
In: Haskell Workshop 2000Pattern Guards and Transformational PatternsMartin ErwigOregon State Universityerwig�s.orst.edu Simon Peyton JonesMirosoft Researh Ltd, Cambridgesimonpj�mirosoft.om6th September 2000AbstratWe propose three extensions to patterns and pattern math-ing in Haskell. The �rst, pattern guards, allows the guardsof a guarded equation to math patterns and bind variables,as well as to test boolean ondition. For this we introduea natural generalisation of guard expressions to guard qual-i�ers.A frequently-ourring speial ase is that a funtion shouldbe applied to a mathed value, and the result of this is tobe mathed against another pattern. For this we introduea syntati abbreviation, transformational patterns, that ispartiularly useful when dealing with views.These proposals an be implemented with very modest syn-tati and implementation ost. They are upward ompati-ble with Haskell; all existing programs will ontinue to work.We also o�er a third, muh more speulative proposal, whihprovides the transformational-pattern onstrut with addi-tional power to expliitly ath pattern math failure.We demonstrate the usefulness of the proposed extensionby several examples, in partiular, we ompare our proposalwith views, and we also disuss the use of the new patternsin ombination with equational reasoning.1 IntrodutionPattern mathing is a well-appreiated feature of languageslike ML or Haskell; it greatly simpli�es the task of inspet-ing values of strutured data types and failitates suintfuntion de�nitions that are easy to understand. In its basiform, pattern mathing tries to identify a ertain strutureof a value to be proessed by a funtion. This struture isspei�ed by a pattern, and if it an be reovered in a value,orresponding parts of the value are usually bound to vari-ables. These bindings are exploited on the right-hand side ofthe de�nition. There are numerous proposals for extendingthe apabilities of patterns and pattern mathing; in parti-ular, the problems with pattern mathing on abstrat datatypes have stimulated a lot of researh [19, 16, 3, 12, 4, 6, 11℄.Other aspets have also been subjet to extensions and gen-eralisations of pattern mathing [8, 1, 9, 7, 17℄.All these approahes di�er in what they an be used for, intheir syntax, and in their properties, whih makes it almost

impossible to use two or more di�erent approahes at thesame time. Moreover, among all these di�erent approahesthere is no lear winner, although so-alled views seem tobe the most prominent and favourite extension.Therefore, a onsolidation of pattern mathing at a morefundamental level deserves attention. An extension shouldbe simple enough so that its use is not prohibited by a om-plex syntax, and it should be powerful enough to expressmost of the existing approahes.In this paper we present a proposal for an elementary exten-sion of patterns and pattern mathing that naturally extendsHaskell's urrent pattern mathing apabilities. The designis inuened by the following goals:� Conservative Extension. Programs that do not use thenew feature should not need to be hanged and shouldhave unhanged semantis.� Simpliity. We shall not introdue (yet another) moreor less omplex sub-language for speifying new kindsof patterns, for introduing pattern de�nitions, and soon. Instead, a minor extension to the syntax with asimple semantis should be aimed at.� Expressiveness. It should be possible to express patternmathing on abstrat data types. In partiular, views[19, 3, 4, 11℄, and two kinds of ative patterns [12, 6℄should be overed.� EÆient and Simple Implementation. The use of thenew patterns should not be penalised by longer runningtimes. Moreover, only minimal hanges to an existinglanguage should be needed. This failitates the easyintegration of the new onept into existing languageimplementations and supports a broad evaluation ofthe onept.The remainder of this paper is strutured as follows: we mo-tivate the need for more powerful pattern mathing in Se-tion 2 and present our proposal in Setions 3 and 4. Syntaxand semantis are de�ned in Setion 5, and the implemen-tation is disussed in Setion 6. A detailed omparison withviews is performed in Setion 7. In Setion 8 we then dis-uss the use of the new patterns with equational reasoning.A further extension of the expressiveness of our proposal isdesribed in Setion 9. Related work is disussed in Setion10, and �nally, onlusions are given in Setion 11.1

2 The need for more powerful pattern mathingIn the urrent version of Haskell pattern mathing is not justa straight, one-step proess beause guards an be used toonstrain further the seletion of funtion equations. How-ever, no (additional) bindings an be produed in this se-ond step. This is a somewhat non-orthogonal design, andthe extension we propose essentially generalises this aspet.Consider the following Haskell funtion de�nition.filter p [℄ = [℄filter p (y:ys) | p y = y : filter p ys| otherwise = filter p ysThe deision of whih right-hand side to hoose is made intwo stages: �rst, pattern mathing selets a guarded group,and seond, the boolean-valued guards selet among theright-hand sides of the group.In these two stages, only the pattern-mathing stage an bindvariables, but only the guards an all funtions. It is wellknown that this design gives rise to a diret onit betweenpattern-mathing and abstration, as we now disuss.2.1 Abstrat data typesConsider an abstrat data type of sequenes, whih o�ersO(1) aess to both ends of the sequene (see, for example,[10℄):nil :: Seq alons :: a -> Seq a -> Seq alview :: Seq a -> Maybe (a,Seq a)rons :: Seq a -> a -> Seq arview :: Seq a -> Maybe (Seq a,a)Sine sequenes are realized as an abstrat date type, theirrepresentation is not known, and this prohibits the use ofpattern mathing. The funtions lview and rview providetwo views of the sequene, one as a left-oriented list and theother as a right-oriented list, and thus reveal to some degreea representation of sequenes (that an be di�erent, though,from their atual implementation). This means that patternmathing against this representation is now prinipally pos-sible. However, it generally leads to less learer de�nitions.For example, a funtion to �lter suh a sequene would haveto use a ase expression to srutinise the result of, say,lview:filtSeq :: (a->Bool) -> Seq a -> Seq afiltSeq p xs= ase (lview xs) ofNothing -> nilJust (y,ys) | p y -> lons y (filtSeq p ys)| otherwise -> filtSeq p ysThis is muh less satisfatory than the list version of filter,whih used pattern-mathing diretly. Atually, it is possi-ble to write filtSeq in a more equational way:

filtSeq :: (a->Bool) -> Seq a -> Seq afiltSeq p xs| isJust lv && p y = lons y (filtSeq p ys)| isJust lv = filtSeq p ys| otherwise = nilwherelv = lview xsJust (y,ys) = lvThe auxiliary funtion isJust is taken from the standardlibrary Maybe:isJust :: Maybe a -> BoolisJust (Just x) = TrueisJust Nothing = FalseThe idea here is that the guard isJust lv heks that thelview returns a Just value, while the (lazily-mathed) pat-tern Just (y,ys) is only mathed if y or ys is demanded. Sonow filtSeq is more \equational", but it is hardly learerthan before. A well-known approah to reonile patternmathing and abstrat data types is the views proposal; wewill onsider views in detail in Setion 7.2.2 Mathing that involves several argumentsAs another example, suppose we have an abstrat data typeof �nite maps, with a lookup operation:lookup :: FiniteMap -> Int -> Maybe IntThe lookup returns Nothing if the supplied key is not in thedomain of the mapping, and (Just v) otherwise, where v isthe value that the key maps to. Now onsider the followingde�nition:lunky env var1 var2 | ok1 && ok2 = val1 + val2| otherwise = var1 + var2wherem1 = lookup env var1m2 = lookup env var2ok1 = isJust m1ok2 = isJust m2Just val1 = m1Just val2 = m2Muh as with filtSeq, the guard ok1 && ok2 heks thatboth lookups sueed, using isJust to onvert the maybetypes to booleans. The (lazily mathed) Just patterns ex-trat the values from the results of the lookups, and bindthe returned values to val1 and val2, respetively. If ei-ther lookup fails, then lunky takes the otherwise ase andreturns the sum of its arguments.This is ertainly legal Haskell, but it is a tremendously ver-bose and un-obvious way to ahieve the desired e�et. Is itany better using ase expressions?2

lunky env var1 var1 =ase lookup env var1 ofNothing -> failJust val1 ->ase lookup env var2 ofNothing -> failJust val2 -> val1 + val2wherefail = var1 + var2This is a bit shorter, but hardly better. Worse, if this wasjust one equation of lunky, with others that follow, thenthe thing would not work at all. That is, suppose we havelunky' env (var1:var2:vars) | ok1 && ok2= val1 + val2wherem1 = lookup env var1... as beforelunky' env [var1℄ = ... some stu�lunky' env [℄ = ... more stu�Now, if either of the lookups fail, we want to fall through tothe seond and third equations for lunky'. If we write thede�nition in the form of a ase expression, we are fored tomake the latter two equations for lunky' into a separatede�nition and all it in the right-hand side of fail. Thisis preisely why Haskell provides guards at all, rather thanrelying on if-then-else expressions: if the guard fails, wefall through to the next equation, whereas we annot do thatwith a onditional.What is frustrating about this is that the solution is so tan-talisingly near at hand! What we want to do is to pattern-math on the result of the lookup. We an do it like this:lunky' env vars�(var1:var2:_)= help (lookup env var1) (lookup env var2) varswherehelp (Just v1) (Just v2) vars = v1 + v2help _ _ [var1℄ = ... some stu�help _ _ [℄ = ... more stu�Now we do get three equations, one for eah right-hand side,but it is still lunky. In a big set of equations it beomeshard to remember what eah Just pattern orresponds to.Worse, we annot use one lookup in the next. For example,suppose our funtion was like this:lunky'' env var1 var2 | ok1 && ok2 = val2| otherwise = var1 + var2wherem1 = lookup env var1m2 = lookup env (var2 + val1)ok1 = isJust m1ok2 = isJust m2Just val1 = m1Just val2 = m2Notie that the seond lookup uses val1, the result of the�rst lookup. To express this with a help funtion requiresa seond helper funtion nested inside the �rst. Dire stu�.

2.3 SummaryIn this setion we shown that Haskell's pattern-mathingapabilities are unsatisfatory in ertain situations. The �rstexample relates to the well-known tension between pattern-mathing and abstration. The lunky example, however,was a little di�erent | there, the mathing involved twoarguments (env and var1), and did not arise diretly fromdata abstration.There is no fundamental issue of expressiveness: we anrewrite any set of pattern-mathing, guarded equations asase expressions. Indeed, that is preisely what the ompilerdoes when ompiling equations! So should we worry at all?Yes, we should. The reason that Haskell provides guardedequations is beause they allow us to write down the aseswe want to onsider, one at a time, mostly independentlyof eah other | the \equational style". This struture ishidden in the ase version. In the ase of lunky, two ofthe right-hand sides are really the same (fail).Furthermore, nested ase expressions sale badly: the wholeexpression tends to beome more and more indented. Inontrast, the equational (albeit verbose) de�nition, usingisJust have the merit that they sale niely to aommo-date multiple equations. So we seek a way to aommodatethe equational style despite a degree of abstration.3 A proposal: pattern guardsOur initial proposal is simple:Instead of being a boolean expression, a guard is alist of quali�ers, exatly as in a list omprehension.That is, the only syntax hange is to replae exp by quals inthe syntax of guarded equations.Here is how we would write lunky:lunky env var1 var1| Just val1 <- lookup env var1, Just val2 <- lookup env var2= val1 + val2... other equations for lunkyThe semantis should be lear enough. The quali�ers aremathed in order. For a <- quali�er, whih we all a patternguard, the right-hand side is evaluated and mathed againstthe pattern on the left. If the math fails, then the wholeguard fails, and the next equation is tried. If it sueeds,then the appropriate binding(s) are made, and the next qual-i�er is mathed, in the augmented environment. Unlike listomprehensions, however, the type of the expression to theright of the <- is the same as the type of the pattern toits left. The bindings introdued by pattern guards sopeover all the remaining guard quali�ers, and over the right-hand side of the equation. If there is a where lause, thenits bindings sope over all the guards, just as in Haskell atpresent.Just as with list omprehensions, boolean expressions anbe freely mixed with the pattern guards. For example:3

