Pattern Guards and Transformational Patterns

Martin Erwig
Oregon State University
erwig@cs.orst.edu

Simon Peyton Jones

Microsoft Research Ltd, Cambridge

simonpj@microsoft.com

6th September 2000

Abstract

We propose three extensions to patterns and pattern match-
ing in Haskell. The first, pattern guards, allows the guards
of a guarded equation to match patterns and bind variables,
as well as to test boolean condition. For this we introduce
a natural generalisation of guard ezpressions to guard qual-
ifiers.

A frequently-occurring special case is that a function should
be applied to a matched value, and the result of this is to
be matched against another pattern. For this we introduce
a syntactic abbreviation, transformational patterns, that is
particularly useful when dealing with views.

These proposals can be implemented with very modest syn-
tactic and implementation cost. They are upward compati-
ble with Haskell; all existing programs will continue to work.

We also offer a third, much more speculative proposal, which
provides the transformational-pattern construct with addi-
tional power to explicitly catch pattern match failure.

We demonstrate the usefulness of the proposed extension
by several examples, in particular, we compare our proposal
with views, and we also discuss the use of the new patterns
in combination with equational reasoning.

1 Introduction

Pattern matching is a well-appreciated feature of languages
like ML or Haskell; it greatly simplifies the task of inspect-
ing values of structured data types and facilitates succinct
function definitions that are easy to understand. In its basic
form, pattern matching tries to identify a certain structure
of a value to be processed by a function. This structure is
specified by a pattern, and if it can be recovered in a value,
corresponding parts of the value are usually bound to vari-
ables. These bindings are exploited on the right-hand side of
the definition. There are numerous proposals for extending
the capabilities of patterns and pattern matching; in partic-
ular, the problems with pattern matching on abstract data
types have stimulated a lot of research [19, 16, 3, 12, 4, 6, 11].
Other aspects have also been subject to extensions and gen-
eralisations of pattern matching [8, 1, 9, 7, 17].

All these approaches differ in what they can be used for, in
their syntax, and in their properties, which makes it almost

impossible to use two or more different approaches at the
same time. Moreover, among all these different approaches
there is no clear winner, although so-called views seem to
be the most prominent and favourite extension.

Therefore, a consolidation of pattern matching at a more
fundamental level deserves attention. An extension should
be simple enough so that its use is not prohibited by a com-
plex syntax, and it should be powerful enough to express
most of the existing approaches.

In this paper we present a proposal for an elementary exten-
sion of patterns and pattern matching that naturally extends
Haskell’s current pattern matching capabilities. The design
is influenced by the following goals:

e (Conservative Extension. Programs that do not use the
new feature should not need to be changed and should
have unchanged semantics.

e Simplicity. We shall not introduce (yet another) more
or less complex sub-language for specifying new kinds
of patterns, for introducing pattern definitions, and so
on. Instead, a minor extension to the syntax with a
simple semantics should be aimed at.

o Ezxpressiveness. It should be possible to express pattern
matching on abstract data types. In particular, views
[19, 3, 4, 11], and two kinds of active patterns [12, 6]
should be covered.

e FEfficient and Simple Implementation. The use of the
new patterns should not be penalised by longer running
times. Moreover, only minimal changes to an existing
language should be needed. This facilitates the easy
integration of the new concept into existing language
implementations and supports a broad evaluation of
the concept.

The remainder of this paper is structured as follows: we mo-
tivate the need for more powerful pattern matching in Sec-
tion 2 and present our proposal in Sections 3 and 4. Syntax
and semantics are defined in Section 5, and the implemen-
tation is discussed in Section 6. A detailed comparison with
views is performed in Section 7. In Section 8 we then dis-
cuss the use of the new patterns with equational reasoning.
A further extension of the expressiveness of our proposal is
described in Section 9. Related work is discussed in Section
10, and finally, conclusions are given in Section 11.



2 The need for more powerful pattern matching

In the current version of Haskell pattern matching is not just
a straight, one-step process because guards can be used to
constrain further the selection of function equations. How-
ever, no (additional) bindings can be produced in this sec-
ond step. This is a somewhat non-orthogonal design, and
the extension we propose essentially generalises this aspect.

Consider the following Haskell function definition.

filter p [] =[]
filter p (y:ys) | py
| otherwise = filter p ys

y : filter p ys

The decision of which right-hand side to choose is made in
two stages: first, pattern matching selects a guarded group,
and second, the boolean-valued guards select among the
right-hand sides of the group.

In these two stages, only the pattern-matching stage can bind
variables, but only the guards can call functions. It is well
known that this design gives rise to a direct conflict between
pattern-matching and abstraction, as we now discuss.

2.1 Abstract data types

Consider an abstract data type of sequences, which offers
O(1) access to both ends of the sequence (see, for example,
110)):

nil :: Seq a

lcons :: a -> Seq a —> Seq a
lview :: Seq a -> Maybe (a,Seq a)
rcons :: Seq a -> a -> Seq a
rview :: Seq a -> Maybe (Seq a,a)

Since sequences are realized as an abstract date type, their
representation is not known, and this prohibits the use of
pattern matching. The functions lview and rview provide
two views of the sequence, one as a left-oriented list and the
other as a right-oriented list, and thus reveal to some degree
a representation of sequences (that can be different, though,
from their actual implementation). This means that pattern
matching against this representation is now principally pos-
sible. However, it generally leads to less clearer definitions.

