
Iterative Circular Coinduction for CoCasl in

Isabelle/HOL

Daniel Hausmann, Till Mossakowski, and Lutz Schröder

BISS, Dept. of Computer Science, University of Bremen

Abstract. Coalgebra has in recent years been recognized as the frame-
work of choice for the treatment of reactive systems at an appropriate
level of generality. Proofs about the reactive behavior of a coalgebraic
system typically rely on the method of coinduction. In comparison to
‘traditional’ coinduction, which has the disadvantage of requiring the
invention of a bisimulation relation, the method of circular coinduction
allows a higher degree of automation. As part of an effort to provide proof
support for the algebraic-coalgebraic specification language CoCasl, we
develop a new coinductive proof strategy which iteratively constructs a
bisimulation relation, thus arriving at a new variant of circular coinduc-
tion. Based on this result, we design and implement tactics for the the-
orem prover Isabelle which allow for both automatic and semiautomatic
coinductive proofs. The flexibility of this approach is demonstrated by
means of examples of (semi-)automatic proofs of consequences of Co-

Casl specifications, automatically translated into Isabelle theories by
means of the Bremen heterogeneous Casl tool set Hets.

Introduction

Coalgebra is emerging as a standard unifying framework for the specification
of reactive systems [11], complementing the use of universal algebra for the
specification of the functional correctness of programs. Following this paradigm,
several coalgebraic specification languages have recently been designed, e.g. the
Coalgebraic Class Specification Language CCSL, which is geared towards ob-
ject oriented programs, and the algebraic-coalgebraic specification language Co-

Casl [7], which extends the standard algebraic specification language Casl [1,
8] and thus allows not only the specification of both functional and reactive re-
quirements, but also the intercombination of inductive datatypes and coinductive
process types.

This work forms part of an effort to provide proof support for CoCasl. To
this end, an existing embedding of Casl into the semiautomatic theorem prover
Isabelle/HOL [9] has been extended to CoCasl, so that proofs about CoCasl

specifications can now be conducted in a well-developed higher order logical
environment. This embedding is the basis for the development of automatic
tactics that serve to simplify the actual proof work.

In the same way as proofs about algebraic datatypes typically involve induc-
tion, the standard proof method for coalgebraic process types is coinduction. The

coinduction principle states that bisimilar, i.e. observationally indistinguishable
states are actually equal. While inductive proofs of simple assertions are usually
easy to mechanize, the automatization of coinduction is faced with the prob-
lem that standard coinduction requires the invention of a bisimulation relation.
A variant of coinduction that lends itself more easily to mechanization is the
method of circular coinduction [10], which works by ‘reducing the claim to it-
self’ adhering to certain restrictions in the permissible proof steps. Here, we
introduce an implementation of a related proof method where the bisimulation
is built up inductively from the proof goal. This process may be performed either
automatically or, in cases where this fails, semiautomatically, with the inductive
construction guided by the user by means of specialized tactics. The inductive
completion process has the advantage that specifications are not limited to (con-
ditional) equational logic, as with circular coinduction (as realized in BOBJ).

The use of this method is illustrated by means of example specifications in
CoCasl. It turns out that many simple goals can indeed be solved automati-
cally, and that more complicated goals require only a moderate amount of user
interaction.

The material is organized as follows. Basic facts and notions concerning coal-
gebra and coinduction are reviewed in Sect. 1. Section 2 gives a brief introduction
to CoCasl. The method of the iterative construction of a bisimulation, called
iterative coinduction, is introduced in Sect. 3. Section 4 discusses the implemen-
tation of this method in Isabelle/HOL and the example proofs.

1 Coalgebra and Coinduction

We now briefly recall some basic notions from coalgebra.

Definition 1 (coalgebra). Let C be a category, and let T : C → C be a
functor. A T -coalgebra (A, α) (or, somewhat imprecisely, just A) consists of an
object A of C and a morphism α : A → TA. A homomorphism between two T -
coalgebras (A, α) and (B, β) is a morphism h : A → B such that β◦h = (Th)◦α.
A T -coalgebra Z is called final if for each T -coalgebra A, there exists a unique
homomorphism A → Z.

Final coalgebras admit corecursive definitions : given an object A of C, a
function f : A → Z into the final T -coalgebra Z can be defined by exhibiting
a T -coalgebra structure α on A. The function f : A → Z thus defined is then
the unique homomorphism (A, α) → Z. Examples of corecursive definitions are
given below.

There is also a principle of coinductive proof which relies on a coalgebraic
notion of bisimulation and is particularly suitable for proving properties of core-
cursively defined functions.

Definition 2 (bisimulation and full abstraction). Let C be a category. A
relation between two objects A and B of C is a subobject R of A×B; equivalently,
R is given by the two projection morphisms π1 : R → A and π2 : R → B. If

A and B are coalgebras for a functor T : C → C, then such a relation R is
called a bisimulation if there exists a T -coalgebra structure on R that makes π1

and π2 into coalgebra homomorphisms. A coalgebra A is called fully abstract
if every bisimulation on A is contained in the identity relation, i.e. the diagonal
∆ : A → A × A.

