
Real-time Simulation of Wrinkles

Clausius Duque G. Reis, José Mario De Martino, Harlen Costa Batagelo
Department of Computer Engineering and Industrial Automation

School of Electrical and Computer Engineering
State University of Campinas, CP 6101

13083-970, Campinas, SP, Brazil

{clausius, martino, harlen}@dca.fee.unicamp.br

ABSTRACT

Skin wrinkles add realism and expressiveness to 3D facial animation. Modeling and animation of facial wrinkles

have been challenging tasks due to the variety of conformations and details subtleness that wrinkles can exhibit.

In this paper, we describe a method for real-time simulation of wrinkles taking advantage of the processing

power of current GPUs. Our approach is based on a GPU shader program that uses a simple normal mapping

approach to apply wrinkles according to influence areas on the face. For efficiency, all the data required for the

simulation is comprised in 3D textures. We developed a reusable and extensible XNA component that

implements the shader and tools for generating the necessary 3D textures. Currently, this component uses pre-

computed facial expressions, which are linear interpolated on the CPU. Nevertheless, it can be easily extended to

other deformation approaches, such as key-frames or virtual muscles, without increasing the amount of texture

data. We present a description of the developed component, applications and screenshots to illustrate the results.

Keywords

Shader, HLSL, Texture arrays, Areas of influence, Wrinkles, Facial animation, XNA.

1. INTRODUCTION
The display of visual details in virtual models

can be divided in two distinct approaches: Geometry

based and texture based, but it is possible to have

hybrid solutions. With perturbations directly into the

geometry it is possible to achieve high realistic

results; however this level of details is directly

proportional to the necessary number of vertices and

polygons in the model. On the other side, the use of

texture details does not require a high detailed model;

we apply the real objects details directly on the 3D

model, but these objects realism will not be

convincing.

Techniques such as bump, normal, parallax and

relief mapping, among others, allow us to

considerably enhance the final results without the

need to modify the model topology. Using normal

maps, which replace the normal from each pixel, we

can create the impression that we are using high

polygon models when, in fact, we are using medium

or low polygon models.

Physics based solutions normally need to

compute large amounts of data. This approach tends

to delay the presentation of the results, reducing the

system overall speed and preventing their use in real-

time.

With the advancement of the graphics cards

processing capacity, several areas are using this

computational power to accelerate the applications

speed. In areas such as game development, movies

and animations the use of shaders has become very

common, due to their ability to produce good

graphics results with little processing.

The method presented in this article

demonstrates how to use today’s GPU to simulate the

appearance of skin wrinkles in real time using texture

arrays, areas of influence and the new capabilities

from current graphical boards.

On the following sections, it will be described

the techniques used, the generation of the necessary

information, the use of that information on the shader

side, the reuse of the developed component on

different approaches and graphical results.

2. RELATED WORK
The great majority of the works developed on

computer graphics wrinkles is directed to the facial

animation area.

Bando et al. [BKN02] presents a hybrid solution

to generate fine and large scale wrinkles. For that, the

author uses hierarchical Voronoi division to create

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech

Republic.

the fine scale wrinkles, and cubic Bezier curves

defined by the user to produce the large ones. He

presents the small wrinkles using bump mapping

[BLI78] and the large wrinkles were set directly onto

the models mesh by adaptive refinement [VOT99]

them and changing the vertices position with

displacement map. The technique produced results in

an interactive frame rate of approximately 5.0 to 6.5

fps and it took a necessary initial time of 10 seconds

to generate the fine-scale wrinkles. The performance

results were taken on a XEON 2GHz with a Wildcat

II 5110 graphics card, producing an image and

texture with sizes of 512x512.

Boussiex et al. [BKTK00] presented an image

based method where they used generic masks to

simulate the aging of permanent wrinkles. They also

presented a method to simulate the elastic behavior

of the skin due to the aging process. They used layers

with different materials and a finite element method

for computing the deformation of the skin aging.

Mikael Nordenberg [NOR03] on the other hand,

used a bump mapping shader to present wrinkles on a

virtual model when its forehead was compressed. His

proposal included pre-computation calculations to

store the direction of the wrinkles at each vertex and

also per frame calculations, responsible to calculate

the model geometry compression and determine if

the wrinkles should be displayed. The bump mapping

technique was used to present the wrinkles with a

static wrinkles map texture.

Pei-Hsuan et al. [TLYLO06] used motion

capture to extract in 2D and 3D the facial animations

and wrinkles from a video tracking source. The

system generated textures and normal maps [KIL00]

that were interpolated on key-framing animation.