For example, a function to filter such a sequence would have
to use a case expression to scrutinise the result of, say,
lview

filtSeq :: (a->Bool) -> Seq a -> Seq a
filtSeq p xs
= case (lview xs) of
Nothing -> nil
Just (y,ys) | py -> lcons y (filtSeq p ys)
| otherwise -> filtSeq p ys

This is much less satisfactory than the list version of filter,
which used pattern-matching directly. Actually, it is possi-
ble to write filtSeq in a more equational way:

filtSeq :: (a->Bool) -> Seq a -> Seq a
filtSeq p xs
| isJust 1v && p y
| isJust 1lv

lcons y (filtSeq p ys)
filtSeq p ys

| otherwise = nil
where

lv = lview xs

Just (y,ys) = 1lv

The auxiliary function isJust is taken from the standard
library Maybe:

isJust :: Maybe a -> Bool
isJust (Just x) = True
isJust Nothing = False

The idea here is that the guard isJust 1v checks that the
lview returns a Just value, while the (lazily-matched) pat-
tern Just (y,ys) is only matched if y or ys is demanded. So
now filtSeq is more “equational”, but it is hardly clearer
than before. A well-known approach to reconcile pattern
matching and abstract data types is the wiews proposal; we
will consider views in detail in Section 7.

2.2 Matching that involves several arguments

As another example, suppose we have an abstract data type
of finite maps, with a lookup operation:

lookup :: FiniteMap -> Int -> Maybe Int

The lookup returns Nothing if the supplied key is not in the
domain of the mapping, and (Just v) otherwise, where v is
the value that the key maps to. Now consider the following
definition:

clunky env varl var2 | okl && ok2 = vall + val2
| otherwise = varl + var2
where
ml = lookup env varl
m2 = lookup env var2

okl = isJust ml
ok2 = isJust m2
Just vall = ml
Just val2 = m2

Much as with filtSeq, the guard okl && ok2 checks that
both lookups succeed, using isJust to convert the maybe
types to booleans. The (lazily matched) Just patterns ex-
tract the values from the results of the lookups, and bind
the returned values to vall and val2, respectively. If ei-
ther lookup fails, then clunky takes the otherwise case and
returns the sum of its arguments.

This is certainly legal Haskell, but it is a tremendously ver-
bose and un-obvious way to achieve the desired effect. Is it
any better using case expressions?



clunky env varl varl =
case lookup env varl of
Nothing -> fail
Just vall ->
case lookup env var2 of
Nothing -> fail
Just val2 -> vall + val2
where
fail = varl + var2

This is a bit shorter, but hardly better. Worse, if this was
just one equation of clunky, with others that follow, then
the thing would not work at all. That is, suppose we have

clunky’ env (varl:var2:vars) | okl && ok2
= vall + val2
where
ml = lookup env varl
. as before
clunky’ env [vari] = ..
clunky’ env [] = ..

some stuff
more stuff

Now, if either of the lookups fail, we want to fall through to
the second and third equations for clunky’. If we write the
definition in the form of a case expression, we are forced to
make the latter two equations for clunky’ into a separate
definition and call it in the right-hand side of fail. This
is precisely why Haskell provides guards at all, rather than
relying on if-then-else expressions: if the guard fails, we
fall through to the next equation, whereas we cannot do that
with a conditional.

What is frustrating about this is that the solution is so tan-
talisingly near at hand! What we want to do is to pattern-
match on the result of the lookup. We can do it like this:

clunky’ env vars@(varl:var2:_)
= help (lookup env varl) (lookup env var2) vars

where
help (Just v1) (Just v2) vars = vl + v2
help _ - [varl]l = ... some stuff
help _ - (1 = ... more stuff

Now we do get three equations, one for each right-hand side,
but it is still clunky. In a big set of equations it becomes
hard to remember what each Just pattern corresponds to.
Worse, we cannot use one lookup in the next. For example,
suppose our function was like this:

clunky’’ env varl var2 | okl && ok2 = val2

| otherwise = varl + var2
where
ml = lookup env varl
m2 = lookup env (var2 + vall)
okl = isJust ml
ok2 = isJust m2

Just vall = ml
Just val2 = m2

Notice that the second lookup uses vall, the result of the
first lookup. To express this with a help function requires
a second helper function nested inside the first. Dire stuff.

2.3 Summary

In this section we shown that Haskell’s pattern-matching
capabilities are unsatisfactory in certain situations. The first
example relates to the well-known tension between pattern-
matching and abstraction. The clunky example, however,
was a little different — there, the matching involved two
arguments (env and varl), and did not arise directly from
data abstraction.

There is no fundamental issue of expressiveness: we can
rewrite any set of pattern-matching, guarded equations as
case expressions. Indeed, that is precisely what the compiler
does when compiling equations! So should we worry at all?
Yes, we should. The reason that Haskell provides guarded
equations is because they allow us to write down the cases
we want to consider, one at a time, mostly independently
of each other — the “equational style”. This structure is
hidden in the case version. In the case of clunky, two of
the right-hand sides are really the same (fail).

Furthermore, nested case expressions scale badly: the whole
expression tends to become more and more indented. In
contrast, the equational (albeit verbose) definition, using
isJust have the merit that they scale nicely to accommo-
date multiple equations. So we seek a way to accommodate
the equational style despite a degree of abstraction.

3 A proposal: pattern guards
Our initial proposal is simple:

Instead of being a boolean erpression, a guard is a
list of qualifiers, exactly as in a list comprehension.

That is, the only syntax change is to replace exp by quals in
the syntax of guarded equations.

Here is how we would write clunky:

clunky env varl varl
| Just vall <- lookup env varl
, Just val2 <- lookup env var2
vall + val2
. other equations for clunky

The semantics should be clear enough. The qualifiers are
matched in order. For a <- qualifier, which we call a pattern
guard, the right-hand side is evaluated and matched against
the pattern on the left. If the match fails, then the whole
guard fails, and the next equation is tried. If it succeeds,
then the appropriate binding(s) are made, and the next qual-
ifier is matched, in the augmented environment. Unlike list
comprehensions, however, the type of the expression to the
right of the <- is the same as the type of the pattern to
its left. The bindings introduced by pattern guards scope
over all the remaining guard qualifiers, and over the right-
hand side of the equation. If there is a where clause, then
its bindings scope over all the guards, just as in Haskell at
present.

