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Abstract

We describe extensions of the Hindley-Milner type system to support higher-order poly-
morphism and first-class structures with polymorphic components. The combination of
these features results in a ‘core language’ that rivals the expressiveness of the Standard ML
module system in some respects and exceeds it in others.

1 Introduction

The Hindley-Milner type system [13, 28, 8], hereafter referred to as HM, represents a significant
and highly influential step in the design and development of programming language type systems.
The main reason for this is that it combines the following features in a single framework:

• Type security: soundness results guarantee that well-typed programs cannot ‘go wrong’.

• Flexibility: polymorphism allows the use and definition of functions that behave uniformly
over all types.

• Type inference: the existence of principal types, and algorithms to compute them, provides
a direct way to identify well-typed terms without the use of type annotations.

Note that it is this combination, rather than the individual features themselves, that make HM
particularly interesting. For example, there are many different type systems supporting poly-
morphism of one form or another, while soundness is usually regarded as an essential prerequisite
in the design of any type system. HM is also quite attractive from the perspective of language
implementors:

• The type inference algorithm is easy to implement and behaves well in practice.

• Polymorphism is easy to implement, packaging function arguments as boxed values—a
uniform representation that is independent of the type of values involved. One of the main
attractions of this approach is the ease with which it permits true separate compilation.

As a result, HM has been used as a basis for several widely used functional languages including
Standard ML (SML) [29] and Haskell [14].
We should also recognize that HM has some significant limitations, including:

• Polymorphism is restricted to the second-order case, i.e. the form of polymorphism used
in the polymorphic λ-calculus [38], also known as System F [9, 10]. Higher-order poly-
morphism of the form provided in Fω, allowing the specification of functions that behave
uniformly over all type constructors is not supported.
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• The price that we pay for the convenience of type inference is the inability to define or use
functions with polymorphic arguments. By contrast, arguments with polymorphic type
can be used in system F and Fω.

Despite these limitations, and thanks to the use of polymorphism and higher-order functions,
HM does permit a limited form of abstraction. For example, the definition of a polymorphic
sort procedure may be parameterized by a suitable comparison function. But the need for
mechanisms to support large-scale, modular programming have prompted the development of
more complex systems, including HM as a ‘core’. The best known example of this is the SML
module system which has a precise formal definition [29] and has proved to be very useful
in practice [4]. Unfortunately, such systems can be quite complicated and may not be fully
integrated with the core language. For example, type-theoretic treatments of the SML module
system are usually based on the use of dependent types [26, 24, 30]. But it is not easy to
discern the role of dependent types in the formal definition of SML [29], which, instead, uses a
semantics based on freshly generated tokens or stamps to account for the concepts of sharing
and generativity. Recent work by Leroy [22] provides a more type-theoretic treatment of the
same concepts but, once again, relies on non-trivial extensions of the underlying dependent type
theory. Additional machinery is necessary to extend the SML module system beyond its current
definition, for example, to support modules as first-class values [31, 20], higher-order modules
[12, 34, 41, 25, 7], polymorphism [19], and transluscent sums or manifest types [11, 21]. This
last item is motivated in part by the desire to admit a form of separate compilation; this is not
possible with the current definition of SML [2]. These extended systems are undoubtedly very
powerful, but they are also rather complex.
In the remaining sections, we show how relatively modest changes to HM can overcome the
limitations above: i.e. to support higher-order polymorphism (Section 2) and to package up
polymorphic values in first-class structures that can be used as function arguments (Section 3).
The resulting system, referred to here as XHM, is of interest in its own right as a study of the
boundaries of type inference and also as an implementation language for type and constructor
classes [43, 17]. However, in this paper, we focus on the possibility of using structures as the basis
for a module system. Unlike the SML module system, we do not make any separation between
the core and module languages. For example, structures can be assigned polymorphic types and
used as function arguments to implement higher-order modules. Another important difference
is that XHM structures do not contain type components (Section 4). The paper ends with a
summary of background and related work (Section 5) and with conclusions and suggestions for
future work (Section 6).

2 Higher-order HM

The extension of HM to support higher-order polymorphism is surprisingly straightforward. In
this section, we review the treatment of higher-order HM suggested by [17], and speculate why
this idea has only recently received any significant level of interest.
In standard HM, the type of an object may include variables representing a fixed, but arbitrary
type. For example, a polymorphic identity function can be defined using:

id :: a → a
id x = x

To emphasize the fact that the variable a represents an arbitrary type, it is common to write
the type of id as ∀a.a → a, using explicit universal quantification.
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To extend HM to support higher-order polymorphism, we need to allow the use of variables
to represent, not just arbitrary types, but also type constructors, etc. Following [17], we use a
system of kinds to distinguish between different forms of type constructor, given by the grammar:

κ ::= ∗ the kind of all (mono)types
| κ1 → κ2 function kinds

Intuitively, the kind κ1 → κ2 represents constructors which take something of kind κ1 and
return something of kind κ2. This choice of notation is motivated by Barendregt’s description
of generalized type systems [3].
For each kind κ, we have a collection of constructors C κ (including constructor variables ακ) of
kind κ given by:

