
Fourth Intern. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS IV)

Palo Alto, California, April 9-11, 1991

The Cache Performance and Optimizations
of Blocked Algorithms

Monica S. Lam, Edward E. Rothberg and Michael E. Wolf
Computer Systems Laboratory
Stanford University, CA 94305

Abstract
Blocking is a well-known optimization technique for improving
the effectiveness of memory hierarchies. Instead of operating on
entire rows or columns of an array, blocked algorithms operate on
submatrices orblocks, so that data loaded into the faster levels
of the memory hierarchy are reused. This paper presents cache
performance data for blocked programs and evaluates several op-
timizations to improve this performance. The data is obtained by
a theoretical model of data conflicts in the cache, which has been
validated by large amounts of simulation.

We show that the degree of cache interference is highly sensitive
to the stride of data accesses and the size of the blocks, and can
cause wide variations in machine performance for different matrix
sizes. The conventional wisdom of trying to use the entire cache,
or even a fixed fraction of the cache, is incorrect. If a fixed block
size is used for a given cache size, the block size that minimizes
the expected number of cache misses is very small. Tailoring
the block size according to the matrix size and cache parameters
can improve the average performance and reduce the variance in
performance for different matrix sizes. Finally, whenever possible,
it is beneficial to copy non-contiguous reused data into consecutive
locations.

1 Introduction
Due to high level integration and superscalar architectural designs,
the floating-point arithmetic capability of microprocessors has in-
creased significantly in the last few years. Unfortunately, the in-
crease in processor speed has not been accompanied by a similar
increase in memory speed. To fully realize the potential of the
processors, the memory hierarchy must be efficiently utilized.

While data caches have been demonstrated to be effective for
general-purpose applications in bridging the processor and me-
mory speeds, their effectiveness for numerical code has not been
established. A distinct characteristic of numerical applications is
that they tend to operate on large data sets. A cache may only be
able to hold a small fraction of a matrix; thus even if the data are
reused, they may have been displaced from the cache by the time
they are reused.

This research was supported in part by DARPA contract N00014-87-K-0828.

1.1 Blocking
Consider the example of matrix multiplication for matrices of size
N �N :

for i := 1 to N do
for k := 1 to N do

r = X[i,k]; /* register allocated */
for j := 1 to N do

Z[i,j] += r*Y[k,j];

Figure 1(a) shows the data access pattern of this code. The same
elementX[i,k] is used by all iterations of the innermost loop; it
can be register allocated and is fetched from memory only once.
Assuming that the matrix is organized in row major order, the
innermost loop of this code accesses consecutive data in theY
and Z matrices, and thus utilizes the cache prefetch mechanism
fully. The same row ofZ accessed in an innermost loop is reused
in the next iteration of the middle loop, and the same row of
Y is reused in the outermost loop. Whether the data remains in
the cache at the time of reuse depends on the size of the cache.
Unless the cache is large enough to hold at least oneN � N
matrix, the dataY would have been displaced before reuse. If
the cache cannot hold even one row of the data, thenZ data in
the cache cannot be reused. In the worst case, 2N 3

+N 2 words
of data need to be read from memory inN 3 iterations. The high
ratio of memory fetches to numerical operations can significantly
slow down the machine.

(a)

(b)

N = X
j
k
i

Z X Y

j
k
i
jj
kk

B

= X

Figure 1: Data access pattern in (a) unblocked and (b) blocked
matrix multiplication.

It is well known that the memory hierarchy can be better uti-
lized if scientific algorithms areblocked[1, 5, 6, 8, 10, 11, 12].

1

Blocking is also known as tiling. Instead of operating on indi-
vidual matrix entries, the calculation is performed on submatrices.
Blocking can be applied to any and multiple levels of memory
hierarchy, including virtual memory, caches, vector registers, and
scalar registers. As an example, when blocking is applied at both
the register and cache levels, we observe that matrix multiplication
speeds up by a factor of 4.3 on a DECStation 3100, and a factor
of 3.0 on an IBM RS/6000, a machine with a relatively higher
performance memory subsystem. The matrix multiplication code
blocked to reduce cache misses looks like this:

for kk := 1 to N by B do
for jj := 1 to N by B do

for i := 1 to N do
for k := kk to min(kk+B-1, N) do

r = X[i,k]; /* register allocated */
for j := jj to min(jj+B-1, N) do

Z[i,j] += r*Y[k,j];

Figure 1(b) shows the data access pattern of the blocked code. We
observe that the original data access pattern is reproduced here,
but at a smaller scale. Theblocking factor, B, is chosen so that
theB �B submatrix ofY and a row of lengthB of Z can fit in
the cache. In this way, bothY andZ are reusedB times each time
the data are brought in. Thus, the total memory words accessed
is 2N 3=B +N2 if there is no interference in the cache.

Blocking is a general optimization technique for increasing the
effectiveness of a memory hierarchy. By reusing data in the faster
level of the hierarchy, it cuts down the average access latency.
It also reduces the number of references made to slower levels
of the hierarchy. Blocking is thus superior to optimizations such
as prefetching, which hides the latency but does not reduce the
memory bandwidth requirement. This reduction is especially im-
portant for multiprocessors since memory bandwidth is often the
bottleneck of the system.

Blocking has been shown to be useful for many algorithms in
linear algebra. For example, the latest version of the basic linear
algebra library (BLAS 3) [4] provides high-level matrix opera-
tions to support blocked algorithms. LAPACK [2], a successor to
LINPACK, is an example of a package built on top of the BLAS
3 library.

Previous research on blocking focused on how to block an al-
gorithm manually and automatically [5, 7, 11, 12]. The procedure
consists of two steps [12]. The first is to restructure the code to
enable blocking those loops that carry reuse, and the second is to
choose the blocking factor that maximizes locality. It is the latter
step that is sensitive to the characteristics of the level of memory
hierarchy in question. Since the benefit of blocking increases with
the block size, previous approaches suggested choosing blocking
factors such that the faster memory hierarchy is fully occupied by
data to be reused. For example, the optimal blocking factor is
roughly

p
C for matrix multiplication on a machine with a local

memory ofC words [9]. This is appropriate for registers or local
memories, where the data placement is fully controlled. This is
also a reasonable approach for fully associative caches with a least
recently used (LRU) replacement policy.

1.2 Impact of Cache Behavior on Blocking
In practice, caches are direct mapped or have at most a small de-
gree of set associativity. The address mapping may map multiple
rows of a matrix to the same cache lines, making it infeasible to
try to fully use the cache. This address mapping has a significant

effect on the performance of blocked code, causing it to deviate
from the simple trend of increased performance with increased
block size. Moreover, this performance varies drastically with
small changes to the matrix size.

