
In: Haskell Workshop 2000Pattern Guards and Transformational PatternsMartin ErwigOregon State Universityerwig�
s.orst.edu Simon Peyton JonesMi
rosoft Resear
h Ltd, Cambridgesimonpj�mi
rosoft.
om6th September 2000Abstra
tWe propose three extensions to patterns and pattern mat
h-ing in Haskell. The �rst, pattern guards, allows the guardsof a guarded equation to mat
h patterns and bind variables,as well as to test boolean
ondition. For this we introdu
ea natural generalisation of guard expressions to guard qual-i�ers.A frequently-o

urring spe
ial
ase is that a fun
tion shouldbe applied to a mat
hed value, and the result of this is tobe mat
hed against another pattern. For this we introdu
ea synta
ti
 abbreviation, transformational patterns, that isparti
ularly useful when dealing with views.These proposals
an be implemented with very modest syn-ta
ti
 and implementation
ost. They are upward
ompati-ble with Haskell; all existing programs will
ontinue to work.We also o�er a third, mu
h more spe
ulative proposal, whi
hprovides the transformational-pattern
onstru
t with addi-tional power to expli
itly
at
h pattern mat
h failure.We demonstrate the usefulness of the proposed extensionby several examples, in parti
ular, we
ompare our proposalwith views, and we also dis
uss the use of the new patternsin
ombination with equational reasoning.1 Introdu
tionPattern mat
hing is a well-appre
iated feature of languageslike ML or Haskell; it greatly simpli�es the task of inspe
t-ing values of stru
tured data types and fa
ilitates su

in
tfun
tion de�nitions that are easy to understand. In its basi
form, pattern mat
hing tries to identify a
ertain stru
tureof a value to be pro
essed by a fun
tion. This stru
ture isspe
i�ed by a pattern, and if it
an be re
overed in a value,
orresponding parts of the value are usually bound to vari-ables. These bindings are exploited on the right-hand side ofthe de�nition. There are numerous proposals for extendingthe
apabilities of patterns and pattern mat
hing; in parti
-ular, the problems with pattern mat
hing on abstra
t datatypes have stimulated a lot of resear
h [19, 16, 3, 12, 4, 6, 11℄.Other aspe
ts have also been subje
t to extensions and gen-eralisations of pattern mat
hing [8, 1, 9, 7, 17℄.All these approa
hes di�er in what they
an be used for, intheir syntax, and in their properties, whi
h makes it almost

impossible to use two or more di�erent approa
hes at thesame time. Moreover, among all these di�erent approa
hesthere is no
lear winner, although so-
alled views seem tobe the most prominent and favourite extension.Therefore, a
onsolidation of pattern mat
hing at a morefundamental level deserves attention. An extension shouldbe simple enough so that its use is not prohibited by a
om-plex syntax, and it should be powerful enough to expressmost of the existing approa
hes.In this paper we present a proposal for an elementary exten-sion of patterns and pattern mat
hing that naturally extendsHaskell's
urrent pattern mat
hing
apabilities. The designis in
uen
ed by the following goals:� Conservative Extension. Programs that do not use thenew feature should not need to be
hanged and shouldhave un
hanged semanti
s.� Simpli
ity. We shall not introdu
e (yet another) moreor less
omplex sub-language for spe
ifying new kindsof patterns, for introdu
ing pattern de�nitions, and soon. Instead, a minor extension to the syntax with asimple semanti
s should be aimed at.� Expressiveness. It should be possible to express patternmat
hing on abstra
t data types. In parti
ular, views[19, 3, 4, 11℄, and two kinds of a
tive patterns [12, 6℄should be
overed.� EÆ
ient and Simple Implementation. The use of thenew patterns should not be penalised by longer runningtimes. Moreover, only minimal
hanges to an existinglanguage should be needed. This fa
ilitates the easyintegration of the new
on
ept into existing languageimplementations and supports a broad evaluation ofthe
on
ept.The remainder of this paper is stru
tured as follows: we mo-tivate the need for more powerful pattern mat
hing in Se
-tion 2 and present our proposal in Se
tions 3 and 4. Syntaxand semanti
s are de�ned in Se
tion 5, and the implemen-tation is dis
ussed in Se
tion 6. A detailed
omparison withviews is performed in Se
tion 7. In Se
tion 8 we then dis-
uss the use of the new patterns with equational reasoning.A further extension of the expressiveness of our proposal isdes
ribed in Se
tion 9. Related work is dis
ussed in Se
tion10, and �nally,
on
lusions are given in Se
tion 11.1

2 The need for more powerful pattern mat
hingIn the
urrent version of Haskell pattern mat
hing is not justa straight, one-step pro
ess be
ause guards
an be used to
onstrain further the sele
tion of fun
tion equations. How-ever, no (additional) bindings
an be produ
ed in this se
-ond step. This is a somewhat non-orthogonal design, andthe extension we propose essentially generalises this aspe
t.Consider the following Haskell fun
tion de�nition.filter p [℄ = [℄filter p (y:ys) | p y = y : filter p ys| otherwise = filter p ysThe de
ision of whi
h right-hand side to
hoose is made intwo stages: �rst, pattern mat
hing sele
ts a guarded group,and se
ond, the boolean-valued guards sele
t among theright-hand sides of the group.In these two stages, only the pattern-mat
hing stage
an bindvariables, but only the guards
an
all fun
tions. It is wellknown that this design gives rise to a dire
t
on
i
t betweenpattern-mat
hing and abstra
tion, as we now dis
uss.2.1 Abstra
t data typesConsider an abstra
t data type of sequen
es, whi
h o�ersO(1) a

ess to both ends of the sequen
e (see, for example,[10℄):nil :: Seq al
ons :: a -> Seq a -> Seq alview :: Seq a -> Maybe (a,Seq a)r
ons :: Seq a -> a -> Seq arview :: Seq a -> Maybe (Seq a,a)Sin
e sequen
es are realized as an abstra
t date type, theirrepresentation is not known, and this prohibits the use ofpattern mat
hing. The fun
tions lview and rview providetwo views of the sequen
e, one as a left-oriented list and theother as a right-oriented list, and thus reveal to some degreea representation of sequen
es (that
an be di�erent, though,from their a
tual implementation). This means that patternmat
hing against this representation is now prin
ipally pos-sible. However, it generally leads to less
learer de�nitions.For example, a fun
tion to �lter su
h a sequen
e would haveto use a
ase expression to s
rutinise the result of, say,lview:filtSeq :: (a->Bool) -> Seq a -> Seq afiltSeq p xs=
ase (lview xs) ofNothing -> nilJust (y,ys) | p y -> l
ons y (filtSeq p ys)| otherwise -> filtSeq p ysThis is mu
h less satisfa
tory than the list version of filter,whi
h used pattern-mat
hing dire
tly. A
tually, it is possi-ble to write filtSeq in a more equational way:

