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FIR Filter Structures Having Low Sensitivity
and Roundoff Noise

ANIL MAHANTA, MEMBER, IEEE, RAMESH C. AGARWAL, MEMBER, IEEE, AND SUHASH C. DUTTA ROY

Absrraer—A class of structures for FIR fiiters is presented, which ex-
hibits reduced coefficient sensitivity and superior roundoff noise prop-
erties as compared to the direct form realization. It is shown that
using fixed-point arithmetic, these structures achieve the same accuracy
and about the, same roundoff noise as those obtained in the floating-
point implementation. The optimum structure to achieve the minimum
roundoff noise can be found; in most cases na optimum results are
easily obtained by simple permutations and combinations of the im-
pulse response coefficients. While a xerial form realization of these
structures requires a certain amount of software complexity, a parallel
form, on the other hand, does not require additional complexity.

I. INTRODUCTION

THE most commonly used FIR filter structures are the
direct and the cascade forms, of which, the former is

easier to implement because of its simplicity. However, the
direct form is generally more sensitive to effects of coefficient
quantization in fixed-point implementation, because of large
dynamic range of the coefficients. The cascade form, on the
other hand, results in reduced dynamic range and hence de-
creased sensitivity, but the realization is more complicated
since it involves scaling of the coefficients and proper ordering
of the sections to avoid overflow and minimize roundoff
noise.

This paper presents a class of structures for FIR filters,
which offers an attractive solution to the finite word length
problems. These structures, to be designated as "nested
structures" (NS), are easily derived by nesting of the transfer
function polynomial H(z). Due to nesting and subsequent
scaling, the dynamic range is reduced considerably; at the same
time, the round-off noise also decreases since most of the noise
gets attenuated as it propagates towards the output.

11. COEFFICIENT SENSITIVITY

Error Bounds

Consider a length N FIR filter with the transfer function

N-1

be arbitrarily permuted, i.e., let

(1)
n=o

Instead of writing the summation in the natural order, let it
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(2)
n=o

where pn's are the permuted elements of the set (0, 1, .
N- 1}. We rewrite (2) in the form

pl

where

= apo, K = —apn, n = 1toN- 1
aPn-l

so that

(3a)

(3b)

(4)

(5)

When bn's are rounded, the realized filter will have an effective
aPn given by

k=0
(6)

where

(7)

with "r" standing for the rounding operation.
When the quantized bn's are obtained via (4) and (7), it can

be shown that the relative error in aPn, given by Enlap, , where

tends to grow with n, due to the cumulative errors in bo

through bq-l. Therefore we redefine bn’s as

bo =«B

K = <V a Vi =aP
n-l

(9a)

n = \ toN- 1 (9b)

where
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where en is the rounding error (j en | < 2/2, Q = 2'f = quanti-
zation step, t - number of bits). The effective apn now
becomes

(11)

(12)

\fc=0 /

Therefore

n = 0toN,

Let H(eiw) and H*(ei"j, respectively, be the frequency re-
sponse of (3) before and after quantization. Then the error in
the frequency response is

(13)E(e>")=H*(e>w)- H(e'") = £ Ene~>"Pn.

Therefore the bound on the frequency response error is

JV-l JV-l

n=o n=0

Q

where we have assumed

N-l

E l«»l<i

in order that the output is bounded by 1. Also, the variance,
for any w, is

iv-i
) P = £ El =^

n=o 1 Z
n=l

O
^ ( 2 ) -

The corresponding results for the direct form are [1 ]

(15)

(16)

:. (17)

These bounds indicate that the nested structure will have re-
duced coefficient sensitivity as compared to the direct form.

It should be noted that the absolute upper bounds (14) and
(16), derived under worst case conditions are overly pessi-
mistic. On the other hand, Gersho et al. [2] have pointed out
that the statistical bounds (15) [and hence (17)j are not high
probability upper bounds for the maximum of IE(e'")I over
all w. They have shown that the high probability upper bound
for large N is

max IE(eiw)I N — (Nlog, N)'IZ.
CJ 2

(18)

however, it is clear from (14) that even the worst case bound
in NS realization will be less than that given by (18).

