
INTERIOR POINT METHODS FOR COMBINATORIAL

OPTIMIZATION∗

RPI Mathematical Sciences Report No. 217
September 29, 1995

JOHN E. MITCHELL
†

Department of Mathematical Sciences

Rensselaer Polytechnic Institute

Troy, NY 12180

Abstract. Research on using interior point algorithms to solve combinatorial optimization and
integer programming problems is surveyed. This paper discusses branch and cut methods for
integer programming problems, a potential reduction method based on transforming an integer
programming problem to an equivalent nonconvex quadratic programming problem, interior point
methods for solving network flow problems, and methods for solving multicommodity flow problems,
including an interior point column generation algorithm.

1. Introduction

Research on using interior point algorithms to solve combinatorial optimization and
integer programming problems is surveyed. Typically, the problems we consider can
be formulated as linear programming problems with the restriction that some of the
variables must take integer values. The methods we consider have been used to solve
problems such as the linear ordering problem, clustering problems, facility location
problems, network flow problems, nonlinear multicommodity network flow problems,
and satisfiability problems. This paper discusses four main methodologies, three of
which are similar to known approaches using the simplex algorithm, while the fourth
method has a different flavor.

Branch and cut methods are considered in section 2. Simplex-based branch
and cut methods have been very successful in the last few years, being used to
solve both specific problems such as the traveling salesman problem and also generic
integer programming problems. The research described in this paper constructs a
branch and cut algorithm of the usual type, but then uses an interior point method
to solve the linear programming relaxations. The principal difficulty with using an
interior point algorithm in a branch and cut method to solve integer programming
problems is in warm starting the algorithm efficiently, that is, in using the solution
to one relaxation to give a good initial solution to the next relaxation. Methods

∗ To appear in “Interior Point Methods in Mathematical Programming”, edited by Tamás Ter-
laky, Kluwer Academic Publisher, 1995.

† Research partially supported by ONR Grant number N00014–94–1–0391.

2 JOHN E. MITCHELL

for overcoming this difficulty are described and other features of the algorithms
are given. This paper focuses on the techniques necessary to obtain an efficient
computational implementation; there is also a discussion of theoretical issues in
section 6.1. Column generation algorithms have a structural similarity to cutting
plane methods, and we describe a column generation algorithm for solving nonlinear
multicommodity network flow problems in section 5.1.

In section 3, we discuss a method for solving integer programming problems that
is based upon reformulating the integer programming problem as an equivalent non-
covex quadratic programming problem. The quadratic program is then solved using
a potential reduction method. The potential function has some nice properties
which can be exploited in an efficient algorithm. Care is needed so that the algo-
rithm does not get trapped in a local minimum. We also discuss a related algorithm
for solving quadratic integer programming problems, which can be applied to the
graph partitioning problem, for example.

Many network flow problems can be solved by ignoring the integrality re-
quirement on the variables and solving the linear programming relaxation of the
problem, because it is guaranteed that one of the optimal solutions to the linear
program will solve the integer programming problem. Typically for these problems,
the simplex method can be considerably enhanced by exploiting the structure of the
constraint matrix; there are also often very good methods which are not based on
linear programming. Thus, the challenge is to design an efficient implementation of
an interior point method which can compete with the algorithms which are already
available. We describe the research in this area in section 4.

Interior point approaches to the multicommodity network flow problem are
discussed in section 5. These include the column generation algorithm mentioned
earlier. These problems can be modelled as linear programming problems which are
too large to be solved easily, so it is necessary to use alternative methods to just
solving the linear programming problem.

Theoretical issues are discussed in section 6. This includes a discussion of the
computational complexity of interior point cutting plane methods and also improved
complexity results for various combinatorial optimization problems that have been
obtained through the use of interior point methods.

Finally, we offer our conclusions in section 7.

2. Interior point branch and cut algorithms

In this section, we discuss the solution of integer programming problems using cut-
ting plane and branch and bound methods. Before considering the general case, we
examine the following example. Consider the integer feasible region S

3x1 + 5x2 ≥ 9
−2x1 + 5x2 ≤ 9

5x1 + 2x2 ≤ 25
3x1 − 4x2 ≤ 7

xi integer, i = 1, 2

shown in figure 1. The feasible points are shown by dots. The convex hull of the

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION 3

-

6

b
b

b
b

b
b

b
b

b
b

bb
b

b
b

b
b

b
!!!!!!!!!!!!!!!!!!!!!!!!!!

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

L
L

LL

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

r

r

r

r

r

r

r

0 1 2 3 4 5

1

2

3

x1

x2

Fig. 1. Feasible region of an integer program

feasible integer points is the set of points

P := {x1, x2 : x1 + x2 ≥ 3, x2 ≥ 1, x1 − x2 ≤ 2, x1 + x2 ≤ 6,−x1 + 2x2 ≤ 3},

which has extreme points (1,2), (2,1), (3,1), (4,2), and (3,3). For a given linear
objective function cT x := c1x1 + c2x2, the optimal solution to the integer program
min{cT x : x ∈ S} will be one of these extreme points. Thus, with the given de-
scription of P , we could solve the integer program by solving the linear program
min{cT x : x ∈ P }. Of course, in general it is hard to find the polyhedral descrip-
tion P .

Let us take c1 = 2, c2 = 3. The solution to the integer program is then the
point (2, 1). A cutting plane method first solves the LP relaxation of the integer
program:

min 2x1 + 3x2

subject to 3x1 + 5x2 ≥ 9
−2x1 + 5x2 ≤ 9

5x1 + 2x2 ≤ 25
3x1 − 4x2 ≤ 7

This problem has optimal solution (0, 1.8), with value 5.4. We then add an extra
constraint (or cutting plane) to the LP relaxation that is violated by the point (0, 1.8)
but is satisfied by every point in S, and then resolve the LP relaxation. For example,
we could add the constraint 4x1 + x2 ≥ 4. Modern cutting plane methods attempt
to use cutting planes which are facets of the convex hull P of S, so they would add

4 JOHN E. MITCHELL

either x1 + x2 ≥ 3 or −x1 + 2x2 ≤ 3. It is harder to find strong cutting planes like
these than a weaker cutting plane such as a Gomory cut.

A branch and bound approach to this problem would examine the solution (0, 1.8)
to the LP relaxation and then split the problem into two new problems, one where
x2 ≥ 2 and one where x2 ≤ 1. These new linear programs are then solved and
the process is repeated. If the solution to any of the linear programming problems
that arise in this process is integer then that point solves the corresponding part of
the integer programming problem; if any of the linear programs is infeasible, then
the corresponding part of the integer program is also infeasible. The value of the
linear program provides a lower bound on the value of the corresponding part of the
integer program, and this bound can be used to prune the search space and guide
the search.

Cutting plane methods and branch and bound methods can be combined into a
branch and cut method, but we will discuss them separately, in order to emphasize
their individual features. For a good discussion of simplex-based branch and cut
methods, see, for example, the books by Nemhauser and Wolsey [61] and Parker
and Rardin [64]. The book [61] is a detailed reference on integer programming and
it discusses cutting plane algorithms comprehensively; for a summary of this book,
see [62]. The book [64] also discusses cutting plane algorithms, and it discusses
branch and bound in more detail than [61]. Jünger et al. [35] discuss computational
work using branch and cut algorithms to solve a variety of integer programming
problems.

As mentioned above, cutting plane and branch and bound methods work by set-
ting up a linear programming relaxation of the integer programming problem, solving
that relaxation, and then, if necessary, refining the relaxation so that the solution
to the relaxation gets closer to the solution to the integer programming problem.
These methods have been known for many years (Land and Doig [46], Gomory [26]),
and they have achieved very good results in the last few years. Of course, most of
these results have been achieved by using the simplex algorithm to solve the lin-
ear programming relaxations; the focus in this section is on using an interior point
method to solve the relaxations. Unfortunately, is is not usually sufficient to simply
replace the simplex algorithm with an interior point method, because an interior
point method is not as good as the simplex algorithm at exploiting the solution to
one relaxation when trying to solve the next relaxation. This relatively poor use of
the warm start provided by the previous relaxation makes it necessary to only solve
the relaxations approximately; the algorithms seem fairly adept at exploiting this
approximate solution. Other refinements to a traditional branch and cut approach
are also necessary when using an interior point method, but the principal difference
is in the use of approximate solutions to the relaxations.

We discuss cutting plane algorithms in section 2.1 and branch and bound algo-
rithms in section 2.2. Adding a constraint to a primal linear programming problem
is structurally equivalent to adding a column to the dual problem, so research on
column generation algorithms has a strong impact on research on cutting plane al-
gorithms, and vice versa. In section 5.1, we discuss a column generation algorithm
for a multicommodity network flow problem. The theoretical performance of cutting
plane and column generation algorithms is discussed in section 6.1.

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION 5

2.1. Interior point cutting plane algorithms

In order to simplify the discussion, we assume that all the variables are constrained
to take the values zero or one, and that all the constraints are inequality constraints.
We assume we have an integer programming problem of the form

min c̄T x̄
subject to Āx̄ ≤ b (IP)

x̄i = 0 or 1

where x̄ and c̄ are n-vectors, b is an m-vector, and Ā is an m × n matrix. We
assume that c is not in the row space of Ā; if this was not the case, every feasible
solution would be optimal. We do not make any assumptions regarding the relative
magnitudes of m and n, nor do we make any assumptions regarding the matrix Ā.
Many problems can be cast in this framework. We let Q denote the convex hull of
feasible solutions to (IP). The linear programming relaxation (or LP relaxation) of
(IP) is

min c̄T x̄
subject to Āx̄ ≤ b (LP≤)

0 ≤ x̄ ≤ e

where e denotes a vector of ones of the appropriate dimension. (We will use e in
this way throughout this paper.) If the optimal solution to (LP≤) is integral then
it solves the original problem (IP), because it is feasible in (IP) and it is at least as
good as any other feasible point in (IP). If the optimal solution xLP to (LP≤) is not
integral, then we improve the relaxation by adding an extra constraint or cutting

plane of the form a0T

x̄ ≤ b0. This cutting plane is a valid inequality for (IP) but it
is violated by the optimal solution xLP . We then solve the modified LP relaxation,
and repeat the process.

The recent success of simplex based cutting plane algorithms has been achieved
through the use of polyhedral theory and specialized cutting planes; the cutting
planes are generally chosen from families of facets of the convex hull of feasible
integer points. Traditionally, Gomory cutting planes were derived from the optimal
simplex tableau; Mitchell [55] has shown how these same cutting planes can be
derived when using an interior point cutting plane algorithm.

We prefer to write the linear programming relaxation as a problem with equality
constraints; thus we include slack variables to get the relaxation

min cT x
subject to Ax = b (LP)

0 ≤ x ≤ u

where u is a vector of upper bounds on the variables, so ui = 1 for the original
integer variables, and ui takes an appropriate value for the remaining variables. The
dual problem to (LP) is

max bT y − uT w
subject to AT y − w + z = c (LD)

w, z ≥ 0

6 JOHN E. MITCHELL

1. Initialize: Pick initial x, y, w and primal and dual slacks.
2. Approximately solve relaxation: Solve the current relaxation to the desired

degree of accuracy using an interior point algorithm. If the current iterate is a
sufficiently accurate solution to the original problem (IP), STOP.

3. Add cutting planes: See if the current iterate violates any constraints. If not,
tighten the desired degree of accuracy and return to Step 2; otherwise, add a
subset of the violated constraints and go to Step 4.

4. Update the relaxation and restart: Update the variables appropriately.
Return to Step 2.

Fig. 2. A prototype interior point cutting plane algorithm

When we add a cutting plane, we will obtain the new relaxation

min cT x
subject to Ax = b

a0T

x + x0 = b0 (LPnew)
0 ≤ x ≤ u
0 ≤ x0 ≤ u0

for some appropriate upper bound u0 on the new slack variable x0. The correspond-
ing new dual problem is

max bT y − uTw − u0w0

subject to AT y + a0y0 − w + z = c
y0 − w0 + z0 = 0 (LDnew)

w, z ≥ 0
w0, z0 ≥ 0

Note that if we know feasible solutions x̂ > 0 and ŷ, ŵ > 0, ẑ > 0 to (LP) and
(LD) respectively, then, after the addition of the cutting plane, we can obtain a new
feasible solution to (LDnew) by taking y = ŷ, w = ŵ, z = ẑ, y0 = 0 and w0 = z0.
If we pick w0 = z0 to be strictly positive then all the nonnegativity constraints will
be satisfied strictly. It is not so simple to obtain a feasible solution to (LPnew)

because we have a0T

x̂ > b0 if the new constraint was a cutting plane. Nonetheless,
if the old solution was close to optimal to (LP) and (LD) then we can hope that
it should also be close to the solution to (LPnew) and (LDnew), so it provides a
warm start for solution of the new problem.