In the special case C = Set, the notion of relation as defined above coincides
with the usual notion. In this case, elements of coalgebras are called bisimilar if
there exists some bisimulation that relates them. Full abstractness of A means
that we have the following coinduction proof principle on A:

If x and y are bisimilar elements of A, then x = y.

As indicated in the introduction, this proof principle, while indeed essentially
dual to induction, carries the disadvantage that a bisimulation R relating x and
y must actually be invented. Coinduction is always available on final coalgebras,
and hence on their subcoalgebras:

Lemma 3. Final coalgebras are fully abstract.

Example 4. Let T be the set functor given by TX = A×X for a fixed set A. The
final T -coalgebra Z = (AIN, 〈hd, tl〉 : AIN → A×AIN) has the set AIN of all infinite
streams of elements from A as its carrier and the combined head and tail function
as its coalgebra structure. We can define corecursive functions odd, even : AIN →
AIN and zip : AIN×AIN → AIN by the equations shown in Fig. 1 below (where AIN

corresponds to Stream[Elem]). In the case of odd, these equations correspond to
requiring that odd is a homomorphism (AIN, 〈hd, tl◦tl〉) → Z, i.e. to commutation
of the diagrams

AIN
odd

- AIN AIN
odd

- AIN

A

hd
?

id
- A

hd
?

AIN

tl ◦ tl
?

odd
- AIN

tl
?

,

similarly for even and zip. By Lemma 3, the claim that zip(odd(s), even(s)) = s
for all s ∈ AIN can be proved by coinduction as follows. We have to define
a bisimulation R which relates zip(odd(s), even(s)) and s for all s ∈ AIN. To
this end, we put R = {(zip(odd(s), even(s)), s) | s ∈ AIN}. Showing that R is a
bisimulation amounts to proving that sRt implies hd(s) = hd(t) and tl(s) R tl(t).
The former goal is solved trivially by just applying the definitions. The latter is
shown as follows:

tl(zip(odd(s), even(s))) = zip(even(s), tl(odd(s)))

= zip(even(s), odd(tl(tl(s))))

= zip(odd(tl(s)), even(tl(s))))

R tl(s),

where we have used the lemma

even = odd ◦ tl.

This proof illustrates two difficulties w.r.t. mechanizability: not only did we have
to invent the said lemma, we also had to apply this equation in two different
directions during the calculation of tl(zip(odd(s), even(s))). This point will be
discussed in more detail below.

A further difficulty appears in the following example. Let bzip : AIN ×AIN ×
Bool → AIN, where Bool is the set {>,⊥} of truth values, be corecursively
defined by

hd(bzip(s, t, b)) =

{

hd(s) if b

hd(t) otherwise

tl(bzip(s, t, b)) =

{

bzip(tl(s), t,¬b) if b

bzip(s, tl(t),¬b) otherwise.

Then the equation zip(s, t) = bzip(s, t,>) can be proved by coinduction. How-
ever, the initial guess at a bisimulation, R = {(zip(s, t), bzip(s, t,>)) | s, t ∈
AIN}, in fact fails to be a bisimulation. A bisimulation is obtained only by the
improved guess R′ = R ∪ {(zip(t, s), bzip(s, t,⊥)) | s, t ∈ AIN}.

Circular Coinduction

A coinduction proof principle similar to the one described above has also been in-
troduced for behavioral specifications in the framework of hidden algebra. Roşu
[10] has noted that coinduction based on behavioral rewriting loops for proof
goals like zip(odd(s), even(s)) = s. He has therefore introduced circular coin-
duction, a proof rule that avoids looping by stopping whenever a subgoal is
reached that is an instance of a proof goal that has already been decomposed
using the observers. Circular coinduction has been implemented in the BOBJ
system [10]. Our iterative coinduction method introduced below is very similar
to circular coinduction, the essential difference being that it is tailored towards
integration in a semiautomatic theorem prover like Isabelle (while a direct inte-
gration of the circular coinduction rule into Isabelle would actually lead to less
automation because true narrowing instead of just rewriting would be needed).

