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Abstract

We introduce an active data mining paradigm that
combines the recent work in data mining with the
rich literature on active database systems. In this
paradigm, data is continuously mined at a desired
frequency. As rules are discovered, they are added
to a rulebase, and if they already exist, the his-
tory of the statistical parameters associated with
the rules is updated. When the history starts ex-
hibiting certain trends, speci�ed as shape queries
in the user-speci�ed triggers, the triggers are �red
and appropriate actions are initiated.

To be able to specify shape queries, we describe the
constructs for de�ning shapes, and discuss how the
shape predicates are used in a query construct to
retrieve rules whose histories exhibit the desired
trends. We describe how this query capability is
integrated into a trigger system to realize an active
mining system. The system presented here has
been validated using two sets of customer data.

Index Terms. Active Data Mining, Shape
Queries, Blurry Queries, Triggers, Time-Series
Data.

Introduction

Data mining (Stonebraker et al. 1993) (also
called knowledge discovery in databases (Piatetsky-
Shapiro & Frawley 1991)) is the e�cient discovery
of previously unknown patterns in large databases,
and is emerging as a major application area for
databases (Gartner Group 1994) (Business Week
1994). In (Agrawal, Imielinski, & Swami 1993),
three classes of data mining problems involving as-
sociations, sequences, and classi�cation were intro-
duced and it was argued that these problems can
be uniformly viewed as requiring discovery of rules
embedded in massive data. Attached to every dis-
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covered rule are some statistical parameters, such
as con�dence or support of the rule.
As the data mining technology is applied in the

production mode (Stores 1994), the need for active
mining arises. Figure 1 shows a schematic of the
active data mining process. The basic idea is as fol-
lows. Rather than applying a mining algorithm to
the whole data, the data is �rst partitioned accord-
ing to time periods. The granularity of the time pe-
riod is application-dependent. The amount of data
available is large (generally in gigabytes and more)
so that this partitioning does not lose signi�cance
of the rules discovered. The mining algorithm is
now applied to each of the partitioned data set and
rules are obtained for each time period. These rules
are collected into a rulebase. In this rulebase, each
statistical parameter of a rule will have a sequence
of values, called the history of the parameter for
that rule. We can now query the rulebase using
predicates that select rules based on the shape of
the history of some or all parameters.
The user can specify triggers (Dayal, Hanson, &

Widom 1994) over the rulebase in which the trig-
gering condition is a query on the shape of the his-
tory. As the fresh data comes in for the current
time period, the mining algorithm is run over this
data, and the rulebase is updated with the gener-
ated rules. This update causes the histories of the
rules to be extended. (A history of a new rule is ini-
tialized with zero values for the past time periods.)
This, in turn, may cause the triggering condition
to be satis�ed for some rules and the correspond-
ing actions to be executed.
Such active systems can be used, for instance, to

build early warning systems for spotting trends in
the retail industry. For example, if we were min-
ing association rules (Agrawal, Imielinski, & Swami
1993), we will have histories for the support and
con�dence of each rule 1. Following the promotion

1An association rule (Agrawal, Imielinski, & Swami
1993) is an expression of the form A) C, where both
A and C are sets of literals. In a database of transac-
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Figure 1: Active Data Mining Process

for an item X, the user may specify a noti�cation
trigger on the rule X ) Y ; the triggering condition
being that the support history remains stable, but
the con�dence history takes the shape of a down-
ward ramp. Firing of this trigger will signify that
if the goal of promoting X was to drag the sale of
Y , it was not ful�lled. The loyalists continued to
buy X and Y together, but the new buyers cherry-
picked X.
The rest of the paper is organized as follows. In

Section Shape De�nition, we give the constructs
for de�ning shapes. In Section Queries, we present
the query language that uses the shape predicates
to retrieve rules whose histories exhibit the desired
patterns. This query capability is integrated into a
trigger system. Section Triggers presents the trig-
ger de�nition facility, describes what we call the
wave execution semantics of trigger execution, and
discusses how it is used in the mining process. We

tions, where each transaction is a set of literals, the rule
A ) C signi�es that very often when A appears in a
transaction, so does C. How often this happens is cap-
tured by the \con�dence" parameter, and is indicative
of the strength of the rule. The \support" parame-
ter gives the fraction of transactions in the database in
which the given rule is present, and is indicative of the
prevalence of the rule.

conclude in Section Implementation and Experi-
ence with a discussion of our prototype implemen-
tation and experiences from using this system on
two sets of customer data. We also give our direc-
tions for future work.