In this section, we discuss how an interior point method can be used in this
setting. A simple, conceptual interior point cutting plane algorithm could be written
as in figure 2. We will give a more formal algorithm later. Currently, the best
algorithm for linear programming appears to be the primal-dual predictor-corrector
barrier method (see Lustig et al. [49, 50] and Mehrotra [52]), so we consider modifying
this algorithm for use in a cutting plane algorithm. Other interior point algorithms
which maintain strictly positive primal and dual iterates can be modified in a similar
manner. We will also briefly discuss using a dual algorithm.

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION 7

With a primal-dual algorithm, we always have interior primal and dual iterates,
that is, 0 < x < u, w > 0 and z > 0. We also have a barrier parameter µ and we
refer to an iterate as centered if we have

xizi = µ and (ui − xi)wi = µ, i = 1, . . . , n. (1)

When µ = 0, these conditions are the complementary slackness conditions. Interior
point methods tend to work better when they can use iterates that are close to being
centered. The importance of having centered iterates is a theme which will recur in
this paper.

We first motivate the discussion by describing two integer programming problems.

2.1.1. Two example problems
The perfect matching problem can be solved by using a cutting plane algorithm —
see Grötschel and Holland [27] and Mitchell and Todd [59].

The perfect matching problem: Given a graph G = (V, E) with vertices V
and edges E, a matching is a subset M of the edges such that no two edges in
M share an end vertex. A perfect matching is a matching which contains exactly
| V | /2 edges, where | V | denotes the cardinality of V . Given a set of weights
we associated with the edges e in E, the perfect matching problem is to find the
perfect matching M with smallest weight w(M) :=

∑

e∈M we.

Edmonds [15, 16] showed that the perfect matching problem can be solved in poly-
nomial time. He also gave a complete polyhedral description of the perfect matching
problem. He showed that the optimal solution to a perfect matching problem is one
of the solutions to the linear programming problem

min
∑

e∈E wexe

subject to
∑

e∈δ(v) xe = 1 for all v ∈ V (2)
∑

e∈E(U) xe ≤ (|U | −1)/2 for all U ⊆ V with |U | odd (3)

xe ≥ 0 for all e ∈ E (4)

where δ(v) denotes the set of edges in E which are incident to vertex v and E(U)
denotes the set of edges in E which have both endvertices in U , where U is a subset
of V . Equations (2) are the degree constraints and equations (3) are the odd set
constraints. The number of odd set constraints is exponential in the number of ver-
tices, so it is impracticable to solve the linear programming problem as expressed.
Thus, in a cutting plane method, the initial relaxation consists of the degree con-
straints together with the nonnegativity constraints (4), and the odd set constraints
are added as cutting planes. Consider, for example, the graph given in figure 3.
Here, the edge weights are the Euclidean lengths of the edges. The optimal match-
ing has M = {(v2, v3), (v1, v4), (v5, v6)}. The LP relaxation consisting of the degree
constraints and the nonnegativity constraints has optimal solution

xe =

{

0.5 if e is one of the edges (v1, v2), (v2, v3), (v1, v3), (v4, v5), (v4, v6), (v5, v6)
0 otherwise

This solution violates the odd set constraint with U = {v1, v2, v3}:
x(v1,v2) + x(v1,v3) + x(v2,v3) ≤ 1

8 JOHN E. MITCHELL

t

v1

t

v2

t

v3

t

v5

t

v6

t

v4

�
��

@
@@

@
@@

�
��

Fig. 3. The effect of an odd set constraint

If this constraint is added to the relaxation, the optimal solution to the linear pro-
gram is the optimal matching given above.

Another problem that can be solved by a cutting plane algorithm is the linear
ordering problem — see, for example, Grötschel, Jünger and Reinelt [28] or Mitchell
and Borchers [57].

The linear ordering problem: Given a complete directed graph G = (V, A),
with costs cij on the arcs, define the cost of a permutation σ of the vertices
to be c(σ) :=

∑

(i,j):σ(i)<σ(j) cij. The linear ordering problem is to find the
permutation with the smallest cost.

The linear ordering problem is NP-Hard [44]. This problem can be expressed as an
integer linear programming problem:

min
∑

i,j cijxij

subject to xij + xji = 1 for 1 ≤ i < j ≤|V | (5)

xij + xjk + xki ≤ 2 for 1 ≤ i < j < k ≤|V | (6)

xij = 0 or 1 for 1 ≤ i < j ≤|V | (7)

Grötschel et al. [28] have found several classes of valid inequalities for the linear
ordering problem which can be used as cutting planes. However, for many real world
problems, the solution to the linear programming relaxation given above solves the
linear ordering problem. The equations (6) are known as the 3-dicycle constraints;

notice that there are

(

n
3

)

of them. In both [28] and [57], the initial relaxation

consists just of the equations (5) together with the simple bounds 0 ≤ xij ≤ 1 for
each edge; the 3-dicycle constraints are added as cutting planes as needed. In these
implementations, the solutions to the relaxations can be integral but not feasible in
the linear ordering problem; in this case cutting planes are used to cut off infeasible
integral points. Thus, this approach to solving the linear ordering problem does not
quite fit in the framework we discussed earlier with relation to the problems (IP)
and (LP), but that framework can be extended in an obvious manner to include
this approach to the linear ordering problem. The traveling salesman problem is
also usually formulated so that solutions to the LP relaxations can be integral but
infeasible; the subtour elimination constraints are used to cut off these infeasible
integral points. (For a good discussion of the traveling salesman problem see the

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION 9

book edited by Lawler et al. [47]; for a recent description of an implementation, see
Applegate et al. [5].)

2.1.2. Early termination
The optimal solution to (LP) is not an interior point. Therefore, if we solve (LP) to
optimality then it is necessary to perturb the solution slightly to obtain an interior
point before we can even start solving (LPnew) using an interior point method.
Typically, if an interior point method is started from close to the boundary, it will
move towards the center of the feasible region before starting to move towards the
optimal solution. Thus, the optimal solution to (LP) is not a very good starting
point for trying to solve (LPnew). A very successful method to try to avoid this
difficulty is to terminate solution of (LP) early. We will then have an interior
point when we start solving (LPnew). In addition, we will not spend as many
iterations returning towards the center of the polyhedron and we will start moving
towards the optimal solution to (LPnew) more quickly. Thus, we will spend fewer
iterations solving (LP) because we only solve it approximately, and we will also
spend fewer iterations solving (LPnew) because we start off with an iterate which
is more centered.

We can terminate solution of (LP) early if we can find cutting planes which are
violated by the current solution. In fact, if we can find cutting planes which are
violated by this current iterate, they may well be deeper cuts and cut off more of the
feasible region, because the iterate is closer than the optimal solution to the center
of the polyhedron. We may also be able to find more good cutting planes at this
early iterate.

Consider, for example, the perfect matching problem on the graph in figure 4,
where edge weights are the Euclidean lengths. The optimal matching in this graph

t

v1

t

v2

t

v3

t

v4

t

v5

t

v6

t

v7

t

v8

t

v9

t

v10

�
��

@
@@

@
@@

�
��

Fig. 4. An illustration of the phenomenon of nested odd sets

uses edges (v1, v10), (v2, v3), (v4, v5), (v6, v7), and (v8, v9). The optimal solution to
the LP relaxation consisting of just the degree constraints and nonnegativity has

xe =

1 for edges (v2, v3), (v8, v9)
0.5 for edges (v1, v4), (v1, v5), (v4, v5), (v6, v7), (v6, v10), (v7, v10)
0 otherwise

The separation routine for detecting violated odd set constraints involves finding
connected components in the graph that only has edges where xe > τ for some
threshold τ ≥ 0. Thus, it would find the violated constraints for the oddsets

10 JOHN E. MITCHELL

{v1, v4, v5} and {v6, v7, v10}. If we search at an early iterate, we may well have
xe > 0 on edges (v2, v5) and (v3, v4), and in addition the values xe on these edges
are discernibly larger than those on the edges (v4, v6), (v5, v7) and (v1, v10). Thus,
for appropriately chosen values of τ , we would find the violated odd set constraints
given above and also the constraints corresponding to the odd sets {v1, v2, v3, v4, v5}
and {v6, v7, v8, v9, v10}. Without these constraints, the solution to the relaxation
is fractional; thus, these constraints are necessary, and the ability of the interior
point method to find these constraints at an earlier stage means that one fewer LP
relaxation has to be solved.

There are two disadvantages to looking for cuts before solving the current relax-
ation to optimality. Firstly, we may be unable to find any cuts, so the search is a
waste of time. Secondly, the search may return cuts which are violated by the cur-
rent iterate, but which are not violated by the optimal solution, so we may end up
solving additional relaxations. The second disadvantage can mitigated by moving
towards the optimal solution from the center of the polyhedron, making it unlikely
that we will violate unnecessary cutting planes. One method for reducing the impact
of the first disadvantage is to use a dynamically altered tolerance for deciding when
to search for violated cutting planes. We only search when the duality gap drops
below this tolerance. If we find a large number of violated constraints, we increase
the tolerance, because we probably did not need to solve the relaxation to such a
high degree of accuracy. If we only find a small number of violated constraints, we
decrease the tolerance — we should solve the relaxations more accurately to obtain
a better set of cutting planes as the relaxation becomes a better approximation to
the convex hull of feasible integer points. As the number of violated cutting planes
drops, it should also take fewer iterations to solve the next relaxation because the
two relaxations should be close to each other.

Early termination is the most important technique for improving an interior point
cutting plane algorithm. By using a dynamically altered tolerance for determining
when to search for cutting planes, the time spent on unnecessary searches can be
dramatically reduced.

2.1.3. Restarting the algorithm and regaining primal feasibility
When adding a cutting plane, we can obtain a new feasible interior dual iterate by
setting y0 = 0 and w0 = z0 = ǫ for some appropriate small positive value of ǫ.
It is not straightforward to transform the old primal iterate into a feasible interior
iterate in the new problem (LPnew). One option is to pick a strictly positive value
for x0 and then use a primal-dual infeasible interior point method, as described in,
for example, Zhang [82]. To improve stability and performance, it is useful to also
increase any small components of x, w, z and u − x up to ǫ. It is also often useful
to take a pure centering step when restarting. This works reasonably well, typically
using about one third to one half of the number of iterations required to solve the
problem from a cold start. However, the sequence of iterates often tends to move
towards the center of the feasible region and away from the optimal solution while
attempting to regain feasibility, with the result that it takes several iterations to
solve (LPnew).

We have found that better performance can be obtained if it is possible to update

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION 11

the primal iterate to a point that is known to be feasible and interior in (LPnew).
Any interior point which is a convex combination of feasible integral points will
satisfy all cutting planes, so it will be feasible in (LPnew). In addition, it will be
interior in (LPnew) provided it satisfies all the cutting planes strictly. Any point
in the relative interior of Q will be feasible and interior in (LPnew). It is often
straightforward to find an initial point of this type; this point can be updated as the
algorithm progresses, either by combining it with integral solutions that are found
by heuristics, or by combining it with any iterate which is in the convex hull. The
improved performance of the algorithm is because there is no need to balance the
search for feasibility with the searches for optimality and centrality, and also because
the point in the convex hull is often more centered than the point which is feasible
in (LP).

One possible reason for the difficulty with restarting an interior point cutting
plane method with an infeasible point can be developed from the work of, for ex-
ample, Anstreicher [3], Mizuno et al. [60], and Zhang [82], who have all discussed
interior point algorithms for linear programming which move towards feasibility
and complementary slackness simultaneously. A common feature of the analysis of
these algorithms is the exploitation of the fact that they move towards feasibility
at least as fast as they move towards complementary slackness. When restart-
ing directly from the approximate solution to the previous relaxation (LP), the
primal infeasibility is x0+ | b0 − aT

0 x̂ |. The total complementary slackness is
x̂T ẑ + (u − x̂)T ŵ + x0z0 + (u0 − x0)w0. In order to get an iterate which is ap-
proximately centered, we could choose w0 = z0 = 2µ/u0 and x0 = u0/2. The
complementary slackness will then be approximately (2n+2)µ, so the ratio between
infeasibility and complementary slackness will be large if µ is small. Other choices
for x0, w0, and z0 would require a tradeoff between centrality and this balance be-
tween infeasibility and complementary slackness. This may explain why it is hard
to get very fast convergence from the infeasible warm start generated in a cutting
plane algorithm.