2 CoCasl

The algebraic-coalgebraic specification language CoCasl has been introduced
in [7] as an extension of the standard algebraic specification language Casl. For
the basic Casl syntax, the reader is referred to [1, 8]. We briefly explain the
CoCasl features relevant for the understanding of the present work using the
example specification shown in Fig. 1.

spec Stream1 [sort Elem] =
cofree cotype

Stream ::= cons(hd : Elem; tl : Stream)
ops odd , even : Stream[Elem] → Stream[Elem];

zip : Stream[Elem] × Stream[Elem] → Stream[Elem];
vars s, s1 , s2 : Stream[Elem];

• hd(odd(s)) = hd(s)
• tl(odd(s)) = odd(tl(tl(s)))
• hd(even(s)) = hd(tl(s))
• tl(even(s)) = even(tl(tl(s)))
• hd(zip(s1 , s2)) = hd(s1)
• tl(zip(s1 , s2)) = zip(s2 , tl(s1))

then %implies

var s : Stream[Elem]
• zip(odd(s), even(s)) = s

end

Fig. 1. CoCasl specification of streams

Dually to Casl’s datatype construct type, CoCasl offers a cotype con-
struct which defines coalgebraic process types; it is formally proved in [7] that
one can indeed define for each cotype signature a functor T such that models of
the cotype correspond to T -coalgebras. A simple example is the cotype Stream
defined in Fig. 1. Like a type declaration, a cotype declaration is just a short way
of declaring operations; specifically, the declaration of Stream produces two op-
erations hd : Stream → Elem and tl : Stream → Stream. Models of the cotype
Stream are essentially coalgebras for the functor λX. Elem × X .

Cotypes can be qualified by keywords expressing further constraints. In par-
ticular, the keyword cofree qualifying the cotype of streams in Fig. 1 has the
effect of restricting the models of Stream to the final coalgebra (uniquely up to
isomorphism), i.e. the set of streams. In particular, one thus has a coinduction
principle for Stream, which we could also express by using the weaker con-
straint cogenerated instead of cofree. Moreover, the corecursive definitions of
the functions odd, even, and zip indeed constitute a definitional extension, i.e.
do not actually affect the model class.

We now recall some notions from the formal semantics of Casl and CoCasl:

A many-sorted Casl signature Σ = (S,TF ,PF , P) consists of a set S of
sorts, two S∗ × S-indexed sets TF = (TF w,s) and PF = (PF w,s) of total and
partial operation symbols, and an S∗-indexed set P = (Pw) of predicate symbols.
Function symbols in TFw,s are written f : w → s.

Models are many-sorted partial first order structures, interpreting total (par-
tial) function symbols as total (partial) functions and predicate symbols as rela-
tions. Homomorphisms between such models are so-called weak homomorphisms.
That is, they are total as functions, and they preserve (but do not necessarily
reflect) the definedness of partial functions and the satisfaction of predicates.

Definition 5 (Σ-cogeneration constraint). Given a signature Σ =
(S,TF ,PF , P), a cogeneration constraint Θ = (S̄, F̄) over Σ consists of a set of
observable sorts S̄ ⊂ S and a set of observer operation symbols F̄ ⊂ TF ∪ PF .

Definition 6 (Observation functional). Let Θ = (S̄, F̄) be a Σ-cogeneration
constraint. The observation functional ObsΘ computes the image of a relation
under all observers with observable result. Formally, if M is a Σ-model and
R ⊂ |M | × |M | is an S-sorted binary relation, ObsΘ(R) = {(fM (x), fM (y)) |
(x, y) ∈ R, f ∈ F̄w,s, s ∈ S̄}.

Definition 7 (Transition functional). Let Θ = (S̄, F̄) be a Σ-cogeneration
constraint. The transition functional TransΘ computes the image of a relation
under all observers with non-observable result. Formally, for R ⊂ |M | × |M |,
TransΘ(R) = {(fM (x), fM (y)) | (x, y) ∈ R, f ∈ F̄w,s, s /∈ S̄}.

Definition 8 (Θ-bisimulation). Let M be a Σ-model. A binary relation R on
M is called a Θ-bisimulation if

ObsΘ(R) ⊂ ∆ and TransΘ(R) ⊂ R

for the Σ-cogeneration constraint Θ (∆ denotes the identity relation). Two ele-
ments of M are called Θ-bisimilar if they are in relation for some Θ-bisimulation.
The constraint Θ is satisfied in a Σ-model M (written M � Θ) if each Θ-
bisimulation on M is contained in the equality relation (this model M is then
also called cogenerated by Θ).

If the cogeneration constraint Θ corresponds to the functor T (cf. [7]), then the
notion of a bisimulation for T -coalgebras and the notion of a Θ-bisimulation co-
incide. The coinduction proof principle from Definition 2 thus takes the following
form:

Let Θ be a Σ-cogeneration constraint and let R be a Θ-bisimulation.
Then (x, y) ∈ R ⇒ x = y (i.e. R ⊂ ∆).

Thus it suffices to exhibit a Θ-bisimulation R which relates two elements x
and y of a cogenerated model of Σ in order to show that x = y. The difficulty
is, again, in finding a suitable R.

Remark 9. The satisfaction of cogeneration constraints is defined in [7] in terms
of co-congruences rather than in terms of bisimulation relations. For arbitrary
functors, the arising coinduction principle is stronger than coinduction principles
based on bisimulation, so that the method of coinductive proof described in
Sect. 1 remains sound. For the more restricted functors considered here, the two
notions are equivalent.

