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Abstract

We propose a new generalized multiple-instance learn-
ing (MIL) algorithm, MICCLLR (multiple-instance class
conditional likelihood ratio), that converts the MI data
into a single meta-instance data allowing any propositional
classifier to be applied. Experimental results on a wide
range of MI data sets show that MICCLLR is competitive
with some of the best performing MIL algorithms reported
in literature.

1. Introduction

Dietterich et al. [5] introduced the multiple-instance
learning (MIL) problem motivated by his work on classi-
fying aromatic molecules according to whether or not they
are ”musky”. In this classification task, each molecule can
adopt multiple shapes as a consequence of rotation of some
internal bonds. Dietterich et al. [5] suggested representing
each molecule by multiple conformations (instances) repre-
senting possible shapes or conformations that the molecule
can assume. The multiple conformations yield a multiset
(bag) of instances (where each instance corresponds to a
conformation) and the task of the classifier is to assign a
class label to such a bag. Dietterich’s proposed solution to
the MIL problem is based on the standard multiple-instance
assumption, that all the instances in a bag, in order for it
be labeled negative, must contain no positively labeled in-
stance, and a positive bag must have at least one positive in-
stance. The resulting classification task finds applicationin
drug discovery, identifying Thioredoxin-fold proteins [19],
content-based image retrieval (CBIR) [11, 24, 2], and com-
puter aided diagnosis (CAD) [7].

Several approaches to MIL have been investigated in the
literature including a MIL variant of the backpropagation

algorithm [14], variants of the k-nearest neighbor (k-NN)
algorithm [20], the Diverse Density (DD) method [10] and
EM-DD [23] which improves on DD by using Expectation
Maximization (EM), DD-SVM [4] which trains an SVM in
a feature space constructed from a mapping defined by the
local maximizers and minimizers of the DD function, and
MI logistic regression (MI/LR) [15]. Most of these methods
rely on the assumption that a bag is positive if and only if
it has at least one positive instance. Alternatively, a number
of MIL methods [21, 17, 3] have a generalized view of the
MIL problem where all the instances in a bag are assumed
to participate in determining the bag label.

Against this background, we introduce MICCLLR, a
new generalized MIL algorithm which relies on class con-
ditional likelihood ratio (CCLLR) statistics derived from
the MI training data to map each bag into a single meta-
instance and trains a support vector machine (SVM) clas-
sifier from the meta-instances data. Our experimental re-
sults on a broad range of real world and artificial data sets
show that MICCLLR has a consistent and comparable per-
formance to the state-of-the-art MI methods.

The rest of this paper is organized as follows: Section
2 summarizes the formulations of the MIL problem and
overviews two related MIL methods, TLC [21] and statis-
tical kernel [8], that uses the same idea of mapping each
bag into a single instance. Section 3 introduces our method.
Experimental results on data sets from two MI classifica-
tion tasks and on artificially generated data sets is given in
Section 4 . Section 5 concludes with a brief summary and
discussion.



2 Preliminaries

2.1 Multiple-Instance Learning

In the standard (single-instance) supervised classifier
learning scenario, each instance (input to the classifier) is
represented by an ordered tuple of attribute values. The
instance spaceI = D1 × D2 × ... × Dn whereDi is the
domain of theith attribute. The output of the classifier
is a class label drawn from a setC of mutually exclusive
classes. A training example is a labeled instance in the
form < Xi, c(Xi) > whereXi ∈ I and c : I → C

is unknown function that assigns to an instanceXi its
corresponding class labelc(Xi). For simplicity we
consider only the binary classification problem in which
C = {−1, 1}. Given a collection of training examples,E =
{< X1, c(X1) >,< X2, c(X2) >, ..., < Xn, c(Xn) >},
the goal of the (single-instance) learner is to learn a
functionc∗ that approximatesc as well as possible.