Just as with list comprehensions, boolean expressions can
be freely mixed with the pattern guards. For example:



fx | [yl <-x
,y>3
, Just z <- hy

Haskell’s current guards therefore emerge as a special case,
in which the qualifier list has just one element, a boolean
expression.

Just as with list comprehensions, a let qualifier can intro-
duce a binding. It is also possible to do this with pattern
guards with a simple variable pattern a <- ezxp. However
a let qualifier is a little more powerful, because it can in-
troduce a recursive or mutually-recursive binding. It is not
clear whether this power is particularly useful, but it seems
more uniform to have exactly the same syntax as list com-
prehensions.

One could argue that the notation <- is misleading, suggest-
ing the idea of drawn from as in a list comprehension. But
it is very nice to reuse precisely the list-comprehension syn-
tax. Furthermore, the only viable alternative is =, and that
would lead to parsing difficulties, because we rely on the =
to herald the arrival of the right-hand side of the equation.
Consider f x | y = h x = 3.

Using pattern guards for filtSeq exposes a small deficiency:

filtSeq :: (a->Bool) -> Seq a -> Seq a

filtSeq p xs
| Just (y,ys) <- lview xs, p y = lcons y (filtSeq p ys)
| Just (y,ys) <- lview xs filtSeq p ys
| otherwise nil

There is the annoying repeated call to lview xs (which can
be shared by putting it in a where clause), plus the annoying
repeated pattern match (which cannot). Maybe one would
like some kind of nested guards, thus:

filtSeq :: (a->Bool) -> Seq a -> Seq a
filtSeq p xs
| Just (y,ys) <- lview xs

l py = lcons y (filtSeq p ys)
| otherwise = filtSeq p ys
| otherwise = nil

Such an extension would make perfect sense, and would not
be hard to implement, but its power-to-weight ratio is sig-
nificantly lower than for our main proposal: it is less often
useful (less power), and requires more new syntax (greater
weight).

It is also possible to write filtSeq using an auxiliary func-
tion filtSeq’:

filtSeq :: (a->Bool) -> Seq a -> Seq a
filtSeq p = filtSeq’ p . lview

filtSeq’ (a->Bool) -> Maybe (a,Seq a) -> Seq a

filtSeq’ p Nothing = nil

filtSeq’ p (Just (y,ys))
if p y then lcons y (filtSeq p ys)

else filtSeq p ys

However, this introduces an indirection into the definition
and the “solution” that is offered by this approach to the
problem of pattern matching with abstract data types is
simply to avoid it.

4 A further proposal: transformational patterns

Pattern guards allow the programmer to call an arbitrary
function and pattern-match on the result. In the impor-
tant special case addressed by views, these calls take a very
stylised form, and this motivates us to propose some special
syntax, transformational patterns, in support.

Here is how we might write filtSeq, using a transforma-
tional pattern:

filtSeq :: (a->Bool) -> Seq a -> Seq a

filtSeq p (Just (y,ys))!lview
lpy = lcons y (filtSeq p ys)
| otherwise = filtSeq p ys

filtSeq p Nothing!lview = nil

The transformational pattern (Just (y,ys))!lview means
informally “apply lview and match against Just (y,ys)”.
The expression to the right of the “!” is called pattern ac-
tion. Transformational patterns are simply syntactic sugar
for an equivalent form using pattern guards, but they are no-
tationally a little more concise. Furthermore, they are quite
like views: “match Just (y,ys) against the lview view of
the argument”.

Since the function in a transformational pattern can refer to
any variables that are in scope in, or bound by, the where
clause, we can write clunky as:

clunky env (Just vall)!(lookup env)
(Just val2)!(lookup env) = vall + val2
. other equations for clunky

This gives transformational patterns just a little more power
than views, at the cost of a somewhat ad hoc flavour. To
summarise, transformational patterns help to keep function
equations single-lined, which greatly enhances readability
and understanding of function definitions containing several
equations. Moreover, transformational patterns are partic-
ularly useful when simulating views, see Section 7, and with
equational reasoning, see Section 8.

5 Syntax and semantics

Based on the Haskell 98 Report [14], we need two small
changes to the syntax to integrate pattern guards and trans-
formational patterns: first, a guard is not just anymore given
by an expression but by a list of qualifiers, and an atomic
pattern can be a pattern extended by an expression:

gd — | qual, .» qual, Pattern Guard
apat —

| apat! aezp Transformational Pattern



We define the semantics of pattern guards and transforma-
tional patterns by a series of equations that relate them to
“ordinary” case expressions of Haskell.

We start with the reduction of pattern guards to nested
case expressions. For this, we first unfold multiple guards in
matches to nested case expressions. This is done to keep the
further translation manageable because guards themselves
can be lists of qualifiers. Hence, we replace rule (c) by

(¢’)) casevof{p | g1 =>e1 ...
| gn —-> en where {decls };
- -> e}
= casee of {y >
case v of {p ->
let decls in

case () of {
Ol g1 ->er;
_ -> ... case () of {
O | gn => en;
_ > yl}...}
_ >yl

where y is a completely new variable

The construction case () of () -> indicates that
these case expressions do not pattern matching, but are
just used to look at the guards.

Next we expand a list of qualifiers of each guard into a nested
case expression.

(s) case O of{ O | qis -.oh g > e; _ > €'}
= casee' of {y —>
case () of {
O 1 q -> ... case () of {
Ol gn > e;
_ >y}
_ -> y }}

where y is a completely new variable

The next three equations explain how qualifiers are resolved:
(t) boolean guards are transformed into conditionals, (u)
a local declaration can be just moved into the body, and
(v) generators are again transformed into case expressions
where the generating expression is scrutinised and matched
against the binding pattern.