Shape De�nitions
A shape found in a history can be described by
considering the transition of values assumed by the
shape at the beginning and end of each unit time
period. We let the user de�ne classes of transi-
tions and assign symbols to them. These symbols
are called elementary shapes. We do not have
a pre-canned set of elementary shapes; the user
can add or delete shapes or change the de�nition
of any of them. However, to keep the discussion
concrete, assume a user-de�ned set of elementary
shapes, consisting of up, Up, down, Down, appears,
disappears, stable, and zero. The shape up
could be a slightly increasing transition with a min-
imum and maximum variation of 0.05 and 0.19 re-
spectively; Up could be a highly increasing tran-
sition with a minimum and maximum variation of
0.20 and 1.00 respectively; appears could be a tran-
sition from a zero value to a non-zero value; stable
could be a transition in which the absolute di�er-
ence between the initial and �nal value is not more
than 0.04; etc.
Complex shapes can be derived by recursively

combining elementary shapes and previously de-
�ned derived shapes, using the shape operators.
We have presented these operators in (Agrawal et
al. 1995) and given their formal semantics, expres-
sive power, and implementation techniques. These
operators are summarized in Table 1. We give syn-
tax for each operator and how the corresponding
derived shape is matched in a history H.
Using these operators, one can describe a wide

variety of shapes found in a history, including
\blurry" shapes where the user cares about the
overall shape but does not care about speci�c de-
tails. The syntax for de�ning a shape is:

(shape name(parameters) descriptor).

For example, here is a de�nition of a doublepeak:

(shape spike(upcnt dncnt)
(concat (atleast upcnt (any up Up))

(atleast dncnt
(any down Down))))

(shape doublepeak(width ht1 ht2)
(in width (inorder spike(ht1 ht1)

spike(ht2 ht2))))

We �rst de�ne spike to be a shape that has at
least upcnt number of either up or Up transitions
followed by at least dncnt number of either down
or Down transitions. Then doublepeak is a shape
width wide that has two non-overlapping spikes.



Note that width may be wider than the sum of the
width of the two spikes and there may be noise on
either side of them. As another example, the shape
bullish:

(shape bullish(width upcnt dncnt)
(in width

(and
(noless upcnt (any up Up))
(nomore dncnt

(any down Down)))))

is de�ned to have at least upcnt ups (either up or
Up) and at most dncnt downs (either down or Down)
in width time periods. Finally, the shape drift:

(shape drift(width)
(in width (precisely 0

(any up Up down Down))))

has no ups or downs in width time periods.
Earlier languages based on regular expressions

for �nding patterns in sequences (see (Seshadri,
Livny, & Ramakrishnan 1995) for a review of some
of them) were not targetted at de�ning shapes. The
di�erence in design focus in
uences which expres-
sions are easy to write, understand, optimize, and
evaluate. We encourage the reader to write the
shape de�nitions given above as regular expressions
to appreciate the di�erence.

Queries

With the machinery for de�ning shapes in hand, we
are ready to specify how we can retrieve rules whose
one or more histories contain the desired shapes.
The syntax for de�ning a query is:

(query (shape history-spec))

Here, shape is the descriptor for the shape to be
matched. The history-spec is of the form:

history-name start-time end-time

Here history-name speci�es the name of the his-
tory in which the shape should be matched. The
portion in which the matching occurs is constrained
by the interval speci�ed by start-time and end-time.
Matching over the complete history can be speci�ed
by using the keywords start and end for start-time
and end-time respectively.
The result of the execution of a query is the set of

all rules that contain the desired shape in the spec-
i�ed history. In addition, the result also contains
the list of subsequences of the history that matched
the shape. If no subsequence matches the speci�ed
shape, the result is an empty set.
Here is an example of a query:

(shape ramp() (concat Up Up))
(query ((ramp) (confidence start end)))

Multiple Choice (any P1 P2 . . . Pn)
Match all subsequences of H that match at least one
of the Pi shapes.

Concatenation (concat P1 P2 . . . Pn)
First, match the shape P1. If a matching subsequence
s is found, match P2 in the subsequence of H
immediately following the last element of s.
Accept the match if it is strictly contiguous to s, etc.

Multiple Occurrences (exact n P)
(atleast n P)
(atmost n P)

Match all subsequences of H that contain exactly
(at least/at most) n contiguous occurrences
of the shape P . In addition, the resulting
subsequences must neither be preceded nor followed
by a subsequence that matches P .

Bounded Occurrences (in length
shape-occurrences)

Do \blurry" matching. Here length speci�es the
length of the shape in number of transitions.
The shape-occurrences has two forms given below:
shape-occurrences : (precisely n P)
logical combination (noless n Q)
using and and or. (nomore n R)

Match all length long subsequences of H that
contain precisely (no less than/ no more than) n
occurrences of the shape P (Q/R). The n
occurrences of P (Q/R) need not be contiguous
in the matched subsequence; there may be overlap
or arbitrary gap between any two.
shape-occurrences : (inorder P1 P2 . . .Pn)
ordered shapes.
Match all length long subsequences of H containing
the shapes P1 through Pn in that order.
Pi and Pi+1 may not overlap, but may
have an arbitrary gap.