C κ ::= χκ constants
| ακ variables
| C κ′→κ C κ′ applications

This corresponds very closely to the way that most type expressions are already written in
Haskell. For example, List a is an application of the constructor constant List to the constructor
variable a. In addition, each constructor constant has a corresponding kind. For example, writing
(→) for the function space constructor and (, ) for pairing we have:

Int , Float , () :: ∗
List :: ∗ → ∗
(→), (, ) :: ∗ → ∗ → ∗

The kinds of constructor applications are given by:

C :: κ′ → κ C ′ :: κ′

C C ′ :: κ

The task of checking that a type expression is well-formed can now be reformulated as the task of
checking that a constructor expression has kind ∗. The apparent mismatch between the explicitly
kinded constructor expressions specified above and the implicit kinding used in examples can be
resolved by a process of kind inference; i.e. by using standard techniques to infer kinds for user
defined constructors without the need for programmer-supplied kind annotations [17].
The set of type schemes is described by the following grammar:

τ ::= C ∗ monotypes
σ ::= ∀ακ.σ polymorphic types

| τ

With these definitions in place, we can use the standard notation to specify the typing rules of
higher-order HM in Figure 1. Note the use of the symbols τ and σ to restrict the application of
certain rules to types or type schemes, respectively. Most of the rules are the same as in HM.
In rule (∀I ), the condition ακ 6∈ CV (A) is needed to ensure that we do not universally quantify
over a variable which is constrained by the type assignment A, where the expression CV (X )
denotes the set of all constructor variables appearing free in X .
The definition of a type inference algorithm for higher-order HM, and proof of its soundness
and completeness, follow almost directly from the corresponding definitions for standard HM.
The only complication is in the extension of the unification algorithm to constructors of arbi-
trary kind. The critical observation there is that there are no non-trivial equivalences between
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(var)
(x :σ) ∈ A

A ` x : σ

(→E ) A ` E : τ ′ → τ A ` F : τ ′

A ` EF : τ

(→I )
Ax , x :τ ′ ` E : τ

A ` λx .E : τ ′ → τ

(let)
A ` E : σ Ax , x :σ ` F : τ

A ` (let x = E in F ) : τ

(∀E )
A ` E : ∀ακ.σ C ∈ C κ

A ` E : [C/ακ]σ

(∀I )
A ` E : σ ακ 6∈ CV (A)

A ` E : ∀ακ.σ

Figure 1: Typing rules for higher-order HM

constructor expressions, and that there is no way to define arbitrary abstractions over construc-
tor variables. This limits the power of the type system quite significantly although it does not
have any real impact on the use of XHM to describe modular structure. More importantly, this
restriction enables us to avoid the need for higher-order unification which would have resulted
in an undecidable type system. To avoid unnecessary distraction from the subject of this pa-
per, we refer the interested reader to [17] for further description and formalization of the topics
mentioned here.
Given that the extension of HM to the higher-order case is so straightforward, we might speculate
why this idea does not appear to have been explored in any detail elsewhere. One possibility
is that the notation for types in some languages forces a first-order view of types. We have
been fortunate that the concrete syntax for languages like Haskell encourages us to think of type
expressions like T a b rather than T (a, b).
Another possible explanation is that, by itself, pure higher-order polymorphism seems too general
for practical applications. For example, it is hard to think of any useful functions with type
∀a.∀m.a → m a1. The only possibility is the function λx .⊥ which, apart from having almost no
practical use, can be treated as having the more general type ∀a.∀b.a → b without the need for
higher-order polymorphism.
Perhaps the most interesting aspect of higher-order HM is the way that it enables us to define
new datatypes with both types and constructors as parameters:

data Rec f = In (f (Rec f ))
data ListF a b = Nil | Cons a b
type List a = Rec (ListF a)
data StateM m s a = STM (a → m (a, s))

The first three examples here can be used to provide a general framework for constructing
recursive datatypes and corresponding recursion schemes [27]. The fourth example can be used
to describe a parameterized state monad [18, 23].

1An obvious way to formalize arguments like this would be to use higher-order analogues of well-known
parametricity conditions [39] or free-theorems [42].
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The reader may like to check the following kinds for each of the type constructors introduced
above.

Rec :: (∗ → ∗) → ∗
ListF :: ∗ → ∗ → ∗
List :: ∗ → ∗
StateM :: (∗ → ∗) → ∗ → ∗ → ∗

All of these kinds can be determined automatically without the use of kind annotations. As a
final comment, it is worth noting that the implementation of this weak form of higher-order poly-
morphism is straightforward, and that experience with practical implementations, for example,
Gofer, suggests that it is also very natural from a programmer’s perspective.

3 Polymorphic values in function arguments

In this section, we describe the second ingredient of XHM: the ability to support function argu-
ments with polymorphic components. Although this may seem to be a rather big step, we start
with an example to show that it is in fact already permitted in a system with type or constructor
classes where overloaded values are implicitly parameterized by dictionary structures. However,
the most important part of this is the use of explicit type information, not the overloading mech-
anisms involved. From this observation, we move on to a more general discussion of signatures
and structures in XHM and to some simple examples to illustrate its use in practice.