In the multiple-instance supervised classifier learning
scenario, instead of labeling single instances, the task of
the classifier is to label abagof instances. Under standard
MIL assumption, a bag is labeled negative if and only if all
of its instances are negatively labeled and a bag is labeled
positive if at least one of its instances is labeled positive.
More precisely, LetBi denotes theith bag in a set of bags
B. Let Xij ∈ I denotes thejth instance in the bagBi and
Xijk be the value of thekth feature in the instanceXij .
The set of MI training examples,EMI , is a collection of
ordered pairs< Bi, f(Bi) > wheref is unknown function
that assigns to each bagBi a class labelf(Bi) ∈ {−1, 1}.
Under the standard MIL assumption [5],f(Bi) = −1 iff
∀Xij∈Bi

c(Xij) = −1; andf(Bi) = 1 iff ∃Xij∈Bi
, such

thatc(Xij) = 1. GivenEMI , a collection of MI training ex-
amples, the goal of the multiple instance learner is to learn
a good approximation function off . It should be noted that
the functionf is defined in terms of a functionc : I → C.
However, learningc from the MI training data is challeng-
ing since we have labels only associated with bags and we
do not have labels for each instance. In other words, for
instances within a negative bag, we can assign a negative
label to each instance but for instances in a positive bag, we
do not know which of them has a positive label.

2.2 Generalized Multiple-Instance Learn-
ing

A generalization of the MIL problem has been consid-
ered by Weidmann et al. [21] and Tao et al. [17]. In this set-
ting, all the bag instances contribute the label assigned tothe
bag and negative bags may contain some positive instances.
Instead of a single concept, the generalized MIL problem
considered a set of underlying concepts and requires a pos-

itive bag to have a certain number of instances in each of
them. Weidmann et al. [21] explored three different models
for the generalized MIL. Inpresence-based MIL, a positive
bag must contain at list one instance in each of the under-
lying concepts. Thethreshold-based MILmodel requires
each positive bag to have a minimum number of instances
in each concept. Finally, in thecount-based MILmodel, the
number of instances in each concept is bounded by a lower
and lower threshold. It should be noted that the standard
MIL problem is a special case of the presence-based MIL
problem when the number of concepts is one. Therefore,
a generalized MIL classifier is expected to be able to deal
with data sets that confirm to the standard MIL assumption.
The two-level MIL classifier (TLC) [21] and methods based
on MI kernels [17, 8] offer examples of multiple instance
learning under the generalized MIL assumption. Several re-
cent papers [21, 17, 8, 15] have reported good performance
of these generalized algorithms on the Musk data sets [5] in
which the bags are labeled according to the standard MIL
assumption.

2.3 Two level classifier

As the name suggests, the “two level classifier” [21] has
two classifiers trained from the data at two different levels
of abstraction. The first classifier is trained from the MI
data at the instance level by assigning the label of each bag
to its instances and assigning a weight to each instance such
that bags of different size will end up with the same weight.
Specifically, each instance in a bagBi will be assigned a
weight equals 1

|Bi|
× N

b
, where N is the total number of

instances in the training data and b is the number of train-
ing bags. Weidmann et al. [21] used a pruned decision tree
trained form the MI data at the instance level to represent the
structure of the instance space. They used the tree to map
each training bag into a single meta-instance with a number
of attributes equals to the size of the tree. Each attribute in
the meta-instance corresponds to a node in the tree and its
value is an integer value that counts how many instances in
a bag under consideration visited this node during the task
of classifying each instance in this bag by the decision tree.
Once the training bags have been transformed into a set of
meta-instances by the first classifier, the second classifieris
trained from the meta-instances data set. In their experi-
ments, Weidman et al. used Logit-boosted decision stumps
[6] with 10 boosting iterations as the second level classifier.

2.4 Statistical kernel

Gartner et al. [8] mapped each bag into a sin-
gle meta-instance using an aggregation function (e.g.
mean, median, minimum, maximum, etc.) applied
to each instance attribute. The resulting labeled



meta-instances data set is then used to train a SVM
classifier. Gartner used a kernelkstat defined as
kstat(Bi, Bj) = k(s(Bi), s(Bj)), where s(Bi) =
{minl Xil1, ...,minl Xiln,maxl Xil1, ...,maxl Xiln}.
This simple approach of mapping each bag into a meta-
instance has two limitations. First, each bag is mapped
independently of any other training bags. Therefore, the
transformation process of a bag into a single meta-instance
does not make use of the other available training data to
improve the mapping. Second, the statistical kernel is not
applicable to data sets in binary representation because
there is a high chance that two bags with different labels
will be mapped into a meta-instance with a value of zero
for the firstn attributes and a value of one for the remaining
attributes.