f x | [y℄ <- x, y > 3, Just z <- h y= ...Haskell's urrent guards therefore emerge as a speial ase,in whih the quali�er list has just one element, a booleanexpression.Just as with list omprehensions, a let quali�er an intro-due a binding. It is also possible to do this with patternguards with a simple variable pattern a <- exp. Howevera let quali�er is a little more powerful, beause it an in-trodue a reursive or mutually-reursive binding. It is notlear whether this power is partiularly useful, but it seemsmore uniform to have exatly the same syntax as list om-prehensions.One ould argue that the notation <- is misleading, suggest-ing the idea of drawn from as in a list omprehension. Butit is very nie to reuse preisely the list-omprehension syn-tax. Furthermore, the only viable alternative is =, and thatwould lead to parsing diÆulties, beause we rely on the =to herald the arrival of the right-hand side of the equation.Consider f x | y = h x = 3.Using pattern guards for filtSeq exposes a small de�ieny:filtSeq :: (a->Bool) -> Seq a -> Seq afiltSeq p xs| Just (y,ys) <- lview xs, p y = lons y (filtSeq p ys)| Just (y,ys) <- lview xs = filtSeq p ys| otherwise = nilThere is the annoying repeated all to lview xs (whih anbe shared by putting it in a where lause), plus the annoyingrepeated pattern math (whih annot). Maybe one wouldlike some kind of nested guards, thus:filtSeq :: (a->Bool) -> Seq a -> Seq afiltSeq p xs| Just (y,ys) <- lview xs| p y = lons y (filtSeq p ys)| otherwise = filtSeq p ys| otherwise = nilSuh an extension would make perfet sense, and would notbe hard to implement, but its power-to-weight ratio is sig-ni�antly lower than for our main proposal: it is less oftenuseful (less power), and requires more new syntax (greaterweight).It is also possible to write filtSeq using an auxiliary fun-tion filtSeq':filtSeq :: (a->Bool) -> Seq a -> Seq afiltSeq p = filtSeq' p . lviewfiltSeq' :: (a->Bool) -> Maybe (a,Seq a) -> Seq afiltSeq' p Nothing = nilfiltSeq' p (Just (y,ys)) =if p y then lons y (filtSeq p ys)else filtSeq p ys

However, this introdues an indiretion into the de�nitionand the \solution" that is o�ered by this approah to theproblem of pattern mathing with abstrat data types issimply to avoid it.4 A further proposal: transformational patternsPattern guards allow the programmer to all an arbitraryfuntion and pattern-math on the result. In the impor-tant speial ase addressed by views, these alls take a verystylised form, and this motivates us to propose some speialsyntax, transformational patterns, in support.Here is how we might write filtSeq, using a transforma-tional pattern:filtSeq :: (a->Bool) -> Seq a -> Seq afiltSeq p (Just (y,ys))!lview| p y = lons y (filtSeq p ys)| otherwise = filtSeq p ysfiltSeq p Nothing!lview = nilThe transformational pattern (Just (y,ys))!lview meansinformally \apply lview and math against Just (y,ys)".The expression to the right of the \!" is alled pattern a-tion. Transformational patterns are simply syntati sugarfor an equivalent form using pattern guards, but they are no-tationally a little more onise. Furthermore, they are quitelike views: \math Just (y,ys) against the lview view ofthe argument".Sine the funtion in a transformational pattern an refer toany variables that are in sope in, or bound by, the wherelause, we an write lunky as:lunky env (Just val1)!(lookup env)(Just val2)!(lookup env) = val1 + val2... other equations for lunkyThis gives transformational patterns just a little more powerthan views, at the ost of a somewhat ad ho avour. Tosummarise, transformational patterns help to keep funtionequations single-lined, whih greatly enhanes readabilityand understanding of funtion de�nitions ontaining severalequations. Moreover, transformational patterns are parti-ularly useful when simulating views, see Setion 7, and withequational reasoning, see Setion 8.5 Syntax and semantisBased on the Haskell 98 Report [14℄, we need two smallhanges to the syntax to integrate pattern guards and trans-formational patterns: �rst, a guard is not just anymore givenby an expression but by a list of quali�ers, and an atomipattern an be a pattern extended by an expression:gd ! | qual1, : : : , qualn Pattern Guardapat ! : : :j apat!aexp Transformational Pattern4

We de�ne the semantis of pattern guards and transforma-tional patterns by a series of equations that relate them to\ordinary" ase expressions of Haskell.We start with the redution of pattern guards to nestedase expressions. For this, we �rst unfold multiple guards inmathes to nested ase expressions. This is done to keep thefurther translation manageable beause guards themselvesan be lists of quali�ers. Hene, we replae rule () by(') ase v of { p | g1 -> e1 : : :| gn -> en where { dels };_ -> e0 }= ase e0 of { y ->ase v of { p ->let dels inase () of {() | g1 -> e1;_ -> : : : ase () of {() | gn -> en;_ -> y } : : : }_ -> y }}where y is a ompletely new variableThe onstrution ase () of () -> ... indiates thatthese ase expressions do not pattern mathing, but arejust used to look at the guards.Next we expand a list of quali�ers of eah guard into a nestedase expression.(s) ase () of { () | q1, : : : , qn -> e; _ -> e0 }= ase e0 of { y ->ase () of {() | q1 -> : : : ase () of {() | qn -> e;_ -> y }; : : :_ -> y }}where y is a ompletely new variableThe next three equations explain how quali�ers are resolved:(t) boolean guards are transformed into onditionals, (u)a loal delaration an be just moved into the body, and(v) generators are again transformed into ase expressionswhere the generating expression is srutinised and mathedagainst the binding pattern.(t) ase () of { () | e0 -> e; _ -> e0 }= if e0 then e else e0(u) ase () of { () | let dels -> e; _ -> e0 }= let dels in e(v) ase () of { () | (p0 <- e0) -> e; _ -> e0 }= ase e0 of { p0 -> e; _ -> e0 }It remains to redue transformational patterns to patternguards. This is done by the following equation:(w) ase v of { p!f -> e; _ -> e0 }= ase v of { x | (p <- f x) -> e; _ -> e0 }where x is a ompletely new variable