3 Iterative Construction of the Bisimulation

A first approach to the construction of a bisimulation R in coinductive proofs is
as follows. Given a proof goal ∀X. t1 = t2,

1. Let R = {(x, y) | ∃X. x = t1 ∧ y = t2} (following [2], we call R the current
trial bisimulation).

2. Try to prove ObsΘ(R) ⊂ ∆ and TransΘ(R) ⊂ R (i.e. try to show that R is
a Θ-bisimulation).

3. If this succeeds, the proof is finished.

However, this approach will often fail:

Example 10. Consider again the example of infinite streams AIN of elements
from A defined using the functor TX = A × X . The corresponding signa-
ture is Σ = ({Elem, Stream}, {hd, tl}, ∅, ∅). The observation functional for the
Σ-cogeneration constraint Θ = ({Elem}, {hd, tl}) is defined as ObsΘ(R) =
{(hd(x), hd(y)) | (x, y) ∈ R}, the transition functional is defined as TransΘ(R) =
{(tl(x), tl(y)) | (x, y) ∈ R}. The attempt to prove ∀s . zip(odd(s), even(s)) = s
from Θ fails if the above algorithm is used:

1. Let R = {(x, y) | ∃s . x = zip(odd(s), even(s)) ∧ y = s}
2. Try to prove ObsΘ(R) ⊂ ∆ and TransΘ(R) ⊂ R. In order to prove the first

inclusion, we have to prove ∀s . hd(zip(odd(s), even(s))) = hd(s), which can
be done by just rewriting the left term. For a proof of the second inclusion,
one would have to prove ∀s. tl(zip(odd(s), even(s))) R tl(s), which is indeed
true. However, tl(zip(odd(s), even(s))) = zip(even(s), odd(tl(tl(s)))) and the
latter term cannot be simplified any further, so that a proof attempt by mere
rewriting fails.

It is hence necessary to use a ‘larger’ relation which explicitly contains
(zip(even(s), odd(tl(tl(s)))), tl(s)) for all s (there is no harm in the fact that
these pairs are indeed already contained in the original relation). A similar situ-
ation arises in the proof of the identity zip(s, t) = bzip(s, t,>) (cf. Example 4),
where the original trial bisimulation actually fails to be a bisimulation and hence
needs to be properly extended.

A more effective proof method is the iterative extension of the trial bisimula-
tion: First one tries to prove that the current trial bisimulation is a bisimulation,
and if this fails, one adds a new pair to the relation and again tries to show that
the new relation is a bisimulation. This is done repeatedly until the proof of the
fact that the current trial bisimulation is a bisimulation succeeds.

We now present an algorithm called iterative coinduction that uses this ap-
proach. Assuming the cogeneration constraint Θ, the proof goal ∀X. t1 = t2 is
dealt with as follows.

1. Let R = {(x, y) | ∃X. x = t1 ∧ y = t2}, and let n = 0.
2. Let Rn = R ∪ TransΘ(Rn+1), with Rn+1 a metavariable which can later be

instantiated.

3. Try to prove ObsΘ(R0) ⊂ ∆ and TransΘ(R0) ⊂ R0 by instantiating Rn+1

with ∅ (i.e. try to prove that R0 is bisimulation).
4. If this does not succeed, then set n to n + 1 and continue with 2.
5. Otherwise conclude by the coinduction proof principle that ∀X.t1 = t2, since

∀X. t1R0t2.

Example 11. The proof attempt for ∀s . zip(odd(s), even(s)) = s succeeds if
the above algorithm is used:

1. Let R = {(x, y) | ∃s . x = zip(odd(s), even(s)) ∧ y = s}, let n = 0.
2. Let R0 = R ∪ TransΘ(R1), with R1 a metavariable.
3. Try to prove ObsΘ(R0) ⊂ ∆ and TransΘ(R0) ⊂ R0 by instantiating R1 with

∅. As discussed above, the first inclusion can be discharged by rewriting,
while a rewriting proof of the second inclusion fails, although the inclusion
does hold.

4. Thus set n to 1 and let R1 = R ∪ TransΘ(R2) with R2 a metavariable (now
R0 = R ∪ TransΘ(R ∪ TransΘ(R2))).

5. Try to prove ObsΘ(R0) ⊂ ∆ and TransΘ(R0) ⊂ R0 by instantiating R2 with
∅. Since ObsΘ and TransΘ distribute over unions, the following proof goals
arise:

ObsΘ(R) ⊂ ∆ TransΘ(R) ⊂ R ∪ TransΘ(R)

ObsΘ(TransΘ(R)) ⊂ ∆ TransΘ(TransΘ(R)) ⊂ R ∪ TransΘ(R)

The goal for ObsΘ(R) was already discharged in step 3, and the goal for
TransΘ(R) is trivial. The goal for ObsΘ(TransΘ(R)) can be discharged by
rewriting the left side. In order to establish the last inclusion, we have to
prove that for all s, tl(tl(zip(odd(s), even(s)))) R0 tl(tl(s))). Now

tl(tl(zip(odd(s), even(s)))) = tl(zip(even(s), odd(tl(tl(s)))))

= zip(odd(tl(tl(s))), even(tl(tl(s)))))

R tl(tl(s)),

which establishes the last goal.
6. We conclude by coinduction that ∀s. zip(odd(s), even(s)) = s.