filtSeq :: (a->Bool) -> Seq a -> Seq afiltSeq p xs| isJust lv && p y = l
ons y (filtSeq p ys)| isJust lv = filtSeq p ys| otherwise = nilwherelv = lview xsJust (y,ys) = lvThe auxiliary fun
tion isJust is taken from the standardlibrary Maybe:isJust :: Maybe a -> BoolisJust (Just x) = TrueisJust Nothing = FalseThe idea here is that the guard isJust lv
he
ks that thelview returns a Just value, while the (lazily-mat
hed) pat-tern Just (y,ys) is only mat
hed if y or ys is demanded. Sonow filtSeq is more \equational", but it is hardly
learerthan before. A well-known approa
h to re
on
ile patternmat
hing and abstra
t data types is the views proposal; wewill
onsider views in detail in Se
tion 7.2.2 Mat
hing that involves several argumentsAs another example, suppose we have an abstra
t data typeof �nite maps, with a lookup operation:lookup :: FiniteMap -> Int -> Maybe IntThe lookup returns Nothing if the supplied key is not in thedomain of the mapping, and (Just v) otherwise, where v isthe value that the key maps to. Now
onsider the followingde�nition:
lunky env var1 var2 | ok1 && ok2 = val1 + val2| otherwise = var1 + var2wherem1 = lookup env var1m2 = lookup env var2ok1 = isJust m1ok2 = isJust m2Just val1 = m1Just val2 = m2Mu
h as with filtSeq, the guard ok1 && ok2
he
ks thatboth lookups su

eed, using isJust to
onvert the maybetypes to booleans. The (lazily mat
hed) Just patterns ex-tra
t the values from the results of the lookups, and bindthe returned values to val1 and val2, respe
tively. If ei-ther lookup fails, then
lunky takes the otherwise
ase andreturns the sum of its arguments.This is
ertainly legal Haskell, but it is a tremendously ver-bose and un-obvious way to a
hieve the desired e�e
t. Is itany better using
ase expressions?2

lunky env var1 var1 =
ase lookup env var1 ofNothing -> failJust val1 ->
ase lookup env var2 ofNothing -> failJust val2 -> val1 + val2wherefail = var1 + var2This is a bit shorter, but hardly better. Worse, if this wasjust one equation of
lunky, with others that follow, thenthe thing would not work at all. That is, suppose we have
lunky' env (var1:var2:vars) | ok1 && ok2= val1 + val2wherem1 = lookup env var1... as before
lunky' env [var1℄ = ... some stu�
lunky' env [℄ = ... more stu�Now, if either of the lookups fail, we want to fall through tothe se
ond and third equations for
lunky'. If we write thede�nition in the form of a
ase expression, we are for
ed tomake the latter two equations for
lunky' into a separatede�nition and
all it in the right-hand side of fail. Thisis pre
isely why Haskell provides guards at all, rather thanrelying on if-then-else expressions: if the guard fails, wefall through to the next equation, whereas we
annot do thatwith a
onditional.What is frustrating about this is that the solution is so tan-talisingly near at hand! What we want to do is to pattern-mat
h on the result of the lookup. We
an do it like this:
lunky' env vars�(var1:var2:_)= help (lookup env var1) (lookup env var2) varswherehelp (Just v1) (Just v2) vars = v1 + v2help _ _ [var1℄ = ... some stu�help _ _ [℄ = ... more stu�Now we do get three equations, one for ea
h right-hand side,but it is still
lunky. In a big set of equations it be
omeshard to remember what ea
h Just pattern
orresponds to.Worse, we
annot use one lookup in the next. For example,suppose our fun
tion was like this:
lunky'' env var1 var2 | ok1 && ok2 = val2| otherwise = var1 + var2wherem1 = lookup env var1m2 = lookup env (var2 + val1)ok1 = isJust m1ok2 = isJust m2Just val1 = m1Just val2 = m2Noti
e that the se
ond lookup uses val1, the result of the�rst lookup. To express this with a help fun
tion requiresa se
ond helper fun
tion nested inside the �rst. Dire stu�.

2.3 SummaryIn this se
tion we shown that Haskell's pattern-mat
hing
apabilities are unsatisfa
tory in
ertain situations. The �rstexample relates to the well-known tension between pattern-mat
hing and abstra
tion. The
lunky example, however,was a little di�erent | there, the mat
hing involved twoarguments (env and var1), and did not arise dire
tly fromdata abstra
tion.There is no fundamental issue of expressiveness: we
anrewrite any set of pattern-mat
hing, guarded equations as
ase expressions. Indeed, that is pre
isely what the
ompilerdoes when
ompiling equations! So should we worry at all?Yes, we should. The reason that Haskell provides guardedequations is be
ause they allow us to write down the
aseswe want to
onsider, one at a time, mostly independentlyof ea
h other | the \equational style". This stru
ture ishidden in the
ase version. In the
ase of
lunky, two ofthe right-hand sides are really the same (fail).Furthermore, nested
ase expressions s
ale badly: the wholeexpression tends to be
ome more and more indented. In
ontrast, the equational (albeit verbose) de�nition, usingisJust have the merit that they s
ale ni
ely to a

ommo-date multiple equations. So we seek a way to a

ommodatethe equational style despite a degree of abstra
tion.3 A proposal: pattern guardsOur initial proposal is simple:Instead of being a boolean expression, a guard is alist of quali�ers, exa
tly as in a list
omprehension.That is, the only syntax
hange is to repla
e exp by quals inthe syntax of guarded equations.Here is how we would write
lunky:
lunky env var1 var1| Just val1 <- lookup env var1, Just val2 <- lookup env var2= val1 + val2... other equations for
lunkyThe semanti
s should be
lear enough. The quali�ers aremat
hed in order. For a <- quali�er, whi
h we
all a patternguard, the right-hand side is evaluated and mat
hed againstthe pattern on the left. If the mat
h fails, then the wholeguard fails, and the next equation is tried. If it su

eeds,then the appropriate binding(s) are made, and the next qual-i�er is mat
hed, in the augmented environment. Unlike list
omprehensions, however, the type of the expression to theright of the <- is the same as the type of the pattern toits left. The bindings introdu
ed by pattern guards s
opeover all the remaining guard quali�ers, and over the right-hand side of the equation. If there is a where
lause, thenits bindings s
ope over all the guards, just as in Haskell atpresent.Just as with list
omprehensions, boolean expressions
anbe freely mixed with the pattern guards. For example:3