6 ImplementationThe standard tehnology used by ompilers for generat-ing eÆient mathing trees from sets of equations an beadapted straightforwardly to aommodate pattern guardsand transformational patterns. Currently, pattern guardsare fully implemented in GHC, and transformational pat-terns are not yet implemented.The eÆieny issue is a little more pressing than with purepattern mathing, beause the aess funtions, alled inthe transformational pattern or the pattern guard, may bearbitrarily expensive. For example, onsiderdata AbsInt = Pos Int | Neg IntabsInt :: Int -> AbsIntabsInt n = if n>=0 then Pos n else Neg (-n)f :: Int -> Intf (Pos n)!absInt = n+1f (Neg n)!absInt = -(n+1)This is reasonably onise. But how many times is absIntalled? In this ase, it is pretty lear that it need only bealled one. But what about this:g ((Pos a)!absInt : as) [℄ = ...g [℄ ((Pos b)!absInt : bs) = ...g ((Neg a)!absInt : as) ((Neg b)!absInt : bs) = ...g _ _ = ...Now it gets harder to tell! In general, it may be neessaryto know the pattern-math ompilation algorithm used bythe ompiler in order to reason preisely about how manytimes absInt will be alled. Nevertheless, it is not diÆultto expand a pattern mathing algorithm by knowledge abouttransformational patterns so that in ases like above (whenonly a funtion and not a omplex expression is used as apattern ation) one an ensure a translation into nested aseexpressions so that at eah argument position eah patternation is invoked only one.Without any hanges to the pattern mathing algorithm,pattern guards allow us to express the sharing expliitly insome ases:f n | Pos n' <- abs_n = n'+1| Neg n' <- abs_n = -(n'+1)whereabs_n = absInt nHere the ommon de�nition abs_n makes lear that thereshould only be one all to absInt. But a where lause an-not always be used. For example, onsider the followingsilly funtion g using the AbsInt view (for an explanation ofviews, see the next setion)view AbsInt of Int = Pos Int | Neg Intwhere absInt = ... as above ...g (Pos (Pos n)) = n+1g (Pos (Neg n)) = -(n+1) -- A bit silly5

Now we have to writeg n | Pos n1 <- abs_n, Pos n2 <- absInt n1 = n2+1| Pos n1 <- abs_n, Neg n2 <- absInt n1 = -(n2+1)whereabs_n = absInt nWe an share the �rst all to absInt but not the seondbeause n1 is not in the sope of the where lause. Insteadwe have to rely on (a) knowledge of the pattern-ompilationalgorithm, and (b) ommon-subexpression elimination, tojustify our hopes that there will be only two alls to absInt.Again, in transformational-pattern form, the shared om-putations seem easier to spot and an be ensured by anextension of the pattern mathing algorithm:g (Pos (Pos n)!absInt)!absInt = n+1g (Pos (Neg n)!absInt)!absInt = -(n+1)7 A omparison with viewsAs we have already disussed, pattern guards and transfor-mational patterns an be seen as addressing a similar goalto that of views, namely reoniling pattern mathing withdata abstration. Views were proposed by Wadler ages ago[19℄, and are the subjet of a onrete proposal for a Haskelllanguage extension [4℄.Consider, for example, the artesian representation of om-plex numbers with a polar view.data Complex = Cart Float Floatview Polar of Complex = Polar Float Floatwherepolar (Cart r i) =Polar (sqrt(r*r+i*i)) (atan2 r i)pole = PolarWith this view, funtion de�nitions an be written using thepolar representation in patterns relying on the automatiappliation of the view transformation polar. This meansthat it is possible to assume a partiular representation ofabstrat data types in funtion de�nitions without exposingor even knowing the representation used in the implemen-tation. Note that in addition to the view transformationpolar we also need a funtion pole to onstrut values ofthe view type.Without views we de�ne the view type as an ordinary datatype and the view transformation as a funtion.data Polar = Polar Float Floatpolar (Cart r i) = Polar (sqrt(r*r+i*i)) (atan2 r i)Now it is natural to ask whether views subsume patternguards or vie versa. The answer is \neither".

7.1 Do views subsume pattern guards?The views proposal [4℄ points out that you an use views tosimulate (some) guards and, as we saw above, views havesimilar purpose and funtionality to at least some applia-tions of pattern guards.However, views give a view on a single value, whereas guardsallow arbitrary funtion alls to ombine in-sope values.For example, lunky mathes (Just val1) against (lookupenv var1). We do not want a view of env nor of var1 butrather of their ombination by lookup. Views simply do nothelp with lunky.Views are apable of dealing with the data abstration issueof ourse. However, eah onditional seletor would requireits own view, omplete with its own view type. This anseem rather heavyweight. For example, our Haskell om-piler, GHC, has an abstrat data type alled Type. TheType module o�ers the funtiongetFunTyMaybe :: Type -> Maybe (Type,Type)This funtion is a mixture of a prediate (\is this a fun-tion type") and a view (\the argument and result type arethese"). To use views we would have to say:view FunType of Type = FunType Type Type| NotFunTypewherefunType (Fun arg res) = FunType arg resfunType other_type = NotFunTypeThis seems a bit heavyweight (three new names instead ofone) ompared with re-using the existing Maybe type. Notonly does this reuse save de�ning new types, but it allowsthe existing library of funtions on Maybe types to be applieddiretly to the result of getFunTyMaybe.Sometimes it is quite unlear whether a funtion should beregarded as a \view" or not. For example, GHC has anotherfuntion on Type:tyvarsOf :: Type -> [TyVar℄that returns the free type variables of a type. One ouldregard this as speifying a \view" of a type as the free vari-ables of the type:view TyVarsOf of Type = TyVarsOf [TyVar℄wheretyVarsOf ty = ...Now we ould writef :: Type -> Intf (TyVarsOf tyvars) = length tyvarsinstead off :: Type -> Intf ty = length (tyvarsOf ty)6