However, the method proposed does not enable the

user to choose which facial details will be presented;

it just reproduces the captured information.

Other proposals, like Loviscach [LOV06],

presented a technique to produce wrinkles in real-

time with bump mapping where, instead of physical

dynamics, kinematical preservation of length through

buckling was used, requiring to send some

information to the GPU like vertex position, vertex

neighbors and direction of wrinkles to compute the

compression of the model’s mesh and present the

final result. A pre-processing stage could be very

lengthy depending on the model’s number of

vertices.

Wang [WWY06] presented an approach based

on a governing curve and influence regions that

model the distinct wrinkle shapes to represent the

different material properties of non-rigid objects. The

results are presented with displacement map and

adaptive refinement, what causes the system to lose

speed and make the wrinkling operation last around 2

seconds to process on a Pentium 4 1.8GHz with 512

MB RAM for a head model with 66737 polygons.

Other system that generated expression wrinkles

direct on the mesh was presented by Li et al.

[LBKL07], where they divided the face in wrinkles

sub regions and created some wrinkles lines with

their own algorithm. Then they used displacement

map to interpolate between the regions and present

the wrinkles. With this technique, they manage to

generate the wrinkles on a 16659 triangles facial

mesh in approximately 594ms, using a Pentium

Dualcore 2.80GHz and a NVIDIA GeForce 6200

TurboCache graphic card.

In our approach we are not trying to create the

wrinkles, but present them in real-time and in an easy

way. If the user wants to add or remove wrinkles, it

can be done easily since we are working with a

dynamic number of areas of influence.

Unlike some authors [BKTK00, BKN02,

WWY06, LBKL07], we did not work with vertex

displacement or adaptive refinement, instead of that,

we chose to use normal maps to present the surface

details, making it possible to use low or medium

polygon models. It also allowed us to improve our

system’s FPS speed, since the performances obtained

by Bando [BKN02], Wang [WWY06] and Li

[LBKL07] were not suitable for real-time facial

animation applications. Loviscach [LOV06] managed

to get very good performance results during the

execution of the system, although the pre-processing

stage delay could become a problem in areas like

game development.

We also did not use any physical simulation

approach as used by Wang [WWY06] and Boussiex

[BKTK00] because of the speed bottleneck, instead

of that, we preferred to work with pre-made textures

and normal mapping shader, which gave us a better

visual result than bump mapping approaches

[BKN02, NOR03, LOV06].

Our system presents wrinkles on the entire face,

whereas the normal map possesses these details in it

and not just on the forehead, as presented by

Nordemberg [NOR03]. It also enables to choose the

area in which the wrinkles should appear on the face

using areas of influence, instead of just reproducing

the recorded information as Pei-Hsuan [TLYLO06]

or morphing between the different aged normal maps

like Boussiex [BKTK00].

During the initialization of the system we add a

few key textures, such as diffuse texture, normal

maps and several grayscale textures with the wrinkles

area of influence. After that, texture arrays

comprising all this texture information are generated

and passed to the shader. These areas of influence are

used to calculate which wrinkles are going to be

presented depending of an array with the activation

percentage of each area.

3. OUR APPROACH
In this section we present our method for

simulating facial wrinkles, describe a tool for

packing the required data and present a shader

program that uses these data for the simulation of

wrinkles in real time.

Our proposal is to work areas of influence and

normal maps to present wrinkles using a Shader

Model 3.0 compliant graphical board. This is

necessary because of some new functionality

implemented on them that we use on our logic. We

provide all the necessary information to the system

comprised in 3D textures, but we do not use them as

volume textures. Instead of that, we work with the

3D textures as texture arrays containing all the

necessary data in separated layers which we use to

loop and calculate the wrinkles presentation inside

the GPU shader.

Among the information needed, we send a

diffuse texture, two normal maps containing pores,

scars and other details, but just one of them will

contain wrinkles, and several areas of influence. The

number of areas of influence will depend on how

many wrinkles areas the user wants to control.

With a floating point vector containing the

percentage of activation of every area of influence

we control whether the wrinkle will be displayed or

not.

In the following sections we explain the use of

each component of our technique.

3.1 The necessary textures
Diffuse texture: This texture is responsible for

the model skin color; it is a texture from a human

face stretched on a plane with the region texture

coordinates correspondent to the 3D model vertex

(Figure 1). In our case we create the model using

MAYA [MAY07].