Shown in Figure 2(a) is the performance of blocked matrix
multiplication on a DECstation 3100. For reference, an unblocked
matrix multiplication achieves roughly 0.9 MFLOPS. The DEC-
station 3100 has an 8K double word direct-mapped cache and can
hold all the words reused within an 88�88 block. The graph plots
the performance levels obtained for three slightly different matrix
sizes across a range of blocking factors. We use two different
codes; one blocks for both the cache and registers [3], while the
other blocks only for the cache. While the performance curves for
the 300� 300 matrix multiplication are well behaved, those for
the other two drop sharply starting at different blocking factors
depending on the matrix size. More significant is the magnitude
of the variation for similarly sized matrices. Matrix multiplication
using a 56� 56 block for a 300� 300 matrix runs at twice the
rate of that of a 293� 293 matrix.

The variation in performance is due to the interference misses
in the cache. Shown in Figure 2(b) are the miss rates of the runs
for the cache-blocked code of Figure 2(a), obtained via simulation.
The decrease in performance correlates perfectly with the increase
in cache misses. These two sets of data suggest that the behavior
of a cache has a major impact on blocked code performance, and
must be considered when choosing the size of the block.

1.3 Paper Overview
Our research focuses on optimizing cache performance via block-
ing. The approach is to first discover the behavior of caches un-
der blocking, then to improve its performance via software and/or
hardware techniques. The sensitivity of the miss rates to the size
of the input matrix makes it impossible to use a purely experimen-
tal approach. It is inadequate to simulate a sample of data points
and infeasible to simulate all possibilities. Our methodology is
to combine theory and experimentation together in understanding
the behavior of the cache. Drawing insights from the experimen-
tal data and the theory of data locality from our compiler research
[12], we have developed a model of data conflicts that has been
validated by simulating several representative data points. Using
this model, we are able to explain the cache performance observed,
derive the performance of all possible data sizes, evaluate existing
methods on how to choose a block size and propose new methods
and optimizations that can fully utilize a cache.

2 Data Locality in Blocked Algorithms

In this section, we present our cache model for the simple case of
a direct-mapped cache with one-word cache lines, and illustrate
the model with blocked matrix multiplication. The extension to
set-associative caches and multiple-word line sizes is described in
Section 5.

The reuseof a reference iscarried by a loop if the same me-
mory locations or cache lines are used by different iterations of
that loop. There are two forms of reuse:temporaland spatial
reuse. Temporal reuse occurs when the same data are reused. For
example, in matrix multiplication, the temporal reuse of variables
X, Z and Y are carried by the innermost, middle and outermost
loops respectively. In this case, each variable is reusedN times,
whereN is the size of each loop. We say thatN is the reuse
factor. Spatial reuse occurs when data in the same cache line are

2

(a)

� N = 293
� N = 295
� N = 300

|
8

|
16

|
24

|
32

|
40

|
48

|
56

|
64

|
72

|
80

|

0.00

|

0.50

|

1.00

|

1.50

|

2.00

|

2.50

|

3.00

|

3.50

|

4.00

|

4.50

 Blocking factor

 M
F

LO
P

S

Cache and register blocked
Cache blocked only

�

�
�

�

�

�
� �

� �

�

�

�
� � � � �

�

�

�

�
� � � � � � � �

�

�

�

�

�

�

�
�

� �

�

�

�

�
� � � �

�

�

�

�

�
�

� �
�

� � �

(b)

� N = 293
� N = 295
� N = 300

|
8

|
16

|
24

|
32

|
40

|
48

|
56

|
64

|
72

|
80

|

0.00

|
0.20

|

0.40

|

0.60

|

0.80

|

1.00

 Blocking factor

 M
is

se
s/

ite
ra

tio
n

�

�
�

�

�

�

�

�

�
�

�

�
� � � � � �

�

�

�

�
� � � � � � � �

Figure 2: (a) Performance and (b) miss rates for blocked matrix
multiplication, DECstation 3100

used. For a cache with line sizel, the reuse factor isl if the data
is accessed in a stride one manner.

Reuse of data translates to a saving in memory accesses only if
intervening references between reuse do not displace the data from
the cache. If the iteration count of the innermost loop is large,
only reuse within the innermost loop can be exploited. Block-
ing localizesiterations across the outer dimensions by limiting the
intervening iterations executed from the innermost loop so that
cached data is reused before it is replaced. By choosing the block-
ing factor suitably, reuse carried by all loops within a block can
be exploited. The temporal reuse factor of data within a blocked
loop is simply the blocking factor, or the number of iterations in
a blocked loop.

2.1 Modeling Cache Interference
If all the data to be reused map to different cache locations, then
the number of cache misses per variable is simplyD(v)= R(v) ,
whereD(v) is the total number of memory references for variable
v andR(v) is the reuse factor of variablev . These are theintrinsic
misses. Generally, we also have interference misses; if the reuse
of the variablev misses at a rate ofM(v) , then the total number
of misses forv is

D(v)

�
1

R(v)
+
R(v) � 1
R(v)

M(v)

�
(1)

A reused variable will miss in the cache if any of the memory
references between reuse occupies the same cache location. We
assume in this simple model that the interference is independent.
Suppose the locality of variablev is carried by loopp, and letV
be the set of variables used in the loop. The miss rate in reusing
v within loop p is

Mp(v) = 1�
Y
u2V

�
1� Ip(u; v)

�
;

whereIp(u ; v) is the probability that accesses to datau within one
iteration of loopp interferes with the reuse. We partition inter-
ferences into two cases:cross interference, interference between
two different variables, andself interference, interference between
elements of the same array variable.

In the case of cross interference, we assume that the location
of reuse is unrelated to the the cache locations of the interfering
accesses. We estimate the interference by the probability that the
location of reuse falls in thefootprintof the variable. The footprint
of a variableFp(u) for loop p is defined to be the fraction of the
cache used by variableu in one iteration of loopp . This footprint
measures the number of distinct elements ofu used in one iteration
of loop p if these elements map to unique positions in the cache.
If u is accessed in a stride-one manner, uniqueness is guaranteed
unless the total size exceeds the cache size.

In the case of self interference, we can no longer ignore the
positioning of the reuse location and those of other elements within
the same array. There are two common cases. If the accesses are
of stride one, then no interference is possible as long as the number
of data accessed is smaller than the cache capacity. Otherwise,
accesses to the other elements in the same array can significantly
interfere with the reuse. The self interferenceSp(v) is defined to
be the fraction of accesses that map to non-unique locations in the
cache within one iteration of loopp .

