly critical component of Web server performance. Our goalwas to empirically compare the performance of three dynamic Web page generation technologies: CGI, FastCGIand Servlets. We developed a benchmark tool for measuring the a�ect of the fundamental parameters of Webpage generation technologies on the performance of the Web server. We also developed a model for predicting theperformance of dynamic requests for a particular server technology.Based on our analysis, CGI and FastCGI perform signi�cantly better than Servlets. This results holds for allparameters but disk reads. Threads alone will not improve the performance of Servlets, since Servlets are inherentlyslower because of the dependency on a Java Virtual Machine. Even with the speed optimization techniques available,Servlets are still slower than compiled CGI (written in C) applications.Future work includes studying other factors which may impact the performance of the dynamic Web page gen-eration technologies. The concurrency strategy (single threaded, thread per request, thread pool, request pool, etc.)of the Web server [10], may inuence the dispatch of the client request code, as well.References[1] Almeida, V.A.F, Almeida, J.M, Analyzing the impact of dynamic pages on the performance of Web servers, ComputerMeasurement Group Conference, 1998.[2] Almeida, V.A.F, Almeida, J.M, Murta, C.D., Oliveira, A.A, and Mendes, M.A.S., Performance Analysis and Modelingof a WWW Internet Server, Fourth Telecommunication Conference, March 1996.[3] Aoki, P., Woodruf, A., Brewer, E., and Gautheir, L., An Investigation of Documents from WWW, Proceedings of theFifth International Conference on WWW, May 1996.[4] Arlitt, M. andWilliamson, C., Web Server Workload Characterization, Proceedings of the 1996 SIGMETRICS Conferenceon Measurement and Modeling of Computer Systems, 1996.7

[5] Arlitt, M. and Williamson, C., Internet Web Servers: Workload Characterization and Performance Implications,IEEE/ACM Transactions on Networking, October 1997.[6] Banga, G., and Druschel, P., Measuring the Capacity of a Web Server, USENIX Symposium on Internet Technologiesand Systems ,USITS, 1997.[7] Douglas C. Schmidt, and James C. Hu, Developing Flexible and High-performance Web Servers with Frameworks andPatterns, ACM Computing Surveys, May 1998.[8] Graphic, Visualization, & Usability Center's (GVU) 9th WWW User Survey,http://www.gvu.gatech.edu/user surveys/survey-1998-04/[9] Jain, R. (1991), The Art of Computer Systems Performance Analysis, John Wiley & Sons, Inc.[10] James C. Hu, Sumedh M., and Douglas C. Schmidt, Techniques for Developing and Measuring High-Performance WebServers over ATM Networks, INFOCOM, 1998.[11] Java Microbenchmarks, A report, http://www.cs.cmu.edu/~jch/java/benchmarks.html[12] Kothari, B., Claypool, M., PThreads Performance, Worcester Polytechnic Technical Report, WPI-CS-TR-99-11, 1999.[13] Kothari, B., Claypool, M., Performance Analysis of Dynamic Web Page Generation Technologies.Thesis Report, Worces-ter Polytechnic Institute, May 1998.[14] Krishnamurthy, D., Rolia, J., Predicting the QoS of an Electronic Commerce Server:Those Mean Percentiles, PerformanceEvaluation Review, December 1998.[15] Live Software, Inc., JRun Servlet Engine, URL:http://www.livesoftware.com/products/jrun/jrun-manual/index.htm[16] Make Java fast: Optimize, An article, April 1997,http://www.javaworld.com/javaworld/jw-04-1997/jw-04-optimize.html[17] Manley, S., Seltzer, M., Courage, M., A Self-Scaling and Self-Con�guring Benchmark for Web Servers, Proceedings of theACM SIGMETRICS '98 Conference, June 1998.[18] Mindcraft, Inc, WebStone 2.5, URL:http://www.mindcraft.com/benchmarks/webstone/[19] Open Market, Inc., Fast CGI: A High-Performance Web Server Interface, A Technical White Paper, April 1996.[20] Somin, Y., Agarwal, S. and Forsyth, M., Measurement and Analysis of Process and Workload CPU times in UNIXenvironments, Proceedings of the CMG, 1996.[21] Standard Performance Evaluation Corporation, A Technical White Paper, 1996, SPECweb96,URL:http://www.specbench.org/osg/web96/webpaper.html[22] Sun Microsystem, The JAVA Servlet API, A Technical White Paper, 1998,URL:http://www.javasoft.com/marketing/coll-ateral/servlets.html[23] Wallace, R. and McCoy, T., Performance Monitoring and Capacity Planning for Web Servers, Proceedings of CMG, 1996.

8