3 Algorithm

We now proceed to describe MICCLLR, a MIL algo-
rithm that uses CCLLR statistics extracted from the MI
training data to map each bag into a single meta-instance.
Figure 1 presents the pseudo code for MICCLLR. In step
1, we assign the label of each bag to its instances and as-
sociate a weight with each instance such that bags of dif-
ferent sizes will be treated equally. Step 2 estimates the
probability of each attribute value given the instance la-
bel. Under Naive Bayes assumption, the posterior proba-
bility of each attribute is independent from other attributes
given the instance label. Therefore, the posterior probability
of each attribute can be easily estimated from the training
data using standard probability methods based on relative
frequencies of each attribute value and class label occur-
rences observed in the training labeled instances [13]. Step
3 uses the collected statistics to map each bag into a sin-
gle meta-instance. LetBi = {Xi1, . . . ,Xik} be a bag of
k instances. Each instance is represented by an ordered tu-
ple of n attribute values. We define a functions that maps
Bi into a single meta-instance ofn real value attributes
as;s(Bi) = {s1, s2, . . . , sn} where each meta-instance at-
tribute is computed using Eq. 1. The MI kernelK is then
defined as:K(Bi, Bj) = k(s(Bi), s(Bj)) wherek is the
RBF kernel.

sq =
1

k
ln

k∑

l=1

Pr(Xilq = aq|c = 1)

Pr(Xilq = aq)|c = −1)
(1)

Once the MI data has been transformed into a standard
supervised learning data, any propositional classifier canbe
trained from such data. In this work, we used support vector
machine (SVM) classifier [18] with an RBF kernel as the
propositional classifier. To classify an unlabeled bagB, we
first transform it into a single meta-instance using Eq. 1

and then we use the SVM classifierh to classify the meta-
instance.

Algorithm: MICCLLR
Input: A collection of labeled bagsEMI

Output: MIL classifierh

1. UseEMI to construct the collection of all instances
EAV by labeling each instance with its bag’s class
label and assign to instances in a bagBi a weight
equal to 1

|Bi|
. N
M

, whereN =
∑

i |Bi| andM de-
notes the number of bags in the training data set

2. Estimate the posterior probabilities of each attribute,
Pr(aq|cj), from EAV .

3. convert each bag inEMI to a single meta-instance
{s1, s2, ..., sn} using Eq. 8.

4. Train an SVM using a kernelK defined as
K(Bi, Bj) = k(s(Bi), s(Bj)) to build a classifier
h from the set of single meta-instances.

Figure 1. An algorithm for building a MICCLR
classifier from a collection of training bags
EMI . In the experiments reported in this pa-
per, k is a radial basis function (RBF) kernel.

4 Experiments and Results

We implemented MICCLLR and the statistical kernel [8]
using the Weka machine learning workbench [22]. For both
methods, we trained an SMO classifier with the RBF kernel.
We tuned theC andγ and used the default values for the re-
maining parameters to get the optimal performance of the
SMO classifier. TheC parameter determines the tradeoff
between margin maximization and training error minimiza-
tion. Theγ parameter determines the RBF kernel width.
To get the best performance out of MICCLLR and statis-
tical kernel classifiers, we applied a grid search over the
rangeC = 2−5, 2−3, . . . , 215, γ = 2−15, 2−13, . . . , 23 to
optimizeC andγ parameters by selecting(C, γ) pair that
yields the highest correlation coefficient (as estimated from
a 10-fold stratified cross-validation experiment). We then
evaluated the classifiers trained using the optimal values for
(C, γ) using 10 independent 10-fold cross validation exper-
iments. Each of the 10 independent experiments was set
up as a 10-fold stratified cross validation experiment, with
a different random seed. The results of each such exper-
iment represent averages over the 10 runs (with each run



using 9 subsets of the bags for training the classifier and
the remaining set of bags for evaluating the classifier). The
reported results correspond to averages and standard devia-
tions over 10 such 10-fold cross-validation experiments. It
is important to note that each of the 10 10-fold cross valida-
tion experiments used to evaluate the classifier uses a differ-
ent random partition of the dataset from each other and from
the partition used in the 10-fold cross validation experiment
used to optimize theC andγ parameters of the classifiers.