In sum, the miss rate on the reuse of datav is

M(v) = 1�
�
1� S (v)

� Y
u2V�fvg

�
1� F (u)

�
(2)

3

Table 1: Matrix multiplication parameters.
Reuse Self-Interference Footprint References
Rp Sp Fp

i k j i k j i k j
X B - - 0 - - - 1= C B= C N 3= B

Z - B - - 0 - - - 2B= C N 3

Y - - N - - Si(Y) - B= C - N 3

It is straightforward to extract the parameters of the reuse factors
and the footprints from the code of a blocked algorithm. The self
interference term, however, can depend on the cache size and the
input matrix size, and is the factor that makes the cache behave
erratically.

2.2 Extracting the Model Parameters
Matrix multiplication is an interesting case study because local-
ity is carried in three different loops by three different variables.
Similar reuse patterns can be observed in various other important
matrix operations as well, including Gaussian Elimination (without
pivoting) and Cholesky Factorization.

All the relevant parameters of the matrix multiplication code
are shown in Table 1. For example, the same element ofY is
reused in loopi; between each reuse,B distinct words ofX and
2B distinct words ofZ would have been used, and hence the
corresponding footprints. These parameters are easy to determine,
with the exception of self interference for variableY in loop i . We
simply represent the term asSi(Y) and will show how to derive
its value in the next section. Quantities that are of no interest for
this discussion are left blank.

The miss rates for each of the variable can now be easily eval-
uated. Since the variableX[i,j] is allocated to a register, the total
number of references to elements of the array isN 3= B and its
miss rate is simply 0. Substituting the parameters in Table 1 into
Equation 2, the miss rates forY andZ, M(Y) andM(Z) , are

M(Y) = 1�
�
1� Si(Y)

��
1� 2B

C

��
1� B

C

�
� Si(Y) +

3
�
1� Si(Y)

�
B

C

M(Z) = 1�
�

1� 1
C

��
1� B

C

�
� B

C

The total number of cache misses are therefore

N 3

B
+N 3

�
1
N

+
N � 1
N

M(Y)

�
+N 3

�
1
B
+
B � 1
B

M(Z)

�

� N 3

2
B
+ Si(Y) +

3
�
1� Si(Y)

�
B

C
+
B

C

!
(3)

According to this equation, there are 2N 3= B intrinsic misses,
misses that are intrinsic to the algorithm given the blocking factor
and cannot be avoided even if the address mapping is perfect.
The factorSi(Y) is due to self interference of variableY on
itself. The other two terms are due to cross interference between
different variables.

Thus far, we have modeled only the reuse within the block.
Theoretically, variablesX andZ can be reused in the first and
second loop respectively. Reapplying the same modeling proce-
dure, we can refine our estimate to reflect this level of reuse. The

reuse is unlikely, however, except when the caches are large with
respect toN and the block size is small, since this would entail the
reused data surviving at least 2NB other references. Our equa-
tion, as it stands, will overestimate the number of misses under
those circumstances.

3 Interference with Regular Stride

In this section, we examine self interference for the common case
where an array is accessed at a constant non-unit stride. The
reference pattern of a constant-stride array access is regular and so
is its self interference pattern. Intuitively, the data accessed might
not interfere with each other, but if they do, the interference is
regular and severe. We show that self interference can increase the
cache miss rate so drastically that it should be avoided altogether,
if possible. We have developed an algorithm to find the largest
blocking factor that avoids self interference for a given matrix
size. Tailoring the block size according to the matrix size yields
much better cache performance than trying to use a fixed block
size.

3.1 Computing Self Interference Misses
We assume that the address ofY[i,j] , written &Y[i,j] , is Y �

+

Ni + j, whereY�, the start address of arrayY, andN , the matrix
size, are run-time constants. Two words use the same cache loca-
tion when&Y[i,j] � &Y[i’,j’] (modC) . (This is valid even for
caches that use physical addresses, because many operating sys-
tems, including those of MIPS and SGI, allocate frames so that
a physical address maps to the same cache location as its virtual
address.) Therefore ifY[i,j] andY[i’,j’] use the same location in
the cache, then so mustY[i+a,j+b] andY[i’+a,j’+b] .

x

x

B1

B2
Figure 3: Self interference in a direct-mapped cache.

The interference that results from this pattern is shown in Fig-
ure 3. Suppose aB1� B2 block of the matrix is to be reused,
but that the two words of the matrix marked with an ‘x’ fall in
the same cache location. Then, because of periodicity, all of the
shaded words of the array in the upper left hand portion of the
block will also interfere with the corresponding shaded words in
the lower right hand corner of the block. Likewise, if the word in
the lower left hand corner of the block interferes with any other
word, then a rectangle in the lower left hand corner will interfere
with a rectangle in the upper right hand corner. In either case,

4

once two words in a block interfere with each other, then increas-
ing the block size will lead to an increase in self interference.
Consequently, the largest block size that does not suffer from any
self interference, which we refer to as the critical blocking factor
B0, plays an important role in determining the total number of
misses.

Based on these observations, we have developed an efficient
algorithm that determines the amount of self interference given a
matrix size, a cache size and the blocking factors. The algorithm
executes inO(N=

p
C) , whereN is the matrix size andC is the

cache size.

3.2 Analyzing the Cache Misses

With the algorithm above, we can determine the self interference
parameter in Equation 3 and derive the predicted number of total
cache misses. The overall cache miss rate is a combination of
three kinds of misses: intrinsic misses, self-interference misses
and cross-interference misses. Figure 4 shows a breakdown of the
misses into the three categories for blocked matrix multiplication
on a cache of 1K words.

 Intrinsic misses
 self-interference misses
 cross-interference misses

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|

0.0

|

2.0

|

4.0

|

6.0

|

8.0

|

10.0

|

12.0

 Blocking factor

 M
is

se
s/

id
ea

l

Figure 4: Breakdown of misses, 1K word cache,N = 295.

To highlight the effect of the address mapping function of a
cache, the figure compares the cache miss numbers to those we
would have obtained if the machine had a local memory of the
same size. With a local memory, software has full control over
data placement, and can thus use the storage more effectively. We
refer to the misses occurring with a local memory as the “ideal”
number of misses. For a local memory of sizeC , the optimal
blocking factor is roughly

p
C .

The first component refers to the intrinsic misses for particular
block sizes. From Section 2, we know that the number of intrinsic
misses is inversely proportional to the blocking factor. As the
blocking factor approaches

p
C , it reaches the ideal number of

misses.
Self interference misses are misses incurred due to conflicts

among the elements in theY array. As discussed above, there is a
critical blocking factorB0 such that blocking factors greater than
B0 lead to significant self interference. Any blocking factor lower
thanB0 causes no self interference. The critical blocking factor

can be very different for similar matrix sizes and identical cache
sizes.