(t) case QO of { ) | eq > e; _ > €'}
= if eg then e else €’

(u) case ) of { ) | letdecls > e; _ > €}
= letdecls in e
(v) case QO of { O | (po <- eg) > e; - > €'}

= caseegof {pg > e; _ > e}
It remains to reduce transformational patterns to pattern
guards. This is done by the following equation:

(w) casevof {p!f >e; _ >¢}
= casevof{z | (p<- fzx) >e; _ >e}
where z is a completely new variable

6 Implementation

The standard technology used by compilers for generat-
ing efficient matching trees from sets of equations can be
adapted straightforwardly to accommodate pattern guards
and transformational patterns. Currently, pattern guards
are fully implemented in GHC, and transformational pat-
terns are not yet implemented.

The efficiency issue is a little more pressing than with pure
pattern matching, because the access functions, called in
the transformational pattern or the pattern guard, may be
arbitrarily expensive. For example, consider

data AbsInt = Pos Int | Neg Int

absInt Int -> AbsInt
absInt n = if n>=0 then Pos n else Neg (-n)

f :: Int -> Int
f (Pos n)'!absInt = n+1
f (Neg n)!absInt = -(n+1)

This is reasonably concise. But how many times is absInt
called? In this case, it is pretty clear that it need only be
called once. But what about this:

g ((Pos a)'!absInt : as) [] = ..
g [1 ((Pos b)!absInt : bs)
g ((Neg a)!absInt : as) ((Neg b)!absInt : bs)

g - - = ..

Now it gets harder to tell! In general, it may be necessary
to know the pattern-match compilation algorithm used by
the compiler in order to reason precisely about how many
times absInt will be called. Nevertheless, it is not difficult
to expand a pattern matching algorithm by knowledge about
transformational patterns so that in cases like above (when
only a function and not a complex expression is used as a
pattern action) one can ensure a translation into nested case
expressions so that at each argument position each pattern
action is invoked only once.

Without any changes to the pattern matching algorithm,
pattern guards allow us to express the sharing explicitly in
some cases:

f n | Pos n’” <- abs_n = n’+1
| Neg n’> <- abs_n = —(n’+1)
where
abs_n = absInt n

Here the common definition abs_n makes clear that there
should only be one call to absInt. But a where clause can-
not always be used. For example, consider the following
silly function g using the AbsInt view (for an explanation of
views, see the next section)

view AbsInt of Int = Pos Int | Neg Int

where absInt = ... as above ...

g (Pos (Pos n))
g (Pos (Neg n))

n+l
-(n+1) -- A bit silly



Now we have to write

n2+1
-(n2+1)

g n | Pos nl <- abs_n, Pos n2 <- absInt nl
| Pos nl <- abs_n, Neg n2 <- absInt nl
where

abs_n = absInt n

We can share the first call to absInt but not the second
because n1 is not in the scope of the where clause. Instead
we have to rely on (a) knowledge of the pattern-compilation
algorithm, and (b) common-subexpression elimination, to
justify our hopes that there will be only two calls to absInt.

Again, in transformational-pattern form, the shared com-
putations seem easier to spot and can be ensured by an
extension of the pattern matching algorithm:

g (Pos (Pos n)!absInt)!absInt = n+l
g (Pos (Neg n)!absInt)'!absInt = -(n+1)

7 A comparison with views

As we have already discussed, pattern guards and transfor-
mational patterns can be seen as addressing a similar goal
to that of views, namely reconciling pattern matching with
data abstraction. Views were proposed by Wadler ages ago
[19], and are the subject of a concrete proposal for a Haskell
language extension [4].

Consider, for example, the cartesian representation of com-
b) b)
plex numbers with a polar view.

data Complex = Cart Float Float

view Polar of Complex = Polar Float Float
where
polar (Cart r i) =
Polar (sqrt(r*r+i*i)) (atan2 r i)

pole = Polar

With this view, function definitions can be written using the
polar representation in patterns relying on the automatic
application of the view transformation polar. This means
that it is possible to assume a particular representation of
abstract data types in function definitions without exposing
or even knowing the representation used in the implemen-
tation. Note that in addition to the view transformation
polar we also need a function pole to construct values of
the view type.

Without views we define the view type as an ordinary data
type and the view transformation as a function.

data Polar = Polar Float Float
polar (Cart r i) = Polar (sqrt(r*r+i*i)) (atan2 r i)

Now it is natural to ask whether views subsume pattern
guards or vice versa. The answer is “neither”.

7.1 Do views subsume pattern guards?

The views proposal [4] points out that you can use views to
simulate (some) guards and, as we saw above, views have
similar purpose and functionality to at least some applica-
tions of pattern guards.

However, views give a view on a single value, whereas guards
allow arbitrary function calls to combine in-scope values.
For example, clunky matches (Just vall) against (lookup
env varl). We do not want a view of env nor of varl but
rather of their combination by lookup. Views simply do not
help with clunky.

Views are capable of dealing with the data abstraction issue
of course. However, each conditional selector would require
its own view, complete with its own view type. This can
seem rather heavyweight. For example, our Haskell com-
piler, GHC, has an abstract data type called Type. The
Type module offers the function

getFunTyMaybe :: Type -> Maybe (Type,Type)

This function is a mixture of a predicate (“is this a func-
tion type”) and a view (“the argument and result type are
these”). To use views we would have to say:

view FunType of Type = FunType Type Type
| NotFunType
where
funType (Fun arg res) = FunType arg res
funType other_type

NotFunType

This seems a bit heavyweight (three new names instead of
one) compared with re-using the existing Maybe type. Not
only does this reuse save defining new types, but it allows
the existing library of functions on Maybe types to be applied
directly to the result of getFunTyMaybe.