f x | [y℄ <- x, y > 3, Just z <- h y= ...Haskell's
urrent guards therefore emerge as a spe
ial
ase,in whi
h the quali�er list has just one element, a booleanexpression.Just as with list
omprehensions, a let quali�er
an intro-du
e a binding. It is also possible to do this with patternguards with a simple variable pattern a <- exp. Howevera let quali�er is a little more powerful, be
ause it
an in-trodu
e a re
ursive or mutually-re
ursive binding. It is not
lear whether this power is parti
ularly useful, but it seemsmore uniform to have exa
tly the same syntax as list
om-prehensions.One
ould argue that the notation <- is misleading, suggest-ing the idea of drawn from as in a list
omprehension. Butit is very ni
e to reuse pre
isely the list-
omprehension syn-tax. Furthermore, the only viable alternative is =, and thatwould lead to parsing diÆ
ulties, be
ause we rely on the =to herald the arrival of the right-hand side of the equation.Consider f x | y = h x = 3.Using pattern guards for filtSeq exposes a small de�
ien
y:filtSeq :: (a->Bool) -> Seq a -> Seq afiltSeq p xs| Just (y,ys) <- lview xs, p y = l
ons y (filtSeq p ys)| Just (y,ys) <- lview xs = filtSeq p ys| otherwise = nilThere is the annoying repeated
all to lview xs (whi
h
anbe shared by putting it in a where
lause), plus the annoyingrepeated pattern mat
h (whi
h
annot). Maybe one wouldlike some kind of nested guards, thus:filtSeq :: (a->Bool) -> Seq a -> Seq afiltSeq p xs| Just (y,ys) <- lview xs| p y = l
ons y (filtSeq p ys)| otherwise = filtSeq p ys| otherwise = nilSu
h an extension would make perfe
t sense, and would notbe hard to implement, but its power-to-weight ratio is sig-ni�
antly lower than for our main proposal: it is less oftenuseful (less power), and requires more new syntax (greaterweight).It is also possible to write filtSeq using an auxiliary fun
-tion filtSeq':filtSeq :: (a->Bool) -> Seq a -> Seq afiltSeq p = filtSeq' p . lviewfiltSeq' :: (a->Bool) -> Maybe (a,Seq a) -> Seq afiltSeq' p Nothing = nilfiltSeq' p (Just (y,ys)) =if p y then l
ons y (filtSeq p ys)else filtSeq p ys

However, this introdu
es an indire
tion into the de�nitionand the \solution" that is o�ered by this approa
h to theproblem of pattern mat
hing with abstra
t data types issimply to avoid it.4 A further proposal: transformational patternsPattern guards allow the programmer to
all an arbitraryfun
tion and pattern-mat
h on the result. In the impor-tant spe
ial
ase addressed by views, these
alls take a verystylised form, and this motivates us to propose some spe
ialsyntax, transformational patterns, in support.Here is how we might write filtSeq, using a transforma-tional pattern:filtSeq :: (a->Bool) -> Seq a -> Seq afiltSeq p (Just (y,ys))!lview| p y = l
ons y (filtSeq p ys)| otherwise = filtSeq p ysfiltSeq p Nothing!lview = nilThe transformational pattern (Just (y,ys))!lview meansinformally \apply lview and mat
h against Just (y,ys)".The expression to the right of the \!" is
alled pattern a
-tion. Transformational patterns are simply synta
ti
 sugarfor an equivalent form using pattern guards, but they are no-tationally a little more
on
ise. Furthermore, they are quitelike views: \mat
h Just (y,ys) against the lview view ofthe argument".Sin
e the fun
tion in a transformational pattern
an refer toany variables that are in s
ope in, or bound by, the where
lause, we
an write
lunky as:
lunky env (Just val1)!(lookup env)(Just val2)!(lookup env) = val1 + val2... other equations for
lunkyThis gives transformational patterns just a little more powerthan views, at the
ost of a somewhat ad ho

avour. Tosummarise, transformational patterns help to keep fun
tionequations single-lined, whi
h greatly enhan
es readabilityand understanding of fun
tion de�nitions
ontaining severalequations. Moreover, transformational patterns are parti
-ularly useful when simulating views, see Se
tion 7, and withequational reasoning, see Se
tion 8.5 Syntax and semanti
sBased on the Haskell 98 Report [14℄, we need two small
hanges to the syntax to integrate pattern guards and trans-formational patterns: �rst, a guard is not just anymore givenby an expression but by a list of quali�ers, and an atomi
pattern
an be a pattern extended by an expression:gd ! | qual1, : : : , qualn Pattern Guardapat ! : : :j apat!aexp Transformational Pattern4

We de�ne the semanti
s of pattern guards and transforma-tional patterns by a series of equations that relate them to\ordinary"
ase expressions of Haskell.We start with the redu
tion of pattern guards to nested
ase expressions. For this, we �rst unfold multiple guards inmat
hes to nested
ase expressions. This is done to keep thefurther translation manageable be
ause guards themselves
an be lists of quali�ers. Hen
e, we repla
e rule (
) by(
')
ase v of { p | g1 -> e1 : : :| gn -> en where { de
ls };_ -> e0 }=
ase e0 of { y ->
ase v of { p ->let de
ls in
ase () of {() | g1 -> e1;_ -> : : :
ase () of {() | gn -> en;_ -> y } : : : }_ -> y }}where y is a
ompletely new variableThe
onstru
tion
ase () of () -> ... indi
ates thatthese
ase expressions do not pattern mat
hing, but arejust used to look at the guards.Next we expand a list of quali�ers of ea
h guard into a nested
ase expression.(s)
ase () of { () | q1, : : : , qn -> e; _ -> e0 }=
ase e0 of { y ->
ase () of {() | q1 -> : : :
ase () of {() | qn -> e;_ -> y }; : : :_ -> y }}where y is a
ompletely new variableThe next three equations explain how quali�ers are resolved:(t) boolean guards are transformed into
onditionals, (u)a lo
al de
laration
an be just moved into the body, and(v) generators are again transformed into
ase expressionswhere the generating expression is s
rutinised and mat
hedagainst the binding pattern.(t)
ase () of { () | e0 -> e; _ -> e0 }= if e0 then e else e0(u)
ase () of { () | let de
ls -> e; _ -> e0 }= let de
ls in e(v)
ase () of { () | (p0 <- e0) -> e; _ -> e0 }=
ase e0 of { p0 -> e; _ -> e0 }It remains to redu
e transformational patterns to patternguards. This is done by the following equation:(w)
ase v of { p!f -> e; _ -> e0 }=
ase v of { x | (p <- f x) -> e; _ -> e0 }where x is a
ompletely new variable