Figure 1. Diffuse texture (left) and texture

coordinates in face texture (right)

Normal maps: The system needs two normal

maps [KIL00] that along with the diffuse texture will

result in the color for each pixel of the rendered

image. These normal map textures could be

generated by some software that uses a high polygon

model to export all the details modeled onto the

geometry [ATI07]. Other way is to use height maps

and then use some software to convert them to

normal maps [CRB07, NVI07].

The first normal map (Figure 2: Left) has no

details or perturbations on the pixel’s normal; the

second one (Figure 2: Right) has details, or

perturbations, for all the possible wrinkles on the

model’s face when that is deformed. Notice that we

are not trying to physically simulate the human skin

behavior, but present wrinkles in real time on the

existent models with the normal mapping technique

and the use of texture array.

Figure 2. Normal map without wrinkles (left) and

normal map with forehead, nose and crown’s feet

wrinkles (right).

Areas of influence: They are basically grayscale

textures that have the wrinkles visibility information

for each region of the face model, in other words,

they are textures that inform the shader the places

where each wrinkle should or should not appear.

These areas can be compared to the transparency

information within the RGBA images. For each area

of influence, the only visible region will be

coincident to the wanted wrinkles; all the remaining

area will be 100% transparent. The user will paint the

region of the texture with the percentage they want to

display the wrinkles. If the pixel is white the system

will not present wrinkles, but if the pixel is black the

wrinkles will be 100% visible. Every value between

white and black will gradually present the wrinkles.

Our implementation demands one area of influence

texture for each wrinkles region that the user wants to

have control. These textures can be generated in any

image editing software.

In Figure 3 we illustrate two areas of influence,

the left and right forehead wrinkles. As seen on the

top left part of Figure 3, the left forehead overlaps the

area where the wrinkles will be displayed and the top

right shows the final area of influence generated by

the user.

We could have as many areas of influence as the

computer and graphic board allow us, but the more

areas we have, the longer it will be necessary to

calculate each pixel.

Figure 3. Wrinkles area of influence.

On figure 4 we present a proposal for a basic

setup of the areas of influence containing 8 distinct

areas. These areas could be changed in any necessary

way to produce the user desired results.

We chose this basic setup based on the face

subdivision areas proposed by Li [LBKL07]. In our

tests these areas have presented good visual results

and FPS performances.

Figure 4. Proposal to areas of influence setup.

3.2 Generating the texture arrays
All the necessary textures must be added in the

system, since they will compose the final texture

arrays that will be sent to the shader. The first one is

a high resolution 512x512x3 color texture array

composed by the diffuse texture and the normal

maps, and the second one is a low resolution

128x128xN grayscale texture array with the N areas

of influence information. This process is carried out

only one time during all the system.

This step could be eliminated adding layered

textures pre-constructed in some specific software

[VTT07] for this end. However this process is

generally a laborious task, and for this reason we add

to the system the capacity to generate these textures,

once all the information is available.

The basic project of the texture arrays for the

functioning of the system is presented in figure 5.

Figure 5. Basic setup of the texture arrays.

Where:

1: Diffuse texture.

 2: Normal map without wrinkles.

 3: Normal map with wrinkles.

 4: Areas of influence.

Depending on how many regions the user desires

to control, we can have a different number of

influence areas.

To produce the texture arrays, we use an

algorithm (Figure 6) where we draw each pixel of the

image copying the corresponding information of the

regular 2D textures pixel:

Figure 6. Texture arrays generation algorithm.

On this C# piece of code we show how the XNA

manages to recover the bits of the texture directly in

RGBA format, as can be seen at figure 6, lines 6 and

7, what facilitates the work sufficiently to manipulate

the image pixels.

For the texture array composed by the diffuse

texture and the normal maps, we create an array of

Colors in format RGBA (Line 1) and set its size to

match the texture array. For each depth loop (Line 4),

we read the information of the 2D texture that we

want to insert in the texture array (Line 6 and 7).

After that we loop through the Width and Height of

the textures inserting them in the array (Lines 9 to

17). Finally we have the texture array bits to return to

the system (Line 19).

The same algorithm is used to generate the

texture array composed by the areas of influence, but

instead of using a RGBA texture array, we create a

grayscale texture array to save GPU memory, since

the areas of influence are grayscale textures and we

do not use the green, blue and alpha channels.