Ye, Mizuno and Todd [81] introduced a skew symmetric self dual algorithm for
linear programming. Further investigation of this algorithm is described in, for
example, [76, 77]. This algorithm has the property that it is easy to generate a
perfectly centered initial iterate. This has the potential to make this algorithm very
useful in a cutting plane framework, because we can take the iterate for the previous
relaxation, modify it slightly, and obtain an almost centered iterate for the new
relaxation. This is an issue that needs more computational investigation.

2.1.4. Adding many constraints at once
It is usual in practice to add many constraints at once. If we add many constraints
to the relaxation (LP), we obtain the new relaxation

min cT x
subject to Ax = b

A0x + x0 = b0 (LPmany)
0 ≤ x ≤ u
0 ≤ x0 ≤ u0

12 JOHN E. MITCHELL

for some appropriate upper bound u0 on the new slack variables x0. Note that
x0 and u0 are now vectors and A0 is a matrix of the appropriate dimension. The
corresponding dual problem is

max bT y − uT w − u0w0

subject to AT y + AT
0 y0 − w + z = c
y0 − w0 + z0 = 0 (LDmany)

w, z ≥ 0
w0, z0 ≥ 0

where y0, w0, and z0 are all vectors with dimension equal to the number of added
constraints. If we have an interior feasible solution to (LP) and (LD) then we can
get an interior feasible solution to (LDmany) by setting y0 = 0 and w0 = z0 = ǫe
for some small positive constant ǫ. If we set x0 to some positive vector, we can then
restart using an infeasible interior point method. Alternatively, it may be possible
to update the primal solution to a point which is feasible in (LPmany). Thus, the
algorithm can be restarted when many constraints are added in much the same way
that it can be restarted when only one constraint is added.

A very large number of constraints is occasionally generated when solving some
problems. If all of these constraints are added to the relaxation at once, the algorithm
slows down for several reasons:
− The LP relaxation has been changed dramatically, so the interior point al-

gorithm takes several iterations to approach a new center, and then several
iterations to move towards the optimal solution.

− The constraint matrix becomes far larger, so the computational time required
at each iteration increases.

− It takes more iterations to solve a linear program with a large number of con-
straints than one with a small number.

Thus, it is advisable to only add a subset of the constraints.
Perhaps the simplest method for choosing which constraints to add is to add

the constraints that are most violated by the approximate solution x̂ to (LP). The
disadvantages of this method are that it may add a large number of very similar
constraints, or that a constraint with a large violation may not actually be that
important.

In some situations, it is useful to consider the effect of a constraint on the struc-
ture of the nonzeroes in the constraint matrix when deciding whether to add a
constraint. It is desirable to keep the Cholesky factors of the product AAT sparse in
order to be able to calculate the projections quickly, and if we add a lot of constraints
which all use the same variables then these constraints are going to lead to fill-in
in AAT . This was found to be an important consideration when solving the linear
ordering problem [57]. For this problem, it was found to be very advantageous to
add only a subset of the violated 3-dicycle constraints that was pairwise arc-disjoint
— if the same arc appears in two different 3-dicycles then the inner product be-
tween the rows of the constraint matrix representing the two constraints is nonzero,
so there is fill-in in AAT .

An alternative measure for the importance of a constraint has been proposed
by Atkinson and Vaidya [6], who considered convex feasibility problems. In their

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION 13

setting, the current relaxation has the constraints Gx ≤ g, 0 ≤ x ≤ u for some upper
bound u, and they consider a possible constraint of the form hT x ≤ h0. They suggest
looking at the interplay of the constraint with the Hessian of the barrier function
used in an interior point method; in particular, if G has full column rank then the
quantity hT (S2 + GT D2G)−1h should be large if the constraint is important, where
S and D are appropriate diagonal matrices. The cutting plane algorithm described
earlier in this section calculates projections using matrices of the form S̃2 +GD̃2GT

rather than S2 +GT D2G for some appropriate diagonal matrices S̃ and D̃; however,
these products are related (see, for example, Birge et al. [9]), so a similar test could
be derived using quantities already available in the algorithm. To the best of our
knowledge, nobody has investigated this measure computationally.

2.1.5. Dropping constraints
Computationally, it is useful to be able to drop constraints because this will reduce
the time required for each iteration by reducing the size of the constraint matrix.
An additional benefit of dropping constraints is that smaller linear programs require
fewer iterations to solve. The simplest way to decide whether to drop a constraint is
to check its slack value — if the current iterate satisfies the constraint easily, then the
constraint is a candidate to be dropped. When a constraint is dropped, the structure
of the matrix AAT is changed, so it is necessary to calculate a new ordering of the
columns of this matrix for the Cholesky factorization. Because of this work, the
algorithm described in [57] only dropped constraints when other constraints were
added to the matrix.

The Atkinson-Vaidya measure of the importance of a constraint can be used to
decide whether to drop a constraint. To the best of our knowledge, nobody has
attempted to use this heuristic, principally because of the work required to calculate
this measure.

2.1.6. Primal heuristics
Primal heuristics are algorithms which generate integer solutions to (IP) from frac-
tional solutions to (LP). If they are very cheap, it is possible to call them at every
iteration; however, it is usually more cost effective to only call them when the sepa-
ration heuristics are also called.

For many problems, it is usually considerably easier to find the optimal solution
than to prove that it is optimal. The primal heuristics may well find the optimal
solution, and the cutting plane method can then be used to prove that that solution
is optimal. If the objective function vector c is integer then we do not need to proceed
any further with the cutting plane algorithm once the lower bound provided by the
value of (LD) is within one of the value of the best known feasible solution to (IP)
provided by the primal heuristics. Thus, the primal heuristics may well save us
work by letting us terminate without having to construct a relaxation which has an
optimal solution that is feasible in (IP).

If the interior point method is converging to a point in the interior of the optimal
face of Q then the primal heuristics may well provide one of the optimal solutions
to (IP), so we can terminate the algorithm, because the value of the relaxation will
agree with the value of the integer solution. Without the primal heuristics, we may

14 JOHN E. MITCHELL

search futilely for cutting planes, and be forced to branch. Thus, a good primal
heuristic algorithm can save a great deal of time.

Another use for the primal heuristic is to modify the restart point in Q. It can be
modified to be slightly closer to the integer point generated by the primal heuristics.

2.1.7. Multiple optimal solutions and degeneracy
If the integer programming problem has multiple optimal solutions, then it is likely
that the iterates generated by an interior point cutting plane method will converge
to a point in the interior of the optimal face of Q. In this case, the primal heuristics
can usually be used to find an optimal solution to (IP). Alternatively, Megiddo’s
approach [51] can be used to find an optimal basic feasible solution in Q which will
then solve (IP). Megiddo’s algorithm is strongly polynomial.

It is possible that the fractional optimal solution may provide more information
than one of the optimal integer solutions. For example, in the linear ordering prob-
lem, an optimal fractional solution corresponds to a partial ordering of the nodes,
and every ordering which agrees with this partial ordering is optimal.

For a survey of the effects of degeneracy on interior point methods for linear
programming problems, see Güler et al. [30]. Degeneracy does not appear to be
as serious a problem for interior point methods as it is for the simplex algorithm.
The principal practical effect of degeneracy on an interior point method is to cause
possible numerical problems because of numerical instability and ill-conditioning of
the projection matrix. Many integer programming problems have highly degenerate
relaxations, so an interior point method might be particularly well suited to such
problems.

2.1.8. Fixing variables
Simplex branch and cut methods can use reduced costs to fix variables at zero or one
in the following manner. Let r be the reduced cost of a variable which is currently
zero in the solution to the relaxation. Let vUB be the value of the best known feasible
solution to (IP) and let vLB be the value of the relaxation. If r > vUB − vLB then
this variable must be zero in any optimal solution to (IP). A similar test can be
given for fixing a variable at one.

The reduced costs are not available at the current interior solution to the re-
laxation (LP), but the dual variables are available, and these can be used to fix
variables. If zi is the dual variable corresponding to the primal variable xi and if
v̄LB is the value of the current feasible solution to (LD) then xi can be fixed at
zero if zi > vUB − v̄LB . A similar test can be used to fix variables at one. See
Mitchell [55] for more details.

2.1.9. The complete algorithm
We summarize the complete algorithm in figure 5.

2.1.10. Algorithms which only require positive dual iterates
After adding constraints to the primal problem, the current primal iterate is infeasi-
ble and the dual variables corresponding to the additional columns have value zero.

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION 15

1. Initialize. Set up the initial relaxation. Find initial interior primal and dual
points. If possible, find a feasible point in Q. If possible, find a restart point in
the relative interior of Q for use in Step 8.

2. Inner iteration. Perform one iteration of the primal dual algorithm. While
the duality gap is above the tolerance τ , repeat this step.

3. Primal heuristics. Use the primal heuristics to try to improve on the current
best solution to (IP). If successful, also update the known feasible point in the
relative interior of Q.

4. Look for cutting planes. Use heuristics and/or exact algorithms to find
cutting planes, if any exist.

5. Add cutting planes. If any cutting planes were found in Step 4 then add an
appropriate subset.

6. Fix variables. If possible, fix variables at zero or one.
7. Drop cutting planes. If any cutting plane appears to no longer be important,

drop it.
8. Modify current iterate. Increase any small components of w and z to a

small value ǫ. If a feasible point in the relative interior of Q is known, update
the primal solution to this point. Otherwise, increase any small components of
x and the vector of primal slacks to ǫ. Modify the barrier parameter. If not
using the predictor-corrector algorithm, perform one pure centering step to get
a better initial point for the next relaxation. Return to Step 2

Fig. 5. An interior point cutting plane algorithm

Some barrier methods, affine methods, and projective methods have been developed
for solving problems using either just the primal variables or just the dual variables,
and such methods can be used to solve the dual problem. Mitchell and Todd [59] con-
sidered using a projective algorithm applied to the dual problem in a cutting plane
algorithm. This algorithm does not require primal iterates, and only uses the value
of a primal feasible point in calculating the direction at each iteration. Heuristics
are used to generate primal solutions. When cutting planes are added to the primal
problem, a strictly positive dual iterate is obtained by first moving in a direction
which is guaranteed to increase the additional dual variables, and the algorithm is
then restarted from this new point. They obtained reasonable computational results
on matching problems, in terms of the number of iterations required. They also
obtained promising results on linear ordering problems; for details see [54].

Goffin et al. [25, 22, 21] have also experimented with algorithms which only
require primal iterates in their algorithms for nonsmooth optimization and multi-
commodity flow problems. For a discussion of their algorithm for multicommodity
flow problems see section 5.1.

2.2. Interior point branch and bound methods

Branch-and-bound is a method for solving an integer programming problem (IP)
by solving a sequence of linear programming problems. The subproblems can be
regarded as forming a tree, rooted at the linear programming relaxation (LP) of

16 JOHN E. MITCHELL

the integer programming problem. As we move down the tree, more and more
integer variables are fixed at their values. We provide a very brief description of the
technique in order to highlight some aspects which prove important when using an
interior point method. For a more detailed discussion of branch-and-bound and the
options available, see, for example, Parker and Rardin [64].

As with interior point cutting plane methods, one of the important features of a
competitive interior point branch and bound algorithm is that the relaxations are
not solved to optimality but are terminated early. This is usually possible, as we now
argue. When using branch-and-bound, one of four things can happen at each node
of the tree. The subproblem could be infeasible; in an interior point method this
can be detected by finding a ray in the dual problem. The subproblem could have
optimal value worse than the value of a known integer feasible solution, so the node
is fathomed by bounds; in an interior point method, this can usually be detected
well before the subproblem is solved to optimality. The optimal solution could be
an integer solution with value better than the best known solution; in this case we
need to solve the subproblem to optimality, but the node is then fathomed. The
final possibility is that the optimal solution to the subproblem has optimal value
smaller than the best known solution, but the optimal solution is not feasible in the
integer program; in this case, it is possible to use heuristics based upon the basis
identification techniques described in El-Bakry et al. [17] to determine that one of
the integer variables is tending to a fractional value, and therefore that we should
probably not solve the relaxation to optimality but should branch early.

It should be noted that in only one case is it necessary to actually solve the
relaxation to optimality, and in that case the node is fathomed. When we branch
early, one constraint in the dual relaxation (LD) is dropped, so the previous solution
to (LD) is still feasible. One variable in (LP) is fixed, so infeasibilities are introduced
into (LP). Despite this, it is still possible to solve the child node quickly [10, 11].