The third component is cross interference, the interference be-
tween different arrays. The cross interference is a function of the
footprint and is linear with respect toB . Since we classify a
reused data item suffering from both self and cross interference as
a self interference miss, the cross interference curve may appear
to taper off after self interference begins.

The self interference term explains the cache behavior shown
in Figure 2(b). The total cache miss curves decline smoothly with
the blocking factor until the critical blocking factor is reached. Be-
yond the critical blocking factor, the self interference component
dominates and causes the overall miss rate to rise sharply.

To validate our model, we compare the predicted cache misses
to actual cache misses for a blocked matrix multiplication across
different cache sizes and blocking factors (Figure 5). The figure
shows that the model predicts the cache behavior accurately, ex-
cept when the cache is large and the blocking factors are small,
as discussed in Section 2.2.

 actual
 predicted

|
4

|
8

|
16

|
32

|
64

|
128

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|
1.00

 Blocking factor

 M
is

se
s/

ite
ra

tio
n

1K

16K

.25K

4K

Figure 5: Actual versus predicted cache misses across different
cache sizes (in words),N = 295.

3.3 Using a Fixed Blocking Factor
With our model, we are now ready to evaluate different strategies
for choosing the blocking factor. Clearly, trying to use the entire
cache, as we would in the case of a local memory, would be
disastrous. Let us first evaluate the simple strategy of attempting
to use only a fixed fraction of the cache.

Assuming that the matrix size,N , is randomly distributed, we
compute an expected value for each possible blocking size by
averaging the performance over all possibleN ’s. The average
value is not particularly interesting to a user per se since he or she
is interested only in the performance for the particular matrix size
used. Thus we include also the standard deviation to indicate the
likelihood for achieving a particular miss rate.

Figure 6 shows the average cache behavior of matrix multi-
plication on a 1K word cache for a given blocking factor. The
average is obtained by calculating the misses using our model for
eachN in the rangeC to 2C �1, which captures all possible self
interference patterns in the cache, whereC is the cache size. The

5

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|

0.0

|

2.0

|

4.0

|

6.0

|

8.0

|

10.0

|

12.0

|

14.0

 Blocking factor

 M
is

se
s/

id
ea

l

Figure 6: Average misses in 1K word cache. Vertical lines indicate
the standard deviation.

average and standard deviation of the miss rates were calculated
for blocking factorB from four to

p
C in increments of four. If

the block is chosen to use the entire cache, i.e.B =

p
C , the

miss rate is more than 10 times the optimal, and has a large stan-
dard deviation. A blocking factor of 12 gives the best average;
whereas a blocking factor of 8 has only a slightly higher average,
but a substantially lower standard deviation. If we want to express
the targeted block size as a fraction of the cache, the number is
extremely small (6% or 14% for a blocking factor of 8 or 12,
respectively).

The actual miss rates for a range of cache sizes are shown
in Figure 7. Without blocking, the miss rate is approximately 2
misses per iteration if the cache cannot hold a few rows in the
cache, and 1 miss per iteration if it can. Blocking reduces the
miss rate to about an average of 0.5 and 0.1 misses per iteration
for a relatively small (.25K word) and large (16K word) cache,
respectively. This reduction typically translates to a significant
impact on overall system performance.

Several unexpected conclusions can be drawn from these
graphs. First, the trends of the curves are very different from the
ideal. The ideal is simply an inverse function of the block fac-
tor; the larger the block, the better the performance. The curves
in the figure indicate that increasing the blocking factor can in
fact degrade performance significantly. The block size choice that
minimizes the average cache miss rate uses a small fraction of the
cache. The fraction of the cache used in the optimal case decreases
with increasing cache sizes, from 15% for a 0.25K word cache to
3% for a 16K word cache. More importantly, as shown in Figure
6, there is a large standard deviation associated with the average
case. This means that the execution time can vary significantly
for different matrix sizes.

3.4 Tailoring the Blocking Factor
Since the miss rates are highly sensitive to the problem size, we
now consider the approach of tailoring the blocking factor to the
problem size. By doing so, we hope to improve the average miss
rate and, more importantly, to reduce the variance.

From our model, we know that the cache miss rate hinges on

|
0.00

|
0.20

|
0.40

|
0.60

|
0.80

|
1.00

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 Block size (as fraction of cache size)

 M
is

se
s/

ite
ra

tio
n

0.25K

1K

4K

16K

Figure 7: Miss rate (averaged over all matrix sizes) versus block
size, across different cache sizes (in words).

the critical blocking factorB0, the maximal factor with no self
interference. Due to the periodicity in the addressing of a direct-
mapped cache and the constant-stride accesses, it is relatively easy
to determineB0. The algorithm to determine the largest square
block with no self interference is presented in Figure 8.

algorithm FindB(N,C: integer) return integer ;
addr,di,dj,maxWidth:integer;

maxWidth := min(N,C);
addr := N/2;
while true do

addr := addr + C;
di := addrdiv N;
dj := abs((addrmod N) - N/2);
if di � min(maxWidth,dj)then

return min(maxWidth,di);
maxWidth := min(maxWidth,dj);

end while;
end algorithm;

Figure 8: Algorithm to compute the largest square block without
self interference.

Our approach is based on a few simple observations. The self
interference pattern of any block of computation is identical since
the conflict between a pair of data depends only on the differ-
ence of their addresses. Similarly, if&Y[i,j] � &Y[i+di,j+dj]
(modC) , thenB0 can be no larger than max(jdij ; j djj) . The algo-
rithm begins with the array word&Y[0,N/2] , assumingY �

= 0
(modC) , which is valid since the absolute location of the array in
memory is not significant. The algorithm then finds which array
words of the formY[di,N/2�dj] are mapped to the same location
in the cache. Each new array word mapping to the same location
puts a further restriction on how large the block size may be be-
fore self interference begins. The blocking factor cannot be larger
than

p
C , so the run time of the algorithm isO(N=

p
C) , which

6

is fast enough to use in a compiler or at run time if the matrix size
is not known statically. This algorithm can be easily extended to
find the largest rectangular block.