3.1 A motivating example using constructor classes

As far as we know, the only other example of work where HM has been extended to higher-order
polymorphism is in the study of constructor classes [17] where it is combined with overloading.
Mechanisms for overloading provide a form of implicit parameterization that is appropriate when
the meaning of a particular symbol is uniquely determined by the types of values that are involved.
For example, the treatment of a type constructor as a (category-theoretic) functor in the canonical
manner is a good application. But there are also situations where the use of overloading is hard
to justify. It would be hard to believe that overloading, by itself, was responsible for the success
of higher-order polymorphism in the development of constructor classes.
Closer examination reveals that the real reason for the success of constructor classes is the ability
to deal with (implicit) function parameters containing values of polymorphic type. To illustrate
this claim, consider the following definitions2:

class Unit m where
unit :: a → m a

twice :: Unit m ⇒ a → m (m a)
twice x = unit (unit x )

Note that the definition of twice would not be well-typed if unit was passed as an explicit
parameter as in:

twice unit x = unit (unit x )

In this case, the only possible type for twice would be ∀a.(a → a) → (a → a). However, using
the dictionary based techniques of Wadler and Blott [43], the constructor class program above

2The Unit class defined her can be thought of as a cut-down version of the Monad class used elsewhere [17, 23]
to support the use of monads in functional programming.
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is implemented by translating it to obtain the following definitions:

type Unit m = { unit :: ∀a.a → m a }
twice :: Unit m → a → m a
twice u x = u.unit (u.unit x )

We use the notation {. . .} to represent a record of named components and the familiar notation
r .l to denote the extraction of a field l from a record r . The important point in this definition is
that the unit component of the u record that is passed as an argument to twice has a polymorphic
type. By instantiating the quantified type variable to a for the inner call of unit and to m a
for the outer call, we obtain the required type. What makes this work is the fact that the unit
function is declared as a global function with a polymorphic type that allows the type variable a
in the example above to be instantiated to different types. It is this additional type information,
not the use of overloading, that is important for the work described in this paper. The approach
suggested by Wadler and Blott is to translate programs with implicit overloading into a language
that makes the use of dictionary structures explicit. In essence, one of the main claims of this
paper is that the target of this translation for the system of constructor classes is a useful and
powerful language in its own right.

3.2 Records, signatures and structures

To complete the formal description of XHM, we extend the higher-order HM of the previous
section to include record types (i.e. additional elements of C ∗) of the form:

{ x1 :: σ1; . . . ; xn :: σn }

For convenience, we will often abbreviate record types like this using expressions of the form
{ xi :: σi }, where i ranges over some implicit set of indices. We will refer to record types of this
form as signatures.
Unlike signatures in the SML module system, signatures in XHM may contain free variables.
For example, the variable m appears free in the signature Unit m above. Alternatively, we can
think of Unit as a parameterized signature; in fact, for the purposes of kind inference, Unit is
treated as having kind (∗ → ∗) → ∗. On the other hand, SML also permits the declaration
of type constructors in signatures, with corresponding definitions in matching structures3. We
discuss the tradeoffs between signature parameters in XHM and type components in SML more
fully below in Section 4.
XHM signatures are also very much like records in SML, with one important difference: the
components of an SML record cannot have a polymorphic type. In this way, XHM can be
viewed as an attempt to unify the module and record languages of SML. It is also possible that
the XHM system can be further extended to support fully polymorphic extensible modules using
the approaches suggested by [16, 35], for example. We leave this as a topic for future research.
A previous attempt to explain the ML module system using record types has been presented by
Aponte [1], but does not make any use of a higher-order type system and differs substantially
from the approach described in this paper.

3For completeness, we should mention that SML structures may also include definitions of exceptions; we will
not address the use of exceptions in this paper.
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Structure values will be written using the syntax:

struct
x1 = 〈implementation of x1〉

...
xn = 〈implementation of xn〉

and will also be abbreviated using expressions of the form struct { xi = Ei }, again with i
ranging over some implicit set of indices. We have chosen this particular syntax because it fits
well with the Haskell layout rule in the prototype implementation; in fact, as the examples below
illustrate, we actually allow a more liberal syntax that allows the use of function arguments and
pattern matching on the left hand side of equations.
The typing rules for structures are unlikely to cause many surprises. First the rule for construct-
ing structures:

A ` Ei : σi

A ` struct { xi = Ei } : { xi :: σi }
It is useful to think of structure expressions as being like local definitions that bind several
variables, as in let { xi = Ei } in F for example, except that the expression over which the
bindings are scoped is omitted and the result is the value of the bindings themselves, preserved
as a structure value.
A second rule is needed to describe the typing of a component that has been extracted from a
structure value. This is also straightforward:

A ` E : { xi :: σi }
A ` E .xj : σj

An alternative, but equivalent, approach is to think of selectors as functions:

( .xj ) :: ∀v .{ xi :: σi } → σj

where v represents the free variables, or parameters, of the signature { xi :: σi }. If we think of
signatures as abstract datatypes, for example, forgetting the definition of Unit as a signature
type in the previous section and thinking of Unit m as some primitive type, then we can write
the type of selectors in a more concrete form:

( .unit) :: ∀m.Unit m → (∀a.a → m a)

Since a does not appear free in the constructor expression Unit m, we can move the quantifier
for a outwards to obtain an equivalent higher-order HM type for the selector:

( .unit) :: ∀m.∀a.Unit m → a → m a

This gives a strong hint to the implementation of XHM type checking, and also to the proof
that XHM programs are sound and have principal type schemes. All that is necessary is suffi-
cient explicit type information to determine which selector type is appropriate in any particular
context.