Table 1: Shape Operators

We have de�ned a simple shape ramp, consisting of
two consecutive Ups, and we want to retrieve all the
rules whose con�dence history contains a ramp.
Instead of the shape name, we could have alter-

natively written its de�nition in the above query.
We also could have limited the range of con�dence
history in which the shape should be matched. Here
is a modi�ed query:

(query ((Concat Up Up)
(confidence start 10)))

The user can also retrieve combinations of several
shapes in di�erent histories by using the logical op-
erators and and or. Here is an example of a query
that is looking for di�erent shapes in the two histo-
ries of a rule | an upramp in support but a dnramp
in con�dence:

(shape upramp(len cnt)
(in len (noless cnt (any up Up))))

(shape dnramp(len cnt)



(in len
(noless cnt (any down Down))))

(query
(and
(upramp(5 3) (support start 10))
(dnramp(5 3) (confidence start 10))
))

Triggers
The query language we just described provides the
capability to discover interesting information by
analyzing rules and their histories in novel ways.
Consider a user who is periodically collecting rules
in the rulebase and wants to discover rules that
are assuming critical (or interesting in some other
way) behavior. For instance, the user may be inter-
ested in rules that have started exhibiting increas-
ing trend. Rather than running queries every time
the data for a new period comes and rules are added
to the rulebase, it will be preferable to post these
queries as triggers and let the system initiate appro-
priate actions (e.g. noti�cation) when the trigger
conditions are satis�ed.
We use the ECA (Event Condition Action)

model(Chakravarthy et al. 1989) as the basis for
our trigger system. We lean on the rich literature
in active databases (see (Dayal, Hanson, & Widom
1994) for an overview) and specialize it for our pur-
pose. The interesting aspects of our trigger system
are what can be speci�ed as trigger conditions, the
semantics of the trigger execution, and how it is
used in the active mining process.
The syntax for specifying a trigger is:

(trigger trigger-name
(events events-spec)
(condition (shape history-spec))
(actions actions-spec))

)

A trigger de�nition has three sections: events,
condition and actions. Let us examine each of
them.
The trigger system reacts to pre-de�ned and

user-de�ned events. The pre-de�ned events de-
scribe an external update of the rulebase. These
events are: createrule and updatehistory. They
occur when a new rule is added to the rulebase and
the history of rule is updated, respectively. A user-
de�ned event is introduced to the system as:

(event event-name)

where event-name is the name of the event.
The events-spec in the events section speci�es the

events to which the trigger being de�ned reacts.
Pre-de�ned and user-de�ned events and their logi-
cal combinations using the logical operators or and

and can appear in the events-spec2. A trigger is
considered �red if the event speci�cation is true for
at least one rule in the rulebase. That is, the spec-
i�ed event combination has occurred for some rule.
The condition section is syntactically and seman-

tically similar to the query construct discussed in
Section Queries. The di�erence is that the con-
dition is evaluated only on rules present in the af-
fected set (Widom& Finkelstein 1990) produced by
the events section, instead of the whole rulebase. A
condition selects the a�ected set of rules from the
rulebase and performs the speci�ed shape query on
the relevant histories of those rules. The condition
is true if the output set resulting from the query
is not empty. In that case, the actions section is
executed on the query output.
The action-specs in the actions section is a list of

actions that are executed for all (and only those)
rules that belong to the output set produced by the
condition evaluation. An action can be an execu-
tion of a function, such as notify or show, which
can be de�ned by the user or system supplied. An
action can also be a user-de�ned event name, in
which case an occurrence of the speci�ed event is
generated. An action does not change the state of
the rulebase; the goal of model is only to notify
that the properties expressed by the condition of a
trigger holds for some rules and is accomplished by
generating pre-de�ned and user-de�ned events that
alert any possibly interested trigger.

Wave Execution Semantics Several semantics
have been proposed for trigger systems in active
databases (see (Simon, Kiernan, & de Maindreville
1992) for a discussion). The execution semantics
for our trigger system follows what we call the wave
execution model. This semantics is close to what is
known as the deterministic semantics for Datalog-
like rules (S.Ceri, G.Gottlob, & L.Tanca 1990). The
attractiveness of this semantics is its simplicity and
a good match for our application.
A wave is a set of event occurrences that come to-

gether to the active system. The trigger execution
process starts when a new wave is ready. First,
the event speci�cation of every trigger is checked
to determine if it will �re. Triggers for which
this evaluation is true are selected for �ring and
their a�ected set (rules a�ected by events-spec) is
produced. When the event speci�cation has been