The different maximal blocking factors for the entire range of
strides are shown in Figure 9. The function is periodic; the inter-
ference is at its maximum if the matrix dimension is a multiple of
the cache size. This figure explains why the optimal fixed block
size is so small. IfB0 is large, then there is a diminishing return
for choosing larger and larger block sizes. However, ifB 0 is small,
then the self interference becomes very large even for moderate
block sizes. The data indicate that the critical blocking factor is
sensitive to small changes in the matrix dimensionN . Moreover,
for many array dimensions, a fairly large blocking factor can be
used. Choosing a fixed block size to optimize the average case
penalizes those cases for which a good blocking factor exists.

|
1000

|
1200

|
1400

|
1600

|
1800

|
2000

|

0

|

4

|

8

|

12

|

16

|

20

|

24

|

28

|

32

 N

 B
lo

ck
in

g
fa

ct
or

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

��

��

��

��

��

�

��

��

�

��

�

�

��

�

���

�

�

��

�

�

�

��

�

�

�

��

�

��

�

�

��

�

�

���

�

��

�

�

��

�

�

�

��

�

�

�

��

�

�

�

�

��

�

�

�

�

�

��

��

�

�

�

���

�

�

�

���

��

���

��

�

�

�

��

�

�

�

��

��

�

�

��

�

�

��

��

�

�

�

�

�

��

�

�

�

�

�

�

��

��

�

�

�

�

��

�

��

���

�

��

�

�

�

�

�

�

�

��

�

�

�

�

�

��

��

��

�

�

��

�

��

�

�

�

��

�

�

�

��

�

�

��

�

�

��

�

��

��

��

�

�

�

�

�

�

���

�

�

�

�

�

�

�

�

�

��

��

�

�

��

��

�

�

��

�

�

�

��

��

�

�

�

�

��

�

�

�

�

��

�

��

��

�

�

��

�

�

��

�

�

��

�

�

���

�

��

��

��

��

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

��

��

��

�

��

�

�

��

�

��

�

�

��

�

�

�

��

��

�

�

���

�

�

�

�

��

�

��

�

�

�

��

��

���

�

�

�

�

��

�

�

�

�

�

�

�

��

�

��

�

�

�

��

�

�

�

��

��

�

�

�

��

�

�

�

�

�

��

���

��

�

�

�

��

�

�

�

��

�

�

�

��

�

�

��

�

��

�

��

��

�

�

��

�

�

��

��

��

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

��

��

��

�

�

��

�

�

��

��

�

��

�

��

�

�

��

�

�

�

��

�

�

�

��

�

�

�

��

���

��

�

�

�

�

�

��

�

�

�

��

��

�

�

�

��

�

�

�

��

�

��

�

�

�

�

�

�

�

��

�

�

�

�

���

��

��

�

�

�

��

�

��

�

�

�

�

���

�

�

��

��

�

�

�

��

�

�

��

�

��

�

�

��

�

��

��

��

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

��

��

��

��

�

���

�

�

��

�

�

��

�

�

��

�

�

��

��

�

��

�

�

�

�

��

�

�

�

�

��

��

�

�

�

��

�

�

��

��

�

�

��

��

�

�

�

�

�

�

�

�

�

���

�

�

�

�

�

�

��

��

��

�

��

�

�

��

�

�

��

�

�

�

��

�

�

�

��

�

��

�

�

��

��

��

�

�

�

�

�

��

�

�

�

�

�

�

�

��

�

���

��

�

��

�

�

�

�

��

��

�

�

�

�

�

�

��

�

�

�

�

�

��

��

�

�

��

�

�

��

��

�

�

�

��

�

�

�

��

���

��

���

�

�

�

���

�

�

�

��

��

�

�

�

�

�

��

�

�

�

�

��

�

�

�

��

�

�

�

��

�

�

��

�

���

�

�

��

�

�

��

�

��

�

�

�

��

�

�

�

��

�

�

���

�

��

�

�

��

�

��

��

�

��

��

��

��

��

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 9: The largest square block without self interference, 1K
word cache.

When there is no self interference, the number of misses from
Equation 3 becomesN 3

(2= B+4B= C) , which has a minimum at
B =

p
C= 2. Thus, even ifB0 exceeds

p
C= 2, cross interference

limits the optimal blocking factor to
p
C= 2. In this case, the

number of misses is 2
p

2 or 2:8 times the ideal number of misses.
If we had used a blocking factor of

p
C , the misses would be

three times the optimal even if there were no self interference. If
self interference begins before

p
C= 2, the self interference will

dominate the cache behavior, in which case it can be shown that
the optimal blocking factor is typicallyB0 but also can beB0+1.

Figure 10 shows the ratio of misses for eachN with the best
block size to the ideal number of misses for that cache size. For
this graph the block size for a givenN is the block size from
Figure 9 or

p
C= 2, whichever is smaller.

We can average over the number of misses in Figure 10 to
determine the average performance obtained by choosing a block
size that depends onN . The average is 3: 4�2: 1 times the ideal. If
instead a blocking factor of 12 were always used (the best choice
from Figure 7), then the number of misses is 4: 6� 3: 3 of ideal.
Both the mean and the standard deviation of misses are signif-
icantly lower when block sizes are chosen usingN . Figure 11
shows the results of this analysis for a variety of cache sizes.
For comparison, Figure 11 also includes data for the best data-

|
1000

|
1200

|
1400

|
1600

|
1800

|
2000

|

0

|

4

|

8

|

12

|

16

|

20

|

24

|

28

|

32

 N

 M
is

se
s/

id
ea

l

��

�

�

�

�

�
�
�
���

�������
��
�����
���
�������
��
���������

��
�
�����������

���

���������������

�
��

�
��������
��
����������
�

��

�

������������
���
���������������

�

��

�

�
�������������������

��
�
������
��
���������������
�

�

���

�

�
�������������������
��
����������
�

��

�
�����������
�
��

������
��
��������������������
�
�

�

�

��

�

�
�
��������������������������
��
���������

���

�������
��������������
�

�

��

�

�
�������������
��
���������
�

��
�

�������������

���

��������
��
�����
��
��������������������������������
�
�
�

�

�

���

�

�

�
�
���������������������������������
��
�����
��
��������

���

�������������

�
��

�
���������
��
�������������
�

�

��

�

�
������������
��
�������

���

���������
��
��������������������������
�
�

�

��

�

�

�
���������������������
��������

��
�
�����������
�

��

�
����������
��
�������������������
�

�

���

�

�
���������������
��������
�
��

�������������������
�

�

��

�

���������������
���
������������

�

��

�
����������
��
��������
�

��
�

���������������

���

�����������
�
��

���������
��
�������
���
�����
��
�����
��
��

���
��
�
�
�

�

�

�

�

�

Figure 10: Miss rates for best square block, 1K word cache.

dependent rectangular block without self interference. It shows
that best square/rectangular schemes outperform the fixed block
size approach in terms of both the average misses and variance
over a wide range of cache sizes. As the cache gets larger, the
miss rate for the best fixed block size gets farther and farther from
ideal, with an increasing standard deviation. However, ifN is
used in considering the block size, then on average the behavior
of the block remains within a constant of the optimal.