6 ImplementationThe standard te
hnology used by
ompilers for generat-ing eÆ
ient mat
hing trees from sets of equations
an beadapted straightforwardly to a

ommodate pattern guardsand transformational patterns. Currently, pattern guardsare fully implemented in GHC, and transformational pat-terns are not yet implemented.The eÆ
ien
y issue is a little more pressing than with purepattern mat
hing, be
ause the a

ess fun
tions,
alled inthe transformational pattern or the pattern guard, may bearbitrarily expensive. For example,
onsiderdata AbsInt = Pos Int | Neg IntabsInt :: Int -> AbsIntabsInt n = if n>=0 then Pos n else Neg (-n)f :: Int -> Intf (Pos n)!absInt = n+1f (Neg n)!absInt = -(n+1)This is reasonably
on
ise. But how many times is absInt
alled? In this
ase, it is pretty
lear that it need only be
alled on
e. But what about this:g ((Pos a)!absInt : as) [℄ = ...g [℄ ((Pos b)!absInt : bs) = ...g ((Neg a)!absInt : as) ((Neg b)!absInt : bs) = ...g _ _ = ...Now it gets harder to tell! In general, it may be ne
essaryto know the pattern-mat
h
ompilation algorithm used bythe
ompiler in order to reason pre
isely about how manytimes absInt will be
alled. Nevertheless, it is not diÆ
ultto expand a pattern mat
hing algorithm by knowledge abouttransformational patterns so that in
ases like above (whenonly a fun
tion and not a
omplex expression is used as apattern a
tion) one
an ensure a translation into nested
aseexpressions so that at ea
h argument position ea
h patterna
tion is invoked only on
e.Without any
hanges to the pattern mat
hing algorithm,pattern guards allow us to express the sharing expli
itly insome
ases:f n | Pos n' <- abs_n = n'+1| Neg n' <- abs_n = -(n'+1)whereabs_n = absInt nHere the
ommon de�nition abs_n makes
lear that thereshould only be one
all to absInt. But a where
lause
an-not always be used. For example,
onsider the followingsilly fun
tion g using the AbsInt view (for an explanation ofviews, see the next se
tion)view AbsInt of Int = Pos Int | Neg Intwhere absInt = ... as above ...g (Pos (Pos n)) = n+1g (Pos (Neg n)) = -(n+1) -- A bit silly5

Now we have to writeg n | Pos n1 <- abs_n, Pos n2 <- absInt n1 = n2+1| Pos n1 <- abs_n, Neg n2 <- absInt n1 = -(n2+1)whereabs_n = absInt nWe
an share the �rst
all to absInt but not the se
ondbe
ause n1 is not in the s
ope of the where
lause. Insteadwe have to rely on (a) knowledge of the pattern-
ompilationalgorithm, and (b)
ommon-subexpression elimination, tojustify our hopes that there will be only two
alls to absInt.Again, in transformational-pattern form, the shared
om-putations seem easier to spot and
an be ensured by anextension of the pattern mat
hing algorithm:g (Pos (Pos n)!absInt)!absInt = n+1g (Pos (Neg n)!absInt)!absInt = -(n+1)7 A
omparison with viewsAs we have already dis
ussed, pattern guards and transfor-mational patterns
an be seen as addressing a similar goalto that of views, namely re
on
iling pattern mat
hing withdata abstra
tion. Views were proposed by Wadler ages ago[19℄, and are the subje
t of a
on
rete proposal for a Haskelllanguage extension [4℄.Consider, for example, the
artesian representation of
om-plex numbers with a polar view.data Complex = Cart Float Floatview Polar of Complex = Polar Float Floatwherepolar (Cart r i) =Polar (sqrt(r*r+i*i)) (atan2 r i)pole = PolarWith this view, fun
tion de�nitions
an be written using thepolar representation in patterns relying on the automati
appli
ation of the view transformation polar. This meansthat it is possible to assume a parti
ular representation ofabstra
t data types in fun
tion de�nitions without exposingor even knowing the representation used in the implemen-tation. Note that in addition to the view transformationpolar we also need a fun
tion pole to
onstru
t values ofthe view type.Without views we de�ne the view type as an ordinary datatype and the view transformation as a fun
tion.data Polar = Polar Float Floatpolar (Cart r i) = Polar (sqrt(r*r+i*i)) (atan2 r i)Now it is natural to ask whether views subsume patternguards or vi
e versa. The answer is \neither".

7.1 Do views subsume pattern guards?The views proposal [4℄ points out that you
an use views tosimulate (some) guards and, as we saw above, views havesimilar purpose and fun
tionality to at least some appli
a-tions of pattern guards.However, views give a view on a single value, whereas guardsallow arbitrary fun
tion
alls to
ombine in-s
ope values.For example,
lunky mat
hes (Just val1) against (lookupenv var1). We do not want a view of env nor of var1 butrather of their
ombination by lookup. Views simply do nothelp with
lunky.Views are
apable of dealing with the data abstra
tion issueof
ourse. However, ea
h
onditional sele
tor would requireits own view,
omplete with its own view type. This
anseem rather heavyweight. For example, our Haskell
om-piler, GHC, has an abstra
t data type
alled Type. TheType module o�ers the fun
tiongetFunTyMaybe :: Type -> Maybe (Type,Type)This fun
tion is a mixture of a predi
ate (\is this a fun
-tion type") and a view (\the argument and result type arethese"). To use views we would have to say:view FunType of Type = FunType Type Type| NotFunTypewherefunType (Fun arg res) = FunType arg resfunType other_type = NotFunTypeThis seems a bit heavyweight (three new names instead ofone)
ompared with re-using the existing Maybe type. Notonly does this reuse save de�ning new types, but it allowsthe existing library of fun
tions on Maybe types to be applieddire
tly to the result of getFunTyMaybe.Sometimes it is quite un
lear whether a fun
tion should beregarded as a \view" or not. For example, GHC has anotherfun
tion on Type:tyvarsOf :: Type -> [TyVar℄that returns the free type variables of a type. One
ouldregard this as spe
ifying a \view" of a type as the free vari-ables of the type:view TyVarsOf of Type = TyVarsOf [TyVar℄wheretyVarsOf ty = ...Now we
ould writef :: Type -> Intf (TyVarsOf tyvars) = length tyvarsinstead off :: Type -> Intf ty = length (tyvarsOf ty)6