The method of iterative coinduction is thus able to complete the proof. Fur-
thermore, the method succeeds in proving the theorem ∀s1, s2. zip(s1, s2) =
bzip(s1, s2,>) from Example 4. During the proof, the algorithm adds the
pairs (zip(s2, tl(s1)), bzip(tl(s1), s2,⊥)) for all s1, s2 to the trial bisimulation
R = {(zip(s1, s2), bzip(s1, s2,>)}. These pairs constitute an actual extension of
the trial bisimulation, i.e. they were (in contrast to the situation in the proof of
∀s. zip(even(s), odd(s)) = s) not previously contained in the relation.

Notice that the above coinduction method is not guaranteed to terminate, i.e. it
is possible that the method just keeps adding new pairs to the trial bisimulation.
Such looping may have different causes: firstly, of course, if the proof goal is not

a consequence of the considered specification, the method will not be able to
prove it and hence fail to terminate (however, if the inclusion ObsΘ(R0) ⊂ ∆
becomes false at some stage, then the method can actually be used to disprove
the incorrect goal). The algorithm may fail to terminate also on correct goals in
cases where the iterative construction of a bisimulation requires infinitely many
steps (see [2] for examples). Such goals can typically be solved by generalization:
A more general proof goal is stated, which one may then, in turn, attempt to
solve with the algorithm.

4 Iterative Coinduction in Isabelle/HOL

As part of the Bremen heterogeneous tool set Hets [6, 5], a translation of Co-

Casl specifications into Isabelle/HOL theories has been implemented in order
to allow for the interactive proving of properties of reactive systems (see e.g.
Figure 2). This includes a translation of cogeneration constraints, so that coin-
ductive proofs about CoCasl specifications in Isabelle/HOL are made possi-
ble in principle. Making coinductive proofs practically feasible requires a set of
custom-tailored proof procedures, called tactics in Isabelle. Specifically, tactics
have been implemented to support the method of iterative coinduction as in-
troduced in the previous section. The iterative-coinduction tactic assembles the
smaller tactics into one complex tactic which succeeds in proving a relatively
large variety of different theorems over different cotypes automatically. In cases
where this fails, it is usually possible to construct simple semi-manual proofs
by means of the semiautomatic tactics provided by the implementation. The
following automatic and semi-automatic tactics have been implemented:

– The coinduction tactic: Let the proof goal be ∀X. t1 = t2. This tactic then
automatically chooses the basic relation R such that (x, y) ∈ R ⇔ ∃X. x =
t1 ∧ y = t2. The appropriate cogeneration axiom is applied afterwards while
instantiating R0 with R∪Trans(R1) where R1 is an uninstantiated metavari-
able. The coinduction tactic generates two subgoals: the first subgoal states
that R0 is a bisimulation, and the second states that (t1, t2) ∈ R0.

– The init tactic: The init tactic automatically proves (t1, t2) ∈ R0 and thus
solves the second of the two subgoals generated by the coinduction tactic.

– The breakup tactic: The breakup tactic splits a subgoal of the schematic
form (x, y) ∈ (R ∪ Trans(Rn)) ⇒ C for some natural number i and formula
C up into two subgoals (x, y) ∈ R ⇒ C and (x, y) ∈ Trans(Rn) ⇒ C.

– The close-or-step tactic: This tactic tries to solve the current subgoal by
simplification while speculating that Rn may be chosen as ∅ (this attempt
is also called the close-part of the tactic). If this fails, the tactic instantiates
Rn with R ∪ Trans(Rn+1) (this is also called the step-part of the tactic).

– The force-finish tactic: The force-finish tactic instantiates Rn with the
empty predicate and afterwards applies simplification steps in order to solve
the last remaining subgoal.

– The iterative-coinduction tactic: This tactic combines the previous five
tactics in order to allow for automatic proofs.

4.1 Examples

We will now demonstrate the use of the tactics described above by several ex-
ample proofs.