Coefficient Scaling

In an actual hardware realization we shall represent b, as

b,=cnB,; B,=2m, m = 0, +1, +2, . . • (19)

where

\<\cn\<\. (20)

Hence from (1l), the effective uPn is now obtained as

^n
=dPn-lbn=aPn-1BnC*n (21)

where

leJ.KQ/2. (22)

Therefore

En = «P f l_i Bn (c* -cn)= aPn_xBn e'n = aPn e'nlcn (23)

where the last expression is obtained using (9b). Equation
(23) implies that

IEnlap,IQ. (24)

This is precisely the result obtained with floating point arith-
metic. We note that although floating point representation is
used for the coefficients, the arithmetic hardware to be em-
ployed is actually fixed point. In the next section, we shall
show that multiply operation in the NS does not involve addi-
tion of two exponents. The exponents are predetermined and
built in the structure. In other words, we have effectively
represented the filter coefficients in floating point with t-bit
mantissa while actually using only t-bit fixed point arithmetic.

111. SIGNAL SCALING

Fig. 1 shows the flow graph of the nested structure where
the output yn is obtained through a set of sequential opera-
tions given by

x,-pi 1*1
. = ^

where Si and Pi, respectively, are the outputs from the jth
adder and the jth multiplier. A straightforward implementa-
tion of (25) may not always be feasible because of possible
overflows at the summation nodes. The sum scaling method
in which Ix, lmax G 1 and C z : la, I < 1, will no doubt en-
sure that IynI = [Po I < 1, but there is always some possibility
that overflows can occur at the intermediate summation
nodes. Hence, scale factors must be provided at the summing
inputs. Under the assumption that Ix, lmax < 1, the bound
on Si is given by

Sj k \Sj |m a x = 1 + | bj+i | Si+1, / = 0 to TV - 1. (26)

Then, by using (26) recursively, Si can be expressed as

Similar bound may be derived for the nested structure also;
aPj\=Sj!\ap.\, j = 0toN-l (27)
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where

bj -
N-l

Fig. 1. Flow graph of the nested structure.

(28)

Let gj be scaled by a factor vi(= 2 ' , U = 0,,1,2, * * e), such that
the scaled bound Si now lies between 3 and 1, i.e.,

SiA = vis;, where 3<Si)<1. (29)

By doing so, we make sure that both multiplier and multipli-
cand can make full use of multiplier wordlength. From (26)
and (29), we get

, 1 , Bi+l Ici+lI vj+lSj+l
vi

(30)

where

F j + l = Bj+l vi+, /vi = a power of 2, j = 0 to N - 2 (3la)

and

Fo=Bovo. (31b)

Fig. 2 shows how the scale factors are incorporated as per (30).
It can be seen that Fi > 2; in most cases they turn out to be 1
or 3 .

Although it appears that we use denormalization of the data
before addition similar to that in floating point addition, we
note that the addition scheme in the NS is not floating point
because all scale factors are precomputed based on the upper
bounds on Si's, whereas in floating point addition, the scale
factors are data-dependent and hence dynamic.

IV. ROUNDOFF NOISE

The roundoff noise model is shown in Fig. 3, where evi is the
noise due to input scaling and e. is that due to multiplication
roundoff. We assume that Fi is incorporated as part of the
multiplier and rounding is performed after scaling. Unlike
eci, which can be considered to have uniform probability
density and a variance equal to (Q2 /12),' the noise evj, on the
other hand, cannot be considered to be uniformly distributed
since very few quantization levels exist because of scalings by
3, $ etc. For example, when uj = 4, the possible values of evj

are 0, ?Q/4 and +Q/2 with possibilities $, b, and $, respec-
tively (we assume that random rounding is being used).