4.1 Drug Activity prediction

Prediction of drug activity was the first application of
the MIL problem [5]. In this classification task, each mole-
cule can adopt multiple shapes (conformations) as a result
of the rotation of some internal bonds. Each molecule is
represented as a bag of instances where each instance rep-
resents a possible conformation of the molecule. A bag is
assigned a positive label if and only if at least one of its
instances represents an active conformation i.e., one thatin-
teracts with a target molecule. Dietterich et al. [5] intro-
duced the Musk data sets, Musk1 and Musk2, which have
been used to evaluate almost every MIL method reported in
literature. Musk1 has smaller number of bags and smaller
number of instances per bag compared with Musk2.

Table 1 compares the performance of MICCLLR and our
implementation of the statistical kernel with several MIL
methods. It should be noted that many of the reported meth-
ods has a performance close to the optimal on one data set
but does not perform well on the other data set. Although
MICCLLR is not the best classifier on Musk1 or Musk2, its
performance in the two data sets is relatively well and close
the best reported performance. Compared with the TLC,
MICCLLR outperformed the TLC classifier on the two data
sets. The statistical kernel has slightly better accuracy on
Musk1 than MICCLLR but MICCLLR has a lower stan-
dard deviation. MICCLLR is significantly better than the
statistical kernel on Musk2 data set.

4.2 Content-Based Image Retrieval

In content-based image retrieval (CBIR), the user sub-
mits a query image which contains an object of interest and
the task of the classifier is to retrieve images that contain
the query object from a database of images. For exam-
ple, the user may submit an image with an elephant and
the task is to search a database of images for images con-
taining an elephant. In [11, 24], each image is viewed as a
bag of segments. Although there is no one-to-one mapping
from objects to image segments, the underlying assumption
is that the object of interest (e.g. elephant) is contained in
at least one image segment of the target image. In our ex-
periments, we used three CBIR data sets [16]. Each data

Table 1. Comparison of the performance (%
correct ± std. deviation) of MICCLLR and
our implementation of statistical kernel, kstat,
with those of other methods on the Musk data
sets. All methods had been evaluated using
10-fold cross validation test except IAPR [5]
which had been evaluated using leave one
out test.

Method Musk1 Musk2
MICCLLR 89.3± 1 88± 1.7
kstat 91.3± 2 85.5± 1.7
TLC [21] 88.7± 1.6 83.1± 3.23
DD-SVM [4] 85.8 91.3
MILES [3] 86.3 87.7
IAPR [5] 92.4 89.2
DD [10] 88.9 82.5
EM-DD [16] 84.8 84.9
MI-SVM [16] 77.9 84.3
mi-SVM [16] 87.4 83.6
MI-NN [14] 88 82
Multinst [1] 76.7 84
MICA [9] 88.4 90.5
CH-FD [7] 88.8 85.7

set corresponds to one of three different categories, namely
Elephant, Fox, and Tiger. For each category, the data set
has 100 positive and 100 negative example images. In Ta-
ble 2, we compare our results with EM-DD [23], mi-SVM
and MI-SVM [16], MICA [9], and CH-FD [7]. For Ele-
phant and Fox data sets, MICCLLR and statistical kernel
have the best reported performance while MI-SVM has the
best performance on Tiger data set. The statistical kernel is
not performing well on the Tiger data set while MICCLLR
has a consistent performance on the three data sets.

4.3 Artificial Data Sets

In this experiment, we evaluate MICCLLR on the three
models of the generalized MIL problem introduced by Wei-
dmann et al [21]. Unlike Musk and CBIR data sets, these
artificial data sets have only binary attributes. Therefore,
we could not test the statistical kernel on these data sets be-
cause the min and max aggregation operators mapped all
the bags into the same instance, an instance with zero value
in the firstn attributes and the value of one in the remaining
n attributes.

We followed the procedure described in [21] to gener-
ate the artificial data sets. In these data sets, instances are
drawn from{0, 1}

(r+i), wherer is the number of relevant
attributes andi denotes the number of irrelevant ones. A



Table 2. Comparison of the performance (%
correct ± std. deviation) of MICCLLR and
our implementation of statistical kernel, kstat,
with those of other methods on the CBIR data
sets [16].