But the \view" has not made the program any simpler; in-deed one ould laim the reverse.Our point is this: there is a ontinuum between funtionsthat one might regard as \views" of a type and otherfuntions that are prediates, or seletors, or property-extrators. Extending the language with views undesirablyfores the programmer to hoose whether a partiular fun-tion is best regarded as a view or not. Pattern guards donot fore suh a hoie. Instead, the same aess funtion(for example, getFunTyMaybe) an be used in ordinary ex-pressions or pattern guards.7.2 Do pattern guards subsume views?Views allow the treatment of an abstrat data type as aonrete data type as far as pattern mathing is onerned.In partiular, the same notation an be used for patternmathing on abstrat and on onrete data types. In on-trast, with transformational patterns we have to extend thepatterns by pattern ations.Although views are notationally only a little more onisethan transformational patterns, one ould argue that thesmall notational di�erene presents a usage barrier, andtherefore views might be better suited to promote data ab-stration while retaining pattern mathing.Now with regard to the Polar example, with views we ansimply use a Polar onstrutor in a pattern knowing thatthe view transformation is applied automatially, whereaswith transformational patterns we have to all the polarfuntion expliitly.Thus we might prefer to write (using views)multC (Polar r1 t1) (Polar r2 t2)= pole (r1*r2) (t1+t2)rather than (using transformational patterns)multC (Polar r1 i1)!polar (Polar r2 i2)!polar= Polar (r1*r2) (t1+t2)One might argue, though, that the latter aurately indi-ates that there may be some work involved in mathingagainst a view, ompared to ordinary pattern mathing.With transformational patterns we an also safely use thePolar onstrutor (see also Setion 8).7.3 SummaryWe believe that the pattern-guard and transformational-pattern proposal� is muh simpler to speify and implement than views;� gets some expressiveness that is simply inaessible toviews;� suessfully reoniles pattern mathing with data ab-stration, albeit with a slightly less ompat notationthan views;

� is less heavyweight to use when de�ning many informa-tion extration funtions over an ADT;� does not oneal where omputation takes plae.8 Equational reasoning with transformational pat-ternsProblems in reasoning with Miranda laws and views arisebeause a onstrutor of a lawful type or view an be usedboth within a pattern and as an expression. In partiular,the use in an expression is problemati. Suppose, for exam-ple, we have a onstrutor Half :: Int -> Half of a viewtype Half that is de�ned to divide its argument by 2.view Half of Int = Half Intwhere half i = Half (i `div` 2)When we now de�ne a funtionf :: Half -> Intf (Half i) = i+1we ould try to reason, by replaing equals for equals,that f (Half 8) = 9, whih, however, is not true beausef (Half 8) = 5 due to the omputational part of Half.The solution proposed by Burton and Cameron [3℄ is to for-bid the use of view onstrutors, suh as Half, in expres-sions. This works well, but one always has to be aware ofthe status of a onstrutor and whether it is a view on-strutor or not.With transformational patterns we would have to de�ne aplain data type together with a funtion performing the de-sired omputation of the onstrutor Half.data Half = Half Inthalf i = Half (i `div` 2)Now when we use Half in equations, nothing harmful anhappen beause all omputation is made expliit. For ex-ample, it is valid to onlude f (Half 8) = 9 sine Halfis just a data type onstrutor performing no omputationon its argument at all. This is beause the above de�nitionfor f essentially does not use the view in its original sense.To make use of the view omputations we have to give adi�erent de�nition for f:f :: Half -> Intf (Half i)!half = i+1But now it is evident that we just annot use an equationlike f (Half 8)!half = 9 beause (Half 8)!half is notan expression. Hene, the additional requirement made byBurton and Cameron is impliitly given in our approah justby the syntax of transformational patterns.On the other hand, it is possible to use transformational pat-terns in equational reasoning. To explain this it is helpful to7

reall how patterns are used, for example, in the transforma-tion of an expression f e. This happens in two steps: �rst,the struture of e is examined (this is either obvious beausee is an appliation of a onstrutor or it is given in a preon-dition of the urrent transformation, for example, somethinglike e = x:xs). Then the equation for f that mathes thestruture of e is determined, say f (x:xs) = e', and f e issubstituted by e'.Now transformational patterns �t into this sheme as fol-lows. Suppose, f ontains an equation f p! = e'. Thenwhen you an make the assumption p = e in a proof, youan replae the expression f e by e'. Of ourse, as withother patterns, one has to hoose the �rst possible math toget a sound transformation.We illustrate this by a small example. Suppose we havede�ned seletion sort with the help of a funtion min' ::Ord a => [a℄ -> (a,[a℄) that extrats a minimum from alist.sort :: Ord a => [a℄ -> [a℄sort [℄ = [℄sort (m,r)!min' = m:sort rNow we would like to prove the orretness of sort. Usingthe prelude funtion all we an de�ne a prediate for sortedlists as follows.sorted [℄ = Truesorted (x:xs) = all (x<=) xs && sorted xsSuppose we already know the following property of min'.Lemma 1 min' l = (x,xs)) all (x<=) xs = TrueThen we an easily prove:Lemma 2 sorted (sort l) = TrueProof. We perform a ase analysis on the list argument: ifl = [℄, we havesorted (sort [℄)= sorted [℄= TrueIf l 6= [℄, we have min' l = (m,r), and we an selet theseond equation for sort:sorted (sort l)= sorted (m:sort r)= all (m<=) r && sorted rNow by indution sorted r an assumed to be true, andall (m<=) r is true due to Lemma 1. 29 Pattern math failure as a �rst-lass entity?In Haskell, pattern math failure is onsidered a loal eventthat has to be dealt with in one and the same ase expres-sion or (if not dealt with) results in an (unreoverable) error.