It can be shown that the variance of e. is equal to dj(Q2

where

Fig. 2. Signal scaling.

Fig. 3. Roundoff noise model.

It follows that for large uj, the variance approaches (Q2 /12),
and the distribution is essentially uniform.

Since the transfer function from Si to the output is api vi,
the noise contribution from thejth node is

uf = (1 t di) (apj vi)' (Q2/12), j = 0toN-2. (33)

Hence, the total output noise variance is

N-201

12

T2"

r N-2 i
l + £ (l+d;.)a?

L /=o J

[1+G] (34)

where

2/vf, 2, i.e., 1<dj< 1.5. (32)

i?j=apjvi. (35)

The first term within the brackets in (34) refers to the noise
contribution from the front multiplier cot and G represents
the noise due to the remaining multipliers and scalers. Since

(36)
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and & is monotonically decreasing from 5, = I to S
lap N-l1, it follows that the output noise is predominantly
contributed from the first few front end sections. We shall
now compare the NS noise results with that for the direct
form realization. Depending on the way rounding is carried
out, two cases arise in the DF [11. 1) The 2 t-bit products are
first rounded to t-bits before being accumulated in a t-bit
accumulator in which case the noise variance is

(o$)DF=Ne2/I2. (37a)

2) The products are first accumulated in a 2t-bit accumulator
and then rounded to t-bits; ths gives

(~$
IDF = Q2/12. (37b)

It can be shown that a 2t-bit accumulator is not really neces-
sary. By providing only log, N extra bits (guard-bits) in addi-
tion to the t-bits, we can achieve the same accuracy as that
given in (37b).

Obviously, the case 2 direct form has the lowest noise; how-
ever, it requires an extra wide accumulator. Compared to the
case 1 direct form, the nested structure will, however, exhibit
reduced roundoff noise since in all practical cases we shall find
(1 t G) <N. Also note that the noise does not grow linearly
with N unlike in case 1 direct form because the tail end noise
sources have negligible effect in the output.

Optimal Ordering of Coefficients

Recall that in the beginning of Section 11 we had mentioned
about arbitrary permutation of the coefficients {an}. While
such ordering does not affect the sensitivity derivations, it does
affect the output roundoff noise. We shall now show that
there exists an optimal ordering for which the roundoff noise
is minimum.

From (34) and (36), we obtain

(38)

Since & is monotonically decreasing for any ordering, it can
be seen that E $ ! and hence u$ will be minimum when ai’s
are arranged in decreasing order of magnitude from j = 0 to
j = N - 1, provided the ordering does not significantly alter
di’s and S?s. However, this assumption may not be valid in
general, and under certain conditions an exchange between
adjacent coefficients (following the decreasing order) may
indeed result in further reduction in noise (see Example 2).
It may be noted that for all practical purposes, optimal order-
ing of the few largest ai’s is enough to ensure near optimum
results.

V. GENERALIZED NESTED STRUCTURE

Equation (36) suggests that if 4. can be reduced, | 141 will
possibly be reduced. We can effectively do this by decom-
posing H(z) into a parallel connection of p subfilters; for
example, let

= so that

,=0
+ a4z

'1 +a3z~
3

-l z 'N+1

N-\

n=0

2

= V

} , K2={1,3,---,N-

(say)

is distributed between two subfilters, and consequently 141's
in a subfilter are likely to be reduced. EachHi(z) is then real-
ized in a nested structure and their outputs are added to ob-
tain the final output. Thus, from (34), it follows that for p
subfilters, the total output noise variance is

;=1

(39)

Note that the generalized nested structure offers the possibil-
ity of using extra wide accumulator for the output additions;
in this case, the noise reduces to

Q2/12. (40)

= Hi(2)+Hz(z) (say)

Further note that the output accumulator needs to be only
(t t log, &bit long rather than (t t log, N)-bit as in the case
with direct form. Also, the generalized NS will require only
(p - 1) additions of (t t log, p)-bit long words [the remaining
(N - p) additions being done with t-bit words] while the direct
form requires (N - 1) additions of (t t log, N)-bit long words.