A branch and bound interior point algorithm has the form given in figure 6.
Notice that we do not necessarily maintain primal and dual feasibility throughout

the algorithm. This means that some of the tests for convergence have to depend
upon whether the iterates are feasible.

If the relaxation is infeasible that is detected in Step 3d. If the relaxation has an
optimal value that is worse than that of the best known integer solution then that is
detected in Step 3c. In these two situations, the solution of the relaxation should not
take very many iterations, and the node is then fathomed. If the relaxation has an
integer solution which is better than the best known solution, then this relaxation is
solved to optimality and the node is fathomed in Step 3b. Here, the solution of the
relaxation may take several iterations, because an exact solution is needed, but the
node is then fathomed. Of course, it is possible that the rounding heuristics provide
the optimal solution to the relaxation early, and this is sufficiently close in value to
the dual value that the solution to the relaxation can be terminated early.

The one other possibility for a node of the tree is that the optimal solution to the
relaxation is fractional, but it has value smaller than that of the best known integer
solution. We discuss this situation further in section 2.2.1.

If it is necessary to branch then two child nodes will be created. It may eventually
be necessary to solve the relaxations at these child nodes, so it will be necessary to

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION 17

1. Initialize: Pick an initial relaxation. Choose an initial primal and dual it-
erate, using, for example, the method of Lustig et al. [50]. Set a tolerance τ
for optimality. Initialize the branch and bound tree to contain only the initial
relaxation.

2. Pick a node: Select a node of the branch and bound tree to solve next. Find
an initial solution for this node. (We discuss a method for restarting at a node
later.)

3. Perform an interior point iteration: Perform one iteration of the interior
point method for the current node.
a) Attempt to find a good integer solution by rounding the fractional solution

in an appropriate manner. If this gives the best solution found so far, store
it, and take its value as an upper bound on the optimal value of (IP).

b) If the duality gap of the current relaxation is smaller than τ and if the primal
value is better than the upper bound on the optimal value of (IP) then
− If the primal solution is integral, fathom this node, update the upper

bound on the optimal value of (IP), and return to Step 2.
− If the primal value is nonintegral, go to Step 5.

c) If the dual value of the current node is greater than the best known upper
bound, prune this node.

d) If we can find a dual ray, showing that the primal problem is infeasible, prune
this node.

e) If the current solution is dual feasible and if the relative primal infeasibility
is smaller than some tolerance, go to Step 4.

Repeat this step.
4. Check for nonintegrality: Check to see whether the solution to the current

node appears to be fractional. If it appears that the solution to this node will be
fractional, and if it appears unlikely that this node will be fathomed by bounds,
go to Step 5; otherwise return to Step 3.

5. Branch: Split the current node into two nodes. Pass the current primal and
dual solution onto the child nodes as a warm start. Go to Step 2.

Fig. 6. An interior point branch and bound algorithm

start an interior point method on these relaxations. The simplex method can start
directly from the solution to the parent node, using the dual simplex algorithm. It
is necessary to modify the solution to the parent slightly before restarting with an
interior point method, in order to obtain a slightly more centered point. We discuss
restarting in more detail in section 2.2.2.

The linear programming problems generated in a branch-and-bound tree can
suffer from considerable degeneracy, which can greatly slow the simplex method.
Degeneracy is generally not such a problem for interior point methods, and at least
one commercial package has installed a switch to change from simplex to an interior
point method within the branch-and-bound tree if difficulties arise. Applegate et
al. [5] also implemented such a switch. For a discussion of the effects of degeneracy
on interior point methods for linear programming, see Güler et al. [30].

18 JOHN E. MITCHELL

One cost of using the simplex algorithm in a branch and bound method is that it
is necessary to perform an initial basis factorization for each child subproblem. The
cost of this is clear when examining, for example, the performance of the branch and
bound code for OSL [33] on solving integer programming problems: it often happens
that the average time per iteration is about three times larger for subproblems than
it is for the root node of the branch and bound tree. This extra time is almost
completely attributable to the overhead required at each node to calculate a new
basis factorization. A comparable slow down does not happen with interior point
methods. One way to avoid this overhead would be to store the basis factorization
of each parent node, but this usually requires too much storage and is hence imprac-
ticable. Of course, part of the reason that the slow down is so noticeable is that the
simplex algorithm requires far fewer iterations to solve subproblems than to solve
the root node, because the optimal solution to the parent node does provide a good
simplex warm start for the child subproblem. At present, it does not seem possible
to get a similar reduction with an interior point method, but the fact that the basis
refactorization is so expensive means that it is not necessary to obtain as good a
reduction in the number of iterations as enjoyed by the simplex algorithm.

Interior point branch and bound methods are somewhat competitive with simplex
based branch and bound algorithms on some problems, including facility location
problems [11]. These problems have a large number of continuous variables and a
relatively small number of integer variables, so the LP relaxations are large yet the
branch and bound tree is small. It is necessary to have large relaxations for an
interior point method to compete with a simplex method. In addition, we need the
problem to be solvable on current hardware, so the branch and bound tree can not
grow too large, so we need to have only a small number of integer variables. Because
of the early termination of the solution of the relaxations, not as much information
is available at each node, so the pseudocosts [64] used to select the next branching
variable and the next node can not be calculated as accurately. This is another
reason why an interior point method can currently only be competitive on problems
with a small proportion of integer variables, because in this situation the effect of a
bad choice of branching variable is not so dramatic. More research is needed to find
good, reliable pseudocosts in an interior point branch and bound method.

To conclude this section on interior point branch and bound methods, we dis-
cuss restarting the algorithm (subsection 2.2.2) and terminating the solution of the
relaxation early when the iterates are tending towards a fractional solution (subsec-
tion 2.2.1).

2.2.1. Terminating the current relaxation early
In this section, we assume that the optimal solution to the relaxation is fractional,
but it has value smaller than that of the best known integer solution. In this situ-
ation, we can use basis identification techniques [17], as mentioned in Step 4. This
will usually save a few iterations on the solution of the current node, and it will also
result in termination at a more centered iterate, which will result in a better initial
iterate for each child of this node.

There is a risk associated with attempting to stop solution of the parent subprob-
lem early: the parent may be split into two child subproblems, when it might have

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION 19

been possible to prune the parent if it had been solved to optimality. This could
happen if the parent subproblem has worse objective function value than that of the
best known feasible solution to (IP), or if it is infeasible, or if it has an integer op-
timal solution. (Notice that the last possibility is unlikely if the basis identification
techniques are working well.) Therefore, it is wise to include some safeguards to at-
tempt to avoid this situation. Upper and lower bounds on the value of a subproblem
are provided by the values of the current primal and dual solutions, respectively,
and these can be used to regulate the decision to branch.

There are three tests used in [11] to prevent branching too early: the dual iterate
must be feasible, the relative primal infeasibility must be no greater than 10%,
and the dual objective function must not be increasing so quickly from iteration to
iteration that it is likely that the node will be fathomed by bound within an iteration
or two. Dual feasibility can usually be maintained throughout the branch and bound
tree so the first criterion is basically just a technicality. Every time a variable is
fixed, primal infeasibility is introduced; if the initial iterate for a subproblem is a
good warm start, primal infeasibility can be regained in a few iterations. Thus, the
important criterion is the third one, regarding the increase in the dual value. This
criterion prevents branching if the difference between the dual value and the value of
the incumbent integer solution has been reduced by at least half in the last iteration,
provided the current primal value is greater than the current integer solution if the
current primal iterate is feasible.

2.2.2. Warm starting at a node of the tree
The exact method used for restarting at a node of the branch and bound tree depends
upon the interior point algorithm used. In this section, we assume that the primal-
dual barrier method is being employed (see, for example, Lustig et al. [49]). It
should be noted that many of the observations we make will also be applicable if
other interior point methods are used.

Assume a child problem has been created by fixing the variable x0 at 0 or 1 in
the parent problem

min cT x + c0x0

subject to Ax + a0x0 = b (LPparent)
0 ≤ x, x0 ≤ e,

where A is an m × n matrix, a0 and b are m-vectors, c and x are n-vectors, and c0

and x0 are scalars. The child problem has the form

min cT x
subject to Ax = b̄ (LPchild)

0 ≤ x ≤ e,

where b̄ = b if x0 is fixed at zero, and b̄ = b−a0 if x0 is fixed at one. An approximate
solution x = x∗, x0 = x∗

0 to (LPparent) is known. Since we created this particular
child problem, x∗

0 must be fractional, so x∗ is probably infeasible in (LPchild). If

20 JOHN E. MITCHELL

we examine the dual problems

max bT y − eT w − w0

subject to AT y − w + z = c (LDparent)
aT
0 y − w0 + z0 = c0

w, w0, z, z0 ≥ 0,

and
max b̄T y − eT w
subject to AT y − w + z = c (LDchild)

w, z ≥ 0,

we notice that the approximate solution y = y∗, w = w∗, z = z∗ (and w0 = w∗
0 ,

z0 = z∗0) to (LDparent) is still feasible in (LDchild) — all that has changed is the
objective function value. Therefore, it is possible to restart the algorithm using an
infeasible interior point method. It may be that some of the components of x∗ are
very close to zero or one, and these components should be modified to give a slightly
more interior point, with small components being increased and large components
being decreased. Similarly, if some components of the dual variables w∗ and z∗ are
smaller than some tolerance, they should be increased, at the cost of making the
initial iterate for the subproblem slightly more infeasible. Thus, we can start the
interior point method on the child problem if we have stored x∗, y∗, and w∗. It may
be beneficial to use a pure centering step first before updating the barrier parameter
µ in a standard manner.

It may be possible to start the solution of the child problem from an iterate
for (LPparent) which was found before x∗. This earlier iterate would be further
from optimality for (LPparent) than x∗, but it may be a better initial solution to
(LPchild) just because it is more centered, with the nonbasic components being
somewhat larger. Preliminary experiments show that this approach may hold some
promise, but it needs considerably more investigation.

3. A potential function method

Karmarkar and various coauthors [43, 40] proposed a novel approach to solve integer
programming problems. This approach examines a related continuous optimization
problem and uses this continuous problem to approach a solution to the original
integer program. We outline their approach in this section.

The algorithm transforms the problem to a hard equivalent quadratic program-
ming problem (see section 3.1). At each iteration, given a strictly feasible iterate
for the hard QP, it solves an easier nonconvex quadratic programming problem to
find a direction in the hard quadratic problem (see section 3.2), and it moves in
the direction to obtain a new iterate; it also rounds the new point to an integer
point which is then checked for feasibility (see section 3.3). It may happen that the
algorithm converges to a noninteger solution; a method for handling this situation is
described in section 3.4. Computational experience with the algorithm is discussed
in section 3.5.

Finally, in section 3.6, we describe a method for solving quadratic integer pro-
gramming problems.

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION 21

3.1. Transforming the problem

The integer programming feasibility problem can be stated as

Find a point x̂ in ℜn satisfying Âx̂ ≤ b̂, x̂i ∈ {0, 1}, i = 1, . . . , n, (IPfeas)

where Â is an m̂ × n matrix and b̂ is an m̂-vector. This can be scaled to give the
equivalent problem

Find a point x in ℜn satisfying Āx ≤ b̄, xi ∈ {−1, 1}, i = 1, . . . , n,

where x = 2x̂−e, Ā = Â, and b̄ = 2b̂−Âe. This can be transformed to the nonconvex
quadratic programming problem

min n − xT x
subject to Āx ≤ b̄ (QP)

−e ≤ x ≤ e

The problem (QP) is written equivalently as

min n − xT x
subject to Ax ≤ b (QP)

where A = [ĀT I − I]T and b = [b̄T eT eT]T . We define m = m̄ + 2n, so A is an
m × n matrix and b is an m-vector. The feasible solutions to (IPfeas) correspond
to points in (QP) with value zero. Any other feasible point to (QP) has strictly
positive value. The algorithm is initialized with any strictly feasible point for the
problem (QP).

3.2. Finding the next iterate

The algorithm uses an interior point method to attempt to minimize the potential
function

m log(n − xT x) −
m

∑

i=1

log si

where s = b − Ax. The point x∗ is a global minimizer of this potential function if
and only if it is a feasible solution to (IPfeas).