But the \view" has not made the program any simpler; in-deed one
ould
laim the reverse.Our point is this: there is a
ontinuum between fun
tionsthat one might regard as \views" of a type and otherfun
tions that are predi
ates, or sele
tors, or property-extra
tors. Extending the language with views undesirablyfor
es the programmer to
hoose whether a parti
ular fun
-tion is best regarded as a view or not. Pattern guards donot for
e su
h a
hoi
e. Instead, the same a

ess fun
tion(for example, getFunTyMaybe)
an be used in ordinary ex-pressions or pattern guards.7.2 Do pattern guards subsume views?Views allow the treatment of an abstra
t data type as a
on
rete data type as far as pattern mat
hing is
on
erned.In parti
ular, the same notation
an be used for patternmat
hing on abstra
t and on
on
rete data types. In
on-trast, with transformational patterns we have to extend thepatterns by pattern a
tions.Although views are notationally only a little more
on
isethan transformational patterns, one
ould argue that thesmall notational di�eren
e presents a usage barrier, andtherefore views might be better suited to promote data ab-stra
tion while retaining pattern mat
hing.Now with regard to the Polar example, with views we
ansimply use a Polar
onstru
tor in a pattern knowing thatthe view transformation is applied automati
ally, whereaswith transformational patterns we have to
all the polarfun
tion expli
itly.Thus we might prefer to write (using views)multC (Polar r1 t1) (Polar r2 t2)= pole (r1*r2) (t1+t2)rather than (using transformational patterns)multC (Polar r1 i1)!polar (Polar r2 i2)!polar= Polar (r1*r2) (t1+t2)One might argue, though, that the latter a

urately indi-
ates that there may be some work involved in mat
hingagainst a view,
ompared to ordinary pattern mat
hing.With transformational patterns we
an also safely use thePolar
onstru
tor (see also Se
tion 8).7.3 SummaryWe believe that the pattern-guard and transformational-pattern proposal� is mu
h simpler to spe
ify and implement than views;� gets some expressiveness that is simply ina

essible toviews;� su

essfully re
on
iles pattern mat
hing with data ab-stra
tion, albeit with a slightly less
ompa
t notationthan views;

� is less heavyweight to use when de�ning many informa-tion extra
tion fun
tions over an ADT;� does not
on
eal where
omputation takes pla
e.8 Equational reasoning with transformational pat-ternsProblems in reasoning with Miranda laws and views arisebe
ause a
onstru
tor of a lawful type or view
an be usedboth within a pattern and as an expression. In parti
ular,the use in an expression is problemati
. Suppose, for exam-ple, we have a
onstru
tor Half :: Int -> Half of a viewtype Half that is de�ned to divide its argument by 2.view Half of Int = Half Intwhere half i = Half (i `div` 2)When we now de�ne a fun
tionf :: Half -> Intf (Half i) = i+1we
ould try to reason, by repla
ing equals for equals,that f (Half 8) = 9, whi
h, however, is not true be
ausef (Half 8) = 5 due to the
omputational part of Half.The solution proposed by Burton and Cameron [3℄ is to for-bid the use of view
onstru
tors, su
h as Half, in expres-sions. This works well, but one always has to be aware ofthe status of a
onstru
tor and whether it is a view
on-stru
tor or not.With transformational patterns we would have to de�ne aplain data type together with a fun
tion performing the de-sired
omputation of the
onstru
tor Half.data Half = Half Inthalf i = Half (i `div` 2)Now when we use Half in equations, nothing harmful
anhappen be
ause all
omputation is made expli
it. For ex-ample, it is valid to
on
lude f (Half 8) = 9 sin
e Halfis just a data type
onstru
tor performing no
omputationon its argument at all. This is be
ause the above de�nitionfor f essentially does not use the view in its original sense.To make use of the view
omputations we have to give adi�erent de�nition for f:f :: Half -> Intf (Half i)!half = i+1But now it is evident that we just
annot use an equationlike f (Half 8)!half = 9 be
ause (Half 8)!half is notan expression. Hen
e, the additional requirement made byBurton and Cameron is impli
itly given in our approa
h justby the syntax of transformational patterns.On the other hand, it is possible to use transformational pat-terns in equational reasoning. To explain this it is helpful to7

re
all how patterns are used, for example, in the transforma-tion of an expression f e. This happens in two steps: �rst,the stru
ture of e is examined (this is either obvious be
ausee is an appli
ation of a
onstru
tor or it is given in a pre
on-dition of the
urrent transformation, for example, somethinglike e = x:xs). Then the equation for f that mat
hes thestru
ture of e is determined, say f (x:xs) = e', and f e issubstituted by e'.Now transformational patterns �t into this s
heme as fol-lows. Suppose, f
ontains an equation f p!
 = e'. Thenwhen you
an make the assumption p =
 e in a proof, you
an repla
e the expression f e by e'. Of
ourse, as withother patterns, one has to
hoose the �rst possible mat
h toget a sound transformation.We illustrate this by a small example. Suppose we havede�ned sele
tion sort with the help of a fun
tion min' ::Ord a => [a℄ -> (a,[a℄) that extra
ts a minimum from alist.sort :: Ord a => [a℄ -> [a℄sort [℄ = [℄sort (m,r)!min' = m:sort rNow we would like to prove the
orre
tness of sort. Usingthe prelude fun
tion all we
an de�ne a predi
ate for sortedlists as follows.sorted [℄ = Truesorted (x:xs) = all (x<=) xs && sorted xsSuppose we already know the following property of min'.Lemma 1 min' l = (x,xs)) all (x<=) xs = TrueThen we
an easily prove:Lemma 2 sorted (sort l) = TrueProof. We perform a
ase analysis on the list argument: ifl = [℄, we havesorted (sort [℄)= sorted [℄= TrueIf l 6= [℄, we have min' l = (m,r), and we
an sele
t these
ond equation for sort:sorted (sort l)= sorted (m:sort r)= all (m<=) r && sorted rNow by indu
tion sorted r
an assumed to be true, andall (m<=) r is true due to Lemma 1. 29 Pattern mat
h failure as a �rst-
lass entity?In Haskell, pattern mat
h failure is
onsidered a lo
al eventthat has to be dealt with in one and the same
ase expres-sion or (if not dealt with) results in an (unre
overable) error.