Method Elephant Fox Tiger
MICCLLR 84.4± 3.4 63.7±1.8 81.5±2.1
kstat 83.5±0.9 63.3±3.1 78.8± 1.1
EM-DD [16] 78.3 56.1 72.1
mi-SVM [16] 82.2 58.2 78.9
MI-SVM [16] 81.4 59.4 84
MICA [9] 80.5 58.7 82.6
CH-FD [7] 82.4 60.4 82.2

concept,ci is represented by a binary string in{0, 1}
r. An

instance is a member of a conceptci if and only if its firstr
attributes match the binary string stringci. For each classi-
fication task, MICCLLR is trained on five different training
sets of 50 positive and 50 negative bags each. Then the av-
erage performance, accuracy± standard deviation of five
runs on a test set of 5000 positive and 5000 negative bags
is reported. In the following, we report MICCLLR perfor-
mance on the three generalized MIL problems.

Presence-based MIL. The names of a presence-based
data set take the formc − r − i wherec is the number of
concepts,r and i are the numbers of relevant and irrele-
vant features respectively. As stated before, the standard
MIL problem is a special case of the presence-based MIL
where the number of concepts equals one. Table 3 shows
that the DD method [10], developed based on the standard
MIL assumption, has the best performance on the standard
MIL artificial data sets while MICCLLR has the lowest re-
ported performance on these data sets. When the number
of concepts is greater than one, Weidmann [21] reported a
poor performance of that method and avoided reporting its
performance in the remaining data sets. Therefore, the re-
maining of the results will consider only MI-SVM, TLC,
and MICCLLR methods. In Table 4, the performance of
each of three methods is comparable to the others except on
data sets with zero irrelevant attributes we observe that TLC
has a better performance.

Threshold-based MIL. For threshold-based data sets, the
names take the formt1t2 . . . tn−r−i, whereti is the thresh-
old for the ith concept. For example, the threshold-based
data set 42-10-5 means that a positive bag must have at least
4 instances in the first concept and 2 instances in the second
concept and each instance is composed of 15 features, 10 of
them are relevant features. Table 5 shows that both MIC-
CLLR and TLC are competitive to each other and both has
a better performance than MI-SVM. However, TLC outper-

Table 4. Results for the presence-based MI
data sets using two or three underlying con-
cepts.

MI-SVM TLC MICCLLR
2-5-0 80.96± 1.9 100± 0 81.7± 1.5
2-5-5 81.17± 1.79 88.38± 11.91 79.5± 1.8
2-5-10 79.21± 1.66 78.64± 13.15 83.7± 2.3
2-10-0 84.18± 0.52 99.01± 1.32 84.6± 1.4
2-10-5 82± 1.53 85.18± 10.07 84.9± 0.3
2-10-10 80.74± 0.79 86.63± 8.69 83.7± 1.2
3-5-0 82± 2.13 100± 0 79.9± 2.3
3-5-5 82.12± 0.98 81.93± 2.9 76.9± 2.3
3-5-10 81.43± 0.96 86.32± 6.48 73.7± 3.4
3-10-0 84.39± 1.25 95.68± 3.78 74.9± 1.3
3-10-5 84.27± 1.44 78.07± 0.91 75.2± 1.6

Table 5. Results for the threshold-based MI
data sets using two or three underlying con-
cepts.

Data MI-SVM TLC MICCLLR
42-5-0 84.35± 3.07 100± 0 94.6± 1
42-5-5 81.54± 2.24 95.93± 9.1 90.9± 3.2
42-5-10 81.59± 0.4 84.67± 14.31 91.9± 3.1
42-10-0 86.28± 1.33 99.35± 0.45 94.4± 1.1
42-10-5 85.36± 0.92 88.65± 10.12 95.4± 0.3
42-10-10 83.93± 0.36 84.59± 8.08 94.2± 1.6
275-5-0 84.75± 1.03 97.2± 2.78 86.2± 7.8
275-5-5 83.9± 1.29 90.62± 6.57 85.1± 2.6
275-5-10 82.73± 0.85 86.42± 5.39 86.9± 2
275-10-0 88.66± 1.12 95.44± 1.21 89.2± 0.5
275-10-5 87.05± 0.75 86.92± 6.56 87± 2.2

forms MICCLLR on data sets with zero irrelevant attributes.