At each iteration, a quadratic approximation to the potential function is con-
structed, and a direction is obtained by finding the minimum of this quadratic
approximation over an inscribed sphere. The gradient of the potential function at
the current iterate xk is given by

h = −(2m/f0)x
k + AT S−1e (8)

where f0 := n − xkT
xk and S is the diagonal matrix with diagonal elements the

entries of the vector s. The Hessian of the potential function at the current point is

H = −(2m/f0)I − (4m/f2
0)xkxkT

+ AT S−2A. (9)

It should be noted that the Hessian is a dense matrix, due to the outer product of
the vector xk with itself. The subproblem which is solved to find the direction ∆x

22 JOHN E. MITCHELL

is then
min (1/2)∆xTH∆x + hT ∆x
subject to ∆xATS−2A∆x ≤ r2

If 0 < r ≤ 1 then a feasible point ∆x in this subproblem leads to a feasible point
x + ∆x in the problem (QP). The solution to this subproblem depends on the
eigenvalues of the Hessian matrix H in the norm defined by the matrix AT S−2A;
for details, see [43, 40]. This subproblem can be solved in polynomial time. For
methods for solving it, see [43, 40] or Ye [79]. Kamath et al. originally proposed
taking a step of a fixed length in the direction ∆x; it was subsequently pointed out
by Shi and Vannelli [73] that the algorithm can be considerably enhanced by using
a line search to determine a step length.

Van Bentham et al. [7, 75] developed a variant of this algorithm to solve the
radio link frequency assignment problem. Their refinements to the original algorithm
included a method to deal with equality constraints, and the use of a barrier method
rather than a potential function method so that the Hessian matrix retains the
sparsity structure of AS2AT . The structure of their problem is such that all the
slack variables in the original problem (IPfeas) must also be binary. They used
this observation to develop a quadratic objective function which enabled them to
eliminate the inequality constraints.

3.3. Obtaining an integer point

At each iteration k, a new strictly feasible point xk for (QP) is obtained. This point
is then rounded to obtain an integral point x̃k. The simplest method to obtain x̃k

is to set

x̃k
i =

{

1 if xk
i ≥ 0

−1 if xk
i < 0

Other rounding schemes can be used. For example, we can choose x̃k
i by examining

whether xk
i is increasing or decreasing. For some problems, the structure of the

problem suggests a natural rounding scheme; for example, Van Bentham et al. [7]
have suggested several rounding schemes for the radio link frequency assignment
problem. If the rounded point x̃k is feasible in (QP) then we can terminate the
algorithm with success: x̃k leads to a feasible point in the original problem (IPfeas).

3.4. Avoiding local minimizers

The nonconvex quadratic problem may have local minimizers which are fractional
points and therefore not global minimizers. If this happens, it may be that the
rounded solution x̃k remains infeasible. In this situation, it is possible to add a
constraint

x̃kT

x ≤ n − 2 (10)

Notice that every {−1, 1} point satisfies this constraint except x̃k. After adding
this constraint, the algorithm is restarted from a strictly feasible point. It is best
to restart from scratch because the objective function is nonconvex, so we want to
generate a sequence of iterates that does not lead to the local minimizer. There
is no guarantee that equation (10) will cut off the local minimizer, but Karmarkar
claims that the addition of this constraint is usually sufficient to push the sequence

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION 23

of iterates in a different direction, so that the algorithm terminates at a different
point.

3.5. Computational experience

The algorithm was used to solve set covering problems [43]. It was also used to
solve satisfiability problems from inductive inference [40], obtaining promising results
compared to an implementation of the Davis-Putnam procedure [13] (an implicit
enumeration procedure which is similar to branch and bound). Shi and Vannelli [73]
improved on these results by incorporating a linesearch.

Van Bentham et al. [7, 75] solved radio link frequency assignment problems using
a potential reduction method. By cleverly exploiting the structure of their model,
they were able to develop a variant of the algorithm which solves problems with
several thousand variables and constraints.

The algorithm can be used to solve optimization problems by incorporating con-
straints of the form cT x ≤ K and resolving with different values of K. It should
be noted that this method is essentially a heuristic, in that it can not determine
that an infeasible instance is really infeasible. Thus, the algorithm does not lead
to a guarantee that the optimal solution has been found when solving optimization
problems.

3.6. Quadratic integer programming problems

Kamath et al. [37, 38] also investigated using a potential function interior point
method to solve quadratic integer programming problems of the form

max xT Qx
subject to xi = −1, 1, i = 1, . . . , n

where Q is a symmetric n × n matrix and x is an n-vector. This problem is NP-
Hard if Q has at least one positive eigenvalue [63]. The graph partitioning problem
can be modeled in this manner [37]. They were able to use their method to obtain
upper bounds on the optimal value of the quadratic integer programming problem
in polynomial time [38].

This approach encloses the feasible region in an ellipsoid, finds the maximum
value of the objective function in the ellipsoid, and then modifies the ellipsoid ap-
propriately. The maximum value of the objective function over the ellipsoid is the
largest eigenvalue of an appropriate matrix. By modifying the ellipsoid appropri-
ately, it is possible to obtain a reasonable upper bound on the optimal value of the
quadratic problem.

4. Solving network flow problems

4.1. Introduction

Network flow problems arise in the shipment of commodities (for example, oil, tele-
phone calls, or cars) over a network from sources to destinations. For example, oil
is shipped from oil fields to refineries to its eventual destination, telephone calls are
routed from the caller to the destination over the telephone company’s network, and
cars are routed through a city between residences, offices, and commercial buildings.

24 JOHN E. MITCHELL

Many of these network flow problems can be modeled as linear programming prob-
lems with a constraint matrix with a special structure. Historically, these problems
have been solved by using specialized versions of the simplex algorithm designed to
exploit the structure of the constraint matrix. Recently, several researchers have ex-
perimented with using an interior point algorithm to solve these linear programming
problems, with results that are very competitive with the network simplex method.
We describe some of the computational results in section 4.3. As is to be expected,
the interior point method has to be modified in order to exploit the structure of the
constraint matrix fully. The principal modification is in the use of a preconditioned
conjugate gradient method to calculate the necessary projections at each iteration.
We describe this and other modifications in section 4.2.

An overview of work in this area is contained in Resende and Pardalos [69]. An
implementation of the dual affine method is described in Resende and Veiga [70, 71].
Other interior point algorithms are investigated in Portugal et al. [65, 66]. For an
introduction to network flow problems and applications, see the book by Ahuja et
al. [1].

We now describe the minimum cost network flow problem. Given a directed
graph G = (V, E) with m vertices V and n arcs E, the arc from vertex i to vertex j
is denoted by (i, j). Flow moves around the network along the directed arcs. If more
flow is produced at a node i than is consumed at that node, then the node is called
a source node. If more flow is consumed at a node i than is produced at that node,
then the node is called a sink node. Any node which is neither a source node nor a
sink node is called a transshipment node. Let bi denote the net required flow out of
node i; if bi > 0 then node i is a source, if bi < 0 then node i is a sink, and if bi = 0
then node i is a transshipment node. For a feasible flow to exist, it is necessary that
∑

i∈V bi = 0. The flow must satisfy Kirchhoff’s Law of flow conservation: the total
flow out of node i must equal the sum of bi and the total flow into node i for each
node i. There is a cost cij for each unit of flow shipped along arc (i, j). We assume
without loss of generality that the lower bound on each arc is zero (see [1]), and
we denote the upper bound on arc (i, j) by uij. The minimum cost network flow
problem is then to meet the demands at the nodes at minimum cost while satisfying
both Kirchhoff’s Law and the bounds on the edge capacities. This can be expressed
as the following linear programming problem:

min
∑

(i,j)∈E

cijxij (11)

subject to
∑

(i,j)∈E

xij −
∑

(j,i)∈E

xji = bi for all i ∈ V (12)

0 ≤ xij ≤ uij for all (i, j) ∈ E (13)

where xij denotes the flow on arc (i, j). Usually, the problem data is integer, in
which case one of the optimal solutions to this linear program will be integer.

We let A denote the node-arc incidence matrix of the graph. Each column of
A corresponds to an arc (i, j) and has an entry “1” in row i and an entry “-1” in
row j, with all the remaining entries being zero. Notice that the constraint (12) can
be written Ax = b. The rank of the matrix A is equal to the difference between

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION 25

1. Given: Constraint matrix A, diagonal matrix D, preconditioner M , vector w,
tolerance ǫ, want to calculate an approximate solution v to equation (14).

2. Initialize: Set v = 0, r0 = w, z0 = M−1r0, p0 = z0, k = 0.
3. Main loop: While the stopping criterion is not satisfied, repeat the following

steps:
a) Calculate qk = ADAT pk.
b) Calculate αk = zT

k rk/pT
k qk.

c) Calculate vk+1 = vk + αkpk.
d) Calculate rk+1 = rk − αkqk.
e) Find zk+1 by solving Mzk+1 = rk+1.
f) Calculate βk = zT

k+1rk+1/zT
k rk.

g) Calculate pk+1 = zk+1 + βkpk.
h) Increase the iteration counter k by one.

4. Stop: Final solution is v = vk.

Fig. 7. The preconditioned conjugate gradient algorithm

the number of vertices and the number of connected components of the graph. One
redundant row can be eliminated for each connected component. For simplicity of
notation we retain the redundant rows, but it should be understood that these rows
have been eliminated.

Many combinatorial optimization problems can be formulated as minimum cost
network flow problems. Examples include the assignment problem, the transporta-
tion problem, the shortest path problem, and the maximum flow problem. For more
details, see [1]. The multicommodity network flow problem has more than one com-
modity moving through the network. See section 5 for a discussion of interior point
multicommodity network flow algorithms. For background on the multicommodity
network flow problem, see, for example, the books by Ahuja [1] and Minoux [53].

4.2. Components of interior point network flow methods

4.2.1. Calculating the projections by using a preconditioned conjugate gradient
method
In any implementation of an interior point method, it is necessary to find a direction
at each iteration by solving a system of equations

ADAT v = w (14)

where A is the m × n constraint matrix, D is a diagonal m × m matrix, v is an
unknown m-vector, and w is a known m-vector. This is usually done by calculating
a factorization of the matrix ADAT . The matrix D and the vector w change from
iteration to iteration; it is necessary to solve this system for more than one vector
w at each iteration of some algorithms. Resende and Veiga showed that superior
performance can be obtained on network flow problems if the system (14) is solved
using a preconditioned conjugate gradient method.

A preconditioned conjugate gradient algorithm for solving (14) is given in fig-
ure 7. The preconditioner is denoted by M . The matrix M is a positive definite

26 JOHN E. MITCHELL

matrix and it is chosen so that the matrix M−1(ADAT) is less ill-conditioned than
the original matrix ADAT , and this should then improve the convergence of the
conjugate gradient algorithm. Notice that Step 3e of the preconditioned conjugate
gradient algorithm requires the solution of a system of equations involving M . The
loop in the algorithm will probably be executed at least five to ten times for each
calculation of a projection; thus, it is essential that it be considerably easier to solve
a system of equations involving M than one involving ADAT .

The structure of the network flow problem makes it possible to choose a good
preconditioner M . The simplest preconditioner is to take M to be the diagonal
of the matrix ADAT . This is simple to compute, it makes the calculation of zk+1

trivial, and it can be effective. A more sophisticated preconditioner that exploits
the nature of the problem is the maximum weighted spanning tree (MST) precondi-
tioner. The edges of the graph are weighted by the corresponding elements of the
diagonal matrix D, and a maximum weight spanning tree is then found using either
Kruskal’s algorithm or Prim’s algorithm. (For descriptions of these algorithms for
finding a maximum weight spanning forest, see [1].) Let S denote the columns of A
corresponding to the edges in the maximum weight forest. The MST preconditioner
is then

M = SD̂ST , (15)

where D̂ is a diagonal matrix containing the entries of D for the edges in the max-
imum weight spanning forest. The preconditioned residue system solved in Step 3e
can be solved in time proportional to the number of vertices because the coefficient
matrix S can be permuted into block triangular form.

The diagonal preconditioner appears to be better than the MST preconditioner
in the early iterations of the interior point algorithm, in that it requires fewer steps
of the preconditioned conjugate gradient algorithm to obtain a direction of sufficient
accuracy. The situation reverses in later iterations. Initially, the MST preconditioner
is a poor approximation to the matrix ADAT because it puts too much emphasis
on a few edges when it is not really possible to decide which edges are important.
Eventually, the MST preconditioner becomes a better approximation to the matrix
ADAT , because it is possible to pick the right subset of the edges. Thus, Resende
and Veiga [70, 71] use the diagonal preconditioner initially and switch to the MST
preconditioner once the performance of the diagonal preconditioner falls off in their
dual affine algorithm.