An alternative, more general view is that a failing patternmath raises an exeption, say, Fail, that an be aughtin the same or in another ase expression. Suh a treat-ment of pattern math failure ould be niely exploited bytransformational patterns: a pattern mathing failure in apattern ation an be aught to be able to reah the nextfuntion equation. In this setion we sketh a possible ex-tension along these lines. We regard this setion as muhmore speulative than the rest of the paper.As a �rst example we give a de�nition for the view-versionof the funtion power [19℄.power :: Int -> Int -> Intpower x 0 = 1power x n!asOdd = x*power (x*x) npower x n!asEven = power (x*x) nThe two funtions asOdd and asEven both halve their argu-ment but math only for odd and even numbers:asOdd n | n `mod` 2 == 1 = n `div` 2asEven n | n `mod` 2 == 0 = n `div` 2With these partial de�nitions, the appliation of, say, asOddto an even number, is de�ned to yield a program error thatpropagates through to the top level, but with the extendedFail semantis the pattern math failure raised in asOdd isaught in power and auses the third equation to be tried.As a further example we show how transformational pat-terns make it possible to use pattern mathing suessfullyon graphs. Graph algorithms traditionally onsider graphsas monolithi bloks, and this view is reeted in theirlumsy de�nitions. As an alternative we have proposed anindutive view of graphs that makes reursive de�nitionsof graph algorithms feasible [5℄: a graph is either empty,or it is onstruted by adding a node together with edgesfrom/to its predeessors/suessors. Let Node be the type ofnode values, and let Graph be the type of unlabelled graphs.A node ontext is a node together with a list of suessors(third tuple omponent) and a list of predeessors (�rst om-ponent):type Context = ([Node℄,Node,[Node℄)Then we an de�ne an empty graph onstant and a funtionfor suessively adding node ontexts:empty :: Graphembed :: (Context,Graph) -> GraphNote that embed yields a runtime error if either the node tobe inserted is already present in the graph or if any of thepredeessor or suessor nodes does not exist in the graph.We also have a funtion math that loates the ontext of apartiular node in a graph.1math :: Node -> Graph -> (Context,Graph)1math is de�ned so that for all nodes v ontained in g the followinglaw holds: embed (math v g) = g.8

Now with a funtion su that simply projets onto the thirdomponent of a ontext we an give a highly onise de�ni-tion of depth-�rst searh:dfs :: [Node℄ -> Graph -> [Node℄dfs [℄ _ = [℄dfs (v:vs) (,g)!(math v) = v:dfs (su ++vs) gdfs (_:vs) g = dfs vs gThe arguments of dfs are a list of nodes to be visited andthe graph to be searhed, and the result is a list of nodes indepth-�rst order. Note that we do not need a data struturefor remembering the nodes that we have already seen |by repeatedly removing ontexts from the graph we rather\forget" (in the graph) the nodes that have been visited sofar. If we then try to revisit a node, this leads in math to amath failure, ausing dfs to try the third equation, whihsimply ignores the urrent node.9.1 SemantisNote that athing pattern mathing failure is not possiblewith transformational patterns when they are just reduedto pattern guards. Therefore, we have to provide an inde-pendent semantis de�nition. One possible way to go is tode�ne pattern mathing within a Haskell version that a-ounts for exeptions. A proposal for exeptions was madein [13℄, giving a preise semantis together with an eÆientimplementation. Pattern math failure ould be de�ned inthat ontext to raise a Fail exeption, and pattern mathinghad to ath Fail exeptions to selet funtion equations.In that proposal athing exeptions leads, in general, tonon-determinism. To see this, onsider the expression e1 +e2, and assume that e1 and e2 result in two di�erent ex-eptions. Now what should be the result of e1 + e2? Ifwe avoid to �x the evaluation order, all we an do is toeither de�ne + to make a non-deterministi hoie or to re-turn the set of all exeptions raised anywhere within e1 ande2. The last proposal was made in [13℄. Even when deal-ing with exeption sets, heking for a partiular exeptionre-introdues non-determinism. However, in a frameworkwhere Fail is the only exeption one ould also think ofjust heking whether an exeption has ourred at all ornot. This eliminates non-determinism to a large degree, butit might still be the ase that one and the same programould diverge or not depending on, for example, the plat-form or the larger ontext in whih it was ompiled. Again,onsider expressions like bot + Fail.Another possibility is to de�ne the more general behaviour oftransformational patterns within the urrent Haskell frame-work. The problem we fae here is that a pattern-mathfailure within the pattern ation must not yield ? sinethis annot be aught in the ase expression ontaining thetransformational pattern. We an ope with this by per-forming a soure-ode transformation eM of pattern ationsto wrap all possible results with Just, and add a default asethat returns Nothing. Then we perform pattern mathingagainst Nothing in the ase rule dealing with transforma-tional patterns. The orresponding ase equation is easy to