4 Self Interference for Non-Constant
Strides

After analyzing the cache behavior with constant stride data ac-
cesses, we now turn to other access patterns. We first study the
cache behavior for triangular matrices, then pushing the irregu-
larity of data access to the limit, we consider the case when the
stride is totally random.

4.1 Triangular Matrices

A typical data organization of a triangular matrix is to store the
rows of data consecutively. The stride of a column access varies
from 1 toN whereN is the matrix dimension. Thus we expect
that the cache behavior of the entire multiplication to be similar
to the average of cache misses obtained for square matrices.

In Figure 12, we compare the cache miss figures for multiplying
two triangular matrices with 1000 elements on a side with the av-
erage obtained for multiplication of square matrices for the entire
range of strides. Indeed, the simulation confirms the prediction.

Unlike square matrices, the cache performance of a blocked
triangular matrix multiplication algorithm is predictable for any
array size, provided that it is relatively large. That is, the perfor-
mance obtained is similar to the average we compute for square
matrices. The optimal block size is small; about 10% of the cache
for a 1K cache, and 3% for a 16K cache. Since the miss rate
function is highly sensitive to the choice of the blocking factor, it
is important to choose this number correctly. Since the variance
in optimal block size is high even for small changes inN , it is

7

.5K 1K 2K 4K 8K 16K 32K

0

5

10

15

Best fixed block size

Best data-dependent square block size

Best data-dependent rectangular block size

Cache size

M
is

se
s/

id
ea

l

Figure 11: Miss rates using best fixed block size, best data-
dependent square block size, and best data-dependent rectangular
block size.

 Square matrix average
 1000x1000 triangular matrix

|
0.00

|
0.20

|
0.40

|
0.60

|
0.80

|
1.00

|

0.00

|

0.20

|

0.40

|
0.60

|

0.80

|

1.00

 Block size (as fraction of cache size)

 M
is

se
s/

ite
ra

tio
n

0.25K

1K

4K

16K

Figure 12: Comparing miss rates of triangular matrix multiplica-
tion with the average miss rates for square matrix multiplication,
across different cache sizes (in words).

difficult to improve the cache performance by modifying the block
size for different parts of the triangular matrix.

4.2 Random Stride
Given that we have shown caches may behave rather poorly for
regular strides, we wish to investigate if they would behave any
better if the rows were randomly placed. We model the accesses
to each row in the same array as independent accesses. Each
access toB consecutive locations of data decreases the hit rate
by a factor of 1� B= C . Thus the self interference of accessing
B � 1 rows ofY before the same data is reused is

Si(Y) = (1�B
C
)
B�1 :

Substituting this self interference term into Equation 3 and vary-
ing the cache and block sizes, we obtain the data in Figure 13.
Differentiating the expression of misses with respect to the block-
ing factor B , we find that the asymptotic minimum number of
cache misses occurs whenB is 3

p
C . The fraction of the cache

used is thusC
2
3 . The cache use decreases from about 12% in

the 1K cache case to about 4% in a cache of 16K words. These
figures are just slightly lower than those obtained for the average
for square matrices.

|
0.00

|
0.20

|
0.40

|
0.60

|
0.80

|
1.00

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 Block size (as fraction of cache size)

 M
is

se
s/

ite
ra

tio
n

0.25K

1K

4K

16K

Figure 13: Miss rate versus block size for random stride, across
different cache sizes (in words).

In summary, when accesses are random, reuse of data is un-
likely unless the number of intervening independent data accesses
is small. Constant but non-unit stride accesses found commonly
in matrix operations do not in general improve the cache per-
formance. However, if the stride is regular, it is possible for a
compiler or run-time library to tailor the blocking factor accord-
ing to the stride. The improvement is significant but there is still a
relatively high variance in cache misses for different matrix sizes.

5 Different Cache Parameters
So far in this paper we have considered only direct-mapped caches
with single-word cache lines. In this section we consider two com-
mon variations in cache design, a higher degree of associativity

8

and longer cache lines, and discuss how they affect the cache be-
havior of blocked algorithms. We re-apply the same techniques
used in analyzing direct-mapped caches with single-word lines and
use the resulting models to generate data for different cache sizes,
matrix sizes, and block sizes. Again, we compare the performance
of the strategies of choosing a data independent block size and a
data dependent block size. We then draw conclusions about the
impact of set associativity and multiple-word line sizes on blocked
algorithms.

5.1 Set Associativity
Since conflict misses play a significant part in the cache behavior
of blocked algorithms, it is natural to examine if set associativity
can reduce the misses significantly. We consider a relatively large
but reasonable set associativity of four. The interference model
presented in Section 2 extends readily to set-associative caches.
Briefly, with an a-way set-associative LRU cache, a set holding
more thana block entries reused at the same level is assumed to
miss on all accesses to those entries; otherwise, they all hit. The
validity of our model is shown in Figure 14(a). As before, the
model overpredicts misses when the cache size is large and the
block size is small.

Figure 14(b) shows the performance of a set-associative cache
if a fixed block size is chosen for all problem sizes. Unlike the
direct-mapped cache, the average miss rates remain relatively flat
as the block size increases. This is because the critical blocking
factors now have much larger values. Although the fraction of
cacheused remains small, it is larger than that of the direct-mapped
cache and yields a significantly lower average miss rate. While
the average remains fairly flat, the standard deviation (not shown
in the graph) increases steadily with the block size, thus favoring
a smaller block size. This high standard deviation means that the
execution time for some problem sizes can be significantly worse
than others.

Figure 14(c) focuses on the averages and standard deviations
of the miss rates for a variety of cache sizes. Again, we compare
two strategies for choosing block sizes: the fixed square block
scheme and the problem size dependent square block scheme1.
While the average ratio to the ideal increases for the fixed block
size scheme, it remains quite constant when we vary the block
sizes for different problem sizes. More importantly, it has a much
smaller standard deviation. If we take the strategy of choosing
our block sizes based uponN , an associativity of 4 allows us to
drop the miss rate by an average of over 30% and cut the standard
deviation in half relative to the same strategy on a direct-mapped
cache.

5.2 Line Size
To exploit spatial locality, most caches today have multi-word
cache lines. Spatial locality can be modeled in a manner similar
to temporal locality. We say that spatial locality is carried by a
loop if the stride of data access is less than the cache line size. The
reuse factor is simply the cache line size divided by the stride. The
miss rate can be calculated from the footprint and self interference
in a similar manner, although the footprint and self interference

1In the direct-mapped case, the model shows that the best square block is not

larger than
p

C=2 on a side. The set-associative model cannot make as precise a
prediction. We use the heuristic that the blocking factor should not be larger thanp

Ca= (a + 1) if the cache has associativitya , since cross interference diminishes

with increasing set associativity.