2We considered richer event speci�cations, such as
those in (Chakravarthy et al. 1994) (Gatziu & Dittrich
1994) (Gehani, Jagadish, & Shmueli 1992), but decided
against it. Our trigger system is meant to react to
changes in the shapes of the history, for which we have a
rich shape-speci�cation language. We keep our events
speci�cation simple but use rich speci�cations in the
condition section.



checked for all the triggers, the current wave has
been used up and any event generated as a con-
sequence of the triggers �red will belong to a new
wave.
The selected triggers are �red now. For each �red

trigger, its condition is evaluated only on rules in
the a�ected set. If the condition is true, the output
set is passed to the actions section. The actions
section is immediately executed for each rule in the
output set. If any event is generated as a conse-
quence, it is added to the new wave.
After the conclusion of the condition evaluation

and the eventual actions execution for all the �red
triggers, the process is repeated considering the
events generated as belonging to the new wave. The
process terminates if the evaluation of all the event
speci�cations determines that no trigger needs to
be �red.

Example We now give a simple example to illus-
trate our trigger facility. Suppose that a user wants
to be noti�ed if the support for a rule is increasing
but its con�dence is decreasing at the same time.
The following de�nitions show how the user can ac-
complish this goal:

(shape uptrend(width upcnt)
(in width

(noless upcnt (any up Up))))
(shape dntrend(width dncnt)

(in width (noless
dncnt (any down Down))))

(event upward)

(trigger detect_up
(events updatehistory)
(condition
(uptrend(5 4)
(support (- end 5) end)))

(actions upward)
)
(trigger detect_dn

(events upward)
(condition
(dntrend(5 4)
(confidence (- end 5) end)))

(actions notify)
)

We �rst specify what is meant by support is in-
creasing and con�dence is decreasing by de�ning
two shapes: uptrend and dntrend. We intro-
duce an event named upward to the system us-
ing the event construct. We then de�ne the trig-
ger detect_up. This trigger can be �red by the
pre-de�ned event updatehistory. If this trigger

is �red, the condition section of this event checks
if the rules that were updated (a�ected set of the
event updatehistory) contain uptrend in the last
�ve periods of their support history. If this condi-
tion is evaluated as true for some rules, the user-
de�ned event upward is generated for each of these
rules.
The second trigger detect_dn reacts to the gen-

eration of the occurrences of the upward event and
it checks for dntrend in the last �ve periods of the
con�dence history of only those rules for which the
trigger has been �red (a�ected set of the upward
event). Thus, the user is noti�ed of only those rules
that simultaneously had an uptrend in support and
dntrend in con�dence in the last �ve time periods.

Implementation and Experience

A prototype of the active data mining system de-
scribed here has been implemented on the AIX sys-
tem as part of the Quest project at IBM. The imple-
mentation uses an object-oriented design. A base
class, called LangObj, declares methods that de-
�ne the common interface for the derived classes;
the most interesting method being Evaluate which
is invoked by the query management subsystem
to execute queries. The shape de�nition language
objects|elementary shapes, shape operators|are
represented as classes derived from the base class
(e.g. LangObj concat corresponding to the operator
concat). The associated Evaluate method imple-
ments the matching strategy of the corresponding
operator. To create a query object, the constructor
is called with actual parameters pointing to objects
corresponding to shape speci�cations. Thus, a tree
of objects is created, with each object correspond-
ing to an elementary or a derived shape. To execute
this query, the query management subsystem calls
the Evaluate method of the root of the tree object,
providing the time sequence to be analyzed as the
argument. Any non-leaf node of the tree recursively
invokes the Evaluate method of the branches, un-
til a leaf node is reached where the matching takes
place. A similar approach has been used to imple-
ment triggers as well.
The prototype system was successfully tested

against two large datasets. The �rst dataset from
a mail-order company consisted of roughly 2.9 mil-
lion transactions collected over �ve years. The sec-
ond dataset from a market research company that
provides marketing information to the retail indus-
try consisted of three years of roughly 6.8 million
point-of-sales transactions. In both the cases, we
divided data on monthly basis and mined associ-
ation rules (Agrawal, Imielinski, & Swami 1993)
for each dataset. For rules discovered, we saved
three parameter histories for each rule in the rule-
base: support, con�dence, and the product of sup-



port and con�dence values. We speci�ed shape
triggers on rules corresponding to earlier parts of
data and examined their �rings with the addition
of rules for the later periods. This experience leads
us to believe that the proposed active data min-
ing paradigm is very attractive for the production
deployment of data mining technology.
Our current prototype is a stand-alone imple-

mentation. In future, we plan to integrate our
query constructs and trigger functions with a SQL
relational database system. We currently recom-
pute the trigger conditions over the whole history
to determine trigger �ring. In a production system,
it will be useful to have the facility for materializ-
ing the partial results of the current trigger queries
and incrementally completing them as the histories
are extended. We plan to investigate incremental
computations in future.
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