Portugal et al. [65, 66] have proposed a preconditioner based on an incomplete QR
factorization of the matrix D1/2AT . This preconditioner appears to behave like the
diagonal preconditioner in the early iterations, like the MST preconditioner in the
later iterations, and to perform better than either of the other two preconditioners
in the intermediate iterations. They have used this preconditioner in a primal-dual
interior point algorithm for network flow problems. A preconditioner proposed by
Karmarkar and Ramakrishnan [42] is based on selectively zeroing out elements of
DA and also of the resulting modified product ADAT , and then using the incomplete
Cholesky factors of the approximation to this matrix as the preconditioner. This
preconditioner also performs similarly to the diagonal preconditioner in the early
iterations and similarly to the MST preconditioner in the later iterations.

We now discuss the stopping criterion used within the preconditioned conjugate

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION 27

gradient algorithm. Recall that we want to solve equation (14) and that we use the
vectors vk as successive approximations to v. The check used in the papers discussed
in this section examines the vector ADAT vk: if the angle θ between this vector and
the right hand side vector w is close to zero, then we have solved equation (14) ap-
proximately. Resende and Veiga use the criterion that the preconditioned conjugate
gradient algorithm can be halted if | 1 − cos θ |< ǫcos, where ǫcos is 10−3 in early
iterations of the interior point algorithm and is gradually decreased. The calculation
of cos θ requires about as much work as one conjugate gradient iteration, so it is only
calculated every fifth iteration by Resende and Veiga. Additionally, the conjugate
gradient method is halted if the size of the residual rk becomes very small.

4.2.2. Recovering the optimal flow
Since the node arc incidence matrix is totally unimodular, every basic feasible solu-
tion to the network flow problem is integral provided b is integral, so every iterate
generated by the simplex algorithm corresponds to an integral flow. The basic feasi-
ble solutions correspond to forests in the graph, with nonzero flow only on the edges
in the forest. An interior point method usually converges to a point in the relative
interior of the face of optimal solutions, so, if the optimal solution is not unique,
an interior point method will not return an integral solution. We discuss methods
used to obtain an integral optimal solution from the iterates generated by an interior
point algorithm.

The maximum weight spanning tree found in the preconditioned conjugate rou-
tine can be used to guess an optimal solution: if the basic solution corresponding
to this forest is feasible and the corresponding dual solution is also feasible then
this solution is optimal. This works well if the solution is unique, but unfortunately
it usually does not work well in the presence of multiple optimal solutions. If the
primal basic solution is not feasible, then the current dual iterate is projected to
give a point ŷ which is complementary to the primal basic solution. The edges for
which the dual slack has small magnitude for this dual vector ŷ are then used to
define a subgraph of the original graph. The edges in this subgraph are a superset
of the edges in the forest. The flow on all edges not in this subgraph are assigned
flow either 0 or equal to their upper bound. Resende and Veiga then attempt to
find a feasible flow in the original graph by only adjusting flow on the edges in the
subgraph. This can be done by solving a maximum flow problem and is guaranteed
to give an integral flow if one exists.

As the interior point iterates converge towards optimality, this procedure will
eventually give an integral optimal flow, provided the flows on the nonbasic edges are
set correctly to 0 or their upper bound. Resende and Veiga examine the dual variable
si corresponding to the nonbasic variable xi and the dual variable zi corresponding
to the upper bound constraint on this variable xi. If si > zi then variable xi is set
to zero; otherwise it is set equal to its upper bound. As the interior point method
converges to optimality, this setting will eventually be optimal, and so the procedure
outlined above will give an optimal integral solution to the network flow problem.
The basis identification method of Megiddo [51] can be used to determine an optimal
integral basic feasible solution once the interior point method is close enough.

28 JOHN E. MITCHELL

4.3. Comparison with Network Simplex

Resende and Veiga [70, 71] have compared their code with version 3.0 of CPLEX Ne-
topt [12]. They generated problems of seven different structures and of varying sizes
for each structure. Two problem classes were generated using NETGEN [45], and
the other problems were generated using various generators contributed to the First
DIMACS Algorithm Implementation Challenge [14] (these generators are available
from DIMACS at Rutgers University, at ftp site: dimacs.rutgers.edu). Both
CPLEX Netopt and the code of Resende and Veiga were able to solve all of the
generated problems, providing integer flows as output. In all but two classes, the
interior point code was faster than CPLEX Netopt on the largest problems. On
one of the remaining classes, the difference between the interior point code and the
simplex code was decreasing as the problem size increased.

Thus, this work shows that interior point methods can outperform the simplex
algorithm even in problem classes which lend themselves to sophisticated implemen-
tations of simplex. For an interior point method to be successful, it is necessary to use
a preconditioned conjugate gradient method to calculate the projections, and to use
various other techniques outlined here and discussed in more detail in [65, 66, 70, 71].

Many of the computational runs of these authors took several hours, and some
of the runs with CPLEX Netopt took longer than a day. They used a number of
workstations (each solving a separate problem) to obtain their results, and they were
able to solve problems which are considered very large. It is on these large problems
that the advantages of interior point methods become clear.

5. The multicommodity network flow problem

In this section, we describe two interior point approaches to multicommodity network
flow problems. The nonlinear multicommodity network flow problem with separable
increasing convex costs can be modelled as a nonlinear programming problem with
linear constraints. The problems of interest generally create very large nonlinear
programs. They arise in, for example, the areas of telecommunication, transporta-
tion, computer networks, and multi-item production planning. For more discussion
of the multicommodity network flow problem, see the books by Ahuja [1] and Mi-
noux [53]. (For a description of single commodity linear network flow problems, see
section 4.)

5.1. A column generation algorithm for the multicommodity network

flow problem

Goffin et al. [21] have described an interior point algorithm for solving nonlinear
multicommodity network flow problems that has similarities to the Dantzig-Wolfe
algorithm. Their algorithm is a column generation method, with new columns added
either one at a time or in bunches. It approximately solves the nonlinear program
that arises at each stage by using a projective method, specifically the de Ghellinck
and Vial [19] variant of Karmarkar’s algorithm [41]. The column generation subprob-
lem is formulated as a shortest path problem and is solved using an implementation
of Dijkstra’s algorithm.

Goffin et al. [25, 22] have previously described column generation interior point

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION 29

algorithms designed to solve nonsmooth optimization problems. The research de-
scribed in this section is a continuation and extension of the work described in their
earlier papers.

We are given a graph G = (V, E) and a set of commodities I. We denote the node
arc incidence matrix by A. For each commodity, there are source nodes where flow is
produced, sink nodes where flow is consumed, and transshipment nodes, where the
flow is in balance. The required net flow out of node v of commodity i is represented
by di

v. Goffin et al. [21] restrict themselves to the case where each commodity has
exactly one source node and one sink node. The capacity ye of each arc e can be
selected, with an associated convex cost fe(xe); the upper bound on the capacity is
denoted by γe. Associated with each commodity i and each arc e is a linear cost ci

e

for each unit of commodity i shipped along arc e. The multicommodity flow problem
can then be formulated as

min
∑

i∈I

∑

e∈E ci
ex

i
e +

∑

e∈E fe(ye) (16)

subject to
∑

i∈I xi
e ≤ ye ∀e ∈ E (17)

Axi = di ∀i ∈ I (18)

xi
e ≥ 0 ∀i ∈ I, e ∈ E (19)

0 ≤ ye ≤ γe ∀e ∈ E. (20)

Here, xi
e represents the flow of commodity i on arc e and ye represents the total

flow on arc e. We assume that the cost function fe(ye) is strictly increasing and
convex and that the costs ce are nonnegative. The standard linear multicommodity
flow problem corresponds to fe = 0 for every arc e. Equation (17) is called the
coupling constraint and equation (18) is the flow conservation constraint. Without
equation (17), the problem would be separable. This equation is dualized in the
Lagrangian relaxation developed for this problem. The Lagrangian multipliers for
these constraints are nonnegative because of the structure of the objective function;
with the use of an interior point cutting plane algorithm, the multipliers are actually
always positive.

Dualizing the coupling constraints (17) gives the Lagrangian

L(x, y; u) :=
∑

i∈I

∑

e∈E

ci
ex

i
e +

∑

e∈E

fe(ye) +
∑

e∈E

ue(−ye +
∑

i∈I

xi
e) (21)

where u is the vector of Lagrange multipliers for the coupling constraints. Since the
multicommodity flow problem is convex, it can be solved by solving the Lagrangian
dual problem

max LD(u)
subject to u ≥ 0

where the Lagrangian dual function LD(u) is given by

LD(u) := min{L(x, y; u) : Axi = di, xi ≥ 0, i ∈ I, 0 ≤ y ≤ γ} (22)

The Lagrangian dual function LD(u) is a nonsmooth concave function. The
Lagrangian dual problem can be solved by obtaining a polyhedral approximation

30 JOHN E. MITCHELL

1. Select a point (z̄, ū) in the localization set LOC.
2. Compute LD(ū) and find a subgradient ξ of LD(ū) at ū.
3. Add the inequality

z − ξT u ≤ LD(ū) − ξT ū

to the definition of the localization set LOC. If LD(ū) > θκ
inf , then update θκ

inf

to LD(ū).
4. Repeat the process until the termination criterion is satisfied.

Fig. 8. Column generation algorithm for the multicommodity flow problem

to the dual function using supergradients ξ. If LD(u) is differentiable at the point
ū then the only supergradient at that point is the gradient itself. In general, a
supergradient ξ at ū satisfies

LD(u) ≤ LD(ū) + ξT (u − ū) (23)

for all u ≥ 0. Given points uk ≥ 0 and associated supergradients ξk for k = 1, . . . , κ,
the optimal value to the linear programming problem

max z
subject to z − (ξk)T u ≤ LD(uk) − (ξk)T uk for k = 1, . . . , κ

provides an upper bound θκ
sup on the optimal value of the Lagrangian dual. It can

be shown that if κ is large enough, then the solution to this linear program will solve
the Lagrangian dual. The maximum of LD(uk) for k = 1, . . . , κ provides a lower
bound θκ

inf on the optimal value of the dual, and any optimal solution lies in the
localization set

LOCκ = {(z, u) : z ≥ θκ
inf , z − (ξk)T u ≤ LD(uk) − (ξk)T uk, k = 1, . . . , κ}. (24)

At each stage, the algorithm generates a point in the localization set. If this
point is feasible in the Lagrangian dual, then we can update the lower bound θκ

inf .
If the point is not feasible, then we can generate a new subgradient ξ and add the
corresponding constraint to the localization set. In either case, the localization set is
updated, so we then find a new point in this set and repeat the process until the gap
between θκ

inf and θκ
sup is sufficiently small. We summarize this in the prototypical

algorithm given in figure 8, dropping the iteration counter k to simplify the notation.

Step 1 of this process is usually called the Master Problem. Classically, it has
been solved using the simplex algorithm, and then the whole process resembles
Dantzig-Wolfe decomposition. Goffin et al. use an interior point method to solve the
Master Problem. They apply the de Ghellinck and Vial variant [19] of Karmarkar’s
projective algorithm [41] to the dual of Master Problem to calculate the analytic
center of the localization set. The localization set is modified by the addition of
constraints so columns are added to the dual of this problem. An interior point is
generated in the dual by using the technique of Mitchell and Todd [59]. The method

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION 31

used by Goffin et al. generates primal and dual iterates at each approximate solution
to the master problem, so an approximate solution to the Lagrangian dual can be
converted to an approximate solution to the multicommodity flow problem.

Step 2 of the prototype algorithm is called the subproblem or oracle. There are
choices available in the solution of this problem for a multicommodity flow problem,
depending upon the level of disaggregation of the constraints. The constraints for
the subproblem are separable by commodity. It is then possible to generate one
subgradient for the whole problem, or to generate subgradients corresponding to each
commodity. Goffin et al. obtained better results by disaggregating the constraints
and generating separate subgradients for each commodity; this is in agreement with
other work in the literature which used different algorithms to solve the Master
Problem (see Jones et al. [34]).

Goffin et al. give computational results for random problems with up to 500
nodes, 1000 arcs, and 4000 commodities, and for some smaller problems from the
literature. (In their formulation, the largest problems could have up to 8 × 106

primal variables xi
e.) They compared their algorithm with an implementation of

Dantzig-Wolfe decomposition, and the interior point algorithm was clearly superior
for the problems discussed.