(a) Actual versus predicted cache misses across different cache
sizes (in words),N = 295.

 actual
 predicted

|
4

|
8

|
16

|
32

|
64

|
128

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 Blocking factor

 M
is

se
s/

ite
ra

tio
n

4K

1K

16K

.25K

(b) Miss rate (averaged over all matrix sizes) versus block size,
across different cache sizes (in words).

|
0.00

|
0.20

|
0.40

|
0.60

|
0.80

|
1.00

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 Block size (as fraction of cache size)

 M
is

se
s/

ite
ra

tio
n

0.25K

1K

4K 16K

(c) Miss rates using best fixed block size and best data-dependent
square block size.

.5K 1K 2K 4K 8K 16K

0

5

10

Best fixed block size

Best data-dependent square block size

Cache size

M
is

se
s/

id
ea

l

Figure 14: Data corresponding to Figures 5, 7 and 11 for a four-
way set-associative cache with single-word line size.

9

(a) Actual versus predicted cache misses across different cache
sizes (in words),N = 295.

 actual
 predicted

|
4

|
8

|
16

|
32

|
64

|
128

|

0.00

|

0.10

|

0.20

|

0.30

|

0.40

|

0.50

 Blocking factor

 M
is

se
s/

ite
ra

tio
n

4K

1K

16K

.25K

(b) Miss rate (averaged over all matrix sizes) versus block size,
across different cache sizes (in words).

|
0.00

|
0.20

|
0.40

|
0.60

|
0.80

|
1.00

|

0.00

|

0.10

|

0.20

|

0.30

|

0.40

|

0.50

 Block size (as fraction of cache size)

 M
is

se
s/

ite
ra

tio
n

0.25K

1K

4K 16K

(c) Miss rates using best fixed block size and best data-dependent
square block size.

.5K 1K 2K 4K 8K 16K

0

5

10

15

Best fixed block size

Best data-dependent square block size

Cache size

M
is

se
s/

id
ea

l

Figure 15: Data corresponding to Figures 5, 7 and 11 for a direct-
mapped cache with four-word line size.

terms need to be adjusted to account for the fact that every access
brings in an entire cache line. In Figure 15 we show the results
of applying our model to a cache with a four-word line size.

In the ideal case, a line size ofl words would reduce the miss
rate by a factor ofl . However, such a reduction is not observed
when we compare Figure 15(b) with Figure 7; the miss rate is only
reduced by a factor of just over two for the smallest caches and a
factor of three for the largest one. The reason for the less than ideal
behavior is as follows: when a row of a blocked matrix is brought
into the cache, the beginning and end of the row do not necessarily
align to cache line boundaries. This results in unaccessed data
being loaded into the cache, effectively increasing the row length.
This excess data can knock out useful data, increasing the miss
rate. In particular, self interference starts at a somewhat smaller
blocking factor. The relative cost of cache misalignment decreases
as the block size is increased, which is why the decrease in the
miss rate at the best block size is closer to four for larger caches
than for smaller caches. This also explains why the miss rates for
the data-dependent block strategy decrease with increasing cache
size (Figure 15(c)): the alignment effect becomes less significant.
The ratios of miss rates to ideal are still in each case greater than
those in Figure 11 because the miss rate for the longer line size is
not reduced by a full factor ofl .

6 Copy Optimization
Neither associativity nor multiple-word line sizes can eliminate
the large variance in the performance of a blocked algorithm. We
now investigate a totally different approach that eliminates self
interference altogether, thus guaranteeing a high cache utilization
for all problem sizes. The approach is to copy non-contiguous data
to be reused into a contiguous area [6]. By doing so, each word
within the block is mapped to its own cache location, thus making
self interference within a block impossible. This technique, when
applicable, can bound the cache misses to a factor of two of the
ideal. If the reuse factor is large, then the cost incurred in copying
the data is negligible.

Let us first consider copying theB�B block ofY data in matrix
multiplication to contiguous locations. By setting theSi(Y) term
in Equation 3 to zero, the number of misses becomes

2N 3

B
+

4N 3B

C
:

Figure 16 compares the cache miss numbers predicted by this
model with the misses observed in simulation. As discussed in
Section 2, the cache miss function achieves its minimum value
at B =

p
C
2 , and the minimum number of misses is 2

p
2 times

the ideal. Without self interference, the number of misses is not
nearly as sensitive to the block size. For example, a block can
be chosen to fill anywhere from one-fourth of the cache up to the
whole cache without increasing the number of misses by more
than 6% over the minimum.

Misses can be further reduced by copying theZ data as well,
placing them at the end of the same contiguous block so that they
do not interfere with theY data. The number of misses is:

2N 3

B
+

2N 3B

C

which achieves its minimum atB =

p
C . The resulting cache

miss numbers are twice ideal. The overhead of copying the desti-
nation row is substantially higher than that of copying the reused

10

 actual
 predicted

|
4

|
8

|
16

|
32

|
64

|
128

|

0.00

|

0.20

|

0.40

|

0.60

|

0.80

|

1.00

 Blocking factor

 M
is

se
s/

ite
ra

tio
n

1K

16K

.25K

4K

Figure 16: Actual versus predicted cache misses across different
cache sizes (in words),N = 295.

block. An entry from the reused block is usedN times once it
has been copied. An entry from the destination row, on the other
hand, is reused onlyB times. Thus, even though the number of
cache misses can be reduced by 30% by copying both the reused
block and the destination row, the overhead of copying the des-
tination row could overwhelm the benefit of fewer cache misses.
In fact, our experience suggests that copying both sets of data is
typically not advantageous for microprocessor systems today.

Copying can take full advantage of a cache with a longer line
size. It can use at least half of the cache in each blocked loop nest,
thus making the penalty due to cache line misalignment negligible.
Thus, nearly all the words prefetched in the cache line will be used
fully, so when copying is used with a cache line size ofl , the miss
rate can be reduced by a factor ofl .

When the cache is set associative, we have an opportunity to
reduce the minimum miss rate by eliminating not just self inter-
ference, but cross interference as well. With a set associativitya ,
we use(a �1) = a of the cache for matrixY and use the other 1= a
of the cache for fetching data fromX andZ. In this case, cross
interference only occurs when words from rows ofX andZ are
mapped to the same set. Since each of the footprints of the rows
of X and Z are onlyB= C , the probability of cross interference
is small with this strategy. Thus, by choosing a blocking factor
of
p
C (a � 1) = a , we can avoid nearly all but intrinsic misses.