An alternative, more general view is that a failing patternmat
h raises an ex
eption, say, Fail, that
an be
aughtin the same or in another
ase expression. Su
h a treat-ment of pattern mat
h failure
ould be ni
ely exploited bytransformational patterns: a pattern mat
hing failure in apattern a
tion
an be
aught to be able to rea
h the nextfun
tion equation. In this se
tion we sket
h a possible ex-tension along these lines. We regard this se
tion as mu
hmore spe
ulative than the rest of the paper.As a �rst example we give a de�nition for the view-versionof the fun
tion power [19℄.power :: Int -> Int -> Intpower x 0 = 1power x n!asOdd = x*power (x*x) npower x n!asEven = power (x*x) nThe two fun
tions asOdd and asEven both halve their argu-ment but mat
h only for odd and even numbers:asOdd n | n `mod` 2 == 1 = n `div` 2asEven n | n `mod` 2 == 0 = n `div` 2With these partial de�nitions, the appli
ation of, say, asOddto an even number, is de�ned to yield a program error thatpropagates through to the top level, but with the extendedFail semanti
s the pattern mat
h failure raised in asOdd is
aught in power and
auses the third equation to be tried.As a further example we show how transformational pat-terns make it possible to use pattern mat
hing su

essfullyon graphs. Graph algorithms traditionally
onsider graphsas monolithi
 blo
ks, and this view is re
e
ted in their
lumsy de�nitions. As an alternative we have proposed anindu
tive view of graphs that makes re
ursive de�nitionsof graph algorithms feasible [5℄: a graph is either empty,or it is
onstru
ted by adding a node together with edgesfrom/to its prede
essors/su

essors. Let Node be the type ofnode values, and let Graph be the type of unlabelled graphs.A node
ontext is a node together with a list of su

essors(third tuple
omponent) and a list of prede
essors (�rst
om-ponent):type Context = ([Node℄,Node,[Node℄)Then we
an de�ne an empty graph
onstant and a fun
tionfor su

essively adding node
ontexts:empty :: Graphembed :: (Context,Graph) -> GraphNote that embed yields a runtime error if either the node tobe inserted is already present in the graph or if any of theprede
essor or su

essor nodes does not exist in the graph.We also have a fun
tion mat
h that lo
ates the
ontext of aparti
ular node in a graph.1mat
h :: Node -> Graph -> (Context,Graph)1mat
h is de�ned so that for all nodes v
ontained in g the followinglaw holds: embed (mat
h v g) = g.8

Now with a fun
tion su
 that simply proje
ts onto the third
omponent of a
ontext we
an give a highly
on
ise de�ni-tion of depth-�rst sear
h:dfs :: [Node℄ -> Graph -> [Node℄dfs [℄ _ = [℄dfs (v:vs) (
,g)!(mat
h v) = v:dfs (su

++vs) gdfs (_:vs) g = dfs vs gThe arguments of dfs are a list of nodes to be visited andthe graph to be sear
hed, and the result is a list of nodes indepth-�rst order. Note that we do not need a data stru
turefor remembering the nodes that we have already seen |by repeatedly removing
ontexts from the graph we rather\forget" (in the graph) the nodes that have been visited sofar. If we then try to revisit a node, this leads in mat
h to amat
h failure,
ausing dfs to try the third equation, whi
hsimply ignores the
urrent node.9.1 Semanti
sNote that
at
hing pattern mat
hing failure is not possiblewith transformational patterns when they are just redu
edto pattern guards. Therefore, we have to provide an inde-pendent semanti
s de�nition. One possible way to go is tode�ne pattern mat
hing within a Haskell version that a
-
ounts for ex
eptions. A proposal for ex
eptions was madein [13℄, giving a pre
ise semanti
s together with an eÆ
ientimplementation. Pattern mat
h failure
ould be de�ned inthat
ontext to raise a Fail ex
eption, and pattern mat
hinghad to
at
h Fail ex
eptions to sele
t fun
tion equations.In that proposal
at
hing ex
eptions leads, in general, tonon-determinism. To see this,
onsider the expression e1 +e2, and assume that e1 and e2 result in two di�erent ex-
eptions. Now what should be the result of e1 + e2? Ifwe avoid to �x the evaluation order, all we
an do is toeither de�ne + to make a non-deterministi

hoi
e or to re-turn the set of all ex
eptions raised anywhere within e1 ande2. The last proposal was made in [13℄. Even when deal-ing with ex
eption sets,
he
king for a parti
ular ex
eptionre-introdu
es non-determinism. However, in a frameworkwhere Fail is the only ex
eption one
ould also think ofjust
he
king whether an ex
eption has o

urred at all ornot. This eliminates non-determinism to a large degree, butit might still be the
ase that one and the same program
ould diverge or not depending on, for example, the plat-form or the larger
ontext in whi
h it was
ompiled. Again,
onsider expressions like bot + Fail.Another possibility is to de�ne the more general behaviour oftransformational patterns within the
urrent Haskell frame-work. The problem we fa
e here is that a pattern-mat
hfailure within the pattern a
tion must not yield ? sin
ethis
annot be
aught in the
ase expression
ontaining thetransformational pattern. We
an
ope with this by per-forming a sour
e-
ode transformation eM of pattern a
tionsto wrap all possible results with Just, and add a default
asethat returns Nothing. Then we perform pattern mat
hingagainst Nothing in the
ase rule dealing with transforma-tional patterns. The
orresponding
ase equation is easy to

give:(w')
ase v of { p!f -> e; _ -> e0 }=
ase e0 of { y ->
ase fM v of {Nothing -> y;Just x ->
ase x of { p -> e; _ -> y }}}where x and y are
ompletely new variablesIt remains to be shown how pattern a
tions
an be lifted intothe Maybe type. We give a de�nition that follows the stru
-ture of expressions. Sin
e only
ase expressions are a sour
eof possible pattern mat
h failure, wrapping Just and addingNothing happens just there. In all other
ases, lifting is justre
ursively passed through (or ignored). In parti
ular,
on-stants,
onstru
tors, and variables remain un
hanged. Forappli
ation, abstra
tion, and
ase expressions we obtain:(e1 e2)M = eM1 e2(�x:e)M = �x:eM(
ase e of fpi -> eig)M =
ase e of { fpi -> Just eig;_ -> Nothing }The problem with this approa
h is that it does not work wellwith separate
ompilation, in parti
ular, with pre
ompiledlibraries: in general, we do not have a

ess to the de�nitionof a fun
tion that is used in a pattern a
tion and that livesin a separately
ompiled module. In that
ase the aboves
heme breaks down be
ause we do not know the fun
tion'ssour
e
ode and we therefore
annot apply the sour
e
odetransformation.9.2 SummaryIn this se
tion we have sket
hed a more spe
ulative develop-ment of the pattern-mat
hing idea. We regard it as debat-able whether the additional power of these extended trans-formational patterns is worth the
ost in terms of semanti