Recall the CoCasl specification of streams of type Elem as shown in Fig. 1.
This specification contains corecursive definitions of functions odd and even,
which given a stream s return the stream of elements of s at odd or even positions,
respectively. Furthermore, a function zip is defined which merges two streams s1

and s2 into a stream which alternatingly contains elements from s1 and s2. Fi-
nally, the specification contains a theorem (marked as such by the Casl semantic
annotation %implies) stating that for all streams s, zip(odd(s), even(s)) = s.

typedecl "Elem"

typedecl "Stream"

consts

"hd" :: "Stream => Elem"

"tl" :: "Stream => Stream"

"even" :: "Stream => Stream"

"zip" :: "Stream => Stream => Stream"

"odd" :: "Stream => Stream"

axioms

odd hd: "!!s::Stream.(hd(odd s)) = (hd s)"

odd tl: "!!s::Stream.(tl(odd s)) = odd(tl(tl s))"

even hd: "!!s::Stream.(hd(even s)) = (hd(tl s))"

even tl: "!!s::Stream.(tl(even s)) = even(tl(tl s))"

zip hd: "!!s1::Stream.!!s2::Stream.(hd(zip s1 s2)) = (hd s1)"

zip tl: "!!s1::Stream.!!s2::Stream.(tl(zip s1 s2)) = zip s2 (tl s1)"

ga cogenerated Stream: "!! R :: Stream => Stream => bool.

!! u :: Stream. !! v :: Stream. ! x :: Stream. ! y :: Stream.

R x y --> (hd x = hd y & R (tl x) (tl y)) ==> R u v ==> u = v"

theorem Stream Zip: "!! s :: Stream . zip (odd s) (even s) = s"

Fig. 2. Isabelle translation of the CoCasl specification of streams

Figure 2 shows the automatic translation of this CoCasl specification into
an Isabelle theory, generated by Hets. This theory first declares the types Elem

and Stream together with the observers and additional functions odd, even and
zip. This is followed by axioms arising from the coinductive function definitions.
Let ΘStr = ({Elem}, {hd, tl}). The axiom ga cogenerated Stream states that
every ΘStr-bisimulation R is contained in the equality relation. This axiom con-
stitutes the coinduction proof principle on which the subsequent proofs are based.
(The existence part of the finality constraint expressed by the keyword cofree is
irrelevant for coinductive proofs and presently ignored by the translation.) The

theorem Stream Zip: "!! s :: Stream . zip (odd s) (even s) = s"

apply(coinduction)

apply(init)

apply(breakup)

apply(close or step)

apply(force finish)

done

theorem Stream Zip2: "!! s :: Stream . zip (odd s) (even s) = s"

apply(iterative coinduction)

done

Fig. 3. Two proofs of zip(odd(s), even(s)) = s

theorem zip(odd(s), even(s)) = s is translated as an open goal. Figure 3 shows
two proofs of this theorem using the tactics for iterative coinduction. The first

spec BinTree1 [sort Elem] =
cofree cotype BinTree ::= (left : BinTree; node : Elem; right : BinTree)
op mirror : BinTree[Elem] → BinTree[Elem];
vars t : BinTree[Elem];

• left(mirror(t)) = mirror(right(t))
• node(mirror(t)) = node(t)
• right(mirror(t)) = mirror(left(t))

then %implies

var t : BinTree[Elem]
• mirror(mirror(t)) = t

end

Fig. 4. CoCasl specification of infinite binary trees

proof uses the semiautomatic tactics in order to conduct the proof step by step.
The coinduction tactic automatically applies the ga_cogenerated_Stream ax-
iom to the current goal, yielding two new subgoals by instantiating the relation
variable in the axiom with R∪TransΘStr

(R1). The first subgoal states that R0 =
{(x, y) | ∃s :: Stream. x = zip(odd(s), even(s)) ∧ y = s} ∪ TransΘStr

(R1) is a
ΘStr-bisimulation; the second subgoal states that R0 relates zip(odd(s), even(s))
and s. The init tactic solves this second (trivial) subgoal and transforms the first
subgoal into a form to which the breakup tactic can be applied.

After the execution of the breakup tactic, there are two new subgoals. The first
subgoal states that R is mapped into R0 under hd and tl, i.e. that hd(x) = hd(y)
for any (x, y) ∈ R and that (tl(x), tl(y)) ∈ R0 for (x, y) ∈ R; the second subgoal
makes the corresponding statement for TransΘStr

(R) in place of R. The close-or-
step tactic fails to prove the first subgoal by simplification, and thus applies the
step-part, instantiating R1 with R ∪ TransΘStr

(R2) and automatically succeeds

by assuming R2 = ∅ to show that R0 = R ∪ TransΘStr
(R) is closed under

hd and tl and is hence a bisimulation. The remaining subgoal is trivialized by
applying the force-finish tactic The proof is thus finished and can be completed
by executing done.

The second proof uses the automatic iterative-coinduction tactic which com-
bines the smaller tactics and finishes the proof without requiring user interaction.

typedecl "BinTree"

typedecl "Elem"

consts

"cons" :: "BinTree => Elem => BinTree => BinTree"

"left" :: "BinTree => BinTree"

"mirror" :: "BinTree => BinTree"

"node" :: "BinTree => Elem"

"right" :: "BinTree => BinTree"

axioms

mirror left: "!!t::BinTree.(left(mirror t)) = (mirror(right t))"

mirror node: "!!t::BinTree.(node(mirror t)) = (node t)"

mirror right: "!!t::BinTree.(right(mirror t)) = (mirror(left t))"

ga cogenerated BinTree: "!! R :: BinTree => BinTree => bool.