This results in a miss rate of
p
a = (a � 1) times the ideal. For

example, ifa = 4, the miss rate is 1.15 of ideal, compared with
2 to 2.8 for a direct-mapped cache. Copying theZ data into a
contiguous block so thatY andZ fill up (a � 1) = a of the cache
removes the already negligible cross interference, but otherwise
has little effect.

To demonstrate the effect of copying on real machines, we com-
pare the absolute performance of a blocked matrix multiplication
code with and without the copying optimization on a DECsta-
tion 3100 (Figure 17). We show the data only for theN = 293
case, the example which suffered the most from self interference
(see Figure 2(a)). Copying allows the blocked code to deliver a
consistently high level of performance for all matrix sizes.

There are several cases in which copying cannot be applied

� copied
� not copied

|
8

|
16

|
24

|
32

|
40

|
48

|
56

|
64

|
72

|
80

|

1.50

|

2.00

|

2.50

|

3.00

|

3.50

|

4.00

 Blocking factor

 M
F

LO
P

S

�

�

�

�

� �
�

�
�

�

�

�

�

�

�

�

�
�

� �

Figure 17: Performance of copying versus no copying,N = 293,
DECstation 3100.

or can be applied only with difficulty. First, if the reuse factor is
small, then the cost of copying can be greater than the misses saved
via copying. A small reuse factor can arise because the locality
within the computation is minimal, e.g. the reuse of spatial locality
is a small constant. Second, the reused portion of a variable may
not be exactly the same each time through a block. When the
reused portion shifts, copying can be implemented with a circular
buffer, with the additional addressing overhead that entails. Lastly,
if a reasonably large fraction of data fits into the cache, then paying
the cost of copying the data throughout may incur an unnecessary
overhead.

7 Conclusions

This paper presents a comprehensive analysis of the performance
of blocked code on machines with caches. While blocking has
been accepted as an important optimization for scientific code, its
performance on machines with caches was not well understood.
By using a combination of theory and experimentation, this paper
shows that blocking is effective generally for reducing the memory
access latency for caches. The magnitude of the benefit, however,
is highly sensitive to the problem size.

We have developed a model for understanding the cache be-
havior of blocked code. Through the model, we demonstrate that
this cache behavior is highly dependent on the way in which a
matrix interferes with itself in the cache, which in turn depends
heavily on the stride of the accesses. We have derived cache miss
models for four different strides: unit stride, non-unit constant
stride, triangular stride, and random stride. Each of these models
is validated with empirical results.

The performance of the cache is highly dependent on the prob-
lem size and the block size. The same block size can give rise
to widely varying cache miss rates for very similar problem sizes.
The conventional wisdom of using the entire cache, or even a
fixed fraction of the cache, is incorrect. If a fixed block size is
chosen, we have found that the optimal choice occupies only a
small fraction of the cache, typically less than 10%. The fraction
of the cache used for this optimal block size decreases as the cache

11

Table 2: Summary of cache miss rates, 4K word cache, as compared to ideal.
Basic Model Set Associativity = 4 Line Size = 4

Ideal 2N 3=
p
C 2N 3=

p
C 2N 3= (4

p
C)

Method Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Fixed Block Size 5.4 5.4 3.4 5.0 6.8 7.0
Best Block Size 3.4 2.4 2.0 1.1 4.4 5.2

Copy Block 2.8 0 1.2 0 2.8 0
Copy Row and Block 2.0 0 1.2 0 2.0 0

size increases. More importantly, there is a large variance in the
performance obtained.

The effect of the various optimizations studied in this paper are
summarized in Table 2. A multi-word line size reduces the number
of cache misses but increases the memory traffic. Set associativ-
ity improves the average cache miss rate, but does not reduce the
large performance variations between problem sizes. Regardless
of the line size and the set associativity, it is useful to tailor the
block size according to the problem size. For the non-unit constant
stride case, the optimal block is the largest block which does not
interfere with itself in the cache. We have presented an algorithm
that determines the optimal block choice efficiently. This tech-
nique decreases the average number of cache misses as well as
the variation across different problem sizes substantially. Copying
is yet a better technique if it is applicable. It yields a much lower
miss rate and delivers the same high performance for all matrix
sizes.

Our recommendation when blocking numerical codes for a
cache is to always accompany the blocking with some blocking
optimization. First, use block copying if applicable. It provides
the fewest cache misses and the most robust performance of the
options that we have considered. If copying is not appropriate,
then choose the largest block size possible that does not incur self
interference within an array.

References

[1] W. Abu-Sufah, D. J. Kuck, and D. H. Lawrie. Automatic pro-
gram transformations for virtual memory computers.Proc.
of the 1979 National Computer Conference, pages 969–974,
June 1979.

[2] E. Anderson and J. Dongarra. LAPACK working note 18,
implementation guide for LAPACK. Technical Report CS-
90-101, University of Tennessee, Apr 1990.

[3] D. Callahan, S. Carr, and K. Kennedy. Improving register
allocation for subscripted variables. InProceedings of the
ACM SIGPLAN ’90 Conference on Programming Language
Design and Implementation, June 1990.

[4] J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A set of
level 3 basic linear algebra subprograms.ACM Transactions
on Mathematical Software, pages 1–17, March 1990.

[5] K. Gallivan, W. Jalby, U. Meier, and A. Sameh. The im-
pact of hierarchical memory systems on linear algebra algo-
rithm design. Technical Report UIUCSRD 625, University
of Illinios, 1987.

[6] D. Gannon and W. Jalby. The influence of memory hier-
archy on algorithm organization: Programming FFTs on a

vector multiprocessor. InThe Characteristics of Parallel Al-
gorithms. MIT Press, 1987.

[7] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache
and local memory management by global program trans-
formation. Journal of Parallel and Distributed Computing,
5:587–616, 1988.

[8] G. H. Golub and C. F. Van Loan.Matrix Computations.
Johns Hopkins University Press, 1989.

[9] J.-W. Hong and H. T. Kung. I/O complexity: The red-blue
pebble game. InProceedings of the Thirteenth Annual ACM
Symposium on Theory of Computing, pages 326–333. ACM
SIGACT, May 1981.

[10] A. C. McKeller and E. G. Coffman. The organization of
matrices and matrix operations in a paged multiprogramming
environment.CACM, 12(3):153–165, 1969.

[11] A. Porterfield.Software Methods for Improvement of Cache
Performance on Supercomputer Applications. PhD thesis,
Rice University, May 1989.

[12] M. E. Wolf and M. S. Lam. A data locality optimizing
algorithm. Submitted for publication., 1990.

12