Sometimes it is quite unclear whether a function should be
regarded as a “view” or not. For example, GHC has another
function on Type:

tyvars0f :: Type -> [TyVar]

that returns the free type variables of a type. One could
regard this as specifying a “view” of a type as the free vari-
ables of the type:

view TyVarsO0f of Type = TyVarsOf [TyVar]
where
tyVars0f ty = ...

Now we could write

f :: Type -> Int
f (TyVarsOf tyvars) = length tyvars

instead of

f :: Type -> Int
f ty = length (tyvarsOf ty)



But the “view” has not made the program any simpler; in-
deed one could claim the reverse.

Our point is this: there is a continuum between functions
that one might regard as “views” of a type and other
functions that are predicates, or selectors, or property-
extractors. Extending the language with views undesirably
forces the programmer to choose whether a particular func-
tion is best regarded as a view or not. Pattern guards do
not force such a choice. Instead, the same access function
(for example, getFunTyMaybe) can be used in ordinary ex-
pressions or pattern guards.

7.2 Do pattern guards subsume views?

Views allow the treatment of an abstract data type as a
concrete data type as far as pattern matching is concerned.
In particular, the same notation can be used for pattern
matching on abstract and on concrete data types. In con-
trast, with transformational patterns we have to extend the
patterns by pattern actions.

Although views are notationally only a little more concise
than transformational patterns, one could argue that the
small notational difference presents a usage barrier, and
therefore views might be better suited to promote data ab-
straction while retaining pattern matching.

Now with regard to the Polar example, with views we can
simply use a Polar constructor in a pattern knowing that
the view transformation is applied automatically, whereas
with transformational patterns we have to call the polar
function explicitly.

Thus we might prefer to write (using views)

multC (Polar r1l t1) (Polar r2 t2)
= pole (rixr2) (t1+t2)

rather than (using transformational patterns)

multC (Polar rl il)!polar (Polar r2 i2)!polar
= Polar (ri1*r2) (t1+t2)

One might argue, though, that the latter accurately indi-
cates that there may be some work involved in matching
against a view, compared to ordinary pattern matching.
With transformational patterns we can also safely use the
Polar constructor (see also Section 8).

7.3 Summary

We believe that the pattern-guard and transformational-
pattern proposal

e is much simpler to specify and implement than views;

e gets some expressiveness that is simply inaccessible to
views;

e successfully reconciles pattern matching with data ab-
straction, albeit with a slightly less compact notation
than views;

e is less heavyweight to use when defining many informa-
tion extraction functions over an ADT;

e does not conceal where computation takes place.

8 Equational reasoning with transformational pat-
terns

Problems in reasoning with Miranda laws and views arise
because a constructor of a lawful type or view can be used
both within a pattern and as an expression. In particular,
the use in an expression is problematic. Suppose, for exam-
ple, we have a constructor Half Int -> Half of a view
type Half that is defined to divide its argument by 2.

view Half of Int = Half Int
where half i = Half (i ‘div‘ 2)

When we now define a function

f :: Half -> Int
f (Half i) = i+1

we could try to reason, by replacing equals for equals,
that £ (Half 8) = 9, which, however, is not true because
f (Half 8) =5 due to the computational part of Half.

The solution proposed by Burton and Cameron [3] is to for-
bid the use of view constructors, such as Half, in expres-
sions. This works well, but one always has to be aware of
the status of a constructor and whether it is a view con-
structor or not.

With transformational patterns we would have to define a
plain data type together with a function performing the de-
sired computation of the constructor Half.

data Half = Half Int
half i = Half (i ‘div‘ 2)

Now when we use Half in equations, nothing harmful can
happen because all computation is made explicit. For ex-
ample, it is valid to conclude £ (Half 8) = 9 since Half
is just a data type constructor performing no computation
on its argument at all. This is because the above definition
for £ essentially does not use the view in its original sense.
To make use of the view computations we have to give a
different definition for f:

f :: Half -> Int
f (Half i)'half = i+1

But now it is evident that we just cannot use an equation
like £ (Half 8)'!'half = 9 because (Half 8)'!half is not
an expression. Hence, the additional requirement made by
Burton and Cameron is implicitly given in our approach just
by the syntax of transformational patterns.

On the other hand, it is possible to use transformational pat-
terns in equational reasoning. To explain this it is helpful to



recall how patterns are used, for example, in the transforma-
tion of an expression f e. This happens in two steps: first,
the structure of e is examined (this is either obvious because
e is an application of a constructor or it is given in a precon-
dition of the current transformation, for example, something
like e = x:xs). Then the equation for £ that matches the
structure of e is determined, say f (x:xs) = e’, and f e s
substituted by e’.

Now transformational patterns fit into this scheme as fol-
lows. Suppose, f contains an equation f p!'c = e’. Then
when you can make the assumption p = ¢ e in a proof, you
can replace the expression f e by e’. Of course, as with
other patterns, one has to choose the first possible match to
get a sound transformation.

We illustrate this by a small example. Suppose we have
defined selection sort with the help of a function min’
Ord a => [a] -> (a,[a]) that extracts a minimum from a
list.

sort :: Ord a => [a] -> [a]
sort [] = 1
sort (m,r)!'min’ = m:sort r

Now we would like to prove the correctness of sort. Using
the prelude function all we can define a predicate for sorted
lists as follows.

True
all (x<=) xs && sorted xs

sorted []
sorted (x:xs)

Suppose we already know the following property of min’.
Lemma 1 min’ 1 = (x,xs) = all (x<=) xs = True
Then we can easily prove:

Lemma 2 sorted (sort 1) = True

Proof. We perform a case analysis on the list argument: if
1 = [1, we have

sorted (sort [])
sorted []
True

If 1 # [1, we have min’ 1 = (m,r), and we can select the
second equation for sort:

sorted (sort 1)
sorted (m:sort r)
all (m<=) r && sorted r

Now by induction sorted r can assumed to be true, and
all (m<=) r is true due to Lemma 1. O

9 Pattern match failure as a first-class entity?

In Haskell, pattern match failure is considered a local event
that has to be dealt with in one and the same case expres-
sion or (if not dealt with) results in an (unrecoverable) error.