One simple way to decompose H(z) is to consider the mono-
tonic ordering (to be denoted by the set {a;}), and define
Hi(z) from the set {a i - l + m p} , m = 0, 1, . . . , thereby mak-
ing SOI = SoIfi for all i. Since Foi and P are inversely related,
from (39) it follows that there is an optimum p for which the
noise is minimum. It may be noted that if P = N, the structure
simply reduces to the direct form.

VI. EXAMPLES

Example 1: The preceding analysis is easily extended
to the case of linear phase filters, by incorporating input
adders si’s as shown in Fig. 5, and with the assumption that
!x, lmax < 4 so that there is no overflow at the input adders.
Consider a linear phase LPF with N = 24, Fp (passband cutoff
frequency) = 0.08, F, (stopband cutoff frequency) = 0.16, and
61/62 (ripple ratio) = 1 [3, p. 1891.

a) Coefficient Sensitivity: In Table I we have shown how
the scaled multipliers {c;} are obtained for a word length
r = 7 (excluding the sign bit), using (9), (19), (22), and
(31) in that order. The last column of this table clearly
shows that the relative accuracy is/of the oider of Q (= 2-7 =
0.0078125). Table I1 shows the bounds {S,} and hence the
scale factors {v,} and {F,} [(27), (29), and (31), respec-
tively] . Table I11 shows the deviation as a function of word
length t for the nested structure and the direct form. The NS
is seen to exhibit about 3-4 bit superiority over the DF.

Note that if an 's are first multiplied by 4 and then rounded
to t-bits, then the DF realization with these scaled coefficients
will show improved performance over that shown in Table 111.
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TABLE I
COEFFICIENT SCALING SCHEME FOR THE LPF OF EXAMPLE 1

n

0
1

2

3

5
6

7
8

9
10
11

0. 233546135

0.1885075e
0.11540713

0.1*0089 5M-1
-0.14629169
-0.38112177

-0.34085343
-0,15929992

0.2915067

0.105693fDO

0.1W38299
0.337(e&17

E-1

E-1

6-1
S.1

B-1
E-2
E-1
E-1

E-2

\ .

0.233%06

0.8d+Z9875
0.61191923

0.3'+882527
-0.3661ma

2.59778171,

0.e3573275
0.465949C9

-0.15992162
V. 15260589

1.42281757
0.22601e26

BP

1A
1

1

1/2
1/2
>*

1

1/2

i A
8
2

1 e

0 . 9 * 1 »*2>*

0.8d+Z9875
0.61191923

0.697650*9
-0.73227876

O.6"t9iA-5i«-3

e3573275
0.93189819

-O.6396 86M-7

O.519O7573
0.7111*0879
O.9OVO73O6

o*(ln binary)

0.1111000
0.1100111

0.1001110
0.1011001

-0.1011110
0.1010011

0.1110011
0.1110111

-0.1010010

0.1oooo10
0.1011011
0.1110100

<

0.23437500

0. SOW 8750
0.60337500

0.34765625
-0.36718750

2.S375000

0 . e 38+3750
0.4648+375

-0.16015625
b.12500000
1.42187500
0.22656250

a n

0.23437500
0.188591353

0.1192729 4

0.39955191 E-1
- 0 . 14671dt7 L l
-0.38053028 8-1
-0.341 88268 E-1

-0.15812202 &-1

0.2%52355 E-2
0.1@+99C97- E-l

u.1492@+03 E-1
0.33822163 5-2

Vanl

3.55.~-3
4.83 E-4
4.16 $-3

3.35 3-3
2 . s E -3

1.55 .Z-3
3.02 i 3

2.37 2-3
1.47 6-3
4.65 E-3
6.62 6-4

2.41 E-3

TABLE I1
SIGNAL SCALING SCHEME FOR THE LPF OF EXAMPLE 1

n

0

1

2

3

4 •

5

6

7

8

9

10

11

n

3.04

2.S3

2.51

4.36

9 . I 4

3.14

2.3B'