Count-based MIL. The count-based data set 42-10-5
means that a positive bag is required to have exactly 4 in-
stances in the first concept and 2 instances in the second
concept and each instance has 10 and 5 relevant and irrele-
vant features respectively. In this setting, a bag with 5 and2
instances that are members in the first and second concepts
respectively is considered negative. Therefore, the count-
based MIL seems more challenging than the other two prob-
lems. In Table 6, the TLC has a good performance only on
data sets with zero irrelevant attributes. On the remaining
data sets the performance of the three methods is just few
percents above a classifier that randomly assigns labels to
the bags.



Table 3. Results for the presence-based MI data sets using on ly one underlying concept.
Data DD MI-SVM TLC MICCLLR
1-5-0 100± 0 94.35± 0.74 100± 0 88.7± 0.6
1-5-5 100± 0 92.26± 0.95 100± 0 88.4± 0.2
1-5-10 100± 0 90.74± 0.76 100± 0 87.9± 0.6
1-10-0 99.57± 0.59 96.2± 0.85 97.46± 0.92 88.8± 0.5
1-10-5 99.41± 0.54 94.67± 1.35 97.57± 0.87 89.2± 0.6
1-10-10 99.8± 0.44 91.66± 2.3 97.85± 0.89 88.6± 0.2

Table 6. Results for the count-based MI data
sets using two or three underlying concept.

Data MI-SVM TLC MICCLLR
42-5-0 52.78± 2 99.55± 0.64 52.1± 1.1
42-5-5 52.7± 1.04 57.89± 11.09 51.5± 0.7
42-5-10 53.83± 1.46 57.63± 7.64 51.5± 1.9
42-10-0 55.21± 1.76 90.89± 6.25 52.5± 0.6
42-10-5 54.62± 0.5 57.8± 8.55 51.7± 1.2
42-10-10 55.59± 2.81 51.05± 1.6 51.9± 0.5
275-5-0 54.31± 2.07 95.15± 2.4 54.6± 1.9
275-5-5 51.6± 0.45 55.2± 6.13 53± 1.1
275-5-10 52.34± 0.5 50.33± 0.72 52.1± 1.2
275-10-0 54.52± 1.54 87.85± 4.26 52.9± 1.3
275-10-5 54.5± 1.81 54.11± 4.79 53.1± 0.5

5 Summary and Discussion

We have proposed MICCLLR, a generalized MIL algo-
rithm that uses the class conditional log likelihood ratio
(CCLLR) to convert each bag into a single meta-instance.
We have conducted extensive experiments on a large num-
ber of MIL data sets, including both real world and artificial
data, in order to demonstrate the applicability of our ap-
proach. Our results show that MICCLLR has a competitive
performance with a large number of MIL methods. We also
compared MICCLLR with two MIL methods, TLC [21] and
statistical kernel [8], that use the same approach of mapping
each bag into a single instance and showed that MICCLLR
has a better performance than TLC on Musk data sets, and
on artificial data sets with irrelevant attributes. Compared
with the statistical kernel, MICCLLR has a consistent per-
formance on the Musk and CBIR data sets while the statisti-
cal kernel is not competitive with MICCLLR on Musk2 and
Tiger data sets. This can be justified by the fact that MIC-
CLLR is making use of the available training data to map
bags into meta-instances while statistical kernel is apply-
ing aggregation operators to each bag without considering
other available training data. Both TLC and MICCLLR can
be applied to data sets with real-value or nominal attributes
while the statistical kernel may not be applicable to data sets

with binary attributes.
In the current implementation of MICCLLR, in esti-

mating the relevant probabilities, we assume that instances
within a bag are independently identically distributed (iid)
given the label assigned to the bag. This assumption is un-
realistic and unlikely to hold in practice. The consequences
of violating the iid assumption as a result of autocorrela-
tion among instances in probability estimation have been
explored and addressed in the context of multi-relational
learning in the work of [12]. Because the instances within a
bag are likely to be autocorrelated, it would be interestingto
explore variants of MIL algorithms (including MICCLLR)
that use statistical estimators that correct for such autocor-
relation.
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