We have used 3D textures instead of several 2D

textures because with 2D textures, every time we add

or remove an area of influence we would need to

change the shader to manage the new item, which is

not necessary with 3D textures since we can do it

dynamically, performing loops between the depths of

the texture, a necessary attribute to our technique that

could not be done with regular 2D textures.

3.3 Passing the information
Having in hands the texture array we contend all

the necessary information for the calculation of

normal mapping and the exhibition of wrinkles, we

can start to pass the information to the GPU.

Beyond the necessary basic information for

visualization (world, view and projection matrices)

and the texture arrays generated by the system, we

need to inform to the shader the activation percentage

of each wrinkle on determined influence area. For

this, we need to create a vector of equal size to the

depth of the texture array with the areas of influence.

If the texture has 4 areas of influence, our vector will

have a length equals 4 and each position of the vector

receives the activation percentage of its

corresponding texture.

In our approach we use simple interpolation

between some pre-modeled facial expressions, and

we define percentages of activation of the areas of

influence for each model. Other techniques however

could be used in this system. A good example would

be the use of virtual muscles, where the areas of

influence textures would be generated in accordance

with the vertices influenced directly by the muscle,

and the percentage of activation of each one of these

areas would be given by the force of activation of the

proper muscle.

As it can be seen, the implementation can be

different, but the passed information will always be

the same one.

3.4 The shader
The used technique is a modification of the

normal mapping shader. The difference is that our

implementation calculates the color result of two

normal maps and interpolates between them using the

areas of influence activation for the final pixel color,

displaying wrinkles in the surface of the model.

The interpolation is calculated in the GPU after

the calculation of the two normal mapping final

colors by the algorithm on figure 7.

Figure 7. Internal shader loop to compute

wrinkles exhibition based on areas of influence.

After computing the pixel resultant color based

on two normal mapping textures (Lines 1 and 3), we

clear the alpha information of the second final color

(Line 5), and loop through all areas of influence of

the texture array (Lines 7 to 21) adding the

corresponding pixel values in the areas of influence

multiplied by the percentage of activation of each

area in the alpha field (Lines 19 and 20), resulting in

a normal mapping texture with the alpha channel

value equals the sum of all influence areas.

In line 20 we use only the red channel of the

pixel because the user adds grayscale textures as

areas of influence having only one channel.

However, the texture array having the diffuse texture

and normal maps will have 4 channels, red, green,

blue and alpha, since it is created in a RGBA format.

Once we have the final color from both normal

maps and the wrinkles activation in the alpha channel

(Line 20), we can interpolate between the final colors

(Line 23 and 24), returning only the desired wrinkles

to be displayed.

We need to use graphical boards compliant with

Shader Model 3.0 because of some limitations from

the previous models. On line 7 we use the “Depth”

variable to set the end of the loop, which could not be

done with Shader Model 2.0. This is necessary

because we want to create a generic shader when

dealing with different number of areas of influence.

If we had not done that, every time we inserted or

removed an area of influence we would have to

change the shader algorithm to match the depth of the

texture array.

Our system uses an array to send the areas

activation percentage, which on Shader Model 3.0 is

limited to a length of 19. If the user wants to work

with more than 19 areas of influence, this limit could

be surpassed using an image with one dimension. For

example: If we wanted to send 30 areas of influence

we would need to create an image with width equals

30 and height equals 1 and implement on the shader a

reader like it is done with the depth on line 15 of

figure 7.

4. RESULTS
To demonstrate the use of our technique, we

used a 3D model with 5960 vertices and interpolated

it between several expressions, calculating the vertex

normal, tangent and binormal at each frame. The

solution was implemented with the Visual C#

Express [CEX07] and the Microsoft’s XNA

framework [XNA07]. As a result, we manage to get

high frame rates in different computers and graphical

boards. On tables 1 and 2 we compare the

performance results between a notebook and a

desktop computer to render the wrinkles, both with

256 MB RAM and projected area of 800x600 pixels.

Notebook Compaq Presario V6210BR

AMD SEMPROM with ~1.8GHz

NVIDIA GeForce 6150 Go 256 MB (Shared)

FPS 55 FPS

Frame time 19,6078 (ms)

Table 1. Notebook computer performance results.

Desktop computer

AMD SEMPROM with ~1.5GHz

NVIDIA GeForce 7600 GS 256 MB (Dedicated)

FPS 42 FPS

Frame time 25,4803 (ms)

Table 2. Desktop computer performance results.

We get the performance results show in table 1

and table 2 on tests performed to render all model

animations, independently if we were working with 2

or 16 areas of influence (Figure 8 to 10). It’s

important to note that these are average values and

depending of the system overload they could also be

lower or even higher.