ompli
ations, or loss of separate
ompilation. However,�rst-
lass pattern-mat
hing failure would very mu
h obvi-ate the need for pattern guards be
ause Fail
an be usedto \step ba
k" into a fun
tion's pattern mat
hing pro
ess.Our earlier proposals, of pattern guards and transforma-tional patterns, des
ribed in Se
tions 3 and 4, do not involveany su
h semanti
 or
ompilation
ompli
ations.10 Related workOne of the �rst extensions to pattern mat
hing was the law-ful types of Miranda [18, 16℄: in this approa
h the program-mer is allowed to add equations to a data type de�nitionthat a
t as rewrite rules to transform data type values into a
anoni
al representation. The approa
h has two main prob-lems: �rst, in many appli
ations di�erent representationsare needed to use data types and pattern mat
hing
onve-niently (see, for example, the polar vs.
artesian representa-tion of
omplex values [3, 12℄ or di�erently rooted trees torepresent sets [6℄), and Miranda laws prevent this. Se
ond,laws
ause problems with equational reasoning [16℄.The most prominent and most widely a

epted extension topattern mat
hing seems to be the view me
hanism whi
h9

was �rst proposed by Phil Wadler [19℄ and that was lateradapted by several others [3, 4, 11℄. With views one
an haveas many di�erent representations of a data type as needed.For ea
h su
h representation,
alled view, two fun
tions inand outmust be de�ned that map from the (main) data typeinto the view type and vi
e versa. Views do not su�er fromthe �rst restri
tion of Miranda laws, but the view transfor-mations must be inverses of ea
h other, and this sometimeseither leads to partial de�nitions or
auses problems withequational reasoning due to ambiguities.The reasoning problems were �rst solved by Burton andCameron [3℄ who restri
t the use of view
onstru
tors only topatterns. Hen
e, the out fun
tion is not needed anymore,and the in fun
tion need not be inje
tive. This has beenadopted by all view proposals that were made sin
e then.Okasaki [11℄ has de�ned the view
on
ept (the proposal of[4℄) for Standard ML. He pays spe
ial attention to the inter-a
tion of view transformations with stateful
omputationsthat are possible in ML.We have demonstrated that views
an be easily simulatedby transformational patterns.In [12℄ a
tive destru
tors were introdu
ed that allow thede�nition and use of patterns,
alled a
tive patterns,that might perform
omputations to produ
e bindings:
 p mat
h q where r = e de�nes an a
tive destru
tor
 pthat
an be used as a pattern in pla
e of q. During themat
hing pro
ess e is evaluated using bindings produ
ed byq and produ
ing new bindings in r that
an �nally be usedby p. A
tive destru
tors extend the
apabilities of views,but they require even more synta
ti
 overhead. In parti
-ular, a new notation is needed for the typing of patterns.A
tive destru
tors
an, to some degree, perform
omputa-tions like pattern guards and transformational patterns, butthey
annot a

ess other variables bound in the same fun
-tion equation, whi
h we
onsider a highly useful feature.2A
tive destru
tors
an also be simulated by pattern guardsand transformational patterns. For example, de�ne a fun
-tion
 q = e and use the transformational pattern p!
 inpla
e of the a
tive destru
tor
 p.The \p as f"
onstru
tion introdu
ed in [2℄ is also similarto transformational patterns: a pattern mat
hing fun
tionf
an be
onverted into a pattern p so that it
an be
om-posed with other patterns. This is used to express patternmat
hing on union types.The goal of the a
tive patterns introdu
ed in [6℄3 was toenable the mat
hing of spe
i�
 representations of data typevalues. Whereas views always map a value in one view typeto a
anoni
al representation, a
tive patterns allow the se-le
tion of an arbitrary one. The idea is that spe
ialised
onstru
tors
an reorganise data type values before they aremat
hed. This reorganisation is intended to yield a represen-tation that suits the
urrent fun
tion de�nition best. Withregard to these prepro
essing
apabilities, a
tive patternsare similar to transformational patterns and also to a
tivedestru
tors. However, a
tive patterns are more general than2A
tive destru
tors allow a very limited and rather ad-ho
 way ofpassing additional parameters into pattern fun
tions; this is des
ribedin [12℄ only for Haskell-spe
i�
 arithmeti
 n+k-patterns and requiresyet another extension to the typing notation.3The work of [12℄ and [6℄ was performed independently leading tothe homonym.

a
tive destru
tors be
ause their
omputing fun
tions havea

ess to other bindings of the pattern, and a
tive patternsare less general than a
tive destru
tors and than patternguards and transformational patterns be
ause the argumentand result type must be the same.Just as views and laws and the other approa
hes mentionedso far were motivated by
ombining pattern mat
hing andADTs, there are some other, more limited, approa
hes thatare also driven by spe
i�
 appli
ations:
ontext patterns [9℄give dire
t a

ess to arbitrary deeply nested sub-parts ofterms; they are very similar to other tree transforming lan-guages (for example, [8, 15℄). In parti
ular, they only workfor algebrai
, free data types, and
omputations on mat
hedvalues are not possible. The abstra
t value
onstru
tors pre-sented in [1℄ provide a fa
ility to abbreviate terms and al-low the use of these abbreviations as expressions as well aswithin patterns. Again, no
omputations are possible onthe mat
hed values. In
ontrast, pattern abstra
tions [7℄ doallow a very limited form of
omputation; the aim is to gen-eralise pattern mat
hing only as far as stati
 analyses, su
has
he
king overlapping patterns or exhaustiveness, are stillde
idable.A di�erent route to pattern mat
hing is taken by Tullsen[17℄, who
onsiders patterns as fun
tions of type a -> Maybeb. This allows the treatment of patterns as �rst-
lass ob-je
ts; in parti
ular, it is possible to write pattern
ombi-nators. Although the semanti
s of patterns
an be simpli-�ed
onsiderably by that approa
h, the use of patterns inthe language is rather
lumsy even after the introdu
tion ofsome synta
ti
 sugar through so-
alled pattern binders.Let us �nally
ompare the des
ribed extensions with our pro-posal from a general point of view. Whereas it is quite easyand straightforward to use a pattern guard or a transforma-tional pattern in a fun
tion de�nition (just put it there!),the use of an a
tive destru
tor (or of a view, or of any otherproposal) requires the de�nition of su
h a pattern at someother pla
e before it
an be used. In many
ases this is pro-hibitive either be
ause adding an additional de
laration isnot justi�ed by, say, only one appli
ation or be
ause it isjust faster or shorter not to use that
on
ept. For example,the de�nition of the fun
tion last based on a reverse viewof lists (see [19℄) requires some e�ort to de�ne the view typeand the view transformations, whereas it
an be immedi-ately written using pattern guards:last xs | (x:_) <- reverse xs = xor with transformational patterns:last (x:_)!reverse = xThe situation here is
omparable to that of fun
tionde�nitions vs. anonymous fun
tions (that is, lambda-abstra
tions): sometimes it is useful to have anonymousfun
tions, although it is synta
ti
ally ni
er to apply a de-�ned fun
tion.A further aspe
t is that pattern de�nitions
an be used onlyfor pattern mat
hing, whereas a fun
tion used in a patternguard or as a pattern a
tion
an also be used in expressions.Another di�eren
e we already stressed is that our proposalmakes it expli
it where
omputations take pla
e in patterns10