An alternative, more general view is that a failing pattern
match raises an exception, say, Fail, that can be caught
in the same or in another case expression. Such a treat-
ment of pattern match failure could be nicely exploited by
transformational patterns: a pattern matching failure in a
pattern action can be caught to be able to reach the next
function equation. In this section we sketch a possible ex-
tension along these lines. We regard this section as much
more speculative than the rest of the paper.

As a first example we give a definition for the view-version
of the function power [19].

power :: Int -> Int -> Int
power x 0 =1
power x n'asOdd = x*power (x*x) n

power x n'!asEven = power (x*x) n
The two functions as0dd and asEven both halve their argu-
ment but match only for odd and even numbers:

=n ‘div‘ 2

asfdd n | n ‘modf 2 == 1
0 =n ‘div‘ 2

asEven n | n ‘mod‘ 2 =

With these partial definitions, the application of, say, as0dd
to an even number, is defined to yield a program error that
propagates through to the top level, but with the extended
Fail semantics the pattern match failure raised in as0dd is
caught in power and causes the third equation to be tried.

As a further example we show how transformational pat-
terns make it possible to use pattern matching successfully
on graphs. Graph algorithms traditionally consider graphs
as monolithic blocks, and this view is reflected in their
clumsy definitions. As an alternative we have proposed an
inductive view of graphs that makes recursive definitions
of graph algorithms feasible [5]: a graph is either empty,
or it is constructed by adding a node together with edges
from/to its predecessors/successors. Let Node be the type of
node values, and let Graph be the type of unlabelled graphs.
A node context is a node together with a list of successors
(third tuple component) and a list of predecessors (first com-
ponent):

type Context = ([Node],Node, [Node])

Then we can define an empty graph constant and a function
for successively adding node contexts:

empty :: Graph
embed :: (Context,Graph) -> Graph

Note that embed yields a runtime error if either the node to
be inserted is already present in the graph or if any of the
predecessor or successor nodes does not exist in the graph.
We also have a function match that locates the context of a
particular node in a graph.'

match :: Node -> Graph -> (Context,Graph)

Imatch is defined so that for all nodes v contained in g the following
law holds: embed (match v g) = g.



Now with a function suc that simply projects onto the third
component of a context we can give a highly concise defini-
tion of depth-first search:

dfs :: [Node] -> Graph -> [Node]

dfs [] - =0

dfs (v:vs) (c,g)!(match v) = v:dfs (suc c++vs) g
dfs (_:vs) g dfs vs g

The arguments of dfs are a list of nodes to be visited and
the graph to be searched, and the result is a list of nodes in
depth-first order. Note that we do not need a data structure
for remembering the nodes that we have already seen
by repeatedly removing contexts from the graph we rather
“forget” (in the graph) the nodes that have been visited so
far. If we then try to revisit a node, this leads in match to a
match failure, causing dfs to try the third equation, which
simply ignores the current node.

9.1 Semantics

Note that catching pattern matching failure is not possible
with transformational patterns when they are just reduced
to pattern guards. Therefore, we have to provide an inde-
pendent semantics definition. One possible way to go is to
define pattern matching within a Haskell version that ac-
counts for exceptions. A proposal for exceptions was made
in [13], giving a precise semantics together with an efficient
implementation. Pattern match failure could be defined in
that context to raise a Fail exception, and pattern matching
had to catch Fail exceptions to select function equations.
In that proposal catching exceptions leads, in general, to
non-determinism. To see this, consider the expression el +
e2, and assume that el and e2 result in two different ex-
ceptions. Now what should be the result of el + e2? If
we avoid to fix the evaluation order, all we can do is to
either define + to make a non-deterministic choice or to re-
turn the set of all exceptions raised anywhere within e1 and
e2. The last proposal was made in [13]. Even when deal-
ing with exception sets, checking for a particular exception
re-introduces non-determinism. However, in a framework
where Fail is the only exception one could also think of
just checking whether an exception has occurred at all or
not. This eliminates non-determinism to a large degree, but
it might still be the case that one and the same program
could diverge or not depending on, for example, the plat-
form or the larger context in which it was compiled. Again,
consider expressions like bot + Fail.

Another possibility is to define the more general behaviour of
transformational patterns within the current Haskell frame-
work. The problem we face here is that a pattern-match
failure within the pattern action must not yield L since
this cannot be caught in the case expression containing the
transformational pattern. We can cope with this by per-
forming a source-code transformation e™ of pattern actions
to wrap all possible results with Just, and add a default case
that returns Nothing. Then we perform pattern matching
against Nothing in the case rule dealing with transforma-
tional patterns. The corresponding case equation is easy to

give:
(w') casevof {p!f >e; _ >¢€ 3}
= casee of {y >
case fM v of {
Nothing -> y;
Just ¢ -> casexzof {p > e; _ > y }}}
where x and y are completely new variables

It remains to be shown how pattern actions can be lifted into
the Maybe type. We give a definition that follows the struc-
ture of expressions. Since only case expressions are a source
of possible pattern match failure, wrapping Just and adding
Nothing happens just there. In all other cases, lifting is just
recursively passed through (or ignored). In particular, con-
stants, constructors, and variables remain unchanged. For
application, abstraction, and case expressions we obtain:

(e1 EQ)M = eMe,y
(Az.e)™ = Az.eM
(case e of {p;—>e;})™ = case e of { {p; -> Just e;};

-> Nothing }

The problem with this approach is that it does not work well
with separate compilation, in particular, with precompiled
libraries: in general, we do not have access to the definition
of a function that is used in a pattern action and that lives
in a separately compiled module. In that case the above
scheme breaks down because we do not know the function’s
source code and we therefore cannot apply the source code
transformation.