Figure 8. Neutral face (Left) and surprised face

with 2 areas of influence activated (right), left and

right forehead wrinkles.

Figure 9. Left and right eyebrow.

Figure 10. Left crow’s feet.

To produce the results of figure 8 we used 2

areas of influence. The same areas were used to

produce the results on figure 9, but they were used

once at a time. Figure 10 uses one area of influence.

5. CONCLUSION
In this paper we have presented our approach for

the successfully display of wrinkles on a 3D model

surface. We demonstrated how to use today’s GPU to

exhibit wrinkles in real-time using texture arrays,

areas of influence and current graphical boards. We

managed to get satisfactory performance results on

two modest computers with low memory and limited

hardware.

The use of texture arrays facilitates the process

of changing the facial wrinkles setup or even to

switch between several implementations such as

virtual muscles or key frames, once the same

information is passed.

We produced results in a virtual face model, but

our proposal allows its use for other purposes like

wrinkles on the hands, neck and fabric, among

others.

The system allows overlap of areas of influence,

which means that we can draw areas of influence that

control the wrinkles of other areas. This is possible

since we are using textures to show the wrinkles, and

not to calculate them.

For future work, we intend to change from the

shader effect to one that produces wrinkles with

silhouettes. The reason for this is that the normal

mapping shader produces good results, but if we look

closer to the model we want to show some relief

instead of a flat surface.

6. REFERENCES
[ATI07] ATI’s normal map generator program,

http://www2.ati.com/developer/NormalMap

per-3_2_2.zip (Last access: 10/25/2007)

[BKN02] Bando, Y.; Kuratate, T.; Nishita, T., A

simple method for modeling wrinkles on

human skin. Proceedings of 10th Pacific

Conference on Computer Graphics and

Applications 9-11 Oct. 2002, 166-175, 2002.

[BKTK00] Boissieux, L.; Kiss, G.; Thalmann, N. M.;

Kalra, P., Simulation of Skin Aging and

Wrinkles with Cosmetics Insight.

Proceedings of Eurographics Workshop on

Computer Animation and Simulation 2000,

15-27, 2000.

[BLI78] Blinn, J., Simulation of Wrinkled Surface.

Proceedings of SIGGRAPH 78, 286-292,

1978.

[CEX07] Visual C# Express, Microsoft.,

http://msdn.microsoft.com/vstudio/express/v

isualcsharp/download/ (Last access:

10/17/2007).

[CRB07] Crazybump, http://www.crazybump.com/

(Last access: 10/24/2007)

[KIL00] Kilgard, M., A practical and robust bump-

mapping technique for today's GPU's.

Technical report, NVIDIA Corporation,

February, 2000.

[LBKL07] Li, M.; Yin, B; Kong, D; Luo, X.,

Modeling Expressive Wrinkles of Face For

Animation. Fourth International Conference

on Image and Graphics. 874-879, 2007.

[LOV06] Loviscach, J., Wrinkling Coarse Meshes on

the GPU. Proceedings of Eurographics,

Computer Graphics Forum 25(3), 467-476,

2006.

[MAY07] Autodesk Maya, http://www.autodesk.com

(Last access: 10/25/2007)

[NOR03] Nordenberg, M., Modelling and rendering

dynamic wrinkles in a virtual face.

TMH/KTH MSc thesis, 2003.

[NVI07] Nvidia’s DDS plugin for Photoshop,

http://developer.nvidia.com/object/nv_textur

e_tools.html (Last access: 10/24/2007)

[TLYLO06] Tu, P; Lin, I; Yeh, J; Liang, R;

Ouhyoung, M., Expression Detail Mapping

for Realistic Facial Animation. Proceedings

of CAD/Graphics 2003, 20-25, 2003.

[VOT99] Volino, P.; Thalmann, N. M., Fast

Geometrical Wrinkles on Animated

Surfaces. Proceedings of WSCG ’99, 1999.

[VTT07] Volume texture tool,

http://www.mdxinfo.com/resources/volumet

exturetool.php (Last access: 10/25/2007)

[WWY06] Wang, Y; Wang, C. C. L.; Yuen, M. M.,

Fast energy-based surface wrinkle modeling.

Computers & Graphics 30(1), February

2006: 111-125, 2006.

[XNA07] XNA Game Studio Express, Microsoft,

http://creators.xna.com/Resources/Essentials

.aspx (Last access: 10/17/2007).