5.2. Other interior point methods to solve the multicommodity net-

work flow problem

Kamath et al. [36, 39] have described several interior point methods for the multi-
commodity flow problem. One approach solves the problem as a linear programming
problem using a dual projective interior point method. They obtained computational
results comparable with CPLEX Netopt [12]. A second approach places the network
flow constraints in a convex quadratic objective function and solves a minimization
problem with this objective subject to the capacity constraints. This algorithm has
good theoretical complexity for approximately solving the multicommodity network
flow problem.

6. Computational complexity results

6.1. Theoretical behaviour of cutting plane algorithms

It is usually straightforward to show that an interior point cutting plane (or column
generation) algorithm runs in time polynomial in the total number of constraints (or
columns) generated during the algorithm — see, for example, Mitchell [56] or den
Hertog et al. [31, 32]. A harder problem is to show that such an algorithm runs in
time polynomial in the size of the original description of the problem.

Given an integer programming problem, a separation routine either confirms that
a point is in the convex hull of the set of feasible integer points, or it provides a cutting
plane which separates the point from the convex hull. If the separation routine runs
in time polynomial in the size of the problem, then the ellipsoid algorithm can be
used to solve the integer programming problem in polynomial time — see Grötschel
et al. [29]. It is not necessary to drop any constraints when using this method. For
the rest of this subsection, we assume that the separation routines require polynomial
time.

32 JOHN E. MITCHELL

To date, the only interior point algorithm which solves the integer program in
polynomial time and which does not drop constraints is due to Vaidya [74]. This al-
gorithm uses the volumetric center, so its analysis differs from that of more standard
interior point methods. Vaidya’s analysis of his algorithm shows that only a polyno-
mial number of constraints are generated, even though an infinite number of possible
constraints exists. This is a crucial point in proving the polynomial complexity of
his algorithm, and indeed of any cutting plane or column generation algorithm. For
an alternative analysis of this algorithm, see Anstreicher [4]. Anstreicher was able
to greatly reduce the constants involved in the complexity analysis of Vaidya’s algo-
rithm, making the algorithm considerably more attractive for implementation. For
example, Anstreicher reduced the number of Newton steps by a factor of 1.8 million
and he reduced the maximum number of constraints used by a factor of 104. Vaidya’s
algorithm is a short step algorithm, in the sense that the reduction in the duality
gap at an iteration is dependent on the dimension of the problem. Ramaswamy
and Mitchell [68] have developed a long step variant of Vaidya’s algorithm that has
polynomial convergence. Their algorithm reduces the duality gap by a fixed ratio at
any iteration where it is not necessary to add or drop constraints.

Atkinson and Vaidya [6] developed a polynomial time cutting plane algorithm
which used the analytic center. This algorithm drops constraints that become unim-
portant, and this is essential in their complexity analysis. Previous algorithms were
often shown to be polynomial in the number of additional constraints, but without
a proof that the number of added constraints is polynomial. Atkinson and Vaidya’s
algorithm finds a feasible point for a set of convex inequalities by finding an analytic
center for a subset of the inequalities and using an oracle to test whether that point
satisfies all the inequalities. If the oracle returns a violated inequality, a shifted
linear constraint is added so that the analytic center remains feasible and close to
the new analytic center.

Mitchell and Ramaswamy [58] developed a barrier function cutting plane algo-
rithm using some of the ideas from [6]. This algorithm is a long step algorithm,
unlike the algorithm in [6]: if it is not necessary to add or drop constraints, then
they reduce the duality gap by a constant fraction. They showed some links between
the notion of a point being centered (see, for example, Roos and Vial [72]) and the
criteria for a constraint to be added or dropped in [6]. Barrier function methods for
linear programming have shown excellent computational performance and they can
be constructed to have superlinear and quadratic convergence. It would thus appear
desirable to employ these methods in a column generation algorithm.

Goffin et al. [23, 24] presented a pseudopolynomial column generation algorithm
which does not need to drop any columns. The number of iterations required to get
the objective function value to within ǫ of optimality is polynomial in ǫ, but this
algorithm does not obtain a solution within 2−L of optimality in time polynomial
in L, where L is the size of the data.

There have been several papers recently analyzing algorithms that add many cuts
at once (see, for example, Luo [48], Ramaswamy and Mitchell [67], and Ye [80]).
These papers generally show that the complexity of an algorithm is not harmed if
many cuts are added at once, although there do have to be some bounds on the
number of constraints added simultaneously.

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION 33

The earlier theoretical papers on interior point cutting plane algorithms generally
added the constraints far from the current center, so that the center of the new
system is close to the center of the old system. The paper by Goffin et al. [24]
shows that it is possible to add a cutting plane right through the current analytic
center without changing the complexity of their algorithm [23]. Ye [80] extended
this analysis to the case where multiple cuts are placed right through the analytic
center. Ramaswamy and Mitchell [67] describe an algorithm which adds multiple
cuts through the analytic center, and they show that the new analytic center can be
regained in O(

√
p log(p)) iterations, where p is the number of added cuts.

6.2. Improved complexity results for selected combinatorial optimiza-

tion problems

There has been some research on using interior point methods within algorithms to
solve some combinatorial optimization problems that can be solved in polynomial
time. This has led to improved complexity results for some problems.

The research on interior point methods for positive semi-definite programming
has lead to improved algorithms for various problems in combinatorial optimization.
For example, see the the chapter in this book by Alizadeh, or the papers by Goemans
et al. [18, 20], Alizadeh [2] or chapter 9 of the book [29].

Bertsimas and Orlin [8] use the interior point algorithm for convex programming
given by Vaidya [74] to obtain algorithms with superior theoretical complexity for
several combinatorial optimization problems, principally by giving a new method
for solving the Lagrangean dual of a problem. This leads to improved complexity
for lower bounding procedures for the traveling salesman problem (particularly, the
Held and Karp method), the Steiner tree problem, the 2-connected problem, vehicle
routing problems, multicommodity flow problems, facility location problems, and
others.

Xue and Ye [78] have described an interior point algorithm for solving the prob-
lem of minimizing a sum of Euclidean norms. This algorithm can be used to solve
problems related to Steiner trees with better theoretical complexity than the previ-
ously best known algorithm.

7. Conclusions

We have discussed the ways in which interior point methods have been used to
solve combinatorial problems. The methods discussed include algorithms where the
simplex method has been replaced by an interior point method as well as a new
method which appears unrelated to previous simplex-based algorithms.

We discussed incorporating interior point methods into cutting plane and branch
and bound algorithms for integer programming in section 2. In order to do this
successfully, it is necessary to be able to use a warm start somewhat efficiently. The
effective use of a warm start in an interior point method is an active area of research;
if a warm start could be exploited successfully by an interior point method then the
performance of interior point cutting plane and branch and bound algorithms would
be considerably enhanced. In the research to date, the most important technique
appears to be early termination: the current relaxation is only solved to within

34 JOHN E. MITCHELL

some tolerance of optimality before we attempt to refine the relaxation. Currently,
interior point cutting plane methods do appear to be somewhat competitive with
simplex cutting plane algorithms, at least for some problems. Interior point branch
and bound algorithms still appear weaker than simplex based algorithms, at least
for the size of problems which can currently be solved. For linear programming,
interior point methods start to outperform simplex for large problems, so a branch
and bound interior point method would only be advantageous for large problems
(thousands of variables and constraints). Pure integer problems of this size are
currently generally intractable. Thus, interior point branch and bound methods are
currently only useful for problems with a small number of integer variables, but a
large number of continuous variables. As hardware improves, it will become possible
to solve larger problems, and interior point branch and bound methods will become
more attractive. Additionally, if a warm start could be exploited more efficiently
then an interior point method would become attractive even for smaller problems.

We described a potential reduction algorithm that transforms an integer pro-
gramming problem into an equivalent quadratic program in section 3. This algo-
rithm appears to have reasonable computational performance, and it could solve
large problems that were previously unsolved.

We described the use of interior point methods to solve network flow problems
in section 4. These problems can be solved by solving a single linear program. The
computational results with an interior point method are better than those with a
specialized simplex method for large problems in several classes.

Research on the multicommodity network flow problem was discussed in section 5.
A column generation algorithm which appears to outperform classical Dantzig-Wolfe
decomposition on these problems was described.

With all of these methods, the relative performance of the interior pont method
to other methods improves as the problem size increases. This is typical of compu-
tational results with interior point methods for linear programming and other prob-
lems. Interior point methods will probably not be the method of choice for small
or medium sized problems, but they may become the preferred method for larger
problems once computational hardware improves sufficiently to make it possible to
routinely solve problems which are currently impracticably large. The increasing
use of parallel computers and networks of workstations is leading to the solution of
ever larger problems. Of course, improvements in simplex may keep it the method of
choice even for large problems, but we expect that there will be at least some classes
of problems where an interior point method is superior for large instances. Research
on most of the algorithms discussed in this paper is ongoing, and the researchers
involved are attempting to solve larger problems, in an effort to determine the best
algorithm for large hard problems.

We discussed theoretical issues concerning cutting plane and column generation
algorithms in section 6.1. There are polynomial time interior point cutting plane
algorithms. However, to date there is no polynomial time interior point cutting plane
algorithm that is based upon the analytic center and which does not drop constraints.
Whether such an algorithm exists is an interesting open problem. The discussion
in section 6.2 of improved complexity results for various combinatorial optimization
problems is a starting point for what will probably be an active research area in the

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION 35

next few years.

References

1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Prentice Hall, Englewood
Cliffs, New Jersey, 1993.

2. F. Alizadeh. Interior point methods in semidefinite programming with applications to combi-
natorial optimization. SIAM Journal on Optimization, 5(1):13–51, 1995.

3. K. M. Anstreicher. A combined phase I – phase II scaled potential algorithm for linear
programming. Mathematical Programming, 52:429–439, 1991.

4. K. M. Anstreicher. On Vaidya’s volumetric cutting plane method for convex programming.
Technical report, Department of Management Sciences, University of Iowa, Iowa City, Iowa
52242, September 1994.

5. D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Finding cuts in the TSP (a preliminary
report). Technical report, Mathematics, AT&T Bell Laboratories, Murray Hill, NJ, 1994.

6. D. S. Atkinson and P. M. Vaidya. A cutting plane algorithm for convex programming that
uses analytic centers. Mathematical Programming, 69:1–43, 1995.

7. H. van Bentham, A. Hipolito, B. Jansen, C. Roos, T. Terlaky, and J. Warners. Radio link
frequency assignment project, Technical annex T–2.3.2: Potential reduction methods. Techni-
cal report, Faculty of Technical Mathematics and Informatics, Delft University of Technology,
Delft, The Netherlands, 1995.

8. D. Bertsimas and J. B. Orlin. A technique for speeding up the solution of the Lagrangean
dual. Mathematical Programming, 63:23–45, 1994.

9. J. R. Birge, R. M. Freund, and R. J. Vanderbei. Prior reduced fill–in in solving equations in
interior point algorithms. Operations Research Letters, 11:195–198, 1992.

10. B. Borchers. Improved branch and bound algorithms for integer programming. PhD thesis,
Rensselaer Polytechnic Institute, Mathematical Sciences, Troy, NY, 1992.

11. B. Borchers and J. E. Mitchell. Using an interior point method in a branch and bound
algorithm for integer programming. Technical Report 195, Mathematical Sciences, Rensselaer
Polytechnic Institute, Troy, NY 12180, March 1991. Revised July 7, 1992.

12. CPLEX Optimization Inc. CPLEX Linear Optimizer and Mixed Integer Optimizer. Suite
279, 930 Tahoe Blvd. Bldg 802, Incline Village, NV 89541.

13. M. Davis and H. Putnam. A computing procedure for quantification theory. J. Assoc. Comput.

Mach., 7:201–215, 1960.
14. DIMACS. The first DIMACS international implementation challenge: The benchmark ex-

periments. Technical report, DIMACS, RUTCOR, Rutgers University, New Brunswick, NJ,
1991.

15. J. Edmonds. Maximum matching and a polyhedron with 0, 1 vertices. Journal of Research

National Bureau of Standards, 69B:125–130, 1965.
16. J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.
17. A. S. El–Bakry, R. A. Tapia, and Y. Zhang. A study of indicators for identifying zero variables

in interior–point methods. SIAM Review, 36:45–72, 1994.
18. Uriel Feige and Michel X. Goemans. Approximating the value of two prover proof systems,

with applications to MAX 2SAT and MAX DICUT. In Proceedings of the Third Israel Sym-

posium on Theory of Computing and Systems, 1995.
19. G. de Ghellinck and J.-P. Vial. A polynomial Newton method for linear programming. Algo-

rithmica, 1:425–453, 1986.
20. Michel X. Goemans and David P. Williamson. Improved Approximation Algorithms for Max-

imum Cut and Satisfiability Problems Using Semidefinite Programming. J. Assoc. Comput.