3.3 The use of explicit type information

The need for explicit type information in programs using records will already be familiar to
SML programmers; the definition of SML requires that the shape of any record—i.e. a complete
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list of its fields—can be determined at compile-time. What we have described here is a natural
generalization of this; we require not only the names of all of the fields, but also the types for
every field that is referenced. It is fairly easy to arrange for this mechanism to reduce to the
SML treatment of records when a polymorphic type has not been specified.
Type annotations are not necessary in many simple examples. For example, the following pro-
gram type checks without any additional type information:

f x = struct
h z = [z ]
u = x

v y = m.h (m.h m.u)
where m = f y

In this case, we can calculate the following types for the components in the structure value in
the definition of f :

h :: ∀t .t → [t ]
u :: a

where a is the type of the argument x . Thus:

f :: ∀a.a → { h :: ∀t .t → [t ]; u :: a }
and it follows that v has type ∀a.a → [[a]].
In practice, explicit type annotations are typically only required for the definition of recursive or
mutually recursive structures (which are not permitted by the SML module system) or for func-
tions that manipulate structure values (corresponding to SML functor definitions where explicit
type information is also required in SML, or to higher-order or first-class modules which are
not supported by SML). For example, the type signature accompanying the following definition
cannot be omitted4:

makeUnit :: a → Unit m → m a
makeUnit x u = u.unit x

On the other hand, we are free to store values of some type Unit m in data structures such as
lists and to use many higher order functions, for example λz .map (makeUnit z ), without further
type annotations.
Some may question the need for explicit type information in a language that is based on a system
like HM, but we do not expect that this will have any significant impact on programmers:

• Some form of explicit type information is already necessary in many languages based on
HM. For example, this includes the overloading mechanisms of Haskell and the treatment
of records, arithmetic, and structures in SML.

• Explicit type annotations are only required in situations where they would already be
required by programs using the SML module system, or in programs that cannot be written
with SML modules.

• Despite the fact that it is not necessary, the use of type annotations in implicitly typed
languages like ML and Haskell is widely recognized as ‘good programming style’, and
many programmers already routinely include type declarations in their source code. The
type assigned to a value serves as a useful form of program documentation. In addition,
this gives a simple way to check that the programmer-supplied type signatures, reflecting
intentions about the way an object will be used, are consistent with the types obtained by
type inference.

4Unless some alternative method is used to specify the type of u!
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3.4 Simple applications of XHM structures

The examples given above have already demonstrated the use of XHM structures as first-class
values. In this section, we give some examples to illustrate other applications of these ideas.
One of the standard examples in texts on abstract datatypes is the definition of a type cpx of
complex numbers together with a collection of operations for manipulating values of this type.
It is often convenient to package these operations together, as described by the signature:

type Complex cpx = {mkCart ,mkPolar :: Float → Float → cpx ;
re, im :: cpx → Float ;
mag , phase :: cpx → Float ; . . . }

There are two obvious ways to implement complex numbers using pairs of floating point numbers
and choosing either a cartesian or polar representation:

rectCpx = struct
mkCart x y = (x , y)
mkPolar r θ = (r cos θ, r sin θ)
re (x , y) = x
. . .

polarCpx = struct
mkCart x y = (sqrt (x 2 + y2), atan2 y x )
mkPolar r θ = (r , θ)
re (r , θ) = r cos θ
. . .

As it stands, the implementation type of both complex number packages is the same and is
captured explicitly in the type of each; Complex (Float ,Float). Later, in Section 4.3, we will
show how to make these types abstract, either completely by using an existential, or partially
by giving them names without revealing how they are implemented.
In fact, polymorphism already provides one form of abstraction. To illustrate this, suppose that
we want to define a package of complex number arithmetic. We start with a signature for a
general arithmetic package, considerably simplified for the purposes of this paper:

type Arith a = { plus :: a → a → a;
neg :: a → a; . . . }

Now we can describe the construction of a complex arithmetic package from an arbitrary complex
number package using the following function:

compArith :: Complex t → Arith t
compArith c = struct

plus z1 z2 = c.mkCart (c.re z1 + c.re z2) (c.im z1 + c.im z2)
. . .