2.97

12.32

2.74

1.23

1.n

4

i

4

a

16

4

4

4

16

4

2

1

1

1

1

1

1

1

1

i

1

2

1

1/8

TABLE I11
MAGNITUDE .RESPONSE ERROR FOR THE LPF OF EXAMPLE 1

DEVIATION ACTUAL RESPONSE-DE~IRED RESPONSE[

n

0

1

2

3

4

5

6

7

8

9

10

11

, d .
n

1 .I250UOO

1 .1250000

1 .1250flOO

1.0312500

1.0078125

1.12500000

1-1250000

1.1250000

1-DO78125

1.1250000

1 ~5000000

0.o

i~*nl

0.53750000

0.75439452

0.45970916

0.31964153

0.23473675

0.15221211

0.13675307

O.OG356881

3.04072377

0.04199639

0.029 85681

0.0033a222

~ 2

1.E677

1.2094

0.4491

0.2075

0.1106

0.049 2

0.0397

0.0086

0.0033

0.0037

0.0022

0.o

This realization will, however, require 2 extra bits in the ac-
cumulator to prevent overflow.

b) Roundoff Noise: We next calculate roundoff noise in a
nested realization for different .ordering of the coefficients
(a,} and compare these with results for various forms of
direct form implementation. We shall also compare these
results with the noise in a floating point realization of direct
form [4, pp. 441-4441.

1) Natural order: Table IV shows the various quantities
involved in noise calculation. Observe that the noise is ef-
fectively contributed from the first few front-end sections.
The result is

(4)natord.=4.95(£2 / l2) .

It may be noted that the scale factors Fi's (see Table 11) can
be moved back and forth, and can be combined '&th other
scalers, with the idea that most of the scalers might turn out
to be unity. In Table 11, F7 can be combined with F9 thereby
making all Fi = 1. Such shifting has little effect on the output

TABLE IV
ROUNDOFT NOISE CALCULATIONS FOR THE LPF OF EXAMPLE :1

Filter
Form

OF

NS

nF

N':

OF

NS

OF

NS

t
bits

5

5

7

7

9

9

11

11

00

Deviation in Ou

Passband

-24.29

-39.02

-34.90

-37.89

-37.50

-38.06

-37.72

-38.08

-38.11

Stopband

-21.71

-34.11

-30.74

-36.49

-34.51

-37.63

-37.33

-38.01

-38.11
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noise provided this is carried out avoiding the first few front-
end sections.

2) Decreasing order: (&)d e . .o r d . = 4.84 (Q2/12).
3) Optimal order: The optimal order is found to be

ian )opt = ( f l l . a2 > a0 » «6 , #3 , 05 , 0-1, «10 , #4 , #9 . al 1 > a8 } •

The noise is

(6)optord.=4 -72(Q2/12) -

4) Generalized MDF: A 2 section NS formed as per the
guidelines mentioned in Section V yields

By providing 1 extra bit for the output adder the noise reduces
to2.13(Q2/12).

For comparison, in the direct form implementation, the
noise variance is either 12 (Q2/12) or (Q2/12) depending on
whether rounding of the products is performed before or after
accumulation. Furthermore, in the floating point realization,
the variance is 1.64 (Q2 /12).

Example 2: Consider a linear phase bandpass filter of length
N = 5 0 [5, p. 5161.