!! u :: BinTree. !! v :: BinTree. ! x :: BinTree. ! y :: BinTree.

((R x) y) --> (((R (left x)) (left y)) & (node x) = (node y) &

((R (right x)) (right y))) ==> ((R u) v) ==> u = v"

theorem BinTree Mirror: "!! t :: BinTree. (mirror (mirror t)) = t"

Fig. 5. Isabelle translation of the CoCasl specification of infinite binary trees

A CoCasl specification for the cotype of infinite binary trees with nodes la-
belled in a set Elem, together with a corecursively defined function mirror which
keeps the value of the current node and replaces the left subtree with the mir-
rored right subtree and the right subtree with the mirrored left subtree, is shown
in Fig. 4. Figure 5 contains the corresponding Isabelle theory obtained by auto-
matic translation in Hets. The axiom ga_cogenerated_BinTree states that any
ΘTree-bisimulation is contained in the equality relation. The proof goal arising by
translation of the %implies part of the CoCasl specification states that mirror
is self-inverse, i.e. that for all infinite binary trees t, mirror(mirror(t)) = t.

Two proofs of this theorem are shown in Fig. 6. The proofs use the tactics
in a similar manner as the proofs in Fig. 3.

Table 1 shows a selection of theorems which have been proved using the
iterative-coinductive proof tactics in a similar manner as in the examples above1.

1 Proof scripts and tactic implementations available under http://www.informatik.

uni-bremen.de/~hausmann/cocasl

theorem BinTree Mirror: "!! t :: BinTree. (mirror (mirror t)) = t"

apply(coinduction)

apply(init)

apply(breakup)

apply(close or step)

apply(finish)

done

theorem BinTree Mirror2: "!! t :: BinTree. (mirror (mirror t)) = t"

apply(iterative coinduction)

done

Fig. 6. Two proofs of mirror(mirror(t)) = t

The depth of a coinductive proof is the number of iterations required in order
to arrive at a bisimulation (including the initial guess). The example goals con-
cerning streams, largely taken from [2], make use of further corecursively de-
fined functions: swap(a, b) is the stream (a, b, a, b, . . .); const(a) is the stream
(a, a, a, . . .); iterate(f, a) is the stream (a, f(a), f 2(a), . . .); and inflist(a, g, f)
is the stream (g(a), g(f(a)), g(f 2(a)), . . .). The bswitch function interchanges
even and odd positions in the stream it receives as its first argument, starting
at the first or the second position depending on its boolean second argument.
The function bzip is defined as in Example 4. Other function names should be
self-explanatory.

The proofs of the theorems zip(s, t) = bzip(s, t,>) and zip(s, t) =
bswitch(zip(t, s),>) are typical examples where the trial bisimulation has to
be extended by pairs not previously contained in it; the additional pairs are
correctly ‘guessed’ by the iteration mechanism. As can be seen from Table 1,
the proofs presently have to be conducted at the semi-automatic level; however,
the proofs do not actually require substantial user interaction, so that further
fine-tuning of the iterative-coinduction tactic is expected to produce a fully au-
tomatic proof of these goals.

The theorems on bitstreams shown in Table 1 mention a function flop :
Bit → Bit which toggles bits, and a function flip : BitStream → BitStream
which toggles all bits in a stream; the corecursive definition of flip uses a case
distinction over hd(b) in the clause for hd(flip(b)), i.e. does not use flop. The
theorem flip(b) = map(flop, b) for all bit-streams b has to be proved semi-
automatically because explicit case distinction needs to be performed in the
course of the proof (an approach for further automation of proofs which involve
case distinction is described in [4]). Using this theorem in simplification, the
goals tick = flip(tock) (where tick and tock are the two alternating bitstreams)
and flip(flip(b)) = b can be proved automatically.

Another point where the fully automatic tactic fails is nested coinduction.
An example is the theorem swap(mirror(mirror(t)), t) = const(t) for all infinite
trees t, where during a coinductive proof over streams, a second coinductive
proof – this time over trees – becomes necessary. This requires a semi-automatic

Cotype Theorem Depth Automatic

Streams zip(even(s), odd(s)) = s 2 Yes
zip3(first(s), second(s), third(s)) = s 3 Yes
zip4(one(s), two(s), three(s), four(s)) = s 4 Yes
zip(const(a), const(b)) = swap(a, b) 2 Yes
zip(s, t) = bzip(s, t,>) 2 No
zip(even(s), odd(s)) = bswitch(s,>) 2 No
zip(s, t) = bswitch(zip(t, s),>) 2 No
odd(zip(s, t)) = s 1 Yes
even(zip(s, t)) = t 1 Yes
iterate(f, f(a)) = map(f, iterate(f, a)) 1 Yes
const(a) = odd(swap(a, f)) 1 Yes
const(a) = map(identity, const(a)) 1 Yes
inflist(a, identity, identity) = const(a) 1 Yes
map(g, iterate(f, a)) = inflist(a, g, f) 1 Yes
map(compose(f, g), l) = map(f,map(g, l)) 1 Yes
const(f(a)) = map(f, const(a)) 1 Yes
const(a) = even(const(a)) 1 Yes
const(a) = iterate(identity, a) 1 Yes
const(a) = swap(a, a) 1 Yes