Since the same variable, t , appears as a parameter to both the the Complex and Arith signatures,
it is clear that the type of values that the arithmetic operations in the result can be applied to
is the same as the type of complex numbers provided as an argument. At the same time, the
fact that t is universally quantified ensures that the definition of compArith cannot make any
assumptions about the implementation of complex numbers.
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The definition of compArith corresponds to a functor in SML, but there is no need for a special
syntax for functor or structure definitions in XHM; the examples above use only the features
of the core language which just happen to involve structure values. The use of the same type
variable, t , in both argument and result signatures corresponds to a sharing specification5, often
considered one of the most difficult aspects of the SML module system [36]. In this setting,
sharing seems more familiar, simply identifying two types by using the same name for each.
For some applications, it is necessary to use type constructors rather than simple types as
signature parameters. For example, a specification of queue datatypes, similar in spirit to those
in Paulson’s textbook [36], might be given by the following signature:

type Queue q = { empty :: q a;
enq :: q a → a → q a;
null :: q a → Bool ;
hd :: q a → a;
deq :: q a → q a }

The variable q used here ranges over unary type constructors that correspond to functions
mapping types to types, i.e. over constructors of kind ∗ → ∗. We will also treat the variable a
appearing free in the type of each of the queue operators above as if it had been bound by an
explicit universal quantifier. For example, the type of the empty component in a structure of
type Queue q is ∀a.q a.
The following structure describes the standard implementation of queues using lists:

listQueue :: Queue List
listQueue = struct

empty = Nil
enq n q = q++[n]
null Nil = True
null (Cons n ns) = False
hd (Cons n ns) = n
deq (Cons n ns) = ns

We hope that the reader will have already recognized that the type declaration here is provided
for documentation only, and is not required to determine the type of listQueue.

4 Structures and signatures for modular programming?

One of the main goals of this section is to address the question of whether XHM can be used
as the basis for a module system with signatures and structures corresponding to interfaces
and implementations, respectively. The term ‘module system’ is already widely used in several
different ways with meanings including:

• A mechanism to support separate compilation and namespace management.

• A mechanism to enable the decomposition of large programs into small, reusable units in
a way that is resistant to small changes in the program.

• A mechanism for defining abstractions.
5SML sharing specifications can also be used to specify equalities between structure values. We do not attempt

to deal with this in XHM.
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In this and following sections, we argue that XHM is consistent with such goals: Separate
compilation is ensured by maintaining a clear separation between types and values and program
decomposition is supported by the use of higher-order and nested polymorphism. Powerful
abstractions can be defined using parameterized structures. On the other hand, XHM does not
by itself allow the definition of abstract datatypes, although this can be dealt with using other
methods.
We pay particularly close attention to comparisons with the SML module system. The most
significant difference between these two systems is the fact that XHM uses parameterized signa-
tures while SML allows type components in signature and structure definitions. It is certainly
true that the inclusion of type components can be a very powerful tool; indeed, without careful
restrictions, this may prove too powerful, leading to intractability and undecidable type checking.
However, we argue that much can be accomplished without type components. This, we believe,
is also more in the spirit of HM than systems that include or manipulate type components in
modules. For example, in Milner’s original work [28], types are used as a purely semantic notion,
representing subsets of a semantic domain, not as any concrete form of value.

4.1 Lifting type definitions

We start with an important observation, that type definitions in a module can be lifted to
the top-level, which helps to explain why it is possible to omit type components from modular
structures. For example, consider the following SML fragment:

structure s
= struct

type T = Int
data List a = Nil | Cons a (List a)
. . .

end

Despite appearances, the type synonym T and the type constructor List are not local to the
definition of s. At any point in the program where s is in scope, these type constructors can be
accessed by the names s.T and s.List , respectively. Renaming any references to these types and
their constructors in the body of s, we can lift these definitions to the top-level, to obtain the
following XHM definitions:

type s.T = Int
data s.List a = s.Nil | s.Cons a (s.List a)
s = struct

. . .

In effect, all that the datatype definitions in the original SML program accomplish is to define
new top-level datatypes in which the type and value constructor names are decorated with the
name of the enclosing structure.
In some situations, renaming is not sufficient to allow type definitions to be lifted to the top-level.
For example, the List datatype in the following functor definition involves a ‘free variable’—the
type x .T , a component of the argument structure x :

functor f (x :SIG) : SIG ′

= struct
data List = Nil | Cons x .T List
. . .

end
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The solution in this case is to add an extra parameter to the datatype definition before moving
it to the top-level, as shown on the right. This is just a form of λ-lifting [15, 37]:

data f .List t = f .Nil
| f .Cons t f .List

f :: SIG t → SIG ′ (f .List t)
f x = . . .

Notice how the parameterized signatures in the type for f capture the relationship between the
types involved in the argument x and those involved in the result f x .
It is also important to mention that, since the form of higher-order polymorphism described in
Section 2 allows type constructors to be used as both signature and datatype parameters, the
same technique can be used to deal with type constructor components of functor arguments.