9.2 Summary

In this section we have sketched a more speculative develop-
ment of the pattern-matching idea. We regard it as debat-
able whether the additional power of these extended trans-
formational patterns is worth the cost in terms of semantic
complications, or loss of separate compilation. However,
first-class pattern-matching failure would very much obvi-
ate the need for pattern guards because Fail can be used
to “step back” into a function’s pattern matching process.

Our earlier proposals, of pattern guards and transforma-
tional patterns, described in Sections 3 and 4, do not involve
any such semantic or compilation complications.

10 Related work

One of the first extensions to pattern matching was the law-
ful types of Miranda [18, 16]: in this approach the program-
mer is allowed to add equations to a data type definition
that act as rewrite rules to transform data type values into a
canonical representation. The approach has two main prob-
lems: first, in many applications different representations
are needed to use data types and pattern matching conve-
niently (see, for example, the polar vs. cartesian representa-
tion of complex values [3, 12] or differently rooted trees to
represent sets [6]), and Miranda laws prevent this. Second,
laws cause problems with equational reasoning [16].

The most prominent and most widely accepted extension to
pattern matching seems to be the view mechanism which



was first proposed by Phil Wadler [19] and that was later
adapted by several others [3, 4, 11]. With views one can have
as many different representations of a data type as needed.
For each such representation, called view, two functions in
and out must be defined that map from the (main) data type
into the view type and vice versa. Views do not suffer from
the first restriction of Miranda laws, but the view transfor-
mations must be inverses of each other, and this sometimes
either leads to partial definitions or causes problems with
equational reasoning due to ambiguities.

The reasoning problems were first solved by Burton and
Cameron [3] who restrict the use of view constructors only to
patterns. Hence, the out function is not needed anymore,
and the in function need not be injective. This has been
adopted by all view proposals that were made since then.

Okasaki [11] has defined the view concept (the proposal of
[4]) for Standard ML. He pays special attention to the inter-
action of view transformations with stateful computations
that are possible in ML.

We have demonstrated that views can be easily simulated
by transformational patterns.

In [12] active destructors were introduced that allow the
definition and wuse of patterns, called active patterns,
that might perform computations to produce bindings:
c p match q where r = e defines an active destructor ¢ p
that can be used as a pattern in place of q. During the
matching process e is evaluated using bindings produced by
q and producing new bindings in r that can finally be used
by p. Active destructors extend the capabilities of views,
but they require even more syntactic overhead. In partic-
ular, a new notation is needed for the typing of patterns.
Active destructors can, to some degree, perform computa-
tions like pattern guards and transformational patterns, but
they cannot access other variables bound in the same func-
tion equation, which we consider a highly useful feature.?

Active destructors can also be simulated by pattern guards
and transformational patterns. For example, define a func-
tion ¢ q = e and use the transformational pattern p!c in
place of the active destructor ¢ p.

The “p as f” construction introduced in [2] is also similar
to transformational patterns: a pattern matching function
f can be converted into a pattern p so that it can be com-
posed with other patterns. This is used to express pattern
matching on union types.

The goal of the active patterns introduced in [6]* was to
enable the matching of specific representations of data type
values. Whereas views always map a value in one view type
to a canonical representation, active patterns allow the se-
lection of an arbitrary one. The idea is that specialised
constructors can reorganise data type values before they are
matched. This reorganisation is intended to yield a represen-
tation that suits the current function definition best. With
regard to these preprocessing capabilities, active patterns
are similar to transformational patterns and also to active
destructors. However, active patterns are more general than

2 Active destructors allow a very limited and rather ad-hoc way of
passing additional parameters into pattern functions; this is described
in [12] only for Haskell-specific arithmetic n + k-patterns and requires
yet another extension to the typing notation.

3The work of [12] and [6] was performed independently leading to
the homonym.

10

active destructors because their computing functions have
access to other bindings of the pattern, and active patterns
are less general than active destructors and than pattern
guards and transformational patterns because the argument
and result type must be the same.

Just as views and laws and the other approaches mentioned
so far were motivated by combining pattern matching and
ADTSs, there are some other, more limited, approaches that
are also driven by specific applications: contezxt patterns [9]
give direct access to arbitrary deeply nested sub-parts of
terms; they are very similar to other tree transforming lan-
guages (for example, [8, 15]). In particular, they only work
for algebraic, free data types, and computations on matched
values are not possible. The abstract value constructors pre-
sented in [1] provide a facility to abbreviate terms and al-
low the use of these abbreviations as expressions as well as
within patterns. Again, no computations are possible on
the matched values. In contrast, pattern abstractions [7] do
allow a very limited form of computation; the aim is to gen-
eralise pattern matching only as far as static analyses, such
as checking overlapping patterns or exhaustiveness, are still
decidable.

A different route to pattern matching is taken by Tullsen
[17], who considers patterns as functions of type a -> Maybe
b. This allows the treatment of patterns as first-class ob-
jects; in particular, it is possible to write pattern combi-
nators. Although the semantics of patterns can be simpli-
fied considerably by that approach, the use of patterns in
the language is rather clumsy even after the introduction of
some syntactic sugar through so-called pattern binders.