give:(w') ase v of { p!f -> e; _ -> e0 }= ase e0 of { y ->ase fM v of {Nothing -> y;Just x -> ase x of { p -> e; _ -> y }}}where x and y are ompletely new variablesIt remains to be shown how pattern ations an be lifted intothe Maybe type. We give a de�nition that follows the stru-ture of expressions. Sine only ase expressions are a soureof possible pattern math failure, wrapping Just and addingNothing happens just there. In all other ases, lifting is justreursively passed through (or ignored). In partiular, on-stants, onstrutors, and variables remain unhanged. Forappliation, abstration, and ase expressions we obtain:(e1 e2)M = eM1 e2(�x:e)M = �x:eM(ase e of fpi -> eig)M = ase e of { fpi -> Just eig;_ -> Nothing }The problem with this approah is that it does not work wellwith separate ompilation, in partiular, with preompiledlibraries: in general, we do not have aess to the de�nitionof a funtion that is used in a pattern ation and that livesin a separately ompiled module. In that ase the abovesheme breaks down beause we do not know the funtion'ssoure ode and we therefore annot apply the soure odetransformation.9.2 SummaryIn this setion we have skethed a more speulative develop-ment of the pattern-mathing idea. We regard it as debat-able whether the additional power of these extended trans-formational patterns is worth the ost in terms of semantiompliations, or loss of separate ompilation. However,�rst-lass pattern-mathing failure would very muh obvi-ate the need for pattern guards beause Fail an be usedto \step bak" into a funtion's pattern mathing proess.Our earlier proposals, of pattern guards and transforma-tional patterns, desribed in Setions 3 and 4, do not involveany suh semanti or ompilation ompliations.10 Related workOne of the �rst extensions to pattern mathing was the law-ful types of Miranda [18, 16℄: in this approah the program-mer is allowed to add equations to a data type de�nitionthat at as rewrite rules to transform data type values into aanonial representation. The approah has two main prob-lems: �rst, in many appliations di�erent representationsare needed to use data types and pattern mathing onve-niently (see, for example, the polar vs. artesian representa-tion of omplex values [3, 12℄ or di�erently rooted trees torepresent sets [6℄), and Miranda laws prevent this. Seond,laws ause problems with equational reasoning [16℄.The most prominent and most widely aepted extension topattern mathing seems to be the view mehanism whih9

was �rst proposed by Phil Wadler [19℄ and that was lateradapted by several others [3, 4, 11℄. With views one an haveas many di�erent representations of a data type as needed.For eah suh representation, alled view, two funtions inand outmust be de�ned that map from the (main) data typeinto the view type and vie versa. Views do not su�er fromthe �rst restrition of Miranda laws, but the view transfor-mations must be inverses of eah other, and this sometimeseither leads to partial de�nitions or auses problems withequational reasoning due to ambiguities.The reasoning problems were �rst solved by Burton andCameron [3℄ who restrit the use of view onstrutors only topatterns. Hene, the out funtion is not needed anymore,and the in funtion need not be injetive. This has beenadopted by all view proposals that were made sine then.Okasaki [11℄ has de�ned the view onept (the proposal of[4℄) for Standard ML. He pays speial attention to the inter-ation of view transformations with stateful omputationsthat are possible in ML.We have demonstrated that views an be easily simulatedby transformational patterns.In [12℄ ative destrutors were introdued that allow thede�nition and use of patterns, alled ative patterns,that might perform omputations to produe bindings: p math q where r = e de�nes an ative destrutor pthat an be used as a pattern in plae of q. During themathing proess e is evaluated using bindings produed byq and produing new bindings in r that an �nally be usedby p. Ative destrutors extend the apabilities of views,but they require even more syntati overhead. In parti-ular, a new notation is needed for the typing of patterns.Ative destrutors an, to some degree, perform omputa-tions like pattern guards and transformational patterns, butthey annot aess other variables bound in the same fun-tion equation, whih we onsider a highly useful feature.2Ative destrutors an also be simulated by pattern guardsand transformational patterns. For example, de�ne a fun-tion q = e and use the transformational pattern p! inplae of the ative destrutor p.The \p as f" onstrution introdued in [2℄ is also similarto transformational patterns: a pattern mathing funtionf an be onverted into a pattern p so that it an be om-posed with other patterns. This is used to express patternmathing on union types.The goal of the ative patterns introdued in [6℄3 was toenable the mathing of spei� representations of data typevalues. Whereas views always map a value in one view typeto a anonial representation, ative patterns allow the se-letion of an arbitrary one. The idea is that speialisedonstrutors an reorganise data type values before they aremathed. This reorganisation is intended to yield a represen-tation that suits the urrent funtion de�nition best. Withregard to these preproessing apabilities, ative patternsare similar to transformational patterns and also to ativedestrutors. However, ative patterns are more general than2Ative destrutors allow a very limited and rather ad-ho way ofpassing additional parameters into pattern funtions; this is desribedin [12℄ only for Haskell-spei� arithmeti n+k-patterns and requiresyet another extension to the typing notation.3The work of [12℄ and [6℄ was performed independently leading tothe homonym.

ative destrutors beause their omputing funtions haveaess to other bindings of the pattern, and ative patternsare less general than ative destrutors and than patternguards and transformational patterns beause the argumentand result type must be the same.Just as views and laws and the other approahes mentionedso far were motivated by ombining pattern mathing andADTs, there are some other, more limited, approahes thatare also driven by spei� appliations: ontext patterns [9℄give diret aess to arbitrary deeply nested sub-parts ofterms; they are very similar to other tree transforming lan-guages (for example, [8, 15℄). In partiular, they only workfor algebrai, free data types, and omputations on mathedvalues are not possible. The abstrat value onstrutors pre-sented in [1℄ provide a faility to abbreviate terms and al-low the use of these abbreviations as expressions as well aswithin patterns. Again, no omputations are possible onthe mathed values. In ontrast, pattern abstrations [7℄ doallow a very limited form of omputation; the aim is to gen-eralise pattern mathing only as far as stati analyses, suhas heking overlapping patterns or exhaustiveness, are stilldeidable.A di�erent route to pattern mathing is taken by Tullsen[17℄, who onsiders patterns as funtions of type a -> Maybeb. This allows the treatment of patterns as �rst-lass ob-jets; in partiular, it is possible to write pattern ombi-nators. Although the semantis of patterns an be simpli-�ed onsiderably by that approah, the use of patterns inthe language is rather lumsy even after the introdution ofsome syntati sugar through so-alled pattern binders.Let us �nally ompare the desribed extensions with our pro-posal from a general point of view. Whereas it is quite easyand straightforward to use a pattern guard or a transforma-tional pattern in a funtion de�nition (just put it there!),the use of an ative destrutor (or of a view, or of any otherproposal) requires the de�nition of suh a pattern at someother plae before it an be used. In many ases this is pro-hibitive either beause adding an additional delaration isnot justi�ed by, say, only one appliation or beause it isjust faster or shorter not to use that onept. For example,the de�nition of the funtion last based on a reverse viewof lists (see [19℄) requires some e�ort to de�ne the view typeand the view transformations, whereas it an be immedi-ately written using pattern guards:last xs | (x:_) <- reverse xs = xor with transformational patterns:last (x:_)!reverse = xThe situation here is omparable to that of funtionde�nitions vs. anonymous funtions (that is, lambda-abstrations): sometimes it is useful to have anonymousfuntions, although it is syntatially nier to apply a de-�ned funtion.A further aspet is that pattern de�nitions an be used onlyfor pattern mathing, whereas a funtion used in a patternguard or as a pattern ation an also be used in expressions.Another di�erene we already stressed is that our proposalmakes it expliit where omputations take plae in patterns10