4.2 Generativity

Readers with experience of the SML module system will realize that the simple lifting of the
datatype f in the functor definition at the end of the previous section is not quite correct. The
reason for this is that SML adopts a notion of generativity, producing a new type constructor
each time the functor is applied to an argument. Thus two definitions:

structure s1 = f (x )
structure s2 = f (x )

will produce structures with incomparable type components. In truth, when we use an SML
functor to ‘generate’ a new datatype, we are in fact constructing a new instance of a fixed
datatype, which is then hidden, in essence, by a form of existential quantification. There is no
way to express the List type produced by applying f to an appropriate argument structure in
the notation of SML, so we are forced to package up instantiation of the actual implementation
type, f .List , and hiding of the resulting type as a single operation.
Lifting type definitions to the top-level allows us to express the type components of the result
of functor applications; for the example above, both s1 and s2 have type component f .List t ,
assuming that x has type SIG t . We are then free to treat the question of whether we wish to
conceal these implementation types as a separate concern. Various methods for achieving this
are described below in Section 4.3. Note that higher-order polymorphism is essential, for the
general case, to express type components that depend on type constructors of higher kinds in
functor arguments.
We see then that, in XHM, there is no need for the same notions of generativity used in SML.
Of course, this only affects the static properties of the system. We would normally expect
the definitions above to produce two distinct copies of the same structure; these may not be
semantically equivalent in a language with side effects, for example, if the generated structures
include state components.

4.3 Abstraction

Abstraction—the ability to hide information about the implementation of a module and protect
against misuse—is an important feature of module systems that has been mentioned only briefly
in the discussion above. The system described in this paper allows us to distinguish between two
different forms of abstraction:
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• The independence of the implementation of a module from the implementation of its im-
ports.

• The ability to hide details about the type or type constructor parameters in the signature
of a structure.

The compArith example in Section 3.4 has already illustrated how the first of these can be
expressed very elegantly in XHM using polymorphism,
For the second, we can identify at least two different levels of hiding that may be useful. One
alternative is to provide a name for a datatype, but to conceal the details of its implementation,
such as the constructor functions of an algebraic datatype or the expansion of a type synonym.
This is just a matter of scoping, and does not require any changes to the underlying type theory;
indeed, it is perhaps best dealt with at the level of compilation units rather than in the core
language itself.
For example, we might use a construct:

export Cpx , cpx from
type Cpx = (Float ,Float)
cpx :: Complex Cpx
cpx = . . .

The intention here is that the definition of the cpx structure and the name of the Cpx type are
exported, but that the implementation of Cpx is not. Outside this definition, a programmer can
be sure that compArith cpx has type Arith Cpx , and that there is no danger of confusing this
with any other complex number package that happens to use pairs of floating point numbers as a
representation of complex numbers. Several languages support similar constructs, either through
explicit namespace management primitives (as in Haskell) or more specific features such as the
abstype construct in SML. While this approach can be quite useful, it is limited to top-level
definitions. For example, we cannot simulate the behaviour of SML functor application outlined
above where a new type is generated each time the functor is applied.
A second alternative is to use existential types, concealing not just the implementation, but also
the name of an abstract type. We strongly believe that XHM can be extended in a modular
fashion to support existential types, for example using dot-notation [5], and the combination of
type inference and existential typing that has been explored by Läufer [20]. Note that this can
be used to simulate the effects of datatype generativity; for example, if f is assigned a type of
the form SIG t → ∃t ′.SIG ′ t ′, then the definitions of structures s1 and s2 in the previous section
will produce distinct types s1.t ′ and s2.t ′.
We believe that both of these approaches are useful in their own right. However, neither coincides
exactly with the form of abstract datatypes provided by SML; the latter falls somewhere between
the two extremes of named and existentially quantified abstract datatypes. It remains as an
interesting problem to determine whether there is a modular extension of XHM which provides
the same form of abstraction as SML.

4.4 Polymorphic modules

In recent work, Kahrs [19] has shown that it is not possible to define certain kinds of polymor-
phic module in SML. Fortunately, this problem does not occur with XHM modules. In fact, a
direct translation of Kahrs’ SML code to our framework already provides the desired form of
polymorphism. For reasons of space, we will restrict ourselves to a rather shorter example using
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the following SML signature:
signature I
= sig

type T
id :: T → T

end

The problem identified by Kahrs is caused by the fact that the type component in any structure
matching I must be fixed to some specific type. In particular, it cannot be a variable, and hence
it is impossible to define a structure s that matches I such that s.id is the polymorphic identity
function.
The corresponding definition in XHM is:

type I t = { id :: t → t }

But in this case, we can define a structure:

s = struct
id x = x

which has type ∀t .I t and hence s.id can be used as a polymorphic identity function. We refer
the reader to [19] for examples of more useful applications of this form of polymorphism.

4.5 Practical concerns

Practical experience with the SML module system suggests a number of useful features for module
system designs and we will take the opportunity for a brief discussion of some of these ideas here.
First, we may be concerned that, in realistic applications, the number of type components in
a module may become quite large and that the corresponding parameterized signature would
become rather cumbersome and awkward. The easiest way to overcome this problem is to extend
the languages of constructors and kinds in the Higher-order HM system to include records (i.e.
labelled products) of the form:

(t1 = C κ1 , . . . , tn = C κn )::(t1 :: κ1, . . . , tn :: κn)

and to allow constructor variables ranging over such kinds. This gives the flexibility to package
several constructors into a single signature parameter. Apart from reducing the number of
parameters that have to be written, this also makes source code more resistant to change if, for
example, a new type parameter is added. Type sharing constraints can also be described quite
nicely in this framework. One possibility is to use a form of qualified types:

someprogram :: (r .x = s.y) ⇒ SIG r → SIG ′ s

to indicate that the x and y fields of r and s, respectively, are equal. Alternatively, we might
adopt a notation based on row variables to express the same constraints:

someprogram :: SIG (r | x = a) → SIG ′ (s | y = a).