Let us finally compare the described extensions with our pro-
posal from a general point of view. Whereas it is quite easy
and straightforward to use a pattern guard or a transforma-
tional pattern in a function definition (just put it there!),
the use of an active destructor (or of a view, or of any other
proposal) requires the definition of such a pattern at some
other place before it can be used. In many cases this is pro-
hibitive either because adding an additional declaration is
not justified by, say, only one application or because it is
just faster or shorter not to use that concept. For example,
the definition of the function last based on a reverse view
of lists (see [19]) requires some effort to define the view type
and the view transformations, whereas it can be immedi-
ately written using pattern guards:

last xs | (x:_) <- reverse xs = x

or with transformational patterns:
last (x:_)!reverse = x

The situation here is comparable to that of function
definitions vs. anonymous functions (that is, lambda-
abstractions): sometimes it is useful to have anonymous
functions, although it is syntactically nicer to apply a de-
fined function.

A further aspect is that pattern definitions can be used only
for pattern matching, whereas a function used in a pattern
guard or as a pattern action can also be used in expressions.

Another difference we already stressed is that our proposal
makes it explicit where computations take place in patterns



whereas this information is hidden by views or active de-
structors. As far as programming with ADTSs is concerned,
hiding might be in most cases appropriate, however, in some
cases it might be more convenient to have explicit informa-
tion about computations instead of defining, learning and
remembering many different views.

11 Conclusions

We have introduced pattern guards and transformational
patterns that offer the possibility of preprocessing values
before they are matched against patterns. Qur proposal
covers and even generalises previous approaches to pattern
matching on abstract data types. This extension allows a
useful class of programs to be written much more elegantly
than with the current version of Haskell.

The required extensions to existing languages are minimal.
This applies both to the syntax and to the implementation,
which makes the introduction into Haskell very easy. In
fact, pattern guards are already fully implemented in GHC
(transformational patterns are not yet implemented). The
syntax is not as neat as for views, but rather makes the com-
putations that happen explicit. We have argued that this
can be an advantage in using the patterns, understanding
programs, and in equational reasoning.

Our proposal is attractive also from a more general language
design point of view because in formulating recursive func-
tion definitions one always has to make two design decisions:
(i) which arguments are needed in which form for the recur-
sive function application(s) on the right-hand side, and (ii)
how can the parameters from the left-hand side be brought
into the required form. With traditional patterns, these two
closely related design decisions are separated by moving (ii)
into a (possibly distant) where block. With transformational
patterns both activities have been brought closer together;
this facilitates the programmer to focus the view on the es-
sential parts of recursive definitions.

Fahndrich and Boyland [7] call their pattern matching ex-
tension pattern abstractions. Their approach (and all the
others) require the naming of pattern abstractions. Since
this is not needed in our approach, pattern guards and
transformational patterns can be viewed as complementing
the landscape of pattern matching extensions by anonymous
pattern abstractions.

Acknowledgements

We thank Chris Okasaki and the anonymous reviewers for
their helpful comments.

References

[1] W. E. Aitken and J. H. Reppy. Abstract Value Con-
structors. In ACM Workshop on ML and its Applica-
tions, pages 1 11, 1992.

[2] P. Buneman and B. Pierce. Union Types for Semistruc-
tured Data. Technical Report MS-CIS-99-09, Univer-
sity of Pennsylvania, 1999.

11

3]

[4]

[7]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

F. W. Burton and R. D. Cameron. Pattern Match-
ing with Abstract Data Types. Journal of Functional
Programming, 3(2):171-190, 1993.

F. W. Burton, E. Meijer, P. Sansom, S. Thompson,
and P. Wadler. Views: An Extension to Haskell Pattern
Matching. http://haskell.org/development/views.html,
1996.

M. Erwig. Inductive Graphs and Functional Graph Al-
gorithms. Journal of Functional Programming. To ap-
pear.

M. Erwig. Active Patterns. In 8th Int. Workshop on
Implementation of Functional Languages, LNCS 1268,
pages 21 40, 1996.

M. Fahndrich and J. Boyland. Statically Checkable
Pattern Abstractions. In 2nd ACM Int. Conf. on Func-
tional Programming, pages 75-84, 1997.

R. Heckmann. A Functional Language for the Specifi-
cation of Complex Tree Transformations. In European
Symp. on Programming, pages 175-190, 1988.

M. Mohnen. Context Patterns in Haskell. In 8th Int.
Workshop on Implementation of Functional Languages,
LNCS 1268, pages 307-319, 1996.

C. Okasaki. Simple and Efficient Purely Functional
Queues and Deques. Journal of Functional Program-
ming, 5(4):583 592, 1995.

C. Okasaki. Views for Standard ML. In ACM Workshop
on ML and its Applications, pages 14-23, 1998.

P. Palao Gostanza, R. Pefia, and M. Nuinez. A New
Look at Pattern Matching in Abstract Data Types. In
1st ACM Int. Conf. on Functional Programming, pages
110 121, 1996.

S. L. Peyton Jones, A. Reid, T. Hoare, S. Marlow, and
F. Henderson. A Semantics for Imprecise Exceptions.
In ACM Conf. on Programming Languages Design and
Implementation, pages 25 36, 1999.

S. L. Peyton Jones, J. Hughes et al. Report on the
Programming Language Haskell 98. 1999.

C. Queinnec. Compilation of Non-Linear, Second Or-
der Patterns on S-Expressions. In 2nd Int. Symp. on
Programming Language Implementation and Logic Pro-
gramming, LNCS 456, pages 340 357, 1990.

S. Thompson. Lawful Functions and Program Verifica-
tion in Miranda. Science of Computer Programming,
13:181 218, 1990.

M. Tullsen. First Class Patterns. In 2nd Int. Workshop
on Practical Aspects of Declarative Languages, LNCS
1753, pages 1-15, 2000.

D. A. Turner. Miranda: A Non-strict Functional Lan-
guage with Polymorphic Types. In Conf. on Functional
Programming and Computer Architecture, LNCS 201,
pages 1 16, 1985.

P. Wadler. Views: A Way for Pattern Matching to
Cohabit with Data Abstraction. In 14th ACM Symp.
on Principles of Programming Languages, pages 307
313, 1987.