Mach., 1994. (To appear). A preliminary version appeared in Proc. 26th Annual ACM Sym-
posium on Theory of Computing.

21. J.-L. Goffin, J. Gondzio, R. Sarkissian, and J.-P. Vial. Solving nonlinear multicommodity
network flow problems by the analytic center cutting plane method. Technical report, GERAD,
Faculty of Management, McGill University, Montreal, Quebec, Canada H3A 1G5, October
1994.

22. J.-L. Goffin, A. Haurie, and J.-P. Vial. Decomposition and nondifferentiable optimization
with the projective algorithm. Management Science, 38:284–302, 1992.

36 JOHN E. MITCHELL

23. J.-L. Goffin, Z.-Q. Luo, and Y. Ye. On the complexity of a column generation algorithm for
convex or quasiconvex problems. In Large Scale Optimization: The State of the Art. Kluwer
Academic Publishers, 1993.

24. J.-L. Goffin, Z.-Q. Luo, and Y. Ye. Complexity analysis of an interior cutting plane method
for convex feasibility problems. Technical report, Faculty of Management, McGill University,
Montréal, Québec, Canada, June 1994.

25. J.-L. Goffin and J.-P. Vial. Cutting planes and column generation techniques with the pro-
jective algorithm. Journal of Optimization Theory and Applications, 65(3):409–429, 1990.

26. R. E. Gomory. An algorithm for integer solutions to linear programs. In R. L. Graves and
P. Wolfe, editors, Recent Advances in Mathematical Programming, pages 269–302. McGraw-
Hill, New York, 1963.

27. M. Grötschel and O. Holland. Solving matching problems with linear programming. Mathe-

matical Programming, 33:243–259, 1985.
28. M. Grötschel, M. Jünger, and G. Reinelt. A cutting plane algorithm for the linear ordering

problem. Operations Research, 32:1195–1220, 1984.
29. M. Grötschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-

mization. Springer-Verlag, Berlin, Germany, 1988.
30. O. Güler, D. den Hertog, C. Roos, T. Terlaky, and T. Tsuchiya. Degeneracy in interior point

methods for linear programming: A survey. Annals of Operations Research, 46:107–138, 1993.
31. D. den Hertog. Interior Point Approach to Linear, Quadratic and Convex Programming,

Algorithms and Complexity. PhD thesis, Faculty of Mathematics and Informatics, TU Delft,
NL–2628 BL Delft, The Netherlands, September 1992.

32. D. den Hertog, C. Roos, and T. Terlaky. A build–up variant of the path–following method
for LP. Operations Research Letters, 12:181–186, 1992.

33. IBM. IBM Optimization Subroutine Library Guide and Reference, August 1990. Publication
number SC23–0519–1.

34. K. L. Jones, I. J. Lustig, J. M. Farvolden, and W. B. Powell. Multicommodity network flows
— the impact of formulation on decomposition. Mathematical Programming, 62:95–117, 1993.

35. M. Jünger, G. Reinelt, and S. Thienel. Practical problem solving with cutting plane algorithms
in combinatorial optimization. Technical Report 94.156, Institut für Informatik, Universität
zu Köln, Pohligstraße 1, D-50969 Köln, Germany, March 1994.

36. A. P. Kamath. Efficient Continuous Algorithms for Combinatorial Optimization. PhD thesis,
Department of Computer Science, Stanford University, Palo Alto, CA, February 1995.

37. A. P. Kamath and N. K. Karmarkar. A continuous approach to compute upper bounds
in quadratic maximization problems with integer constraints. In C. A. Floudas and P. M.
Pardalos, editors, Recent Advances in Global Optimization, Princeton Series in Computer
Science, pages 125–140. Princeton University Press, Princeton, NJ, USA, 1992.

38. A. P. Kamath and N. K. Karmarkar. An O(nL) iteration algorithm for computing bounds
in quadratic optimization problems. In P. M. Pardalos, editor, Complexity in Numerical

Optimization, pages 254–268. World Scientific Publishing Company, Singapore (USA address:
River Edge, NJ 07661), 1993.

39. A. P. Kamath, N. K. Karmarkar, and K. G. Ramakrishnan. Computational and complexity
results for an interior point algorithm on multi-commodity flow problem. Technical report,
Department of Computer Science, Stanford University, Palo Alto, CA, 1993.

40. A. P. Kamath, N. K. Karmarkar, K. G. Ramakrishnan, and M. G. C. Resende. A continuous
approach to inductive inference. Mathematical Programming, 57:215–238, 1992.

41. N. K. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,
4:373–395, 1984.

42. N. K. Karmarkar and K. G. Ramakrishnan. Computational results of an interior point algo-
rithm for large scale linear programming. Mathematical Programming, 52:555–586, 1991.

43. N. K. Karmarkar, M. G. C. Resende, and K. G. Ramakrishnan. An interior point algorithm
to solve computationally difficult set covering problems. Mathematical Programming, 52:597–
618, 1991.

44. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,
editors, Complexity of Computer Computations, pages 85–103. Plenum Press, New York,
1972.

45. D. Klingman, A. Napier, and J. Stutz. Netgen: A program for generating large scale capac-
itated assignment, transportation, and minimum cost network flow problems. Management

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION 37

Science, 20:814–821, 1974.
46. A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems.

Econometrica, 28:497–520, 1960.
47. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors. The Traveling

Salesman Problem. John Wiley, New York, 1985.
48. Z.-Q. Luo. Analysis of a cutting plane method that uses weighted analytic center and mul-

tiple cuts. Technical report, Department of Electrical and Computer Engineering, McMaster
University, Hamilton, Ontario, L8S 4L7, Canada, September 1994.

49. I. J. Lustig, R. E. Marsten, and D. F. Shanno. On implementing Mehrotra’s predictor–
corrector interior point method for linear programming. SIAM Journal on Optimization,
2:435–449, 1992.

50. I. J. Lustig, R. E. Marsten, and D. F. Shanno. Interior point methods for linear programming:
Computational state of the art. ORSA Journal on Computing, 6(1):1–14, 1994. See also the
following commentaries and rejoinder.

51. N. Megiddo. On finding primal– and dual–optimal bases. ORSA Journal on Computing,
3:63–65, 1991.

52. S. Mehrotra. On the implementation of a (primal–dual) interior point method. SIAM Journal

on Optimization, 2(4):575–601, 1992.
53. M. Minoux. Mathematical Programming: Theory and Algorithms. Wiley, New York, 1986.
54. J. E. Mitchell. Karmarkar’s Algorithm and Combinatorial Optimization Problems. PhD

thesis, School of Operations Research and Industrial Engineering, Cornell University, Ithaca,
NY, 1988.

55. J. E. Mitchell. Fixing variables and generating classical cutting planes when using an interior
point branch and cut method to solve integer programming problems. Technical Report 216,
Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, October 1994.

56. J. E. Mitchell. An interior point column generation method for linear programming using
shifted barriers. SIAM Journal on Optimization, 4:423–440, May 1994.

57. J. E. Mitchell and B. Borchers. Solving real-world linear ordering problems using a primal-dual
interior point cutting plane method. Technical Report 207, Mathematical Sciences, Rensselaer
Polytechnic Institute, Troy, NY 12180–3590, March 1993. To appear in Annals of OR.

58. J. E. Mitchell and S. Ramaswamy. An extension of Atkinson and Vaidya’s algorithm that uses
the central trajectory. Technical Report 37–93–387, DSES, Rensselaer Polytechnic Institute,
Troy, NY 12180–3590, August 1993.

59. J. E. Mitchell and M. J. Todd. Solving combinatorial optimizationproblems using Karmarkar’s
algorithm. Mathematical Programming, 56:245–284, 1992.

60. S. Mizuno, M. Kojima, and M. J. Todd. Infeasible–interior–point primal–dual potential–
reduction algorithms for linear programming. SIAM Journal on Optimization, 5:52–67, 1995.

61. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley,
New York, 1988.

62. G. L. Nemhauser and L. A. Wolsey. Integer programming. In G. L. Nemhauser et al., editor,
Optimization, chapter 6, pages 447–527. North-Holland, 1989.

63. P. M. Pardalos and S. A. Vavasis. Quadratic programming with one negative eigenvalue is
NP -hard. Journal of Global Optimization, 1:15–23, 1991.

64. R. G. Parker and R. L. Rardin. Discrete Optimization. Academic Press, San Diego, CA
92101, 1988.

65. L. Portugal, F. Bastos, J. Júdice, J. Paix ao, and T. Terlaky. An investigation of interior
point algorithms for the linear transportation problem. Technical report, Department of
Mathematics, University of Coimbra, Coimbra, Portugal, 1993. To appear in SIAM J. Sci.

Computing.
66. L. Portugal, M. Resende, G. Veiga, and J. Júdice. A truncated primal-infeasible dual-feasible

network interior point method. Technical report, AT&T Bell Laboratories, Murray Hill, Jew
Jersey, 1994.

67. S. Ramaswamy and J. E. Mitchell. On updating the analytic center after the addition of
multiple cuts. Technical Report 37–94–423, Dept. of Decision Sciences and Engg. Systems,
Rensselaer Polytechnic Institute, Troy, NY 12180, October 1994.

68. S. Ramaswamy and J. E. Mitchell. A long step cutting plane algorithm that uses the volu-
metric barrier. Technical report, Dept. of Decision Sciences and Engg. Systems, Rensselaer
Polytechnic Institute, Troy, NY 12180, June 1995.

38 JOHN E. MITCHELL

69. M. G. C. Resende and P. M. Pardalos. Interior point algorithms for network flow problems.
Technical report, AT&T Bell Laboratories, Murray Hill, New Jersey 07974–2070, 1994. To
appear in Advances in Linear and Integer Programming, J. E. Beasley, ed., Oxford University
Press, 1995.

70. M. G. C. Resende and G. Veiga. An efficient implementation of a network interior point
method. In D.S. Johnson and C.C. McGeogh, editors, Network Flows and Matching: First

DIMACS Implementation Challenge,, pages 299–348. American Mathematical Society, 1993.
DIMACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 12.

71. M. G. C. Resende and G. Veiga. An implementation of the dual affine scaling algorithm for
minimum cost flow on bipartite uncapacitated networks. SIAM Journal on Optimization,
3:516–537, 1993.

72. C. Roos and J. P. Vial. A polynomial method of approximate centers for linear programming.
Mathematical Programming, 54:295–305, 1992.

73. C.-J. Shi, A. Vannelli, and J. Vlach. An improvement on Karmarkar’s algorithm for integer
programming. COAL Bulletin, 21:23–28, November 1992.

74. P. M. Vaidya. A new algorithm for minimizing convex functions over convex sets. In Pro-

ceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science, pages
338–343, Los Alamitos, CA, 1989. IEEE Computer Press. To appear in Mathematical Pro-

gramming.
75. J. P. Warners. A potential reduction approach to the radio link frequency assignment prob-

lem. Master’s thesis, Faculty of Technical Mathematics and Informatics, Delft University of
Technology, Delft, The Netherlands, 1995.

76. X. Xu, P. F. Hung, and Y. Ye. A simplified homogeneous and self-dual linear programming
algorithm and its implementation. Technical report, College of Business Administration, The
University of Iowa, Iowa City, Iowa 52242, September 1993.

77. X. Xu and Y. Ye. A generalized homogeneous and self-dual algorithm for linear programming.
Operations Research Letters, 17:181–190, 1995.

78. G. Xue and Y. Ye. An efficient algorithm for minimizing a sum of Euclidean norms with
applications. Technical report, Department of Computer Science and Electrical Engineering,
University of Vermont, Burlington, VT 05405–0156, June 1995.

79. Y. Ye. On an affine scaling algorithm for nonconvex quadratic programming. Mathematical

Programming, 56:285–300, 1992.
80. Y. Ye. Complexity analysis of the analytic center cutting plane method that uses multiple

cuts. Technical report, Department of Management Sciences, The University of Iowa, Iowa
City, Iowa 52242, September 1994.

81. Y. Ye, M. J. Todd, and S. Mizuno. An O(
√

nL)-iteration homogeneous and self-dual linear
programming algorithm. Mathematics of Operations Research, 19:53–67, 1994.

82. Y. Zhang. On the convergence of a class of infeasible interior-point methods for the horizontal
linear complementarity problem. SIAM Journal on Optimization, 4(1):208–227, 1994.