Subsumption is another useful feature of the SML module system which allows unwanted com-
ponents of functor arguments to be ignored. Explicit type information is used to support this.
We believe that much the same techniques would also be applicable here, although we have not
yet attempted to establish this formally. Another interesting idea is to extend work on extensible
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records to provide a collection of operators on structures, for example, using r \ l to specify the
structure obtained by removing the l component from r , or (r | x = v) to describe the extension
of a structure r with a new component x . This would provide an explicit alternative to the
implicit treatment of subsumption.
Finally, it is clear from our earlier discussions that XHM structures have much in common with
type classes in languages like Haskell. However, further work is needed to obtain a language
design that combines these two features in an elegant and orthogonal manner.

5 Type-theoretic background

To set the contributions of this paper in perspective, this section reviews some of the previous
attempts to provide a type-theoretic foundation for modular programming, concentrating in
particular, on two of the the most important features of such systems: abstraction and separate
compilation.

5.1 Existential typing and abstraction

One way to formalize the process of hiding the implementation of an abstract datatype is to use
an existential type [33, 6]:

type Complex ′ = ∃cpx .Complex cpx .

Informally, the existential typing indicates that there is a type cpx with the operations listed
above defined on it, but prohibits the programmer from making any assumptions about the
implementation type. Formally, the properties of existentials are described by the following
typing rules, based on standard rules for existential quantifiers in logic:

Γ ` M : [τ ′/t ]τ

Γ ` M : (∃t .τ)

This is often described as the introduction rule. Note that the implementation type τ ′ for the
abstract type is discarded and does not appear anywhere in the conclusion.
At the same time, the requirement that N has a polymorphic type in the following elimination
rule ensures that we do not make any assumptions about the now hidden implementation type
since the definition behaves uniformly for all choices of t :

Γ ` M : ∃t .τ Γ ` N : ∀t .τ → τ ′ t 6∈ TV (τ ′)

Γ ` open M in N : τ ′

Existential types completely hide the identity of implementation types. For example, the types
cpx and cpx ′ in the body of the following expression cannot be identified, even though they both
come from the same term c of type Complex :

open c in Λcpx .λx : Complex cpx .
open c in Λcpx ′.λy : Complex cpx ′.

. . .
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To emphasize this behaviour, suppose that we define an abstract data type of arithmetic opera-
tions, and attempt to reconstruct the compArith function from Section 3.4:

type Arith ′ = ∃a.Arith a

compArith :: Complex ′ → Arith ′

compArith c = open c in Λcpx .λp : ComplexOps cpx .
{add=. . . }

Given an implementation c of type Complex ′, we can use the expression compArith c to obtain
a package for arithmetic on complex numbers. However, this has no practical use because the
typing rules for existentials make it impossible to construct any values to which the add and
neg functions of the resulting package can be applied! The type system does not capture the
equivalence of the type of complex numbers used in c with the type of values that can be
manipulated by compArith c.
An alternative approach to existential typing, using dot notation in place of the open construct
described above, has been investigated by Cardelli and Leroy [5]. The dot notation allows us
to identify the implementation types of two packages if they have the ‘same name’. This avoids
the first problem illustrated above, but not the second. Dot notation is also limited by the
unavoidably conservative notions of ‘same name’ that are needed to ensure decidability of type
checking, and is not very well-behaved under simple program transformations.

5.2 Dependent types and separate compilation

Motivated by problems with existential types, similar to those described above, MacQueen [24]
argued that dependent types provide a better basis for modular programming. In this framework,
structures are represented by pairs 〈τ,M 〉 containing both a type component τ and a term M
whose type may depend on the choice of τ . Structures of this form can be treated as elements
of a dependent sum type, described informally by:

Σt .f (t) = { 〈τ,M 〉 | M has type f (τ) }.

The typing rules for dependent sums are standard (see [26], for example) and can be written in
the form:

Γ ` M : [τ ′/t ]τ

Γ ` 〈τ ′,M 〉 : (Σt .τ)

Γ ` M : (Σt .f (t))

Γ ` snd M : f (fst M )

The introduction rule on the left is very similar to the corresponding rule for existentials except
that the implementation type, τ ′, is captured in the structure 〈τ ′,M 〉 in the conclusion. The
elimination rule on the right indicates that, if M is a structure of type Σt .f (t), then the second
component, snd M , of M has type f (fst M ), where fst M is the first component of M .
In this setting, the open M in N construct used in the treatment of existentials can be replaced
by the term N (fst M ) (snd M ), but this is not abstraction preserving in the sense of Mitchell
[32]. Informally, dependent sums are more powerful than existentials because of the ability to
name the type component fst M of a structure M . Of course, this also means that the type
component of a structure is no longer abstract.
In a sense, a simple treatment of modules using dependent types is actually too powerful for
practical systems because it interferes with separate compilation. More precisely, it makes it
more difficult to separate compile-time type-checking from run-time evaluation. To illustrate
this, we recast the previous definitions of complex number and arithmetic types using dependent
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sums to obtain:
type Complex ′ = Σcpx .Complex cpx
type Arith ′ = Σa.Arith a

compArith :: Complex ′ → Arith ′

compArith c = 〈fst c, { add = . . . }〉
At first glance, this definition suffers from the same problems as the previous version using
existentials; the type Complex ′ → Arith ′ does not reflect the fact that the type components of
the argument and result structures are the same. However, this information can be obtained by
carrying out a limited degree of evaluation during type checking. For example, if c = 〈τ,M 〉,
then:

fst (compArith c) = fst 〈τ, { add = . . . }〉 = τ.