Band edges: Band 1 (stopband) = 0.0, 0.15, Band 2 (pass-
band) = 0.2, 0.3, Band 3 (stopband) = 0.35, 0.5.

a) Coefficient Sensitivity:

Type

NS
DF
NS
DF
NS
DF

t

7
11
9

13
11
15
OO

Band 1

-44.93
-45.20
-47.20
-47.88
-48.18
-48.44
-48.62

Deviation in dB

Band 2

-28.36
-28.36
-28.56
-28.55
-28.62
-28.59
-28.62

Band 3

-48.83
-54.01
- 60.82
-64.92
-66.41
-66.88
-68.62

As in Example 1, the deviation in the DF has been evaluated
with unscaled an's. With scaled coefficients, performance will
improve,

b) Roundoff Noise:

1)
2)
3)
4)

Type ofNS

Natural order:
Decreasing order:
Optimal order:
Generalized NS:

(0;) 12/Q2

16.26
15.79
8.97
5.11, p = 3
5.18, p = 4
5.88, 1.1 = 2

The subfilters were obtained as per the guidelines in Section V.
With p = 3, slight rearrangement of the coefficients yields a
value 4.30 (Q2/12).

With p = 4 and a (t t 2)-bit long accumulator for the output
additions, the noise variance is 2.18 (Q2/12).

In the direct form implementation the results are 25 (Q2/I2),
or (Q2/12). Finally, in a floating-point realization, the result
is 2.16 (Q2/12).

VII. IMPLEMENTATION CONSIDERATIONS

In a serial implementation, the nested structure will require
some software control for the multipliers and the scalers. To
increase the throughout rate, one desires a parallel implemen-
tation. In a parallel implementation all scalers are hard-wired;
hence the structure does not require additional complexity.
Consider the transfer function

H(z) = a, t a l z - ’ ta2z-~ ta3z-~ (414

which can be expressed in an NS as

Equation (41c) can be implemented as shown in Fig. 4(a),
where we have omitted the scale factors. Note that the struc-
ture does not require any shift register memory. This is be-
cause each multiplier has a built-in delay of l clock cycle, thus
the multiplier themselves provide the necessary unit delays
required in the structure.

In the above example, the nesting was done in the natural
order. For any other ordering, the nested structure will re-
quire shift registers. For example, if we consider the other
extreme case, i.e., if the ordering is reversed completely, so
that

H(z) = bo(z ~3
(b2 2-l t b3))) (42)

then the implementation will require 2(N - 1) shift regis-
ters [Fig. 4(b)]. Thus the register length will vary between
0-2 (N - 1) depending on the ordering. Earlier we noted that
an 's should preferably be arranged in decreasing order of
magnitude so as to minimize the roundoff noise. In most
applications, the natural order is more likely to satisfy this
requirement then the reversed order. In a parallel form real-
ization, therefore, the nested structure will generally require
less memory locations than a canonic form.

Finally, in Fig. 5, we have shown a fully parallel implemen-
tation of an odd-length (N = 7), linear phase filter with the
transfer function

n=l

(43)

Here we have assumed that an 's are arranged in their natural
order. Note that the realized transfer function has a delay of
3 samples.

VIII. CONCLUSION

In this paper we have proposed a class of structures for FIR
filters, which offers reduced coefficient sensitivity and supe-
rior roundoff noise properties as compared to some direct
form implementations. A technique has been described to
generate the multiplier coefficients such that using fixed-point
arithmetic, it has been possible to realize floating-point ac-
curacy. The output noise is predominantly contributed by the
front-end noise sources, and hence, the noise does not grow
linearly as in some direct form realizations using t-bit accumu-
lator. In respect of roundoff noise also, these structures com-
pare favorably with the floating-point implementation. The
optimum structure to achieve the minimum roundoff noise
can be found; however, the search in this direction is not as
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X n o-

t>3

(a)

z:' —

1

z-1

i

7-1 7-1

1

- r - 1 —• Z - 1

\—r^_ [7 -i\-ui
1 1

(b)

Fig. 4. Fully parallel form nested structure for (a) (41c); (b) (42).