BitStreams flip(b) = map(flop, b) 1 No
tick = flip(tock) 1 Yes
flip(flip(b)) = b 1 Yes

NatStreams streamadd(s, s) = map(double, s) 1 Yes
streamadd(s, t) = streamadd(s, t) 1 Yes

Binary Trees mirror(mirror(t)) = t 1 Yes

TreeStreams swap(mirror(mirror(t)), t) = const(t) 2 No

Table 1. Theorems proved by iterative coinduction in Isabelle

proof in which the user explicitly tells the system when to start the second
coinductive proof. The iterative coinduction tactics automatically choose the
right coinduction principle needed in the current situation.

5 Conclusion

We have proposed a method of coinduction by iterative construction of bisim-
ulations. This method, which postulates only the standard coinduction princi-
ple, produces proofs that are similar in spirit to circular induction. As part of
the proof support for the algebraic-coalgebraic specification language CoCasl,
corresponding proof tactics have been implemented in Isabelle/HOL; iterative
coinductive proofs are supported by both an all-out automatic tactic and a set of
semiautomatic tactics that allow user-guided initiation, continuation, and com-
pletion of the iterative construction.

Compared with circular coinduction as realized in BOBJ [10], our approach is
suitable for specifications written in full first-order (and even higher-order) logic,
not just conditional equations. Moreover, while the degree of automation that we
achieve is comparable to that of BOBJ [10] and CoClam [3], the availability of

semi-automatic tactics means that user interaction may help to complete proofs
that fail with a completely automatic proof procedure (in particular, missing
lemmas appear as open subgoals and can be proved on-the-fly, possibly with
another coinduction; cf. the TreeStreams example). Last but not least, the
realisation of circular coinduction as a proof tactic in Isabelle/HOL means that
correctness of the implementation only relies on the rather small and long-tested
kernel of Isabelle.

Example proofs have been conducted on CoCasl specifications, automat-
ically translated into Isabelle theories by the Bremen heterogeneuous tool set
Hets [5, 6]. Simple proof goals can typically be discharged automatically; typical
features that require user interaction are case distinction and nested coinduc-
tion. The further automation of case distinction, as in BOBJ, is not expected to
cause fundamental difficulties.

Continued work on the CoCasl proof environment includes fine-tuning the
automatic proof tactics and extending the implementation (which currently only
works for the single-sorted case) to many-sorted coinduction and datatype-valued
observers, as well as developing proof support for advanced CoCasl features,
in particular CoCasl’s modal logic and structured cofree specifications.

Acknowledgements

We thank Grigore Roşu for discussions on circular coinduction, Horst Reichel for
organizing a very fruitful workshop on coinductive proof techniques, and Markus
Roggenbach and Horst Reichel for collaboration on CoCasl. Furthermore we
would like to thank Erwin R. Catesbeiana for conceptual help with circular
proofs.

References

1. M. Bidoit and P. D. Mosses, Casl user manual, LNCS, vol. 2900, Springer, 2004.
2. L. Dennis, Proof planning coinduction, Ph.D. thesis, Edinburgh University, 1998.
3. L. Dennis, A. Bundy, and I. Green, Using a generalisation critic to find bisimu-

lations for coinductive proofs, Automated Deduction, LNAI, vol. 1249, Springer,
1997, pp. 276–290.

4. J. Goguen, K. Lin, and G. Rosu, Conditional circular coinductive rewriting with
case analysis, WADT 02, LNCS, vol. 2755, Springer, 2003, pp. 216–232.

5. T. Mossakowski, HetCasl – heterogeneous specification. Language summary, 2004.
6. , Heterogeneous specification and the heterogeneous tool set, Habilitation

thesis (draft), University of Bremen, 2004.
7. T. Mossakowski, L. Schröder, M. Roggenbach, and H. Reichel, Algebraic-co-

algebraic specification in CoCasl, J. Logic Algebraic Programming, to appear.
8. P. D. Mosses (ed.), Casl reference manual, LNCS, vol. 2960, Springer, 2004.
9. T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL — a proof assistant for

higher-order logic, LNCS, vol. 2283, Springer, 2002.
10. G. Rosu, Hidden logic, Ph.D. thesis, University of California at San Diego, 2000.
11. J. Rutten, Universal coalgebra: A theory of systems, Theoret. Comput. Sci. 249

(2000), 3–80.