To ensure that static type checking is possible, it is important to distinguish compile-time eval-
uation of this kind from arbitrary run-time execution of a program. Unfortunately, treating a
functor as a function of type (Σs.f (s)) → (Σt .g(t)) does not reflect this separation; in general, a
type of this form may include elements in which the type component of the result depends on the
value component of the argument. As an alternative, Harper, Mitchell and Moggi [12, 34] have
shown that a suitable phase distinction can be established by modelling functors from Σs.f (s)
to Σt .g(t) as values of type Σh.(∀s.f (s) → g(h(s))) where h ranges over functions from types to
types, corresponding to the compile-time part of the functor.
As the example above shows, it is sometimes necessary to inspect the implementation of a
structure to find the value of a type component. Not surprisingly, this means that it is not
possible to provide true separate compilation for SML [2]. Even the ‘smartest recompilation’
scheme proposed by Shao and Appel [40] does not permit true separate compilation because it
delays some type checking, and hence the detection of some type errors, to link-time.
The need for type sharing constraints in functor definitions is, in fact, motivated by similar
problems; since it is impossible to evaluate the formal parameters of a functor, we must instead
supply the required identities between type components using explicit sharing equations. Further
extensions to the basic theory of dependent types are needed to deal with this, and other ideas
including generativity, polymorphism, abstraction, higher-order modules, and modules as first-
class values.

5.3 Translucent sums and manifest types

Recent proposals for translucent sums by Harper and Lillibridge [11] and manifest types by
Leroy [21] provide a compromise between existential typing and dependent sums, allowing the
programmer to include additional type information in the signature for a structure. For these
systems, we use an introduction rule of the form:

Γ ` M : [τ ′/t ]τ

Γ ` M : (∃t = τ ′.τ)

Notice that, unlike the previous cases, the implementation type τ ′ appears in the inferred type
although this can be hidden by coercing it to a standard existential type:

Γ ` M : (∃t = τ ′.τ)

Γ ` M : (∃t .τ)
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These systems provide better support for abstraction and separate compilation than Standard
ML. However, the underlying theories are quite complex and unfamiliar, relying on the use of
dependent types.

5.4 Comparison with XHM

For all of the examples described above, the type of a module, package or structure is given by
an expression of the form Qt .f (t) for some parameterized record type f (t) and some quantifier
Q. Most of the problems described above are caused by the fact that these quantifiers can be
‘overly protective’, limiting the ability to propagate type information. In the previous sections
of this paper, we have shown how to use record types of the form f (t) as signatures, treating
quantifiers as a separate issue.

6 Conclusion

We have presented an extension of the Hindley-Milner type system that provides:

• Support for higher-order polymorphism.

• Support for function arguments with polymorphic components, sometimes requiring ex-
plicit type information to guide the main type inference process.

• A clear separation between static and dynamic semantics.

This leads to a module system in which:

• Structures are first-class values.

• Higher-order modules (i.e. first-class functors) are admitted. Leroy [21] gives several
examples of higher-order modules, some of which can only by typed using his system
of manifest types, while others require different higher-order extensions of SML [25]. All
of these examples, including those in [25], can be typed in XHM.

• Polymorphic modules and structures may be defined.

• True separate compilation is possible: the interface to a separately compiled structure is
completely determined by its signature, so there is no need to inspect its implementation.

• Since the module language is based on HM, we believe that it will be easy to use, partic-
ularly for programmers that are already familiar with the core languages of Standard ML,
Haskell or similar languages.

• We avoid the need for some of the more complicated aspects of the Standard ML type
system such as generativity and sharing.

By contrast, none of these is possible with the SML module system without, often substantial,
modification. One of the main topics for future research is to investigate the role of implicit
subsumption; i.e. the ability to discard elements from a structure as a result of signature matching
in SML. We believe that this can be accomplished using a simple form of subtyping, guided by
type annotations, or otherwise by extending XHM with an mechanism for controlling the set of
bindings that are exported from a structure.
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We are currently working on a practical implementation of the ideas presented in this paper
for a Haskell-like language. The main goal of this work is to provide the functionality of SML-
style modules while preserving the basic character of Haskell, including type classes, side-effect
free, call-by-name/lazy semantics, implicit mutual recursion, and so forth. We intend to use our
prototype to investigate the use of XHM modules in realistic applications, and to assess how well
the ideas described in this paper fare in a practical module system.
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