whereas this information is hidden by views or a
tive de-stru
tors. As far as programming with ADTs is
on
erned,hiding might be in most
ases appropriate, however, in some
ases it might be more
onvenient to have expli
it informa-tion about
omputations instead of de�ning, learning andremembering many di�erent views.11 Con
lusionsWe have introdu
ed pattern guards and transformationalpatterns that o�er the possibility of prepro
essing valuesbefore they are mat
hed against patterns. Our proposal
overs and even generalises previous approa
hes to patternmat
hing on abstra
t data types. This extension allows auseful
lass of programs to be written mu
h more elegantlythan with the
urrent version of Haskell.The required extensions to existing languages are minimal.This applies both to the syntax and to the implementation,whi
h makes the introdu
tion into Haskell very easy. Infa
t, pattern guards are already fully implemented in GHC(transformational patterns are not yet implemented). Thesyntax is not as neat as for views, but rather makes the
om-putations that happen expli
it. We have argued that this
an be an advantage in using the patterns, understandingprograms, and in equational reasoning.Our proposal is attra
tive also from a more general languagedesign point of view be
ause in formulating re
ursive fun
-tion de�nitions one always has to make two design de
isions:(i) whi
h arguments are needed in whi
h form for the re
ur-sive fun
tion appli
ation(s) on the right-hand side, and (ii)how
an the parameters from the left-hand side be broughtinto the required form. With traditional patterns, these two
losely related design de
isions are separated by moving (ii)into a (possibly distant) where blo
k. With transformationalpatterns both a
tivities have been brought
loser together;this fa
ilitates the programmer to fo
us the view on the es-sential parts of re
ursive de�nitions.F�ahndri
h and Boyland [7℄
all their pattern mat
hing ex-tension pattern abstra
tions. Their approa
h (and all theothers) require the naming of pattern abstra
tions. Sin
ethis is not needed in our approa
h, pattern guards andtransformational patterns
an be viewed as
omplementingthe lands
ape of pattern mat
hing extensions by anonymouspattern abstra
tions.A
knowledgementsWe thank Chris Okasaki and the anonymous reviewers fortheir helpful
omments.Referen
es[1℄ W. E. Aitken and J. H. Reppy. Abstra
t Value Con-stru
tors. In ACM Workshop on ML and its Appli
a-tions, pages 1{11, 1992.[2℄ P. Buneman and B. Pier
e. Union Types for Semistru
-tured Data. Te
hni
al Report MS-CIS-99-09, Univer-sity of Pennsylvania, 1999.

[3℄ F. W. Burton and R. D. Cameron. Pattern Mat
h-ing with Abstra
t Data Types. Journal of Fun
tionalProgramming, 3(2):171{190, 1993.[4℄ F. W. Burton, E. Meijer, P. Sansom, S. Thompson,and P. Wadler. Views: An Extension to Haskell PatternMat
hing. http://haskell.org/development/views.html,1996.[5℄ M. Erwig. Indu
tive Graphs and Fun
tional Graph Al-gorithms. Journal of Fun
tional Programming. To ap-pear.[6℄ M. Erwig. A
tive Patterns. In 8th Int. Workshop onImplementation of Fun
tional Languages, LNCS 1268,pages 21{40, 1996.[7℄ M. F�ahndri
h and J. Boyland. Stati
ally Che
kablePattern Abstra
tions. In 2nd ACM Int. Conf. on Fun
-tional Programming, pages 75{84, 1997.[8℄ R. He
kmann. A Fun
tional Language for the Spe
i�-
ation of Complex Tree Transformations. In EuropeanSymp. on Programming, pages 175{190, 1988.[9℄ M. Mohnen. Context Patterns in Haskell. In 8th Int.Workshop on Implementation of Fun
tional Languages,LNCS 1268, pages 307{319, 1996.[10℄ C. Okasaki. Simple and EÆ
ient Purely Fun
tionalQueues and Deques. Journal of Fun
tional Program-ming, 5(4):583{592, 1995.[11℄ C. Okasaki. Views for Standard ML. InACMWorkshopon ML and its Appli
ations, pages 14{23, 1998.[12℄ P. Palao Gostanza, R. Pe~na, and M. N�u~nez. A NewLook at Pattern Mat
hing in Abstra
t Data Types. In1st ACM Int. Conf. on Fun
tional Programming, pages110{121, 1996.[13℄ S. L. Peyton Jones, A. Reid, T. Hoare, S. Marlow, andF. Henderson. A Semanti
s for Impre
ise Ex
eptions.In ACM Conf. on Programming Languages Design andImplementation, pages 25{36, 1999.[14℄ S. L. Peyton Jones, J. Hughes et al. Report on theProgramming Language Haskell 98. 1999.[15℄ C. Queinne
. Compilation of Non-Linear, Se
ond Or-der Patterns on S-Expressions. In 2nd Int. Symp. onProgramming Language Implementation and Logi
 Pro-gramming, LNCS 456, pages 340{357, 1990.[16℄ S. Thompson. Lawful Fun
tions and Program Veri�
a-tion in Miranda. S
ien
e of Computer Programming,13:181{218, 1990.[17℄ M. Tullsen. First Class Patterns. In 2nd Int. Workshopon Pra
ti
al Aspe
ts of De
larative Languages, LNCS1753, pages 1{15, 2000.[18℄ D. A. Turner. Miranda: A Non-stri
t Fun
tional Lan-guage with Polymorphi
 Types. In Conf. on Fun
tionalProgramming and Computer Ar
hite
ture, LNCS 201,pages 1{16, 1985.[19℄ P. Wadler. Views: A Way for Pattern Mat
hing toCohabit with Data Abstra
tion. In 14th ACM Symp.on Prin
iples of Programming Languages, pages 307{313, 1987.11