Xn o

>Yn

Fig. 5. Fully parallel form nested structure for the linear phase fil-
ter (43).

involved as in the cascade form, and in most cases, near opti-
mum ‘results can be easily achieved by simple permutations
and combinations of the impulse response coefficients. While
a serial form realization of these structures requires a certain
amount of software complexity, a parallel form, on the other
hand, does not require additional complexity. Further, in one
form of nested structure, the realization does not require any
shift register memory.

Since the output noise is predominantly contributed by the
sources nearest to the output, it follows that computations at
the tail-end sections can be carried out with a fewer number of
bits, while prodding extra bits at the front end to achieve
greater accuracy. H€me for a given cost, it should be Possible
to arrive at an optimum word length configuration so as to
minimize the output noise,, or vice versa. Such a cost effective
design should be particularly attractive for a fully parallel
realization.
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Recursive Lattice Forms for Spectral Estimation
BENJAMIN FRIEDLANDER, SENIOR MEMBER, IEEE

Abstmcf—A class of lattice prediction filters is proposed for high
resolution spectral estimation. The square-root normalized lattice re-
cursions are used to estimate a set of reflection coefficients from the
data. The lattice variables determine the coefficients of a least-squares
predictor, from which the spectrum can be evaluated. The pre-
windowed and sliding window (covariance) cases are considered for
both AR and ARMA spectra. The behavior of the proposed spectral
estimator is illustrated by simulation results.

I. INTRODUCTION

A LARGE number of spectral estimation techniques based
on autoregressive (AR) modeling were developed in the

last decade. The maximum entropy method is probably the
best known technique of this kind [11. The idea of an AR
model fitting of time series was treated extensively in the sta-
tistical literature, in speech processing, and in the general area
of least-squares estimation. Many high resolution spectral
estimation techniques that do not explicitly involve auto-
regressive modeling are very closely related to these tech-
niques. Examples include: the maximum likelihood method,
the extended Prony method, Pisarenko's Toeplitz and non-
Toeplitz algorithms, and the Hildebrand-Prony method [2].

While most of the progress in modern spectral estimation in-
volved AR modeling, considerable work was done on auto-
regressive moving-average (ARMA) modeling [3], [4]. The
practical application of these techniques has been somewhat
limited due, perhaps, to the relative complexity of the model
fitting algorithms. Some of the more recent work seems to
indicate that relatively efficient ARMA spectral estimation
techniques are now available [5], [6].

The common basis of all the techniques discussed above is
fitting a prediction model to the observed time series. The
prediction model for an ARMA (m, n) processy, is given by
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9t\t-i = Biet-i

where et is the prediction error sequence

A(z) =

z-' = unit delay operator, i.e.,z-~x,=x,-l.

The spectrum S(w) of the process y, is given by

(1)

(2a)

(2b)

(3)

~ v ~ ' A(e>")A(e->")J ( 4 )

where o2 is the prediction error variance. The spectral estima-
tion problem is thus reduced to estimating the predictor co-
efficients from an observed set of data Cy,, 0 < t < T}. The
spectral estimate is then computed by (4) with the true pre-
dictor coefficients {Ai,Bi} replaced by their estimates. In
the case of AR spectral estimation B(z) = 1.

The prediction filter can be realized in many different ways,
leading to different parametrizations of its transfer function
and of the related techniques. Usually, not much attention is
paid to this issue. Most spectral estimation techniques (e.g.,
Pisarenko's method and the first step in Prony's method)
pa&metrize the spectrum by the coefficients {Ai, Bi} of the
difference equation (1). This corresponds to a direct, or
tapped delay line realization of the prediction filter. An al-
ternative parametrization is to use the so-called partial correla-
tion (PARCOR) or reflection coefficients related to lattice
filters. This parametrization is widely used in speech process-
ing applications [7] and is implicit in the maximum entropy
method of spectral estimation [11.