whereas this information is hidden by views or ative de-strutors. As far as programming with ADTs is onerned,hiding might be in most ases appropriate, however, in someases it might be more onvenient to have expliit informa-tion about omputations instead of de�ning, learning andremembering many di�erent views.11 ConlusionsWe have introdued pattern guards and transformationalpatterns that o�er the possibility of preproessing valuesbefore they are mathed against patterns. Our proposalovers and even generalises previous approahes to patternmathing on abstrat data types. This extension allows auseful lass of programs to be written muh more elegantlythan with the urrent version of Haskell.The required extensions to existing languages are minimal.This applies both to the syntax and to the implementation,whih makes the introdution into Haskell very easy. Infat, pattern guards are already fully implemented in GHC(transformational patterns are not yet implemented). Thesyntax is not as neat as for views, but rather makes the om-putations that happen expliit. We have argued that thisan be an advantage in using the patterns, understandingprograms, and in equational reasoning.Our proposal is attrative also from a more general languagedesign point of view beause in formulating reursive fun-tion de�nitions one always has to make two design deisions:(i) whih arguments are needed in whih form for the reur-sive funtion appliation(s) on the right-hand side, and (ii)how an the parameters from the left-hand side be broughtinto the required form. With traditional patterns, these twolosely related design deisions are separated by moving (ii)into a (possibly distant) where blok. With transformationalpatterns both ativities have been brought loser together;this failitates the programmer to fous the view on the es-sential parts of reursive de�nitions.F�ahndrih and Boyland [7℄ all their pattern mathing ex-tension pattern abstrations. Their approah (and all theothers) require the naming of pattern abstrations. Sinethis is not needed in our approah, pattern guards andtransformational patterns an be viewed as omplementingthe landsape of pattern mathing extensions by anonymouspattern abstrations.AknowledgementsWe thank Chris Okasaki and the anonymous reviewers fortheir helpful omments.Referenes[1℄ W. E. Aitken and J. H. Reppy. Abstrat Value Con-strutors. In ACM Workshop on ML and its Applia-tions, pages 1{11, 1992.[2℄ P. Buneman and B. Piere. Union Types for Semistru-tured Data. Tehnial Report MS-CIS-99-09, Univer-sity of Pennsylvania, 1999.

[3℄ F. W. Burton and R. D. Cameron. Pattern Math-ing with Abstrat Data Types. Journal of FuntionalProgramming, 3(2):171{190, 1993.[4℄ F. W. Burton, E. Meijer, P. Sansom, S. Thompson,and P. Wadler. Views: An Extension to Haskell PatternMathing. http://haskell.org/development/views.html,1996.[5℄ M. Erwig. Indutive Graphs and Funtional Graph Al-gorithms. Journal of Funtional Programming. To ap-pear.[6℄ M. Erwig. Ative Patterns. In 8th Int. Workshop onImplementation of Funtional Languages, LNCS 1268,pages 21{40, 1996.[7℄ M. F�ahndrih and J. Boyland. Statially ChekablePattern Abstrations. In 2nd ACM Int. Conf. on Fun-tional Programming, pages 75{84, 1997.[8℄ R. Hekmann. A Funtional Language for the Spei�-ation of Complex Tree Transformations. In EuropeanSymp. on Programming, pages 175{190, 1988.[9℄ M. Mohnen. Context Patterns in Haskell. In 8th Int.Workshop on Implementation of Funtional Languages,LNCS 1268, pages 307{319, 1996.[10℄ C. Okasaki. Simple and EÆient Purely FuntionalQueues and Deques. Journal of Funtional Program-ming, 5(4):583{592, 1995.[11℄ C. Okasaki. Views for Standard ML. InACMWorkshopon ML and its Appliations, pages 14{23, 1998.[12℄ P. Palao Gostanza, R. Pe~na, and M. N�u~nez. A NewLook at Pattern Mathing in Abstrat Data Types. In1st ACM Int. Conf. on Funtional Programming, pages110{121, 1996.[13℄ S. L. Peyton Jones, A. Reid, T. Hoare, S. Marlow, andF. Henderson. A Semantis for Impreise Exeptions.In ACM Conf. on Programming Languages Design andImplementation, pages 25{36, 1999.[14℄ S. L. Peyton Jones, J. Hughes et al. Report on theProgramming Language Haskell 98. 1999.[15℄ C. Queinne. Compilation of Non-Linear, Seond Or-der Patterns on S-Expressions. In 2nd Int. Symp. onProgramming Language Implementation and Logi Pro-gramming, LNCS 456, pages 340{357, 1990.[16℄ S. Thompson. Lawful Funtions and Program Veri�a-tion in Miranda. Siene of Computer Programming,13:181{218, 1990.[17℄ M. Tullsen. First Class Patterns. In 2nd Int. Workshopon Pratial Aspets of Delarative Languages, LNCS1753, pages 1{15, 2000.[18℄ D. A. Turner. Miranda: A Non-strit Funtional Lan-guage with Polymorphi Types. In Conf. on FuntionalProgramming and Computer Arhiteture, LNCS 201,pages 1{16, 1985.[19℄ P. Wadler. Views: A Way for Pattern Mathing toCohabit with Data Abstration. In 14th ACM Symp.on Priniples of Programming Languages, pages 307{313, 1987.11

